

ORCA - Online Research @ Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository:https://orca.cardiff.ac.uk/id/eprint/140270/

This is the author's version of a work that was submitted to / accepted for publication.

Citation for final published version:

Kirkpatrick, James D., Fagereng, Åke and Shelly, David R. 2021. Geological constraints on the mechanisms of slow earthquakes. Nature Reviews Earth & Environment 2 , pp. 285-301. 10.1038/s43017-021-00148-w

Publishers page: https://doi.org/10.1038/s43017-021-00148-w

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher's version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.

- Geological constraints on the mechanisms of slow earthquakes
- ² James D. Kirkpatrick^{1*}, Åke Fagereng², and David R. Shelly³
- 1. Department of Earth and Planetary Sciences, McGill University, Montreal, H3A 0E8, Canada
- 4 2. School of Earth & Ocean Sciences, Cardiff University, Cardiff, CF10 3AT, UK
- 5 3. U.S. Geological Survey, 1711 Illinois St, Golden, Colorado, 80401, USA
- 6 * corresponding author: james.kirkpatrick@mcgill.ca
- 7

The discovery of slow earthquakes over 20 years ago transformed understanding of how 8 plate motions are accommodated at major plate boundaries. Slow earthquakes, which slip 9 more slowly than regular earthquakes but faster than plate motion velocities, occur in a 10 range of tectonic and metamorphic settings. They exhibit spatial and temporal associations 11 with large seismic events that indicate a causal relation between modes of slip at different 12 slip rates. Defining the physical controls on slow earthquakes is therefore critical for 13 understanding fault and shear zone mechanics. In this Review, we synthesize geological 14 observations of a suite of ancient structures that were active in tectonic settings comparable 15 to where slow earthquakes are observed today. The results indicate that a range of grain-16 scale deformation mechanisms accommodate deformation at low effective stresses in 17 regions generating slow earthquakes. Material heterogeneity and the geometry of 18 structures that form at different inferred strain rates are common to faults and shear zones 19 in multiple tectonic environments, and may represent key attributes that limit slow 20 earthquake slip rates. Further work is needed to resolve how the spectrum of slow 21 earthquake slip rates can arise from different grain-scale deformation mechanisms and 22 whether there is one universal rate-limiting mechanism that defines slow earthquake slip. 23

25 [H1] Introduction

Slow earthquakes are a category of slip events with longer durations than 'regular' earthquakes 26 of comparable size¹. The longest-duration events, referred to as slow slip events (SSEs), last for 27 days to years and do not cause ground shaking (they are aseismic), but the permanent surface 28 offsets they cause are observed geodetically. Shorter-duration events (up to hundreds of 29 seconds) such as low and very low frequency earthquakes (LFEs) and tectonic tremor² [G], 30 which is inferred to represent bursts of LFEs³, are observed seismically. Geodetically and 31 seismologically observed slow earthquakes typically occur in approximately the same fault areas 32 and are sometimes temporally associated⁴. Consequently, seismologically observed slow 33 earthquakes are generally thought to occur when there is an accompanying geodetically observed 34 slow earthquake and they are considered different manifestations of the same deformation 35 process^{1,5}. Slow earthquake slip rates encompass a spectrum from $\sim 10^{-7}$ - $\sim 10^{-6}$ ms⁻¹ for SSEs to 36 $\sim 10^{-3}$ ms⁻¹ for LFEs. They therefore represent transient increases in slip rate above the long-term 37 average level (referred to as plate-rate or continuous aseismic creep, which is typically associated 38 with slip rates of centimeters per year or $\sim 10^{-10}$ ms⁻¹) and below slip velocities of regular 39 earthquakes (10⁰ ms⁻¹). Whether or not the spectrum of slip rates is continuous from SSE rates to 40 seismic slip rates is still debated^{6,7}. 41

42

Seismological and geodetic data show the signatures of slow earthquakes are similar across
 settings^{1,8}, implying slow earthquakes are a fundamental process within many faults. Slow
 earthquakes are observed near the plate interface in multiple subduction zones and transform
 margins. They are also located within accretionary wedges [G] at subduction zones⁹⁻¹⁶ and on a

variety of continental transform¹⁷⁻²² and extensional faults²³. In some subduction zones, SSEs
accommodate a substantial portion of the plate motion budget²⁴, indicating that they load or
unload the seismogenic zone defined by the nucleation of regular earthquakes²⁵. Slow
earthquakes have been observed to precede some large magnitude seismic events²⁶ and are also
co-located with regions that accommodate seismic slip^{27,28}, indicating a causal relation between
modes of slip at different slip rates. The recognition of slow earthquakes therefore provides
important new constraints on the processes and mechanics of fault slip^{24,25,29,30}.

54

Geological observations of ancient, exhumed faults and shear zones that hosted slow earthquakes 55 in the past are uniquely able to provide direct information on the physical mechanisms, fault 56 properties, and deformation conditions that control slow slip³¹, which are beyond the resolution 57 of geophysical and geodetic methods. However, there is no clear paleo-speedometer for creep 58 transients and currently no widely accepted, unequivocal evidence for slow earthquakes in the 59 geological record. Furthermore, recent laboratory experiments show that slow earthquakes can 60 arise from a variety of mechanisms, including purely frictional grain boundary sliding³²⁻³⁴ and 61 viscous deformation accompanied by fracture³⁵. Recent studies have proposed potential 62 structures that represent slow slip and highlighted processes or mechanisms relevant to 63 individual settings³⁶⁻⁴⁴, but geological insights into the physical processes and material properties 64 at the slow earthquake source are limited. 65

66

In this Review, we synthesize observations of exhumed deformation structures that might be examples of geological records of slow earthquakes from a range of tectonic settings. We aim to establish the physical characteristics of potential slow earthquake sources and compare

geological evidence to the geophysical constraints on the structures that generate slow 70 earthquakes. We focus this work on the environments of seismologically observed slow 71 earthquakes, which we treat as representative of systems that can exhibit the full spectrum of 72 slow earthquake slip rates. Our approach is based on recognizing that slow earthquakes are a 73 general, commonly occurring manifestation of active faulting⁸, so ancient exhumed structures 74 must contain a record of their occurrence, even if a specific signature of slow earthquakes has 75 not been recognized. The results emphasize that no single mineral assemblage, deformation 76 structure, or deformation mechanism that controls slow earthquakes. This Review highlights the 77 need for further geologically focused work to identify how the spectrum of slow slip rates can be 78 generated across a diverse range of tectonic settings. 79

80

81 [H1] Geophysical insights into slow earthquake geology

In this section, we review geophysical and seismological data that facilitate predictions regarding the geological characteristics of slow earthquakes⁴⁵⁻⁴⁷. The goals are to (1) establish their tectonic contexts to facilitate selection of appropriate ancient exhumed systems for comparison; and (2) predict the geological characteristics of slow earthquake structures to constrain the potential signatures of slow slip in complexly deformed rocks (Table 1).

87

88 [H2] Tectonic settings

Seismologically observed slow earthquakes commonly occur on major plate boundaries^{3,48-51},
though geophysical methods cannot establish whether they originate from a single fault interface
or a distributed network of faults or shear zones. Slow earthquakes occur over a very large range
of metamorphic conditions (FIG. 1). They are commonly^{25,52}, but not exclusively^{14,53,54}, located

93	in transitional regions at the edges of seismogenic zones ⁵⁵ . However, globally, hypocentral
94	depths range from \sim 2 to 45 km and hypocenters also span tens of kilometers along the downdip
95	direction of some individual fault zones ^{56,57} . Observations of geodetically observed slow
96	earthquakes are less numerous, but inversions of geodetic data show a similar range in depth of
97	slip ^{27,29,58} . Slow earthquakes therefore occur at all temperatures from near surface to around 700
98	°C, which implies that different grain-scale deformation mechanisms likely accommodate
99	deformation at the sources of slow earthquakes because the typical constitutive relations for
100	frictional sliding, diffusion creep [G], and crystal-plastic deformation [G] are pressure and
101	temperature dependent ⁵⁹ .

Slow earthquakes occur frequently on some well-instrumented plate boundaries, indicating 103 evidence for them should be common in the rock record. For example, around 10⁵ slow 104 earthquakes are detected seismically per year each on the San Andreas Fault^{60,61} and Nankai⁶² 105 and Cascadia⁶³ subduction zones. Given the areas of the zones hosting slow earthquakes on these 106 faults, 10⁵ nucleation sites would, on average, result in millions or tens of millions of slow 107 earthquake events per kilometer cubed per million years. All of these events would result in 108 permanent deformation. However, the number of structures that record these events in an 109 exhumed example will be variable as slow earthquakes are likely hosted on a mixture of new and 110 reactivated structures, and not all structures are preserved in recognizable form. Because 111 seismologically observed slow earthquakes are commonly spatially clustered^{49,61,64}, some regions 112 within the host deformation zones are expected to contain higher concentrations of related 113 structures. Additionally, deformation that occurred at slow slip rates can be expected to 114

predominate if structures are exhumed from regions where SSEs account for a significant portionof the total relative plate motions.

117

118 *[H2] Kinematics and strain rates*

Structures recording slow earthquakes must exhibit dominantly shear offset to be consistent with geodetic observations and the double-couple source mechanisms [G] of LFEs^{3,48,50,65,66}. Slip during a seismologically observed slow earthquake is estimated to be ~0.01–0.1 mm, and the radius of a rupture ranges from ~10 m up to around 200 to 600 m ^{49,65,67-69}. Inferred stress drops are of the order of 10 - 100 kPa⁶⁷, orders of magnitude smaller than the median observed value of approximately 4 MPa for regular earthquakes⁷⁰.

125

The strain rates associated with slow earthquakes depend on the thickness of the slip zone across 126 which the slip is distributed. Assuming simple shear, strain rate can be approximated as the ratio 127 of the slip rate to slip zone thickness. Slip rates of 10⁻³ ms⁻¹ therefore imply strain rates of 10⁻⁵, 128 10^{0} , or 10^{3} s⁻¹ for representative slip zone thicknesses of 100 m, 1 mm, and 1 μ m, respectively. 129 SSE average slip rates of $\sim 10^{-7}$ ms⁻¹, give strain rates of 10^{-9} , 10^{-4} , or 10^{-1} s⁻¹ for thicknesses of 130 100 m, 1 mm, and 1 μ m, respectively. These average rates can, however, also be achieved by 131 multiple, faster slip increments, too small to be distinguished geodetically and spaced out over 132 the duration of a single recorded slip episode⁷¹. Because slip at rates spanning the spectrum of 133 slow earthquakes are often detected in the same place, the structures resulting from these 134 different strain rates could be mutually crosscutting, or overprinting, unless they are spatially 135 separated and subparallel. 136

138 [H2] Deformation conditions

Substantial geophysical evidence indicates that source regions of slow earthquakes experience high pore fluid pressure and low effective stress^{46,72,73}. The evidence includes seismic wave velocities that imply low Poisson's ratio⁷⁴⁻⁷⁶ and the sensitivity of small earthquakes to small perturbations in stress from tidal loading or teleseismic waves^{77,78}. Together, these observations indicate that structures hosting slow earthquakes are critically stressed [G]^{47,79,80}. In some cases, tremor migrates at rates of ~1 – 100 km/hr^{81,82}, suggesting mechanical connection or similar proximity to failure across source regions up to around 100 km apart^{61,80}.

146

We have summarized the key attributes of slow earthquakes derived from seismological and geodetic and constructed a list of predicted geological characteristics that are developed from these data as a guide for identifying the signatures of slow earthquake deformation in ancient rocks for future geological investigations (Table 1).

151

152 [H1] Potential slow earthquake structures

153

In this section, we summarize observations of a selection of ancient, exhumed structures, which address some of the critical properties of slow earthquake sources that geological observations are well placed to help elucidate: the physical characteristics of potential slow earthquake structures (thickness, mechanical composition), the deformation mechanisms at the locus of slip, and the in situ effective stress conditions. To ensure the information is relevant to slow earthquakes generally, we synthesize observations from systems that were active across the range of tectonic settings shown in Figure 1 (locations shown in Figure 1, for details see

Supplementary Table 1). They include subduction plate boundary faults, upper plate faults at 161 subduction zones, and transform faults. Throughout, we have attempted to identify only the 162 features that formed at metamorphic conditions relevant to slow earthquakes, particularly where 163 subsequent deformation or retrograde metamorphism occurred during exhumation⁸³. We focus 164 on structures that exhibit shear offset, consistent with geodetic and seismological observations. 165 However, we have not precluded any features from within these systems in order to encompass 166 as full a range of deformation structures as possible. For simplicity, we use the term 'plastic' to 167 encompass grain-scale deformation by dislocation motion [G], diffusion creep [G], or 168 dissolution-precipitation creep unless otherwise stated. 169

170

171 [H2] Thickness of deformation zones

172

The maximum thickness of the exhumed structures is a constraint on the total thickness of zones 173 174 that host slow earthquakes in modern systems. Geologically, the maximum thickness is approximated by zones of distributed shear deformation in which finite strain [G] is inferred to 175 be higher than in the surrounding (background) rocks. These high strain zones have total 176 observed thicknesses from tens of meters to as much as a few kilometers, lengths of kilometers 177 to hundreds of kilometers, and contain brittle (FIG. 2A) or plastic (FIG. 2D) structures or both. 178 Brittle elements that define distributed high strain zones include particulate or cataclastic flow 179 **[G]**, zones of high vein density, anastomosing shear band networks (FIG. 2C), and mixing 180 resulting in stratal disruption (FIG. 2A). Distributed shear deformation accommodated by plastic 181 mechanisms is indicated by pervasive foliations [G] (FIG. 2D, F), folds, and associated 182 kinematic indicators (FIG. 2F). Finite strain and inferred strain rates within high strain zones are 183

spatially variable, and presumably strain and strain rate patterns also varied over time during
 progressive deformation. Observed high strain zone thicknesses are upper bounds on active
 thicknesses as migration of deformation with time can result in total thicknesses greater than the
 zone that is deforming at any one time⁸⁴.

188

Relatively localized faults and shear bands with thicknesses ranging from sub millimeter to 189 meters are ubiquitous within or at the edges of high strain zones⁸⁵ (FIG. 2C-F), suggesting strain 190 is localized to varying degrees within individual deformation environments. The degree of 191 localization varies within individual deformation environments such that there may be a 192 continuum of structures with different thickness⁸⁶. Although finite strain can rarely be measured, 193 localized structures are generally inferred to have accommodated a greater component of shear 194 displacement than their surroundings^{87,88}. Relatively localized structures at the edges of high 195 strain zones include out of sequence thrusts or thrusts at the base of nappes (FIG. 2C), which are 196 typically continuous for kilometers along strike and accommodate the majority of offset across a 197 system in a particular phase of deformation^{43,89,90}. 198

199

Within high strain zones, discrete, localized shear bands are common at all metamorphic grades and across a wide range of rock types (FIG. 2E, F). Individual bands are locally discordant to and deflect the surrounding foliations, though meters-long, submillimeter-thick, foliation-parallel bands are also observed⁹¹. Shear bands typically form anastomosing **[G]** networks, where both the width of the networks and the length of individual shear bands is at least meters to tens of meters, although the size of exposure limits observation beyond this minimum length scale⁹² (an example network is shown in FIG. 3C). In predominantly plastic high strain zones, some shear

bands containing ultramylonite may be traced for kilometers^{93,94}. Shear bands also define S-C-C' 207 composite fabrics [G] in predominantly plastic shear zones, which are typically finer grained 208 than the surrounding rock, suggesting they were relatively weak⁸⁶ and/or may represent 209 deformation at higher strain rates⁹⁵⁻⁹⁷. Shear bands in composite fabrics tend to be centimeters to 210 tens of centimeters long. Lengths of localized structures therefore range from $10^{-3} - 10^{-2}$ m (C-C' 211 bands) to $10^{0} - 10^{3}$ m (shear bands) or more if linkage of ultramylonite bands, faults, and shear 212 zones occurs within structural complexes and nappe stacks. As strain rates were likely elevated 213 in these shear bands compared to the surrounding rock, they may be candidate host structures of 214 the transient increases in strain rate associated with slow earthquakes. 215

216

217 [H2] Heterogeneous mechanical components

218

Mechanical heterogeneity is thought to limit slow earthquake slip rates and potentially cause
local variations in slip rate that result in LFEs^{45,98}. Heterogeneity is inherent to all of the
structures we reviewed, which contain assemblages of different rock types or components with
different grain size, with, on average, aligned structural components. Field observations of
boudinage or buckle folding [G] of relatively more competent units are common to all
metamorphic environments, which demonstrate the different components had different effective
viscosity under in situ conditions. Veins are also commonly boudinaged and folded.

226

High strain zones containing heterogeneous mechanical components are common in subduction
 zones. Mélange [G] zones developed at subduction zone plate boundaries at temperatures less
 than around 350 °C contain block-in-matrix fabric where blocks of relatively coarse grained

siliciclastic and mafic volcanic rocks are interspersed in a matrix of pelitic rock [G] (FIG. 3A). 230 Similar assemblages are developed in faults cutting off-scraped units that were never buried 231 deeply. These faults are defined by zones of stratal disruption in which coarser-grained layers are 232 broken up and boudinaged within a pelitic matrix⁹⁹⁻¹⁰². Rocks that were buried to greater depths 233 in subduction systems experience additional disruption¹⁰³. Deformation to greater strains at 234 increasing temperatures involves additional folding and transposition [G] of layering, boudinage 235 **[G]**, and imbrication **[G]**, which all further mix lithologies^{39,104,105}. Lithologic heterogeneity is 236 also characteristic of serpentinite-bearing shear zones on prograde deformation [G] paths or at 237 peak conditions, where the degree of serpentinization may be spatially variable and in some 238 cases serpentinite shear zones contain exotic blocks^{40,106,107}. 239

240

Exhumed continental transform faults also contain mixtures of lithologies due to transposition
and boudinage, predominantly of more and less phyllosilicate-rich units^{93,108,109}. Heterogeneous
fault rocks also develop in single lithologic units due to variations in finite strain where blocks of
relatively coarse grained protomylonite and weakly deformed protolith are surrounded by finergrained mylonite or ultramylonite zones^{86,93}.

246

We compiled field data describing the characteristics of competent block in various high strain zones to determine if the populations of blocks are similar (FIG. 3). All block populations exhibit an apparent power-law distribution of sizes^{110,111} (FIG. 3B). In addition, a power-law model is a plausible fit¹¹² for datasets with ~1000 measurements, though this cannot be evaluated for smaller datasets. Substantial variation is observed in the power law scaling exponent when exposure-scale measurements ($10^{-2} - 10^{1}$ m, maximum observed dimension limited by exposure

size) are compared, reflecting heterogeneity within and between systems¹¹⁰. The largest-scale 253 relatively competent lenses within mélange zones can be mapped for over 1 km (e.g. basaltic 254 rocks at the base of a unit of mélange), representing a potential upper bound on block size. 255 Block long axes have a preferred orientation clustered around the high strain zone boundaries 256 $(\pm 15^{\circ})$ (FIG. 3C). More elongate, higher aspect ratio blocks are less common than more equant 257 blocks (FIG. 3D) so that the populations have log-normal axial ratio distributions¹¹¹. Comparison 258 of mélanges that formed at different temperatures (Lower and Upper Mugi and Makimine 259 mélanges, Cycladic Blueschist Unit) suggests the blocks may be progressively broken down into 260 smaller units during underthrusting, though the range of aspect ratios is similar^{39,111}. 261 Lithologically distinct or low strain blocks within the Kuckaus continental transform zone93, 262 show a similar distribution of aspect ratios, range of block dimensions (with the largest over 2 263 km), and clustering of long axis orientations ($\pm 16^{\circ}$) as the subduction mélange examples. 264

265

266 [H2] Deformation mechanisms

267

Analysis of ancient structures is the only way to directly evaluate the grain-scale deformation 268 mechanisms that are important in environments that host slow earthquakes. A variety of grain-269 scale deformation mechanisms were active in the exhumed structures, but they all have one thing 270 in common: deformation was accommodated by a combination of syn-tectonic plastic and brittle 271 mechanisms (FIG. 4). In subduction zone faults and accretionary wedge thrusts at temperatures 272 less than ~350 °C, the predominant plastic deformation mechanism is dissolution-precipitation 273 creep in rocks containing quartz and clay minerals^{111,113,114} (FIG. 4A, B). Higher-temperature 274 subduction and transform structures exhibit evidence for a range of plastic deformation 275

mechanisms, including both dislocation creep^{39,115} [G] and diffusion creep⁸⁶ [G]) in foliationdefining phases such as quartz and calcite, or amphiboles in some mafic rocks (FIG. 4C). Plastic
deformation mechanisms result in the penetrative foliations (FIG. 4A-D) and grain shape
preferred orientations (FIG. 4 C) that define both the maximum widths of the high strain zones
and localized shear bands (FIG. 4 D).

281

Structures that form by fracture and frictional sliding contemporaneously with plastic 282 deformation occur at a range of scales. The discrete, localized structures at the boundaries of 283 high strain zones are typically brittle structures^{89,90}. High strain zones representative of both low 284 and high temperature systems contain localized shear bands (FIG. 2B), cataclasitic bands [G] 285 (FIG. 4A), breccias (FIG. 4E) and, in some cases, pseudotachylytes [G]. Where present, these 286 localized structures commonly form at the interfaces between units of different 287 competence^{108,116,117} and along foliations^{116,118,119}. Veins are common to most of the exhumed 288 high strain zones, typically occurring in discrete sets either parallel or discordant to penetrative 289 foliations (FIG. 4F, G). Grain-scale brittle deformation is a fundamental mechanism in 290 phyllosilicates, which are foliation-defining phases in many cases (FIG. 4A, B, D). 291 Microcracking (and/or veining) of the crystal lattice is accompanied by kinking, dislocation glide 292 along basal planes^{95,120}, and recrystallization by a dissolution-precipitation mechanism, resulting 293 in a penetrative semibrittle behavior^{40,41,95,120-122}. Grain-scale brittle deformation in phyllosilicate 294 rich rocks, along with the zones of stratal disruption in shallow subduction zone or accretionary 295 wedge faults where particulate flow may have predominated⁹⁹, can result in meters or tens of 296 meters-wide deformation zones. However, discrete brittle structures (with thicknesses of the 297 order of millimeters or centimeters) are generally relatively localized while structures resulting 298 from crystal-plastic deformation are always more distributed. 299

Mutually crosscutting relations between fractures, best recorded by veins, and surrounding 301 foliations are the primary evidence for fracture and plastic deformation occurring 302 contemporaneously¹²³ (FIG. 4F). Veins that were boudinaged, folded and/or exhibit evidence for 303 plastic grain-scale mechanisms^{37,40,124} underwent some plastic deformation after formation. 304 Repetition of this pattern, indicated by crosscutting veins, foliation wrapping around boudinaged 305 veins while other veins crosscut the foliation, and veins that record different finite strain 306 subsequent to formation indicate fracture and viscous deformation occurred cyclically^{123,125,126}. 307 In the structures we reviewed, veins are far less common in transform faults than in subduction 308 systems. However, some transform faults preserve brittle deformation in the form of 309 pseudotachylyte slip surfaces^{119,127} and associated breccias¹²⁸ (FIG. 4E), which are subsequently 310 folded or show evidence of grain-scale plasticity. The inferred cyclicity between localized 311 fracture and distributed plastic deformation is consistent with the seismological and geodetic 312 observations of slip at different slip rates at the same place on active structures hosting slow 313 earthquakes. 314

315

316

[H2] Fluid pressure and effective stress

317

Tomographic images of seismic velocity in systems such as the Cascadia^{76,129}, Mexico⁷³, and Nankai⁷⁵ subduction zones, among others, indicate that slow earthquakes occur at high pore fluid pressure and low effective stress. Geological constraints on effective stresses could verify these observations and test if they are generally applicable. However, field-based estimates of effective stresses are available for only a few exceptional systems, such as the Makimine mélange (Japan)

323	and Chrystalls Beach mélange (New Zealand), which exhibit well-defined vein geometrical
324	relations and kinematics that constrain the effective stress for frictional slip. Elsewhere, stress
325	conditions can only be inferred by comparison to lab-derived flow laws through empirical
326	relations between steady-state flow stress and grain size during dislocation creep
327	(paleopiezometry) ¹³⁰ . The available data suggest shear offset does occur under elevated pore
328	fluid pressure (greater than hydrostatic, approaching lithostatic) and low effective normal stress
329	conditions (differential stress of the order of 1 to 10 MPa) ^{37,131} . Though absolute measures of
330	effective stress are rare, similarities in vein network characteristics in multiple systems suggests
331	a similar conclusion is appropriate for many of the exhumed structures ^{39,125,130} .
332	
333	Field- and micro-scale constraints on vein opening vectors demand the occurrence of tensile
334	failure at the depths and conditions of slow earthquakes ^{37,40,131} . These veins are interpreted to
335	form as opening-mode extensional hydrofractures. Extensional fractures can accommodate shear
336	offsets when arranged in an en echelon [G] geometry, which are documented in some
337	serpentinite shear zones ¹⁰⁶ and high temperature subduction shear zones ^{36,37,125} . Such en echelon
338	shear zones are generally up to a few meters wide and traceable for meters to tens of meters,
339	generally constrained by outcrop continuity.
340	
2/1	Veins or mineralized faults with confirmed shear offsets, which indicate shear failure under

Veins or mineralized faults with confirmed shear offsets, which indicate shear failure under elevated pore fluid pressure conditions, are observed in some high strain zones. In subduction mélanges, shear-offset veins occur along shear bands and parallel to solution cleavages throughout the matrix, while extensional veins form discordant to the cleavages^{36,37,92}. The kinematics and attitudes of the two vein sets combined with failure criteria for the anisotropic

346	rocks ¹³³ suggest slip at differential stress of \sim 1 MPa and elevated pore fluid pressure
347	(approaching lithostatic values) ^{37,131} . The low differential stress reflects the preference of tensile
348	over shear failure. However, tensile veins are typically filled by a relatively competent quartz
349	precipitate, which is easily preserved and recognized, whereas discrete shear surfaces can easily
350	be overprinted in environments of efficient plastic deformation. Therefore, it is possible that the
351	dominantly extensional vein systems were accompanied by substantial but undocumented shear
352	failure. Similar vein sets, vein attitudes with respect to foliation, shear offsets across foliation-
353	parallel veins, and inferences regarding rock mechanical anisotropy are documented in a variety
354	of subduction mélanges ^{92,125} and accretionary wedge thrusts ¹³⁴ , suggesting that these low
355	effective stress conditions may be commonly achieved.
356	
357	Small differential stresses are also inferred from structures in which plastic deformation was
358	predominant by extrapolating flow laws and stress-grain size relationships to in situ
359	conditions ¹³⁰ . Downdip of the seismogenic zone in subduction zones, deformation at \sim 500-600
360	°C partitioned into biotite-rich layers at plate rates to SSE slip rates requires shear stresses of the
361	order of 1-10 MPa ¹²⁵ . In quartzofeldspathic rocks typical of continental transform faults, flow
362	stresses within high strain zones at 450-480 °C are on the order of 30 MPa or less, as calculated
363	from quartz piezometry and corrected for bulk rock composition ⁸⁶ . Flow laws are not well
364	defined for some mineral phases (e.g. amphiboles), but strain is distributed across both mafic and
365	silicic or calcic rocks in high strain zones at blueschist to eclogite conditions, indicating all
366	lithologies were relatively weak ³⁹ . Vein formation during predominantly plastic deformation at
367	higher temperature also indicates near-lithostatic pore fluid pressures ^{39,43,135} . Overall, the
368	geological observations suggest slow earthquake deformation in the deep extents of active

systems occurs at differential stress that is a small fraction of the lithostatic load, potentially
 accompanied by large pore fluid pressure.

371

Cycling of stress magnitudes, orientations and/or pore pressures is inferred from repetitive 372 fracture during contemporaneous fracture and crystal-plastic deformation^{37,40,43,90,123}. Incremental 373 shear offsets of around 10-100 µm across foliation-parallel veins (FIG. 4G) combined with vein 374 lengths of the order of 1-10 m, have been used to infer stress drops of tens of kPa, comparable to 375 those determined seismologically for individual LFEs, accompanied by pore pressure drops^{36,123}. 376 Plastic deformation in the rock surrounding these veins accommodated some strain in the times 377 between slip increments. Foliation-parallel shear veins in the same exposures as foliation-parallel 378 extensional fractures indicate cyclical switching between the maximum and minimum 379 compressive principal stresses, consistent with small differential stresses and pore pressure 380 cycling^{37,124}. Repetitive fracture, stress field rotations, and alternating brittle and plastic 381 deformation are also evidenced by veins in mutually crosscutting sets parallel and discordant to 382 the foliation, within which older veins are folded and/or boudinaged^{39,123}. 383

384

- [H 1] Picture of a slow earthquake source
- 386

The large range of conditions and locations in which slow earthquakes are observed seismologically (FIG. 1A) requires that no single mineral phase, lithology, or metamorphic reaction controls slow earthquake slip. This observation implies that slow earthquake phenomena arise from some combination of loading and in situ conditions⁴², which can develop and generate similar seismological signals in a large variety of settings.

393	Some features are common to all of the apparently diverse structures reviewed in the previous
394	section, which we suggest can be used to develop a general picture of a slow earthquake source
395	in any tectonic environment. Our review suggests the host structure comprises a high strain zone
396	from at least tens of meters to kilometers in total thickness that accommodates shear
397	displacement, but which also contains more localized, typically anastomosing, millimeter- to
398	centimeter-thick shear-offset structures. Within the high strain zone, coeval plastic
399	(intracrystalline and/or diffusive mass transfer) and brittle (fracture, frictional sliding
400	granular/cataclastic flow) deformation mechanisms result in mutually crosscutting continuous
401	and discontinuous structures. The high strain zone contains a heterogeneous assemblage of
402	lithologies and/or components with length scales from centimeter to kilometer that have variable
403	competency under in-situ conditions. A well-defined foliation is present throughout the high
404	strain zone defined by compositional layering and/or mineral grains with shape-preferred
405	orientations, which result in mechanical anisotropy facilitating frictional failure along weak
406	planes. The foliation contains aligned grains of mineral phases that are intrinsically weak or
407	promote deformation at low differential stress under in situ conditions, regardless of the
408	deformation mechanism. Deformation resulting in slow earthquakes is fluid assisted and likely
409	occurs at high pore fluid pressures.

Considered individually, each of the characteristics listed above could apply to many ancient
faults and shear zones and none of them *require* deformation at slip rates corresponding to slow
earthquakes. Therefore, none of these common characteristics can be considered a definitive
indicator of slow earthquakes in the rock record. As the grain-scale deformation mechanisms

must be variable throughout the crust, a wide variety of structures might have accommodated
slow earthquakes, and structures that were active in different tectonic settings may have different
characteristics in exposure.

418

419 [H21] Unravelling slip rates

420

In the absence of a single, universal deformation structure or mechanism diagnostic of slow 421 earthquake slip rates, how can the fingerprint of slow earthquakes be recognized in the rock 422 record? One approach is to distinguish the relative slip or strain rates associated with categories 423 of structures within exhumed high strain zones that contain multiple styles of deformation (e.g. 424 distributed and localized), but which developed in the same phase of deformation. If the 425 structural elements that require aseismic (plate motion, i.e. $\leq 10^{-9}$ ms⁻¹) or regular seismic rates 426 $(\sim 10^{0} \text{ ms}^{-1})$ can be identified, then any other structures may have formed at intermediate rates 427 and be candidates for accommodating slow earthquakes¹³⁶. 428

429

For example, in the lower Mugi mélange in the Shimanto Belt, Japan, pseudotachylytes and 430 fluidized cataclasites in the unit-bounding thrusts record seismic slip rates and potentially large-431 magnitude earthquakes^{89,113}. The pervasive cleavage distributed throughout the pelitic matrix of 432 the mélange formed by dissolution-precipitation creep in quartz, which is rate limited by the 433 slowest of dissolution, diffusion, or precipitation of silica. The constitutive relations for 434 dissolution-precipitation creep¹³⁷ (FIG. 5) suggest that for a grain size of around 10 μ m, 435 representative of the pelitic matrix, slip rates characteristic of both plate motions and SSEs can 436 be accommodated by dissolution-precipitation creep within shear zones of the order of 10 cm 437

thick if the mechanism is dissolution limited and millimeters thick if the mechanism is diffusion
limited¹³⁸. Zones at least a few centimeters-thick of higher shear strain with mutually
crosscutting relations with the surrounding solution cleavage may therefore be a potential record
of geodetically observed slow slip³⁷. However, seismologically observed slow earthquakes with
slip rates of millimeters per second cannot be accommodated by dissolution-precipitation creep
under these conditions unless the thickness of a continuous shear zone is tens of meters or more,
suggesting they require an alternative process¹³⁸.

445

The remaining structures within the mélange, which might have hosted ancient seismologically 446 observed slow earthquakes, are the phyllosilicate-rich shear band-vein networks distributed 447 throughout the pelitic matrix and cataclastic bands identified at matrix-block margins. There are 448 no lower or upper bounds on slip rate for these two features so they may have accommodated the 449 whole range of tectonic slip rates¹³⁹. It is also possible that the full range of tectonic slip rates 450 could have been hosted by the through-going, bounding thrusts¹³⁶, and the evidence for slow 451 earthquake slip rates was either overprinted, unrecognized, or is indistinguishable. However, this 452 analysis suggests mutually crosscutting structures with a range of inferred slip rates within one 453 system may be the nearest thing to a signature for slow earthquakes^{136,140,141}. 454

455

456 [H2] Geometry of slow earthquake sources

457

We present a conceptual model of a slow earthquake source structure in Figure 6, which
illustrates the geometry and spatial relations of shear-offset structures that slip at different rates
within a single system. Figure 6 depicts the cross-sectional area of a high strain zone roughly

comparable to the source region of an LFE family⁴⁹. Drawing on the inferences made previously 461 for the Mugi mélange, as representative of the subduction mélanges we reviewed, this model 462 suggests slow slip events (SSE) might be accommodated by zones of matrix a few to tens of 463 centimeters thick between blocks, which are common within the mélange, or across thicker shear 464 zones containing both matrix and blocks¹⁴². Shear band-vein networks and cataclastic bands exist 465 in interconnected networks that are continuous for at least tens of meters, and must extend farther 466 than this lower bound⁹². A moderately large LFE source may therefore consist of an 467 anastomosing fault, shear band and/or vein network rather than a single planar fault surface. 468 Non-coplanar shear structures are prevalent, raising the possibility of synchronous slip across 469 multiple subparallel surfaces. Competent block margins are commonly aligned with the shear 470 bands, supporting the inference that the mechanical contrast at the interfaces between relatively 471 competent bodies in a weak matrix, where stress is amplified and/or frictional stability or rock 472 permeability vary, are central to strain localization^{143,144}. Due to their non-planar geometry, any 473 474 slip across a single band or network of bands would cause heterogeneous loading of the surrounding rock volume. 475

476

We suggest the model shown in Figure 6 is representative of slow earthquake source structures across the metamorphic environments of slow earthquakes (FIG. 1). Though the lithologies and active deformation mechanisms differ, the mechanical heterogeneity, thicknesses, and geometries of structures associated with different strain rates, and the inferences regarding effective stress conditions are similar for all the structures we reviewed. A key insight is that available mineral flow laws suggest that geodetically observed slow earthquakes may be accommodated by commonly identified ductile shear zones in many exhumed structures at low

differential stress (~1-10 MPa) under the in situ conditions of deformation^{39,125,130}. Rather than
representing steady-state creep, slow earthquake slip would then occur through episodic
increases in stress or decreases in strength¹⁴⁵. This is permissible, but not required by, the
geological observations. For example, geodetically observed slow earthquakes could also be
accommodated by small increments of slip across isolated structures or through linkage of
parallel but non-coplanar segments of shear-vein networks.

490

Within high temperature, predominantly plastic high strain zones, relatively localized shear-491 offset structures, which might be candidate LFE hosts, fall into two broad categories: vein 492 networks and shear bands. The rates at which veins form are not well constrained, but the 493 kinematics of vein-filled fractures and the association with rigid blocks are consistent with 494 seismologically observed slow earthquake occurrence^{39,135}. Ultramylonite [G] shear bands are 495 displacement discontinuities within predominantly plastic high strain zones⁸⁷. Available flow 496 497 laws suggest millimeter-thick ultramylonite shear bands are too thin to accommodate slow earthquakes. However, thicker ultramylonite bands are documented^{93,108} and overall have similar 498 geometries to shear band networks in low temperature mélanges⁹³. Further investigation is 499 necessary to establish the deformation mechanisms active within plastic shear bands and to 500 investigate whether those mechanisms can accommodate strain at low flow stress compared to 501 the remotely applied stress¹⁴⁶, can accommodate strain rates high enough to result in geodetically 502 detectable strain rate transients or radiated seismic energy. 503

504

505 [H1] Mechanisms of slow earthquakes

A variety of modeling studies have proposed mechanisms that explain how slip on a fault might 506 occur relatively slowly rather than manifesting as seismic slip. Several of the mechanisms rely 507 on specific frictional behavior of the materials at the sliding interface¹⁴⁷. In the framework of rate 508 and state friction, slow slip is predicted when the fault system stiffness approaches the critical 509 stiffness for instability^{148,149}, which is promoted by low effective normal stress and near velocity-510 neutral frictional stability¹⁴⁹. Slow slip is also possible when a fault exhibits a transition from 511 velocity-weakening to velocity-strengthening at a slip speed larger than the plate convergence 512 rate¹⁵⁰⁻¹⁵². Dilatant strengthening, where dilatancy during slip reduces pore pressure and prohibits 513 a transition to full instability, has been proposed as a potential mechanism that limits the slip 514 rate^{153,154}. Geometric complexity on a fault with uniform velocity-weakening behavior has also 515 been shown to result in slow slip¹⁵⁵. 516

517

Geological observations can determine which of these mechanisms may be important in specific 518 settings. For example, pelitic rocks are likely present in high strain zones that host slow 519 earthquakes in the shallow portions of subduction zones. Lab experiments show pelitic rocks 520 have near velocity-neutral frictional stability and exhibit a transition from velocity-weakening to 521 velocity-strengthening behavior with increased velocity^{32,156,157}. Serpentinite, inferred to be 522 common near the mantle wedge corner coincident with the locus of slow earthquakes in some 523 subduction zones⁷³, also shows a change from velocity-weakening to –strengthening at 524 increasing velocity¹⁵⁸. Competent blocks of basalt in mélanges have been shown to be velocity-525 weakening¹¹⁷ suggesting that slip zones that mix clay and altered basalts might favor slow 526 slip^{117,145,159}. Furthermore, the anastomosing geometry of shear band-vein networks and 527 cataclastic bands might be fundamental to generating slow slip across many environments^{107,155}. 528

These observations therefore suggest that the frictional behavior of the materials in the high strain zones, the intrinsic heterogeneity of the high strain lithologic components, and the geometry of potential slow earthquake structures all contribute to generating the spectrum of slow slip rates.

533

Our review suggests that in all metamorphic environments, the combination of frictional sliding 534 and plastic grain-scale deformation mechanisms is essential to slow earthquake deformation. 535 Systems characterized by coupled frictional and plastic mechanisms are expected to exhibit 536 spatially continuous and strain-rate dependent, temporally transient deformation^{121,137}. The 537 emergence of transients comparable to slow slip events in dry rock friction experiments at room 538 temperature^{32-34,148} indicates that phenomena similar to slow earthquakes can result from purely 539 frictional processes. In the structures we reviewed, frictional sliding at temperatures less than 540 ~350 °C was accompanied by dissolution-precipitation creep (FIG. 4A), which forms solution 541 542 cleavages perpendicular to the shortening direction during deformation. This plastic component of the deformation may therefore enhance the tendency for slow slip by accommodating 543 compaction, leading to reduced porosity and elevated pore pressure with time. Dissolution-544 precipitation creep may also increase the real area of frictional contacts, causing the state 545 variable to evolve with time¹⁶⁰ and potentially acting as an advanced healing mechanism to 546 promote stable accelerating slip³². 547

548

The controls on slow slip in higher-temperature systems, where plasticity rather than frictional sliding is predominant, are less clear. During deformation accommodated by plastic grain-scale mechanisms, instability and a transition to high strain rate transients or frictional sliding can

occur in a phenomenologically similar way to rate and state frictional behavior¹⁶¹. The transition 552 is generally promoted by stress heterogeneity¹⁶², strain hardening, and/or pore pressure 553 cycling¹⁶³. Strain hardening is inherent to foliation-defining phases such as phyllosilicates (FIG. 554 4D, E), in which recovery is limited under in-situ conditions, as evidenced by kinking at grain to 555 exposure scales^{41,95}. Rocks dominated by phyllosilicates are also considered to be low 556 permeability¹⁶⁴⁻¹⁶⁷, so likely important to maintaining high pore fluid pressures, and can cause 557 pore pressure changes by dehydration and/or metamorphic reactions^{40,168}. The onset of instability 558 may therefore be controlled by the balance between strain hardening and the efficacy of recovery 559 mechanisms during a perturbation to steady state conditions^{162,169}. Further work is needed to 560 examine predominantly plastic systems to determine whether there is a condition for stable 561 accelerating slip for plastic deformation. 562

563

564 **Future Perspectives**

565

In this Review, we selected ancient structures exhumed from the range of tectonic settings and P-566 T conditions illustrated in Figure 1 as possible examples of those hosting active slow 567 earthquakes. We focused our selection by noting that shear offset is required at the slow 568 earthquake source, which must be recorded in the deformation structures. The characteristics 569 identified as common to slow earthquakes (FIG. 6) are common in exhumed crustal faults, so 570 could be considered too generalized to be useful, though this may also simply reflect that slow 571 earthquakes are a common phenomenon. Observations of slow earthquakes increase continually. 572 Combined with the recognition of pre- and afterslip associated with many earthquakes and long-573 term, low strain rate transients in some systems⁸, we suggest slip rates $(10^{-10} - 10^{-3} \text{ ms}^{-1})$ and 574

strain rates $(10^{-10} - 10^{0} \text{ s}^{-1})$ intermediate between seismic (>10⁻⁰ s⁻¹) and plate-rate creep $(10^{-14} - 10^{12} \text{ s}^{-1})$ should be common to many fault zones, even if they appear to lack conspicuous evidence for slow slip.

578

We have not found a conclusive indicator of slow earthquake slip rates in the exhumed systems 579 we reviewed so we cannot independently confirm if these systems actually hosted slow 580 earthquakes. Additionally, there may be other structures that we have not considered here that 581 could host slow earthquakes, so the list of slow earthquake characteristics should not be 582 considered exhaustive. For example, centimeter-thick layers of foliated cataclastic rocks in 583 localized structures that exhibit evidence for seismic slip have been inferred to record slow slip 584 rates¹³⁶. However, this association was inferred following a similar approach outlined here for 585 the Mugi mélange, by identifying different structures that might correspond to distinct strain and 586 slip rates within a system that deformed in an equivalent setting to where slow earthquakes are 587 observed. More work is needed to determine the scales of observation at which the variations in 588 slip rate can be inferred in a broad range of systems. 589

590

⁵⁹¹ Overall, good agreement between the slow earthquake characteristics predicted from geophysical ⁵⁹² observables (Table 1) and the systems we reviewed indicates the structures we reviewed are ⁵⁹³ good candidates as hosts of slow earthquakes. In particular, the thickness of the high strain zones ⁵⁹⁴ (of the order of 10^1 to 10^3 m), and maximum dimension ($\sim 10^2$ to 10^3 m) and apparent power law ⁵⁹⁵ distribution of sizes of rheological heterogeneities limited by the shear zone thickness, are ⁵⁹⁶ comparable to LFE size distributions^{48,170,171}. Geological evidence supports deformation at low ⁵⁹⁷ differential stress, generally <10% of the lithostatic load, and high pore pressure, in some cases

approaching lithostatic^{37,131}. A major limitation to these stress estimates is the limited availability
 of flow laws for the relatively incompetent, foliation-defining phases that are generally accepted
 as important in accommodating simple shear (e.g. phyllosilicates and amphiboles).

601

Further investigations of the possible geological structures that host slow earthquakes, within and 602 across their tectonic and metamorphic settings, are essential to the future of slow earthquake 603 science. The defining characteristic of slow earthquakes is that they are slow. Field and 604 microstructural observations are uniquely able to identify the controls on slow earthquake slip 605 rates, slip amounts, and spatial relations between slip at different rates, and therefore explain 606 why slow earthquakes are distinct from regular earthquakes. If a slip rate-limiting mechanism 607 could be identified, the deformation structures or textures it produces may be diagnostic of slow 608 earthquakes in the rock record. Increases in porosity due to dilatant strengthening^{153,154}, which is 609 one candidate limiting mechanism, may cause fluctuations in pore fluid pressure within a slow 610 611 earthquake slip zone and could result in mineral precipitation that is preserved as veins. Enhanced porosity is a potentially generic process to all slow earthquakes, so mapping veins or 612 grain-scale mineralization to evaluate this model is an important avenue for future research. Even 613 if a universal rate-limiting mechanism can be established, geological observations emphasize that 614 experimental and theoretical studies are needed to resolve how the spectrum of slow earthquake 615 slip rates can arise from different grain-scale deformation mechanisms. 616

617

One challenge for geologically-focused work is to extrapolate exposure- or micro-scale observations to length scales relevant to slow earthquake processes. In particular, a major outstanding issue is the cause of observed rates of tremor migration and reversals⁸². Geological

observations need to reconcile the length scales over which these migration patterns develop
with the variability in rock type and structural assemblage observed in typical outcrops. Current
and future geological interpretations could be tested by better source time functions for LFEs,
improved hypocentral locations of LFEs and detailed evaluation of focal mechanism variability
to compare to the geometry of anastomosing networks of shear bands.

626

⁶²⁷ Slow earthquake geology is a new frontier in studies of fault and shear zone rocks.

Reinterpretation of deformation structures is necessary in light of the geophysical documentation of transient increases in slip and strain rates associated with slow earthquakes in a wide range of tectonic settings. With this perspective, studies of exhumed analog structures from across the range of metamorphic and tectonic settings of slow earthquakes can inform the physical controls on slow earthquakes, which is central to understanding of plate boundary fault and shear zone mechanics.

634

635 Author contributions:

All authors contributed to the researching of data and writing of the manuscript and to thediscussion of the content.

638

Acknowledgements: We thank Yujin Kitamura and Alissa Kotowski for providing data for
 Figure 3B and Noah Phillips and Alissa Kotowski for providing photomicrographs in Figure 4A,
 and 4c, respectively. Thanks also to Alissa Kotowski, Christie Rowe, and Randy Williams for
 discussions and feedback on an early draft of the manuscript. This work was supported by the
 Natural Sciences and Engineering Research Council of Canada (NSERC), Discovery Grant

644	RGPIN-2016-04677 (JK), the European Research Council (ERC) under the European Union's
645	Horizon 2020 research and innovation programme, Starting Grant agreement 715836 (AF), and
646	the Earthquake Hazards Program of the U.S. Geological Survey (DS).
647	
648	Competing interests: Authors declare no competing interests.
649	
650	Correspondence and requests for materials should be addressed to James Kirkpatrick
651	james.kirkpatrick@mcgill.ca
652	
653	Key points (30 words)
654	• The global distribution and pressure-temperature range of seismologically observed slow
655	earthquake hypocenters implies no single mineral phase, lithology, or metamorphic
656	reaction controls slow earthquake slip.
657	• No single, universal deformation structure or deformation mechanism is a clear indicator
658	of slow earthquakes in the rock record. Multiple different mechanisms or combinations of
659	mechanisms can produce the same macroscopic behaviors.
660	• A seismologically observed slow earthquake source may consist of an anastomosing
661	fault, shear band, and/or vein network (potentially including synchronous slip across
662	multiple sub-parallel surfaces) rather than a single planar fault surface.
663	• Geodetically observed slow earthquakes may be accommodated by commonly identified
664	ductile shear zones in many exhumed structures
665	• Overall, the geological evidence suggests material heterogeneity, geometric complexity,
666	and deformation at low differential stress are common to slow earthquake sources.

668 Glossary

Accretionary wedge: the accumulated rock scraped off the oceanic plate and transferred to the 669 upper plate at subduction margins. These accumulations form a wedge shape in cross section. 670 Anastomosing: term used to describe a geometry in which surfaces or strands diverge and re-671 join, braided 672 **Boudinage**: process by which relatively competent layers split apart into smaller sections when 673 stretched during extension. The surrounding relatively incompetent material deforms to 674 accommodate the change in shape of the competent layer. 675 Buckle folding: folding that is inferred to form by layer-parallel shortening when relatively 676 competent, or viscous, layers or features are surrounded by less competent rock. 677 Cataclastic flow: a brittle process in which a volume of rock deforms by frictional sliding and 678 grain rolling combined with fracture, causing an overall change in shape. 679 Cataclastic band: Layer of fault rock in which the grain size is reduced due to cataclastic 680 processes when the laeyr accommodated shear displacement 681 **Composite fabric**: foliation that is defined by more than one set of oriented fabrics in the rock, 682 which form discrete sets. 683 Critically stressed fault: when the shear stress resolved on a fault is just below the frictional 684 strength of the fault. The fault is then sensitive to small perturbations to the stress field as a small 685 increase in shear stress can cause failure. 686 Crystal-plastic deformation: term referring to the intragranular deformation mechanisms that 687 involve mechanisms that cause individual grains to change shape by dislocation-based 688 mechanisms. 689

⁶⁹⁰ **Décollement**: the thrust fault that separates rocks transported in opposite directions.

⁶⁹¹ Décollements are typically the most laterally continuous and the structurally lowest faults in a ⁶⁹² system. Synonyms include detachment, basal fault.

Diffusion creep: a grain-scale deformation mechanism in which grains accommodate strain by
 the diffusion of point defects through their crystal lattice.

Dislocation creep: intra-crystalline deformation mechanism in which strain is accommodated by
 migration of dislocations, linear imperfections in the crystal lattice of grains, accompanied by
 dislocation climb, a mechanism by which dislocations can move out of plane.

Dislocation motion: used here to refer to deformation mechanisms that involve movement of dislocations, linear imperfections in the crystal lattice of grains, to accommodate strain.

700 **Double couple source mechanism**: The idealized fault plane model for an earthquake whose

⁷⁰¹ displacement is within the plane of the fault, with both sides moving equal, opposite distances.

En echelon: describes the geometry of parallel or subparallel overlapping structures (usually

⁷⁰³ opening mode veins or faults) that are offset from one another in the direction perpendicular to

their long axes, and are oblique to the overall structural trend.

Extensional hydrofracture: opening mode cracks, formed when pore fluid pressure exceeds the
 minimum compressive principal stress and the differential stress is less than twice the cohesion
 of the rock.

Foliation: A rock fabric that can be approximated as a plane, often defined by the preferred
 orientation of mineral grains and/or by compositional banding.

Finite strain: the total strain, or change in shape, that has affected a rock.

Frictional sliding: Displacement between two surfaces in contact, which is resisted by a shear

⁷¹² force proportional to the normal stress on the surface.

713 **Hypocenter**: the point on a fault where an earthquake rupture starts.

Imbrication: process of thrust faulting that causes multiple approximately parallel slices of rock
to be thrust on top of one another.

Isoclinal folding: when a layer or planar feature is folded such that the fold limbs are close to

parallel so that the layer seems to have been completely bent back on itself.

718 **Mélange**: mixtures of rock types that are characterized by a block in matrix fabric. Here used to

refer to rock units that formed and deformed due to tectonic shearing.

720 **Pelitic rocks**: rocks that have a high clay content, and their metamorphic equivalents.

721 **Phyllosilicates**: minerals that are made up of stacks of parallel sheets of silicate tetrahedra,

which are weakly bonded together. The phyllosilicates include clays and micas.

Pseudotachylyte: the quenched remnants of a molten rock that formed by frictional heating on a

fault surface during earthquake slip. Used elsewhere to include impact-related melts.

Prograde deformation: Deformation that occurs while the rocks experience an increase in

temperature and/or pressure, typically during burial (including subduction-related burial).

Protolith: the pre-deformation or pre-metamorphic equivalent of a deformed or metamorphosed

728 rock.

729 S-C-C' composite fabric: a composite fabric consisting of more than one foliation that forms

inside shear zones that deformed predominantly by plastic deformation mechanisms. The S-

foliation represents deformation due to local shortening in the rock. C and C' foliations are

small-scale shear bands within a larger shear zone. The angles between the foliations decrease

with strain and the foliations can be difficult to distinguish.

734	Transposition: process by which rotation of layers during isoclinal folding or shearing causes			
735	the or	iginal orientation, angular relationships, and distinct features of the layers in the rock to be		
736	almos	almost completely obliterated.		
737	Tecto	nic tremor: low amplitude seismic signals defined by non-impulsive arrivals, similar to		
738	noise	but distinguished by coherence over large geographic areas.		
739	Ultra	mylonite: very fine-grained fault rock that deformed predominantly by plastic		
740	mecha	anisms.		
741 742				
743	Refer	ences		
744				
745 746	1	Peng, Z. G. & Gomberg, J. An integrated perspective of the continuum between earthquakes and slow-slip phenomena. <i>Nature Geoscience</i> 3 , 599-607,		
747 748 749	2	doi:10.1038/ngeo940 (2010). Obara, K. Nonvolcanic deep tremor associated with subduction in southwest Japan. <i>Science</i> 296 , 1679-1681, doi:10.1126/science.1070378 (2002).		
750 751	3	Shelly, D. R., Beroza, G. C. & Ide, S. Non-volcanic tremor and low-frequency earthquake swarms. <i>Nature</i> 446 , 305-307, doi:10.1038/nature05666 (2007).		
752 753	4	Rogers, G. & Dragert, H. Episodic tremor and slip on the Cascadia subduction zone: The chatter of silent slip. <i>Science</i> 300 , 1942-1943, doi:10.1126/science.1084783 (2003).		
754 755 756	5	Ito, Y., Obara, K., Shiomi, K., Sekine, S. & Hirose, H. Slow earthquakes coincident with episodic tremors and slow slip events. <i>Science</i> 315 , 503-506, doi:10.1126/science.1134454 (2007)		
750 757 758	6	Gomberg, J., Wech, A., Creager, K., Obara, K. & Agnew, D. Reconsidering earthquake scaling <i>Geophys Res Lett</i> 43 6243-6251 doi:10.1002/2016gl069967 (2016)		
759 760	7	Frank, W. B. & Brodsky, E. E. Daily measurement of slow slip from low-frequency earthquakes is consistent with ordinary earthquake scaling. <i>Science Advances</i> 5 ,		
761 762	8	doi:10.1126/sciadv.aaw9386 (2019). Jolivet, R. & Frank, W. B. The Transient and Intermittent Nature of Slow Slip. <i>AGU</i>		
763 764 765	9	Ito, Y. & Obara, K. Very low frequency earthquakes within accretionary prisms are very low stress-drop earthquakes. <i>Geophys. Res. Lett.</i> 33 doi:10.1029/2006gl025883 (2006)		
766 767 768	10	Obana, K. & Kodaira, S. Low-frequency tremors associated with reverse faults in a shallow accretionary prism. <i>Earth and Planetary Science Letters</i> 287 , 168-174, doi:10.1016/j.epsl.2009.08.005 (2009).		

11 To, A. et al. Small size very low frequency earthquakes in the Nankai accretionary prism, 769 following the 2011 Tohoku-Oki earthquake. Phys. Earth Planet. Inter. 245, 40-51, 770 doi:10.1016/j.pepi.2015.04.007 (2015). 771 12 Kao, H. et al. A wide depth distribution of seismic tremors along the northern Cascadia 772 margin. Nature 436, 841-844, doi:10.1038/nature03903 (2005). 773 Shaddox, H. R. & Schwartz, S. Y. Subducted seamount diverts shallow slow slip to the 13 774 forearc of the northern Hikurangi subduction zone, New Zealand. Geology 47, 415-418, 775 doi:10.1130/g45810.1 (2019). 776 14 Todd, E. K. et al. Earthquakes and Tremor Linked to Seamount Subduction During 777 Shallow Slow Slip at the Hikurangi Margin, New Zealand. J. Geophys. Res.-Solid Earth 778 123, 6769-6783, doi:10.1029/2018jb016136 (2018). 779 15 Toh, A., Obana, K. & Araki, E. Distribution of very low frequency earthquakes in the 780 Nankai accretionary prism influenced by a subducting-ridge. *Earth and Planetary* 781 Science Letters 482, 342-356, doi:10.1016/j.epsl.2017.10.062 (2018). 782 Ito, Y. & Obara, K. Dynamic deformation of the accretionary prism excites very low 16 783 frequency earthquakes. Geophys. Res. Lett. 33, doi:10.1029/2005gl025270 (2006). 784 Aiken, C. et al. Exploration of remote triggering: A survey of multiple fault structures in 17 785 Haiti. Earth and Planetary Science Letters 455, 14-24, doi:10.1016/j.epsl.2016.09.023 786 (2016).787 Peng, Z. G. et al. Tectonic Tremor beneath Cuba Triggered by the M-w 8.8 Maule and 18 788 M-w 9.0 Tohoku-Oki Earthquakes. Bulletin of the Seismological Society of America 103, 789 595-600, doi:10.1785/0120120253 (2013). 790 19 Chao, K. & Obara, K. Triggered tectonic tremor in various types of fault systems of 791 Japan following the 2012 M(w)8.6 Sumatra earthquake. J. Geophys. Res.-Solid Earth 792 121, 170-187, doi:10.1002/2015jb012566 (2016). 793 Gomberg, J. et al. Widespread triggering of nonvolcanic tremor in California. Science 20 794 **319**, 173-173, doi:10.1126/science.1149164 (2008). 795 Chao, K. et al. A Global Search for Triggered Tremor Following the 2011 M-w 9.0 21 796 Tohoku Earthquake. Bulletin of the Seismological Society of America 103, 1551-1571, 797 doi:10.1785/0120120171 (2013). 798 22 Wang, T. H., Cochran, E. S., Agnew, D. & Oglesby, D. D. Infrequent Triggering of 799 Tremor along the San Jacinto Fault near Anza, California. Bulletin of the Seismological 800 Society of America 103, 2482-2497, doi:10.1785/0120120284 (2013). 801 23 Scarpa, R. et al. Slow earthquakes and low frequency tremor along the Apennines, Italy. 802 Annals of Geophysics 51, 527-538 (2008). 803 Wech, A. G. & Creager, K. C. A continuum of stress, strength and slip in the Cascadia 24 804 subduction zone. Nature Geoscience 4, 624-628, doi:10.1038/ngeo1215 (2011). 805 25 Araki, E. et al. Recurring and triggered slow-slip events near the trench at the Nankai 806 Trough subduction megathrust. Science 356, 1157-1160, doi:10.1126/science.aan3120 807 (2017). 808 Kato, A. et al. Propagation of Slow Slip Leading Up to the 2011 M-w 9.0 Tohoku-Oki 26 809 Earthquake. Science 335, 705-708, doi:10.1126/science.1215141 (2012). 810 Wallace, L. M. et al. Slow slip near the trench at the Hikurangi subduction zone, New 27 811 Zealand. Science 352, 701-704, doi:10.1126/science.aaf2349 (2016). 812 Veedu, D. M. & Barbot, S. The Parkfield tremors reveal slow and fast ruptures on the 28 813 same asperity. Nature 532, doi:10.1038/nature17190 (2016). 814

815 816	29	Obara, K. & Kato, A. Connecting slow earthquakes to huge earthquakes. <i>Science</i> 353 , 253-257. doi:10.1126/science.aaf1512.(2016)
817	30	Kano M Kato A & Obara K Episodic tremor and slip silently invades strongly locked
818	50	megathrust in the Nankai Trough, Scientific Reports 9, doi:10.1038/s41598-019-45781-0
810		(2019)
820	31	Behr, W. M. & Burgman, R. What's down there? The structures, materials and
821		environment of deep-seated slow slip and tremor. Proceedings of the Royal Society of
822		London A (2020).
823	32	Ikari, M. J. Laboratory slow slip events in natural geological materials. <i>Geophysical</i>
824		Journal International 218 , 354-387, doi:10.1093/gji/ggz143 (2019).
825	33	Ikari, M. J., Ito, Y., Ujiie, K. & Kopf, A. J. Spectrum of slip behaviour in Tohoku fault
826		zone samples at plate tectonic slip rates. <i>Nature Geoscience</i> 8, 870-+,
827		doi:10.1038/ngeo2547 (2015).
828	34	Leeman, J. R., Marone, C. & Saffer, D. M. Frictional Mechanics of Slow Earthquakes. J.
829		Geophys. ResSolid Earth 123, 7931-7949, doi:10.1029/2018jb015768 (2018).
830	35	Reber, J. E., Lavier, L. L. & Hayman, N. W. Experimental demonstration of a semi-
831		brittle origin for crustal strain transients. Nature Geoscience 8, 712-+,
832		doi:10.1038/ngeo2496 (2015).
833	36	Fagereng, A., Remitti, F. & Sibson, R. H. Incrementally developed slickenfibers -
834		Geological record of repeating low stress-drop seismic events? <i>Tectonophysics</i> 510, 381-
835		386, doi:10.1016/j.tecto.2011.08.015 (2011).
836	37	Ujiie, K. et al. An Explanation of Episodic Tremor and Slow Slip Constrained by Crack-
837		Seal Veins and Viscous Shear in Subduction Melange. Geophys. Res. Lett. 45, 5371-
838		5379, doi:10.1029/2018g1078374 (2018).
839	38	Behr, W. M., Kotowski, A. J. & Ashley, K. T. Dehydration-induced rheological
840		heterogeneity and the deep tremor source in warm subduction zones. Geology 46, 475-
841		478, doi:10.1130/g40105.1 (2018).
842	39	Kotowski, A. J. & Behr, W. M. Length scales and types of heterogeneities along the deep
843		subduction interface: Insights from exhumed rocks on Syros Island, Greece. Geosphere
844		15 , 1038-1065, doi:10.1130/ges02037.1 (2019).
845	40	Tarling, M. S., Smith, S. A. F. & Scott, J. M. Fluid overpressure from chemical reactions
846		in serpentinite within the source region of deep episodic tremor. <i>Nature Geoscience</i> 12,
847		1034-1042, doi:10.1038/s41561-019-0470-z (2019).
848	41	Platt, J. P., Xia, H. R. & Schmidt, W. L. Rheology and stress in subduction zones around
849		the aseismic/seismic transition. Progress in Earth and Planetary Science 5,
850		doi:10.1186/s40645-018-0183-8 (2018).
851	42	Hayman, N. W. & Lavier, L. L. The geologic record of deep episodic tremor and slip.
852		<i>Geology</i> 42 , 195-198, doi:10.1130/g34990.1 (2014).
853	43	Angiboust, S. et al. Probing the transition between seismically coupled and decoupled
854		segments along an ancient subduction interface. Geochemistry Geophysics Geosystems
855		16 , 1905-1922, doi:10.1002/2015gc005776 (2015).
856	44	Saito, T., Ujiie, K., Tsutsumi, A., Kameda, J. & Shibazaki, B. Geological and frictional
857		aspects of very-low-frequency earthquakes in an accretionary prism. Geophys. Res. Lett.
858		40 , 703-708, doi:10.1002/grl.50175 (2013).

859	45	Saffer, D. M. & Wallace, L. M. The frictional, hydrologic, metamorphic and thermal
860		habitat of shallow slow earthquakes. Nature Geoscience 8, 594-600,
861		doi:10.1038/ngeo2490 (2015).
862	46	Audet, P. & Kim, Y. Teleseismic constraints on the geological environment of deep
863		episodic slow earthquakes in subduction zone forearcs: A review. Tectonophysics 670, 1-
864		15, doi:10.1016/j.tecto.2016.01.005 (2016).
865	47	Rubinstein, J. L., Shelly, D. R. & Ellsworth, W. L. Non-volcanic Tremor: A Window into
866		the Roots of Fault Zones. (2010).
867	48	Royer, A. A. & Bostock, M. G. A comparative study of low frequency earthquake
868		templates in northern Cascadia. Earth and Planetary Science Letters 402, 247-256,
869		doi:10.1016/j.epsl.2013.08.040 (2014).
870	49	Chestler, S. R. & Creager, K. C. A Model for Low-Frequency Earthquake Slip.
871		Geochemistry Geophysics Geosystems 18, 4690-4708, doi:10.1002/2017gc007253
872		(2017).
873	50	Ide, S., Shelly, D. R. & Beroza, G. C. Mechanism of deep low frequency earthquakes:
874		Further evidence that deep non-volcanic tremor is generated by shear slip on the plate
875		interface. Geophys. Res. Lett. 34, doi:10.1029/2006g1028890 (2007).
876	51	Brown, J. R. et al. Deep low-frequency earthquakes in tremor localize to the plate
877		interface in multiple subduction zones. Geophys. Res. Lett. 36,
878		doi:10.1029/2009gl040027 (2009).
879	52	Harrington, R. M., Cochran, E. S., Griffiths, E. M., Zeng, X. F. & Thurber, C. H. Along-
880		Strike Variations in Fault Frictional Properties along the San Andreas Fault near
881		Cholame, California, from Joint Earthquake and Low-Frequency Earthquake Relocations.
882		Bulletin of the Seismological Society of America 106, 319-326, doi:10.1785/0120150171
883		(2016).
884	53	Walter, J. I., Schwartz, S. Y., Protti, J. M. & Gonzalez, V. Persistent tremor within the
885		northern Costa Rica seismogenic zone. Geophys. Res. Lett. 38,
886		doi:10.1029/2010gl045586 (2011).
887	54	Arai, R. et al. Structure of the tsunamigenic plate boundary and low-frequency
888		earthquakes in the southern Ryukyu Trench. Nature Communications 7,
889		doi:10.1038/ncomms12255 (2016).
890	55	Schwartz, S. Y. & Rokosky, J. M. Slow slip events and seismic tremor at circum-pacific
891		subduction zones. Rev. Geophys. 45, doi:10.1029/2006rg000208 (2007).
892	56	Wech, A. G., Boese, C. M., Stern, T. A. & Townend, J. Tectonic tremor and deep slow
893		slip on the Alpine Fault. Geophys. Res. Lett. 39 , doi:10.1029/2012gl051751 (2012).
894	57	Chamberlain, C. J., Shelly, D. R., Townend, J. & Stern, T. A. Low-frequency earthquakes
895		reveal punctuated slow slip on the deep extent of the Alpine Fault, New Zealand.
896		Geochemistry Geophysics Geosystems 15, 2984-2999, doi:10.1002/2014gc005436
897	-0	
898	58	Hall, K., Houston, H. & Schmidt, D. Spatial Comparisons of Tremor and Slow Slip as a
899		Constraint on Fault Strength in the Northern Cascadia Subduction Zone. <i>Geochemistry</i>
900	-	Geophysics Geosystems 19, 27/06-2718, doi:10.1029/2018gc007694 (2018).
901	59	Brace, W. F. & Kohlstedt, D. L. LIMITS ON LITHOSPHERIC STRESS IMPOSED BY
902		LABORATORY EXPERIMENTS. Journal of Geophysical Research 85, 6248-6252,
903		doi:10.1029/JB085iB11p06248 (1980).

904	60	Shelly, D. R. A 15year catalog of more than 1 million low-frequency earthquakes:
905		Tracking tremor and slip along the deep San Andreas Fault. J. Geophys. ResSolid Earth
906		122 , 3739-3753, doi:10.1002/2017jb014047 (2017).
907	61	Shelly, D. R. Complexity of the deep San Andreas Fault zone defined by cascading
908		tremor. Nature Geoscience 8, 145-151, doi:10.1038/ngeo2335 (2015).
909	62	Obara, K., Tanaka, S., Maeda, T. & Matsuzawa, T. Depth-dependent activity of non-
910		volcanic tremor in southwest Japan. Geophys. Res. Lett. 37, doi:10.1029/2010g1043679
911		(2010).
912	63	Wech, A. G. Interactive Tremor Monitoring. Seismological Research Letters 81, 664-
913		669, doi:10.1785/gssrl.81.4.664 (2010).
914	64	Bostock, M. G., Royer, A. A., Hearn, E. H. & Peacock, S. M. Low frequency earthquakes
915		below southern Vancouver Island. Geochemistry Geophysics Geosystems 13,
916		doi:10.1029/2012gc004391 (2012).
917	65	Bostock, M. G., Thomas, A. M., Savard, G., Chuang, L. & Rubin, A. M. Magnitudes and
918		moment-duration scaling of low-frequency earthquakes beneath southern Vancouver
919		Island. J. Geophys. ResSolid Earth 120, 6329-6350, doi:10.1002/2015jb012195 (2015).
920	66	Frank, W. B. et al. Low-frequency earthquakes in the Mexican Sweet Spot. Geophys.
921		Res. Lett. 40, 2661-2666, doi:10.1002/grl.50561 (2013).
922	67	Thomas, A. M., Beroza, G. C. & Shelly, D. R. Constraints on the source parameters of
923		low-frequency earthquakes on the San Andreas Fault. Geophys. Res. Lett. 43, 1464-1471,
924		doi:10.1002/2015g1067173 (2016).
925	68	Sweet, J. R., Creager, K. C. & Houston, H. A family of repeating low-frequency
926		earthquakes at the downdip edge of tremor and slip. Geochemistry Geophysics
927		Geosystems 15, 3713-3721, doi:10.1002/2014gc005449 (2014).
928	69	Shelly, D. R. & Hardebeck, J. L. Precise tremor source locations and amplitude variations
929		along the lower-crustal central San Andreas Fault. Geophys. Res. Lett. 37,
930		doi:10.1029/2010gl043672 (2010).
931	70	Allmann, B. P. & Shearer, P. M. Global variations of stress drop for moderate to large
932		earthquakes. J. Geophys. ResSolid Earth 114, doi:10.1029/2008jb005821 (2009).
933	71	Frank, W. B. Slow slip hidden in the noise: The intermittence of tectonic release.
934		Geophys. Res. Lett. 43, 10125-10133, doi:10.1002/2016gl069537 (2016).
935	72	Audet, P. & Schaeffer, A. J. Fluid pressure and shear zone development over the locked
936		to slow slip region in Cascadia. Science Advances 4, doi:10.1126/sciadv.aar2982 (2018).
937	73	Song, T. R. A. et al. Subducting Slab Ultra-Slow Velocity Layer Coincident with Silent
938		Earthquakes in Southern Mexico. Science 324, 502-506, doi:10.1126/science.1167595
939		(2009).
940	74	Shelly, D. R., Beroza, G. C., Ide, S. & Nakamula, S. Low-frequency earthquakes in
941		Shikoku, Japan, and their relationship to episodic tremor and slip. Nature 442, 188-191,
942		doi:10.1038/nature04931 (2006).
943	75	Kodaira, S. et al. High pore fluid pressure may cause silent slip in the Nankai Trough.
944		Science 304, 1295-1298, doi:10.1126/science.1096535 (2004).
945	76	Audet, P., Bostock, M. G., Christensen, N. I. & Peacock, S. M. Seismic evidence for
946		overpressured subducted oceanic crust and megathrust fault sealing. Nature 457, 76-78,
947		doi:10.1038/nature07650 (2009).
948	77	Rubinstein, J. L. et al. Non-volcanic tremor driven by large transient shear stresses.
949		Nature 448, 579-582, doi:10.1038/nature06017 (2007).

950	78	Thomas, A. M., Burgmann, R., Shelly, D. R., Beeler, N. M. & Rudolph, M. L. Tidal
951		triggering of low frequency earthquakes near Parkfield, California: Implications for fault
952		mechanics within the brittle-ductile transition. J. Geophys. ResSolid Earth 117,
953		doi:10.1029/2011jb009036 (2012).
954	79	Thomas, A. M., Nadeau, R. M. & Burgmann, R. Tremor-tide correlations and near-
955		lithostatic pore pressure on the deep San Andreas fault. Nature 462, 1048-U1105,
956		doi:10.1038/nature08654 (2009).
957	80	van der Elst, N. J., Delorey, A. A., Shelly, D. R. & Johnson, P. A. Fortnightly modulation
958		of San Andreas tremor and low-frequency earthquakes. Proceedings of the National
959		Academy of Sciences of the United States of America 113, 8601-8605,
960		doi:10.1073/pnas.1524316113 (2016).
961	81	Ghosh, A. et al. Tremor bands sweep Cascadia. Geophys. Res. Lett. 37,
962		doi:10.1029/2009gl042301 (2010).
963	82	Houston, H., Delbridge, B. G., Wech, A. G. & Creager, K. C. Rapid tremor reversals in
964		Cascadia generated by a weakened plate interface. <i>Nature Geoscience</i> 4 , 404-409,
965		doi:10.1038/ngeo1157 (2011).
966	83	Moore, J. C., Rowe, C. D. & Meneghini, F. in Seismogenic Zone of Subduction Thrust
967		Faults Vol. Margins: Theoretical and Experimental Earth Science Series, 2 (eds T. H.
968		Dixon & J. C. Moore) 288-314 (Columbia University Press, 2007).
969	84	Moore, J. C. & Byrne, T. THICKENING OF FAULT ZONES - A MECHANISM OF
970		MELANGE FORMATION IN ACCRETING SEDIMENTS. Geology 15, 1040-1043,
971		doi:10.1130/0091-7613(1987)15<1040:tofzam>2.0.co;2 (1987).
972	85	Rowe, C. D., Moore, J. C., Remitti, F. & Scientist, I. E. T. The thickness of subduction
973		plate boundary faults from the seafloor into the seismogenic zone. Geology 41, 991-994,
974		doi:10.1130/g34556.1 (2013).
975	86	Stenvall, C. A., Fagereng, A. & Diener, J. F. A. Weaker Than Weakest: On the Strength
976		of Shear Zones. Geophys. Res. Lett. 46, 7404-7413, doi:10.1029/2019gl083388 (2019).
977	87	Lister, G. S. & Snoke, A. W. S-C MYLONITES. J. Struct. Geol. 6, 617-638,
978		doi:10.1016/0191-8141(84)90001-4 (1984).
979	88	Goodwin, L. B. & Tikoff, B. Competency contrast, kinematics, and the development of
980		foliations and lineations in the crust. J. Struct. Geol. 24, 1065-1085, doi:10.1016/s0191-
981		8141(01)00092-x (2002).
982	89	Ujiie, K., Yamaguchi, H., Sakaguchi, A. & Toh, S. Pseudotachylytes in an ancient
983		accretionary complex and implications for melt lubrication during subduction zone
984		earthquakes. J. Struct. Geol. 29, 599-613 (2007).
985	90	Cerchiari, A. et al. Cyclical variations of fluid sources and stress state in a shallow
986		megathrust-zone melange. J. Geol. Soc. 177, 647-659, doi:10.1144/jgs2019-072 (2020).
987	91	Kimura, G. et al. Hanging wall deformation of a seismogenic megasplay fault in an
988		accretionary prism: The Nobeoka Thrust in southwestern Japan. J. Struct. Geol. 52, 136-
989		147, doi:10.1016/j.jsg.2013.03.015 (2013).
990	92	Kimura, G. <i>et al.</i> Tectonic melange as fault rock of subduction plate boundary.
991		<i>Tectonophysics</i> 568 , 25-38, doi:10.1016/j.tecto.2011.08.025 (2012).
992	93	Rennie, S. F., Fagereng, A. & Diener, J. F. A. Strain distribution within a km-scale, mid-
993		crustal shear zone: The Kuckaus Mylonite Zone, Namibia. J. Struct. Geol. 56, 57-69,
994		doi:10.1016/j.jsg.2013.09.001 (2013).

94 Fusseis, F., Handy, M. R. & Schrank, C. Networking of shear zones at the brittle-to-995 viscous transition (Cap de Creus, NE Spain). J. Struct. Geol. 28, 1228-1243, 996 doi:10.1016/j.jsg.2006.03.022 (2006). 997 95 Auzende, A. L. et al. Deformation mechanisms of antigorite serpentinite at subduction 998 zone conditions determined from experimentally and naturally deformed rocks. *Earth* 999 and Planetary Science Letters 411, 229-240, doi:10.1016/j.epsl.2014.11.053 (2015). 1000 96 Boutonnet, E., Leloup, P. H., Sassier, C., Gardien, V. & Ricard, Y. Ductile strain rate 1001 measurements document long-term strain localization in the continental crust. Geology 1002 41, 819-822, doi:10.1130/g33723.1 (2013). 1003 Campbel, L. R. & Menegon, L. Transient High Strain Rate During Localized Viscous 97 1004 Creep in the Dry Lower Continental Crust (Lofoten, Norway). J. Geophys. Res.-Solid 1005 Earth 124, 10240-10260, doi:10.1029/2019jb018052 (2019). 98 Skarbek, R. M., Rempel, A. W. & Schmidt, D. A. Geologic heterogeneity can produce 1007 aseismic slip transients. Geophys. Res. Lett. 39, doi:10.1029/2012gl053762 (2012). 99 Moore, J. C. & Allwardt, A. PROGRESSIVE DEFORMATION OF A TERTIARY 1009 TRENCH SLOPE, KODIAK ISLANDS, ALASKA. Journal of Geophysical Research 1010 85, 4741-&, doi:10.1029/JB085iB09p04741 (1980). 1011 100 Remitti, F., Bettelli, G. & Vannucchi, P. Internal structure and tectonic evolution of an 1012 underthrust tectonic melange: the Sestola-Vidiciatico tectonic unit of the Northern 1013 Apennines, Italy. Geodinamica Acta 20, 37-51, doi:10.3166/ga.20.37-51 (2007). 1014 101 Vannucchi, P. & Bettelli, G. Mechanisms of subduction accretion as implied from the 1015 broken formations in the Apennines, Italy. Geology 30, 835-838, doi:10.1130/0091-1016 7613(2002)030<0835:mosaai>2.0.co;2 (2002). 1017 Kimura, G. & Mukai, A. UNDERPLATED UNITS IN AN ACCRETIONARY 102 1018 COMPLEX - MELANGE OF THE SHIMANTO BELT OF EASTERN SHIKOKU, 1019 SOUTHWEST JAPAN. Tectonics 10, 31-50, doi:10.1029/90tc00799 (1991). 1020 Festa, A., Ogata, K. & Pini, G. A. Polygenetic melanges: a glimpse on tectonic, 103 1021 sedimentary and diapiric recycling in convergent margins. J. Geol. Soc. 177, 551-561, 1022 doi:10.1144/jgs2019-212 (2020). 1023 Schmidt, W. L. & Platt, J. P. Subduction, accretion, and exhumation of coherent 104 1024 Franciscan blueschist-facies rocks, northern Coast Ranges, California. Lithosphere 10, 1025 301-326, doi:10.1130/1697.1 (2018). Laurent, V. et al. Strain localization in a fossilized subduction channel: Insights from the 105 1027 Cycladic Blueschist Unit (Syros, Greece). Tectonophysics 672, 150-169, doi:10.1016/j.tecto.2016.01.036 (2016). 1029 Hermann, J., Muntener, O. & Scambelluri, M. The importance of serpentinite mylonites 106 1030 for subduction and exhumation of oceanic crust. *Tectonophysics* **327**, 225-238, doi:10.1016/s0040-1951(00)00171-2 (2000). 1032 Guillot, S., Schwartz, S., Reynard, B., Agard, P. & Prigent, C. Tectonic significance of 107 1033 serpentinites. Tectonophysics 646, 1-19, doi:10.1016/j.tecto.2015.01.020 (2015). 1034 Melosh, B. L., Rowe, C. D., Gerbi, C., Smit, L. & Macey, P. Seismic cycle feedbacks in a 108 1035 mid-crustal shear zone. J. Struct. Geol. 112, 95-111, doi:10.1016/j.jsg.2018.04.004 1036 (2018).1037 109 Price, N. A. et al. Recrystallization fabrics of sheared quartz veins with a strong pre-1038 existing crystallographic preferred orientation from a seismogenic shear zone. 1039 Tectonophysics 682, 214-236, doi:10.1016/j.tecto.2016.05.030 (2016). 1040

110 Fagereng, A. Frequency-size distribution of competent lenses in a block-in-matrix 1041 melange: Imposed length scales of brittle deformation? J. Geophys. Res.-Solid Earth 116, 1042 doi:10.1029/2010jb007775 (2011). 1043 111 Kitamura, Y. & Kimura, G. Dynamic role of tectonic melange during interseismic 1044 process of plate boundary mega earthquakes. *Tectonophysics* **568**, 39-52, 1045 doi:10.1016/j.tecto.2011.07.008 (2012). 1046 112 Clauset, A., Shalizi, C. R. & Newman, M. E. J. Power-Law Distributions in Empirical 1047 Data. Siam Review 51, 661-703, doi:10.1137/070710111 (2009). 1048 Kitamura, Y. et al. Melange and its seismogenic roof decollement: A plate boundary fault 113 1049 rock in the subduction zone - An example from the Shimanto Belt, Japan. Tectonics 24, 1050 doi:10.1029/2004tc001635 (2005). 1051 114 Fagereng, A. & den Hartog, S. A. M. Subduction megathrust creep governed by pressure 1052 solution and frictional-viscous flow. Nature Geoscience 10, 51-57, doi:10.1038/ngeo2857 1053 (2017). 1054 Tulley, C. J., Fagereng, A. & Ujiie, K. Hydrous oceanic crust hosts megathrust creep at 115 1055 low shear stresses. Science Advances 6, eaba1529, doi:10.1126/sciadv.aba1529 (2020). 1056 116 Melosh, B. L. et al. Snap, Crackle, Pop: Dilational fault breccias record seismic slip 1057 below the brittle-plastic transition. Earth and Planetary Science Letters 403, 432-445, 1058 doi:10.1016/j.epsl.2014.07.002 (2014). 1059 Phillips, N. J., Belzer, B., French, M. E., Rowe, C. D. & Ujiie, K. Frictional Strengths of 117 1060 Subduction Thrust Rocksin the Region of Shallow Slow Earthquakes. J. Geophys. Res.-1061 Solid Earth 125, e2019JB018888, doi:https://doi.org/10.1029/2019JB018888 (2020). 1062 118 Swanson, M. T. Fault structure, wear mechanisms and rupture processes in 1063 pseudotachylyte generation. *Tectonophysics* **204**, 223-242 (1992). 1064 119 Price, N. A., Johnson, S. E., Gerbi, C. C. & West, D. P. Identifying deformed 1065 pseudotachylyte and its influence on the strength and evolution of a crustal shear zone at 1066 the base of the seismogenic zone. *Tectonophysics* 518, 63-83, 1067 doi:10.1016/j.tecto.2011.11.011 (2012). 1068 120 Goodwin, L. B. & Wenk, H. R. Development Of Phyllonite From Granodiorite -1069 Mechanisms Of Grain-Size Reduction In The Santa-Rosa Mylonite Zone, California. J. Struct. Geol. 17, 689-& (1995). 1071 121 Niemeijer, A. R. & Spiers, C. J. Influence of phyllosilicates on fault strength in the 1072 brittle-ductile transition: Insights from rock analogue experiments. Geological Society of 1073 London Special Publications 245, 303-327, doi:doi:10.1144/GSL.SP.2005.245.01.15 1074 (2005).1075 122 Wassmann, S. & Stockhert, B. Rheology of the plate interface - Dissolution precipitation 1076 creep in high pressure metamorphic rocks. *Tectonophysics* **608**, 1-29, 1077 doi:10.1016/j.tecto.2013.09.030 (2013). 1078 Compton, K. E., Kirkpatrick, J. D. & Holk, G. J. Cyclical shear fracture and viscous flow 123 1079 during transitional ductile-brittle deformation in the Saddlebag Lake Shear Zone, 1080 California. Tectonophysics 708, 1-14, doi:10.1016/j.tecto.2017.04.006 (2017). 1081 Meneghini, F. & Moore, J. C. Deformation and hydrofracture in a subduction thrust at 124 1082 seismogenic depths: The Rodeo Cove thrust zone, Marin Headlands, California. Geol. 1083 Soc. Am. Bull. 119, 174-183, doi:10.1130/b25807.1 (2007). 1084 125 Fagereng, A., Hillary, G. W. B. & Diener, J. F. A. Brittle-viscous deformation, slow slip, 1085 and tremor. Geophys. Res. Lett. 41, 4159-4167, doi:10.1002/2014gl060433 (2014). 1086

126 Palazzin, G. et al. Deformation processes at the down-dip limit of the seismogenic zone: 1087 The example of Shimanto accretionary complex. Tectonophysics 687, 28-43, doi:10.1016/j.tecto.2016.08.013 (2016). 1089 127 Rowe, C. D. et al. Geometric Complexity of Earthquake Rupture Surfaces Preserved in 1090 Pseudotachylyte Networks. J. Geophys. Res.-Solid Earth 123, 7998-8015, 1091 doi:10.1029/2018jb016192 (2018). 1092 128 Melosh, B. L., Rowe, C. D., Gerbi, C., Bate, C. E. & Shulman, D. The spin zone: 1093 Transient mid-crust permeability caused by coseismic brecciation. J. Struct. Geol. 87, 47-1094 63, doi:10.1016/j.jsg.2016.04.003 (2016). 1095 129 Gosselin, J. M. et al. Seismic evidence for megathrust fault-valve behavior during 1096 episodic tremor and slip. Science Advances 6, doi:10.1126/sciadv.aay5174 (2020). 1097 130 French, M. E. & Condit, C. B. Slip partitioning along an idealized subduction plate 1098 boundary at deep slow slip conditions. Earth and Planetary Science Letters 528, 1099 doi:10.1016/j.epsl.2019.115828 (2019). 1100 131 Fagereng, A., Remitti, F. & Sibson, R. H. Shear veins observed within anisotropic fabric 1101 at high angles to the maximum compressive stress. Nature Geoscience 3, 482-485, 1102 doi:10.1038/ngeo898 (2010). 1103 Jaeger, J. C., Cook, N. G. W. & Zimmerman, R. W. Fundamentals of Rock Mechanics. 132 1104 Fourth edn, (Blackwell Publishing, 2007). 1105 Shea, W. T. & Kronenberg, A. K. STRENGTH AND ANISOTROPY OF FOLIATED 133 1106 ROCKS WITH VARIED MICA CONTENTS. J. Struct. Geol. 15, 1097-1121, 1107 doi:10.1016/0191-8141(93)90158-7 (1993). 1108 134 Rowe, C. D., Meneghini, F. & Moore, J. C. Fluid-rich damage zone of an ancient out-of-1109 sequence thrust, Kodiak Islands, Alaska. Tectonics 28, doi:10.1029/2007tc002126 1110 (2009).1111 Fagereng, A., Diener, J. F. A., Meneghini, F., Harris, C. & Kvadsheim, A. Quartz vein 135 1112 formation by local dehydration embrittlement along the deep, tremorgenic subduction 1113 thrust interface. Geology 46, 67-70, doi:10.1130/g39649.1 (2018). 1114 136 Fabbri, O. et al. Deformation structures from splay and décollement faults in the Nankai 1115 accretionary prism, SW Japan (IODP NanTroSEIZE Expedition 316). Evidence for slow 1116 and rapid slip in fault rocks. Geochemistry Geophysics Geosystems, 1117 doi:10.1029/2019GC008786 (2020). 1118 Bos, B. & Spiers, C. J. Frictional-viscous flow of phyllosilicate-bearing fault rock: 137 1119 Microphysical model and implications for crustal strength profiles. J. Geophys. Res.-1120 Solid Earth 107 (2002). 1121 138 Rowe, C. D., Meneghini, F. & Moore, J. C. in Geology of the Earthquake Source: a 1122 Volume in Honour of Rick Sibson Vol. 359 Geological Society Special Publication (eds 1123 A. Fagereng, V. G. Toy, & J. V. Rowland) 77-95 (2011). 1124 139 Rutter, E. H., Maddock, R. H., Hall, S. H. & White, S. H. COMPARATIVE 1125 MICROSTRUCTURES OF NATURAL AND EXPERIMENTALLY PRODUCED 1126 CLAY-BEARING FAULT GOUGES. Pure Appl. Geophys. 124, 3-30, 1127 doi:10.1007/bf00875717 (1986). 1128 Kirkpatrick, J. D. et al. Structure and lithology of the Japan Trench subduction plate 140 1129 boundary fault. Tectonics 34, 53-69, doi:10.1002/2014tc003695 (2015). 1130 141 Fagereng, A. et al. Mixed deformation styles observed on a shallow subduction thrust, 1131 Hikurangi margin, New Zealand. Geology 47, 872-876, doi:10.1130/g46367.1 (2019). 1132

1133	142	Beall, A., Fagereng, A. & Ellis, S. Strength of Strained Two-Phase Mixtures: Application
1134		to Rapid Creep and Stress Amplification in Subduction Zone Melange. Geophys. Res.
1135		Lett. 46, 169-178, doi:10.1029/2018g1081252 (2019).
1136	143	Sibson, R. H. Tensile overpressure compartments on low-angle thrust faults. Earth
1137		Planets and Space 69, doi:10.1186/s40623-017-0699-y (2017).
1138	144	Sibson, R. H. Structural permeability of fluid-driven fault-fracture meshes. J. Struct.
1139		<i>Geol.</i> 18, 1031-1042, doi:10.1016/0191-8141(96)00032-6 (1996).
1140	145	Beall, A., Fagereng, A. & Ellis, S. Fracture and Weakening of Jammed Subduction Shear
1141		Zones, Leading to the Generation of Slow Slip Events. Geochemistry Geophysics
1142		Geosystems 20, 4869–4884, doi:doi.org/10.1029/2019GC008481 (2019).
1143	146	Stunitz, H. & Tullis, J. Weakening and strain localization produced by syn-deformational
1144		reaction of plagioclase. Int. J. Earth Sci. 90, 136-148, doi:10.1007/s005310000148
1145		(2001).
1146	147	Rubin, A. M. Designer friction laws for bimodal slow slip propagation speeds.
1147		Geochemistry Geophysics Geosystems 12, doi:10.1029/2010gc003386 (2011).
1148	148	Leeman, J. R., Saffer, D. M., Scuderi, M. M. & Marone, C. Laboratory observations of
1149		slow earthquakes and the spectrum of tectonic fault slip modes. <i>Nature Communications</i>
1150		7, doi:10.1038/ncomms11104 (2016).
1151	149	Liu, Y. J. & Rice, J. R. Spontaneous and triggered aseismic deformation transients in a
1152		subduction fault model. J. Geophys. ResSolid Earth 112, doi:10.1029/200/jb004930
1153	150	(2007).
1154	150	Hawthorne, J. C. & Rubin, A. M. Laterally propagating slow slip events in a rate and
1155		state friction model with a velocity-weakening to velocity-strengthening transition. J.
1156	1 7 1	Geophys. ResSolid Earth 118, 3/85-3808, doi:10.1002/jgrb.50261 (2013).
1157	151	Shibazaki, B. & Shimamoto, I. Modelling of short-interval silent slip events in deeper
1158		subduction interfaces considering the inclinal properties at the unstable-stable transition
1159		246X 2007 02424 w (2007)
1160	150	240A.2007.05454.X (2007). Im K. Soffer D. Marana C. & Avayaa I. D. Slin rate demondant friction as a universal.
1161	132	mi, K., Saffer, D., Marone, C. & Avouac, J. P. Silp-rate-dependent inclion as a universal
1102		0627 Q (2020)
1103	153	Segall P Rubin A M Bradley A M & Rice I R Dilatant strengthening as a
1104	155	mechanism for slow slip events I Geonbus Res - Solid Farth 115
1166		doi:10.1029/2010ib007449 (2010)
1167	154	Liu Y I & Rubin A M Role of fault gauge dilatancy on aseismic deformation
1168	101	transients. J. Geophys. ResSolid Earth 115. doi:10.1029/2010ib007522 (2010).
1169	155	Romanet, P., Bhat, H. S., Jolivet, R. & Madariaga, R. Fast and Slow Slip Events Emerge
1170		Due to Fault Geometrical Complexity. Geophys. Res. Lett. 45, 4809-4819,
1171		doi:10.1029/2018g1077579 (2018).
1172	156	Ikari, M. J. & Saffer, D. M. Comparison of frictional strength and velocity dependence
1173		between fault zones in the Nankai accretionary complex. Geochemistry Geophysics
1174		Geosystems 12, doi:10.1029/2010gc003442 (2011).
1175	157	Roesner, A. et al. Friction experiments under in-situ stress reveal unexpected velocity-
1176		weakening in Nankai accretionary prism samples. Earth and Planetary Science Letters
1177		538 , doi:10.1016/j.epsl.2020.116180 (2020).

158 Kaproth, B. M. & Marone, C. Slow Earthquakes, Preseismic Velocity Changes, and the 1178 Origin of Slow Frictional Stick-Slip. Science 341, 1229-1232, 1179 doi:10.1126/science.1239577 (2013). 1180 159 Phillips, N. J., Motohashi, G., Ujiie, K. & Rowe, C. D. Evidence of Localized Failure 1181 Along Altered Basaltic Blocks in Tectonic Mélange at the Updip Limit of the 1182 Seismogenic Zone: Implications for the Shallow Slow Earthquake Source. Geochemistry, 1183 Geophysics, Geosystems, doi:https://doi.org/10.1029/2019GC008839 (2020). 1184 160 van den Ende, M. P. A. & Niemeijer, A. R. Time-Dependent Compaction as a 1185 Mechanism for Regular Stick-Slips. Geophys. Res. Lett. 45, 5959-5967, 1186 doi:10.1029/2018gl078103 (2018). 1187 Hobbs, B. E., Ord, A. & Teyssier, C. EARTHQUAKES IN THE DUCTILE REGIME. 161 1188 Pure Appl. Geophys. 124, 309-336, doi:10.1007/bf00875730 (1986). 1189 Sibson, R. H. Transient Discontinuities In Ductile Shear Zones. J. Struct. Geol. 2, 165-& 162 1190 (1980). 1191 French, M. E., Hirth, G. & Okazaki, K. Fracture-induced pore fluid pressure weakening 163 1192 and dehydration of serpentinite. Tectonophysics 767, 11, doi:10.1016/j.tecto.2019.228168 1193 (2019).1194 164 Kato, A., Sakaguchi, A., Yoshida, S., Yamaguchi, H. & Kaneda, Y. Permeability 1195 structure around an ancient exhumed subduction-zone fault. Geophys. Res. Lett. 31, 1196 doi:10.1029/2003gl019183 (2004). 1197 165 Kawano, S., Katayama, I. & Okazaki, K. Permeability anisotropy of serpentinite and 1198 fluid pathways in a subduction zone. Geology 39, 939-942, doi:10.1130/g32173.1 (2011). 1199 166 Okazaki, K., Katayama, I. & Noda, H. Shear-induced permeability anisotropy of 1200 simulated serpentinite gouge produced by triaxial deformation experiments. *Geophys.* 1201 Res. Lett. 40, doi:10.1002/grl.50302 (2013). 1202 Daigle, H. & Screaton, E. J. Evolution of sediment permeability during burial and 167 1203 subduction. Geofluids 15, 84-105, doi:10.1111/gfl.12090 (2015). 1204 Okazaki, K. & Katayama, I. Slow stick slip of antigorite serpentinite under hydrothermal 168 1205 conditions as a possible mechanism for slow earthquakes. Geophys. Res. Lett. 42, 1099-1206 1104, doi:10.1002/2014gl062735 (2015). 1207 169 White, J. C. Paradoxical pseudotachylyte - Fault melt outside the seismogenic zone. J. 1208 Struct. Geol. 38, 11-20, doi:10.1016/j.jsg.2011.11.016 (2012). Chestler, S. R. & Creager, K. C. Evidence for a scale-limited low-frequency earthquake 170 1210 source process. J. Geophys. Res.-Solid Earth 122, 3099-3114, doi:10.1002/2016jb013717 1211 (2017).1212 171 Nakano, M., Yabe, S., Sugioka, H., Shinohara, M. & Ide, S. Event Size Distribution of 1213 Shallow Tectonic Tremor in the Nankai Trough. Geophys. Res. Lett. 46, 5828-5836, 1214 doi:10.1029/2019gl083029 (2019). 1215 Peacock, S. M. Thermal and metamorphic environment of subduction zone episodic 172 1216 tremor and slip. J. Geophys. Res.-Solid Earth 114, doi:10.1029/2008jb005978 (2009). 1217 Rubin, A. M. Episodic slow slip events and rate-and-state friction. J. Geophys. Res.-Solid 173 1218 Earth 113, doi:10.1029/2008jb005642 (2008). 1219 Daub, E. G., Shelly, D. R., Guyer, R. A. & Johnson, P. A. Brittle and ductile friction and 174 1220 the physics of tectonic tremor. Geophys. Res. Lett. 38, doi:10.1029/2011gl046866 (2011). 1221

- Hawthorne, J. C., Thomas, A. M. & Ampuero, J. P. The rupture extent of low frequency
 earthquakes near Parkfield, CA. *Geophysical Journal International* 216, 621-639,
 doi:10.1093/gji/ggy429 (2019).
- 176 Bostock, M. G., Thomas, A. M., Rubin, A. M. & Christensen, N. I. On corner
 1226 frequencies, attenuation, and low-frequency earthquakes. J. Geophys. Res.-Solid Earth
 1227 122, 543-557, doi:10.1002/2016jb013405 (2017).
- 1228177Nowack, R. L. & Bostock, M. G. Scattered waves from low-frequency earthquakes and
plate boundary structure in northern Cascadia. *Geophys. Res. Lett.* 40, 4238-4243,
doi:10.1002/grl.50826 (2013).
- 1231178Ghosh, A. et al. Rapid, continuous streaking of tremor in Cascadia. Geochemistry1232Geophysics Geosystems 11, doi:10.1029/2010gc003305 (2010).
- 1233179Audet, P. & Burgmann, R. Possible control of subduction zone slow-earthquake1234periodicity by silica enrichment. *Nature* **510**, 389-+, doi:10.1038/nature13391 (2014).
- 1235180Houston, H. Low friction and fault weakening revealed by rising sensitivity of tremor to
tidal stress. *Nature Geoscience* 8, 409-+, doi:10.1038/ngeo2419 (2015).
- 181 Sweet, J. R., Creager, K. C., Houston, H. & Chestler, S. R. Variations in Cascadia Low Frequency Earthquake Behavior With Downdip Distance. *Geochemistry Geophysics Geosystems* 20, 1202-1217, doi:10.1029/2018gc007998 (2019).
- 182 Hall, K., Schmidt, D. & Houston, H. Peak Tremor Rates Lead Peak Slip Rates During
 Propagation of Two Large Slow Earthquakes in Cascadia. *Geochemistry Geophysics Geosystems* 20, 4665-4675, doi:10.1029/2019gc008510 (2019).
- 183 Obara, K., Hirose, H., Yamamizu, F. & Kasahara, K. Episodic slow slip events
 accompanied by non-volcanic tremors in southwest Japan subduction zone. *Geophys. Res. Lett.* 31, doi:10.1029/2004gl020848 (2004).
- 184 Shelly, D. R., Beroza, G. C. & Ide, S. Complex evolution of transient slip derived from
 precise tremor locations in western Shikoku, Japan. *Geochemistry Geophysics Geosystems* 8, doi:10.1029/2007gc001640 (2007).
- 1249
 185
 Rubinstein, J. L., La Rocca, M., Vidale, J. E., Creager, K. C. & Wech, A. G. Tidal

 1250
 modulation of nonvolcanic tremor. Science **319**, 186-189, doi:10.1126/science.1150558

 1251
 (2008).
- 186 Bostock, M. G. & Christensen, N. I. Split from slip and schist: Crustal anisotropy beneath
 northern Cascadia from non-volcanic tremor. *J. Geophys. Res.-Solid Earth* 117,
 doi:10.1029/2011jb009095 (2012).
- 1255187Zal, H. J. *et al.* Temporal and spatial variations in seismic anisotropy and VP/VS ratios in1256a region of slow slip. *Earth and Planetary Science Letters* **532**, 115970,1257doi:https://doi.org/10.1016/j.epsl.2019.115970 (2020).
- 1258 188 Peacock, S. M. & Wang, K. Seismic consequences of warm versus cool subduction
 1259 metamorphism: Examples from southwest and northeast Japan. *Science* 286, 937-939,
 1260 doi:10.1126/science.286.5441.937 (1999).
- 1261189Matsuzawa, T., Asano, Y. & Obara, K. Very low frequency earthquakes off the Pacific
coast of Tohoku, Japan. *Geophys. Res. Lett.* 42, 4318-4325, doi:10.1002/2015gl0639591263(2015).
- Baba, S., Takeo, A., Obara, K., Matsuzawa, T. & Maeda, T. Comprehensive Detection of
 Very Low Frequency Earthquakes Off the Hokkaido and Tohoku Pacific Coasts,
 Northeastern Japan. J. Geophys. Res.-Solid Earth 125, 13, doi:10.1029/2019jb017988
 (2020).

1268	191	Ito, Y. et al. Episodic slow slip events in the Japan subduction zone before the 2011
1269		Tohoku-Oki earthquake. Tectonophysics 600, 14-26, doi:10.1016/j.tecto.2012.08.022
1270		(2013).
1271	192	Yamashita, Y. et al. Migrating tremor off southern Kyushu as evidence for slow slip of a
1272		shallow subduction interface. Science 348, 676-679 (2015).
1273	193	Sugioka, H. et al. Tsunamigenic potential of the shallow subduction plate boundary
1274		inferred from slow seismic slip. Nature Geoscience 5, 414-418, doi:10.1038/ngeo1466
1275		(2012).
1276	194	Nakano, M., Hori, T., Araki, E., Kodaira, S. & Ide, S. Shallow very-low-frequency
1277		earthquakes accompany slow slip events in the Nankai subduction zone. <i>Nature</i>
1278		Communications 9, doi:10.1038/s41467-018-03431-5 (2018).
1279	195	Annoura, S., Obara, K. & Maeda, T. Total energy of deep low-frequency tremor in the
1280		Nankai subduction zone, southwest Japan. Geophys. Res. Lett. 43, 2562-2567,
1281		doi:10.1002/2016gl067780 (2016).
1282	196	Peacock, S. M. <i>et al.</i> Thermal structure of the Costa Rica - Nicaragua subduction zone.
1283		Phys. Earth Planet. Inter. 149, 187-200, doi:10.1016/j.pepi.2004.08.030 (2005).
1284	197	Walter, J. I., Schwartz, S. Y., Protti, M. & Gonzalez, V. The synchronous occurrence of
1285		shallow tremor and very low frequency earthquakes offshore of the Nicoya Peninsula,
1286		Costa Rica. Geophys. Res. Lett. 40, 1517-1522, doi:10.1002/grl.50213 (2013).
1287	198	Gutscher, M. A. & Peacock, S. M. Thermal models of flat subduction and the rupture
1288		zone of great subduction earthquakes. J. Geophys. ResSolid Earth 108,
1289		doi:10.1029/2001jb000787 (2003).
1290	199	Nakamura, M. & Sunagawa, N. Activation of very low frequency earthquakes by slow
1291		slip events in the Ryukyu Trench. Geophys. Res. Lett. 42, 1076-1082,
1292		doi:10.1002/2014gl062929 (2015).
1293	200	Nakamura, M. Distribution of low-frequency earthquakes accompanying the very low
1294		frequency earthquakes along the Ryukyu Trench. Earth Planets and Space 69,
1295		doi:10.1186/s40623-017-0632-4 (2017).
1296	201	Ando, M., Tu, Y., Kumagai, H., Yamanaka, Y. & Lin, C. H. Very low frequency
1297		earthquakes along the Ryukyu subduction zone. Geophys. Res. Lett. 39,
1298		doi:10.1029/2011gl050559 (2012).
1299	202	Fagereng, A. & Ellis, S. On factors controlling the depth of interseismic coupling on the
1300		Hikurangi subduction interface, New Zealand. Earth and Planetary Science Letters 278,
1301		120-130, doi:10.1016/j.epsl.2008.11.033 (2009).
1302	203	Todd, E. K. & Schwartz, S. Y. Tectonic tremor along the northern Hikurangi Margin,
1303		New Zealand, between 2010 and 2015. J. Geophys. ResSolid Earth 121, 8706-8719,
1304		doi:10.1002/2016jb013480 (2016).
1305	204	Currie, C. A., Hyndman, R. D., Wang, K. & Kostoglodov, V. Thermal models of the
1306		Mexico subduction zone: Implications for the megathrust seismogenic zone. J. Geophys.
1307		ResSolid Earth 107, doi:10.1029/2001jb000886 (2002).
1308	205	Frank, W. B. et al. Using systematically characterized low-frequency earthquakes as a
1309		fault probe in Guerrero, Mexico. J. Geophys. ResSolid Earth 119, 7686-7700,
1310		doi:10.1002/2014jb011457 (2014).
1311	206	Husker, A. L. et al. Temporal variations of non-volcanic tremor (NVT) locations in the
1312		Mexican subduction zone: Finding the NVT sweet spot. Geochemistry Geophysics
1313		Geosystems 13, doi:10.1029/2011gc003916 (2012).

- 1314207Wech, A. G. & Bartlow, N. M. Slip rate and tremor genesis in Cascadia. Geophys. Res.1315Lett. 41, 392-398, doi:10.1002/2013gl058607 (2014).
- Bostock, M. G., Christensen, N. I. & Peacock, S. M. Seismicity in Cascadia. *Lithos* 332, 55-66, doi:10.1016/j.lithos.2019.02.019 (2019).
- Shi, Y. L., Allis, R. & Davey, F. Thermal modeling of the Southern Alps, New Zealand.
 Pure Appl. Geophys. 146, 469-501, doi:10.1007/bf00874730 (1996).
- Wech, A. G. *et al.* Tectonic Tremor Recorded by Ocean Bottom Seismometers.
 Seismological Research Letters 84, 752-758, doi:10.1785/0220120184 (2013).
- Yamato, P., Mouthereau, F. & Burov, E. Taiwan mountain building: insights from 2-D thermomechanical modelling of a rheologically stratified lithosphere. *Geophysical Journal International* 176, 307-326, doi:10.1111/j.1365-246X.2008.03977.x (2009).
- ¹³²⁵ 212 Aguiar, A. C., Chao, K. & Beroza, G. C. Tectonic tremor and LFEs on a reverse fault in ¹³²⁶ Taiwan. *Geophys. Res. Lett.* **44**, 6683-6691, doi:10.1002/2016gl072148 (2017).
- 1327
 213
 Chuang, L. Y., Chen, K. H., Wech, A., Byrne, T. & Peng, W. Ambient tremors in a

 1328
 collisional orogenic belt. *Geophys. Res. Lett.* 41, 1485-1491, doi:10.1002/2014gl059476

 1329
 (2014).
- Tang, C. C., Peng, Z., Chao, K., Chen, C. H. & Lin, C. H. Detecting low-frequency
 earthquakes within non-volcanic tremor in southern Taiwan triggered by the 2005 Mw8.6
 Nias earthquake. *Geophys. Res. Lett.* 37, doi:10.1029/2010gl043918 (2010).
- Sass, J. H. *et al.* THERMAL REGIME OF THE SOUTHERN BASIN AND RANGE
 PROVINCE .1. HEAT-FLOW DATA FROM ARIZONA AND THE MOJAVE
 DESERT OF CALIFORNIA AND NEVADA. *J. Geophys. Res.-Solid Earth* 99, 2209322119, doi:10.1029/94jb01891 (1994).
- Chao, K., Peng, Z. G., Fabian, A. & Ojha, L. Comparisons of Triggered Tremor in California. *Bulletin of the Seismological Society of America* 102, 900-908, doi:10.1785/0120110151 (2012).
- Fagereng, A. & Diener, J. F. A. San Andreas Fault tremor and retrograde metamorphism.
 Geophys. Res. Lett. 38, doi:10.1029/2011gl049550 (2011).
- Marcaillou, B. *et al.* Seismogenic zone temperatures and heat-flow anomalies in the Tonankai margin segment based on temperature data from IODP expedition 333 and
 thermal model. *Earth and Planetary Science Letters* 349, 171-185,
 doi:10.1016/j.epsl.2012.06.048 (2012).
- 1346

1349 Figures

1351 Figure 1. Metamorphic conditions of representative seismologically observed slow earthquakes and ancient, exhumed structures selected for comparison. Depths of low frequency earthquakes and tremor highlight the wide 1352 range of tectonic and metamorphic settings that exhibit the spectrum of slow slip. a. Approximate pressure and 1353 temperature range at the source of slow earthquakes based on published thermal models and hypocentral depth 1354 distributions/relocations of seismologically observed slow earthquakes in some representative tectonic settings. 1355 Conditions for Costa Rica, Central Ryukyu, and Hikurangi subduction zones are based on epicentral locations and 1356 assume slow earthquakes occur on the plate interface. Hypocentral depths are converted to pressure assuming a 1357 linear lithostatic load and rock density of 2750 kg/m³ for depth \leq 30 km and 3300 kg/m³ for depth > 30 km for 1358 comparison. Metamorphic facies for basaltic rocks shown for reference¹⁷² (A, amphibolite; eA, epidote amphibolite; 1359 eB, epidote blueschist; egA, epidote-garnet amphibolite; G, greenschist; gA, garnet-amphibolite; jeB, jadeite-epidote 1360

- blueschist; jlB, jadeite-lawsonite blueschist; lB, lawsonite blueschist; PA, prehnite-actinolite; PP, prehnite-
- ¹³⁶² pumpellyite; Z, zeolite; zaE, zoisite amphibole eclogite facies). b. Sources of thermal models and slow earthquake
- locations used to construct part a. c. Pressure and temperature conditions of deformation of ancient examples
- selected as representative of the range of conditions of slow earthquakes shown in a. Abbreviations in grey as in a. c.
- Locations of exhumed deformation structures used in this review as potential hosts of ancient slow earthquakes.

Figure 2. Photographs illustrating different types of structures associated with high strain zones. High strain
 zones in all tectonic settings exhibit structures with a range of thicknesses. a. Photograph of the Chrystalls Beach
 accretionary mélange, New Zealand, showing deformation distributed over several meters within the high strain
 zone. Boudinage of light grey blocks of sandstone shows they were relatively rigid during deformation. b.

1372	Ultracataclasite layer from a seismogenic thrust fault that developed at the margin of the Mugi mélange, Japan.
1373	Injection veins contain fluidized gouge that was deformed at seismic slip rates. c. Detail of a localized shear band
1374	network within the Chrystalls Beach mélange cutting the matrix between competent blocks. Note the matrix in a. is
1375	a mixture of phyllosilicate-rich pelitic rock and small blocks of sandstone. Blocks of all sizes locally have parallel
1376	long axes. d. Aerial photo of the Pofadder shear zone, Namibia, showing deformation distributed over tens of
1377	meters. Variations in colour within the high strain zone correspond to mylonites and ultramylonites developed from
1378	different lithologies. e. Approximately 10-20 cm-thick mylonite bands developed within the Pofadder Shear Zone,
1379	Namibia. f. Example of a foliated mylonite and localized (~cm-thick) ultramylonite band from the Kuckaus
1380	mylonite zone, Namibia. The mylonite contains mm-thick shear bands that define a S-C composite fabric.

1383 Figure 3. Comparison of block populations from different tectonic settings, which show similar

characteristics a. Outcrop map of an exposure of the Mugi mélange showing the distribution of blocks in a pelitic 1384 matrix (scaly shale), locations of shear bands and veins, and attitudes of solution cleavages (adapted with permission 1385 from REF⁹²). b. Histogram showing distribution of angle between block long axes and the shear plane orientation for 1386 the Mugi mélange (shown in a.) and the Kuckaus mylonite zone⁹³, a continental transform. c. Probability density 1387 functions of block long axis distributions for various high strain zones. Data from: Chrystalls Beach¹¹⁰; Upper 1388 Mugi¹¹¹; Lower Mugi⁹²; Makimine¹¹¹; Kini³⁹; Kuckaus⁹³ high strain zones. Dashed lines show range over which a 1389 power law was fit. Table legend beneath shows n, number of blocks in each dataset, α , power-law scaling exponent 1390 fitted using maximum likelihood fitting methods¹¹², and p, the result of a goodness of fit test to establish whether a 1391

- power law is a plausible fit to the data (following REF¹¹², power law is ruled out if $p \le 0.1$, though p is only reliable
- for datasets with n >> 100). d. Histogram of block aspect ratios in the Mugi mélange (shown in a.) and the Kuckaus
- 1394 mylonite zone.

Figure 4. Examples of micro-scale structures in ancient equivalents of active slow earthquake source regions.
These images show the variety of deformation mechanisms that accommodate strain across the wide range of
tectonic and metamorphic environments of slow earthquakes. a. Cataclastic band developed along the margin of a
basaltic block from the Mugi mélange, Japan, courtesy of Noah Phillips. b. Shear band cutting the pelitic matrix of
the Makimine mélange, Japan. Phyllosilicates within the shear band exhibit a grain shape preferred orientation
(GSPO) parallel to shear band margins. Pelitic matrix contains a composite S-C fabric. S-foliation resulted from
dissolution-precipitation creep in quartz. c. Mafic mylonite that developed at blueschist-eclogite conditions in the

Cycladic Blueschist Unit, Greece. Grain shape preferred orientation (GSPO) in glaucophane (glauc) defines a C-C' 1404 1405 foliation, the tails of quartz (qtz) are aligned with the S-foliation (image courtesy of Alissa Kotowski. Other mineral abbreviations are: gt = garnet; zo = zoisite). d. Antigorite mylonite from the Mie mélange, Japan in which a shear 1406 band contains antigorite with grain shape preferred orientation. Antigorite grains contain kink bands (kinks) at high 1407 1408 angle to shear band margin. e. Strands of cataclasite and breccia developed parallel to mylonitic foliation, some of which were subsequently plastically deformed, Pofadder Shear Zone, Namibia (image courtesy of Christie Rowe). f. 1409 Extensional guartz vein that formed discordant to foliation in the Makimine mélange (white arrow with black outline 1410 shows opening vector), which was subsequently offset by shear along the C-foliation and plastically deformed. Note 1411 1412 thinner quartz veins at high angle to C-foliation are not folded, indicating cyclical fracture and plastic deformation. 1413 g. Fluid inclusion trails (indicated by dashed white lines), which represent increments of extensional opening within a quartz vein from the Makimine mélange, Japan. The thickness of quartz between the white arrows is the 1414 interpreted opening amount in one increment. 1415

1416

Figure 5. Upper bounds on the slip rate at a shear zone boundary that can be accommodated by dissolution-

precipitation creep in the matrix of the Mugi mélange given a range of possible shear zone thicknesses.

1421 Calculations were performed assuming the shear stress driving dissolution-precipitation creep was limited by the

shear stress to initiate frictional sliding (i.e. the effective shear stress was limited to 1 MPa as suggested by field

observations^{37,131}), for the range of grain sizes (Φ) shown, temperature of 135 °C and grain aspect ratio of 3.

1427 Potential shear zone that might accommodate a geodetically observed earthquake shown with shaded orange region. Networks of localized shear bands that could host seismologically observed earthquakes 1428 are shown in black. Examples of possible individual LFE rupture geometries are shown in red. Structures 1429 that might host large seismic slip shown in crimson. Magenta lines indicate opening-mode veins and portions 1430 1431 of localized shear structures that may be mineralized and preserved as veins. The high strain zone contains units of different viscosity (blue shades), which are boudinaged, folded, and disrupted into blocks. The least 1432 viscous component indicated may be composed of a distinct lithology or a combination of lithologies (i.e. 1433 a mixture of matrix and small blocks as shown in FIG. 2E). 1434

1436 **TABLE 1.** Geology from Geophysics

Seismological, geodetic, and geophysical data are the primary sources of information describing the sources of slow earthquakes⁴⁵⁻⁴⁷. The table below summarizes some predictions regarding the geological characteristics of the deformation structures that form or are reactivated during slip at slow to intermediate velocities based on these primary sources. Expected geological characteristics in italics are speculative. We note that the observations and interpretations outlined in the table should not be considered limiting, especially as new geophysical observations will cause the corresponding interpretations to evolve.

1444

Box 1 Table. Geophysical constrain some of the environmental conditions at slow

- 1446 earthquake sources,
- 1447

Geophysical observation	Interpretation	Expected Geological/Structural		
		characteristic		
Waveforms of seismologically observed slow earthquakes				
Radiated seismic energy ^{2,74}	Dynamic fracture, slip at	Fracture, frictional sliding		
	seismic slip rates	potentially including evidence for		
	(>1mm/s) ^{173,174}	dynamic weakening mechanisms		
LFE waveforms ^{48,50}	Modeling suggests a double-	Apparent shear offset on a single		
	couple mechanism, which	structure or accommodated		
	implies dominantly shear			

failure at source consistent	across a network of subparallel
with local active faults ^{48,50}	structures
Low rupture velocity	Unusually smooth fault surfaces?
(potentially emphasized by a	Dilation during shear lowering
nearfield path with high	pore pressure and increasing
preferential attenuation at	fault strength (dilatant
high frequencies)	strengthening)?
Low displacement/length	Slip/length ratios of $10^{-6} - 10^{-5}$
ratio for slip events, slip	for individual slip increments
under low friction and/or	
high fluid pressure ⁶⁷	
Broad shear zone containing	Fault rock or other high strain
shear failure or multiple	feature of the order of 100s m
closely spaced structures is	thick containing evidence for
allowed, but not determined	numerous structures hosting
by the geophysical (seismic)	intermediate slip rates
data	
	failure at source consistent with local active faults ^{48,50} Low rupture velocity (potentially emphasized by a nearfield path with high preferential attenuation at high frequencies) Low displacement/length ratio for slip events, slip under low friction and/or high fluid pressure ⁶⁷ Broad shear zone containing shear failure or multiple closely spaced structures is allowed, but not determined by the geophysical (seismic) data

Tremor migration patterns	Large regions of host	Prevalence of critically stressed		
(propagation rates of <1 to	structures are critically	structures with respect to ambient		
100 km/hr) ^{82,178}	stressed ⁸²	stress field		
Tremor bursts	Multiple LFEs in a short	Incremental offsets across a		
	period of time, potentially	single structure and/or multiple,		
	with each LFE limited in	closely spaced structures that slip		
	extent by some regulating	in same phase of deformation		
	mechanism ³			
Tremor recurrence interval	Decrease in fault strength	Temperature-sensitive		
decreases downdip ^{24,179,180}	and/or tendency toward more	deformation mechanisms. Veins,		
	stable or continuous slip	silicified fault rocks		
	downdip ^{24,62} . Possible silica	systematically changing in		
	redistribution and	abundance with P-T conditions		
	permeability decrease in			
	downdip direction ¹⁷⁹ .			
Estimated magnitude range	Dimensions of up to	Continuous structure or network		
(≤M2?) ^{65,181}	hundreds of meters ¹⁷⁵	of structures corresponding to the		
		dimension of the rupture		
Other geophysical observables				

Spatial and temporal	Fracture and slip associated	Structures representing low to
correspondence of tremor	with strain rate perturbations	intermediate strain rate coeval
and SSE or afterslip ^{71,182,183}		with fracture, mutually
		overprinting for repeated events,
		cyclical deformation
Modulation of low	Small stress perturbations	Critically stressed structures with
frequency events by tidal	required to transition to	respect to ambient stress field
or teleseismic stress	fracture	possible, fluid-rich and high pore
changes ^{78,184,185}		pressure environment recorded
		by veins, syn-kinematic
		mineralization
High Vp/Vs, high	High pore fluid pressure	Rock alteration/metamorphism,
attenuation in slow		vein formation. Faults sealed by
earthquake source region ⁷³⁻		phyllosilicates(?) or mineralized
76		by, e.g., quartz
Anisotropy of seismic	Aligned grains, mechanical	Grain shape preferred orientation
velocity leading to shear	anisotropy	(and/or crystallographic preferred
wave splitting ^{186,187}		orientation), aligned meso-scale
		structures

References for figures

	Thermal Model	Seismological observations
1	Japan Trench/Kurile ¹⁸⁸	Tremor, LFEs, VLFEs ¹⁸⁹⁻¹⁹¹
2	Nankai, Kii (updip) ¹⁷²	Tremor, VLFEs ¹⁹²⁻¹⁹⁴
3	Nankai, Kii (downdip) ¹⁷²	Tremor, LFEs, VLFEs ^{5,74,195}
4	Nankai, Shikoku (downdip) ¹⁷²	Tremor, LFEs, VLFEs ^{5,30,195}
5	Costa Rica ¹⁹⁶	Tremor, LFEs ^{51,53,197}
6	Central Ryukyu ¹⁹⁸	LFEs, VLFEs ¹⁹⁹⁻²⁰¹
7	Hikurangi ²⁰²	Tremor ^{14,203}
8	Mexico ²⁰⁴	Tremor, LFEs ^{66,205,206}
9	Cascadia ¹⁷²	Tremor, LFEs, VLFEs ^{48,207,208}
10	Alpine Fault, New Zealand ²⁰⁹	Tremor, LFEs ^{56,57,210}
11	Lishan Fault, Taiwan ²¹¹	Tremor, LFEs ²¹²⁻²¹⁴
12	San Jacinto Fault, USA ²¹⁵	Tremor ^{20,22,216}
13	San Andreas Fault, USA ²¹⁷	Tremor, LFEs ^{52,61,69}
14	Nankai Prism ²¹⁸	Tremor, VLFEs ^{11,15,16}