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Motivated by the inadequacy of conducting atomistic simulations of crack propagation using static boundary
conditions that do not reflect the movement of the crack tip, we extend Sinclair’s flexible boundary condition
algorithm [Philos. Mag. 31, 647-671 (1975)] and propose a numerical-continuation-enhanced flexible boundary
(NCFlex) scheme, enabling full solution paths for cracks to be computed with pseudo-arclength continuation,
and present a method for incorporating more detailed far-field information into the model for next to no addi-
tional computational cost. The new algorithms are ideally suited to study details of lattice trapping barriers to
brittle fracture and can be incorporated into density functional theory and multiscale quantum/classical QM/MM
calculations. We demonstrate our approach for Mode III fracture with a 2D toy model and employ it to conduct
a 3D study of Mode I fracture of silicon using realistic interatomic potentials, highlighting the superiority of the
new approach over employing a corresponding static boundary condition. In particular, the inclusion of numeri-
cal continuation enables converged results to be obtained with realistic model systems containing a few thousand
atoms, with very few iterations required to compute each new solution. We also introduce a method to estimate
the lattice trapping range of admissible stress intensity factors K− < K < K+ very cheaply and demonstrate its
utility on both the toy and realistic model systems.

I. INTRODUCTION

The fundamental details of crack propagation invariably de-
pend on atomistic effects, since a crack advances by the break-
ing of individual chemical bonds at its tip. Atomistic mod-
elling of brittle fracture in crystals goes back to the pioneering
work carried out by Sinclair and coworkers in the 1970s [1–3];
for a recent review of contributions made to our understand-
ing of fracture from atomistic simulations see Refs. 4 and 5.
The principal distinction from continuum models is the dis-
creteness of the atomic lattice, which leads to the concept of
lattice trapping, first identified by Thomson in 1971 [6]. A
consequence of lattice trapping is that cracks remain stable
over a range of stress intensity factors K− < K < K+. Lattice
trapping can lead to anisotropy in propagation directions [7],
and the associated energy barriers imply that cleavage does
not necessary produce smooth fracture surfaces at low ener-
gies [8]. The phenomenon has a dynamical analogue, the
velocity gap, which is a forbidden band of crack velocities
at low temperatures [9]. The velocity gap vanishes at larger
temperatures; thermal activation over lattice trapping barriers
has been proposed as an explanation for observations of low
speed crack propagation on the (110) cleavage plane in sil-
icon [10]. Very recently, bond-by-bond thermally activated
crack growth has been directly observed in ReS2 through in
situ atomic-resolution TEM experiments [11], confirming the
importance of understanding detailed atomistic mechanisms
to control crack propagation.
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Detailed investigation of these phenomena are currently ex-
tremely challenging for two interconnected reasons. Firstly,
realistic interatomic potentials capable of describing the very
high strains near crack tips are very hard to construct [12]. At
the same time, the requirement for large model systems and
the strong coupling between lengthscales associated with frac-
ture make the applicaton of quantum mechanical techniques
such as density functional theory (DFT) extremely challeng-
ing, despite the considerable success such techniques have en-
joyed elsewhere in materials science [13]. Even when accu-
rate atomistic models are available, determining the relevant
stable crack tip configurations and the energy pathways that
link them is extremely challenging because of the high di-
mensionality of the atomistic configuration space [10]. The
picture is further complicated if the modelled crack propa-
gates, causing an effective shift of origin of the entire strain
field, which is often not reflected in the supplied boundary
condition. Challenges present in the (quasi-) static modelling
of fracture translate directly to more complex simulations of
fracture-related phenomenona, as pointed out in a recent study
establishing the ill-suitability of a popular empirical potential
for molecular dynamics studies of fracture phenomena in FeP
metallic glasses [14].

Many of the stated issues can be either resolved or sig-
nificantly alleviated through supplementing the currently em-
ployed methods with ideas originating from numerical contin-
uation and bifurcation theory, at present almost entirely absent
from atomistic studies of material behaviour. Numerical con-
tinuation techniques concern efficient ways of computing so-
lutions of a system of nonlinear equations by exploiting small
variations in a parameter present in the system. Results from
bifurcation theory ensure that this procedure can account for
the changing stability of computed solutions – see Ref. 15 for
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an accessible overview of the topic. These techniques allow
the fracture predictions of a range of candidate interatomic
potentials to be efficiently screened, helping to address issues
such as that identified in [14]; this approach will be demon-
strated here using two potentials for silicon.

In our study we identify the stress intensity factor K as
such a parameter and propose a novel numerical-continuation-
enhanced flexible boundary (NCFlex) scheme, which uses
pseudo-arclength continuation to trace continuous paths of
equilibrium configurations, while employing flexible bound-
ary conditions. As a result unstable solutions known as saddle
points can be found, which constitute the energy barriers to
crack propagation. A simpler version of this idea has been
previously applied to study crack propagation in Refs. 16 and
17, albeit without explicitly identifying K as the key param-
eter and without a recourse to the flexible boundary condi-
tions. Relatedly, a mathematically rigorous numerical anal-
ysis of domain size effects for a static boundary condition
scheme coupled with numerical continuation techniques has
been conducted in Ref. 18. It provides a basic framework in
which proving convergence rates to the infinite limit is possi-
ble and is the principal motivation for the current work.

As mentioned, here we return to the flexible boundary con-
dition (FBC) approach introduced by Sinclair [3]. In this class
of approaches, a localised atomic core region is coupled to
a linear elastic far field, with only a few scalar parameters
defining the far-field behaviour. The method has been devel-
oped and applied extensively to model dislocations [19–21]
but applications to fracture have received comparatively little
attention, with the notable exception of work in Refs. 22 and
23, in which an efficient implementation of the FBC method
in the context of both dislocations and cracks has been pro-
posed. We augment the FBC method and address the chal-
lenge of identifying and analysing stable and unstable crack
tip configurations by combining it with numerical continua-
tion techniques. We demonstrate our ideas firstly for Mode
III fracture in a toy model of a 2D crystal, considered a use-
ful stepping stone for our theory, as it has readily calculable
exact Hessians and permits a mathematically rigorous analy-
sis. This is then followed by a 3D study of the more realis-
tic and much-studied example of Mode I fracture of silicon
on the (111) cleavage plane, using bond order potentials that
have been modified to extend the interaction range and intro-
duce screening to provide a qualitatively correct description
of bond-breaking processes [24].

II. METHODOLOGY

A. Discrete Kinematics

For the purpose of describing the method, we first consider
a simplified system consisting of a two-dimensional infinite
crystal of atoms forming a triangular lattice and interacting via
a known interatomic potential with a finite interaction radius,
with a crack forming along the horizontal axis and a crack tip
located at (α,0) ∈ R2. We stress, however, that the method is
fully three-dimensional and the simplified setup is used as a

backdrop to present the underlying ideas with clarity. The nu-
merical example in Section III A follows this simplified setup,
but the realistic study in Section III B employs a fully three
dimensional setup.

The position of the ith atom is denoted by
x(i) = (x1(i),x2(i),x3(i)) ∈ R3, which is always of the
form

x(i) = x̂(i)+Y (i), (1)

where x̂(i) is the crystalline lattice position and
Y (i) = (Y1(i),Y2(i),Y3(i)) is the displacement from the
crystalline lattice. The theory will be presented for two
crack modes: pure Mode III in the out-of-plane displacement
approximation (Y1 = Y2 = 0), and Mode I in the in-plane
displacement approximation (Y3 = 0). The realistic study in
Section III B does not involve such an approximation.

Atoms are assumed to interact according to an interatomic
potential φ , which, to avoid unnecessary technicalities is taken
to be a pair potential with total energy of the form

E = ∑
i 6= j

φ(ri j), where ri j = |x(i)−x( j)|. (2)

The restriction to pair potentials is not needed for the analy-
sis, and will be lifted in the numerical examples considered in
Section III B, where a state-of-the-art many-body interatomic
potential is used instead.

Following the ideas of Sinclair [3], the system is divided
into three regions, as shown in Figure 1. Region 1, also known
as the defect core is a finite collection of atoms, labelled from
i = 1 to i = N1, in the vicinity of the crack tip. Each atom
in Region 1 is free to move, thus, in Mode I in the in-plane
approximation, there are 2N1 degrees of freedom associated
with Region 1 and, in Mode III in the out-of-plane approxi-
mation, there are N1 degrees of freedom. The method can be
easily adopted to a three dimensional setting, as will be done
in Section III B.

Atoms in Region 2, known as the interface, all contain at
least one atom from Region 1 in its interaction range and are
labelled from i=N1+1 to i=N2. Region 3 is the far field and,
by design, there is no interaction between atoms in Region 3
and 1. In models with long-range interactions such as DFT,
Region 2 should be, in theory, infinitely long. In practice,
however, where there are long-range forces, Region 2 should
be made sufficiently large that these forces can be truncated,
with some control over the resulting errors. The output quan-
tities Kc,K−,K+ would then effectively have to be converged
with respect to the width of the interface.

The total energy is divided into two parts

E = E(1)({x(i)}N2
i=1)+E(2)({x(i)}i>N1), (3)

where E(1) contains the energy of atoms in Region 1 and
the energy associated with the interaction of atoms in Re-
gion 1 with atoms in Region 2 (hence the dependence for
i = N1 +1, . . . ,N2). The second term, E(2), contains the en-
ergy of associated with atoms outside Region 1 – this includes
interactions between two atoms in Region 2, thus explaining
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Region 1

atoms 1, , N1

Region 2

N1 + 1, , N2

Region 3

N2 + 1,

FIG. 1. An example of the partitioning of a cracked infinite crystal.
Region 1 (purple dots) consists of atoms indexed 1, . . . ,N1, with the
shape for simplicity chosen to be a ball of radius R (central orange
dotted line). Region 2 (green squares) consists of atoms indexed N1+
1, . . . ,N2 with its width defined by the interaction range. Region 3
(pink crosses) consists of atoms indexed N2 + 1, . . . and it is the (in
principle infinite) far field. A representative atom from each region
is shown as an enlarged diamond and its interaction range is shown
as a dotted line. Note that every atom in Region 2 has at least one
atom from Region 1 in its interaction range and the interaction range
of every atom in Region 3 does not include any atoms from Region
1.

the dependence for i>N1. As discussed in Ref. 3 and more re-
cently in more general context in Ref. 25, even if the energy is
redefined so that the perfect lattice is a zero-energy configura-
tion, the far-field part represented by E(2) nonetheless remains
unbounded for a body containing a crack opening. In practical
applications the quantity of interest is thus the energy differ-
ence between a suitably chosen initial configuration {x0(i)}
and a relaxed configuration {x(i)}, which is denoted by

E−E0 = E({x(i)})−E({x0(i)}). (4)

There are different ways of specifying the behaviour of
atoms in Region 2 and 3. In what follows we first review
two approaches, namely a simple static boundary condition
specified by continuum linearised elasticity and a simplified
version of the flexible boundary scheme due to Sinclair [3].

Subsequently, we show how the flexible boundary scheme
leads to a simple equation to check for admissible values of
the stress intensity factor for which equilibria exist, which mo-
tivates defining an alternative version of the flexible boundary
scheme with improved accuracy.

This is then followed by a discussion about applying nu-
merical continuation techniques to both formulations and the
resulting bifurcation diagrams capturing crack propagation,

energy barriers and the phenomenon of lattice trapping [6].

B. Static boundary scheme

Prescribing a simple static far-field boundary condition
consists of constraining atoms in both Region 2 and Region 3
to be displaced according to continuum linear elasticity (CLE)
equations arising from the mode of crack considered, the
Cauchy-Born relation and the interatomic potential employed.
Crucially, these equations are derived for the crack tip fixed at
the origin, i.e. with α = 0 and remain unchanged even if a re-
laxation of the core region yields a different crack tip position.

In both idealised modes of crack considered, it can be
shown that the atomistic model posed on a triangular lat-
tice gives rise to an isotropic CLE equation [26]. In
particular, with the crack tip assumed to coincide with
the origin of the coordinate system and polar coordinates
x̂(i) = ri(cosθi,sinθi) employed, the anti-plane CLE dis-
placement for Mode III crack is given by

U III
CLE(i) =

√
ri (0,0,sin(θi/2)) , (5)

whereas the isotropic in-plane CLE displacement for Mode I
crack is given by

U I
CLE(i) =

√
ri

(
3cos(θi/2)− cos(3θi/2), (6)

5sin(θi/2)− sin(3θi/2), 0
)
.

In the 3D study conducted in Section III B, the in-plane
anisotropic Mode I CLE solution will be used, however the
model considered will allow a full 3D relaxation of Region 1.
The superscript in UCLE distinguishing different crack modes
is dropped whenever a distinction is not needed. The displace-
ment fields we consider are in fact of the form {KUCLE(i)},
where K ∈ R is the stress intensity factor.

A suitable way of encoding this far-field behaviour is to
consider configurations {x(i)} in the form

x(i) = x̂(i)+KUCLE(i)+U(i), (7)

where, as in (1), x̂(i) is the crystalline lattice position and
U(i) the atomistic correction of the ith atom, accounting for
the fact that atoms within Region 1 are free to relax under the
interatomic potential. This correction is constrained to satisfy
U(i) = 0 for i>N1, which ensures that atoms outside the core
remain fixed at the CLE displacement field.

In this framework the initial configuration {x0(i)} against
which the energy difference is computed corresponds to set-
ting U(i) = 0 for all i, with K the same for both x and x0.
As a result, given the definition of E(2) in (3), it trivially holds
that

E(2)({x(i)}i>N1) = E(2)({x0(i)}i>N1),

and hence

E−E0 = E({x(i)}N2
i=1)−E({x0(i)}N2

i=1),
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which is a finite quantity.
If one defines a function of ({U(i)},K) given by

F0 = F0(({U(i)},K)) = ({f(i)}N1
i=1), (8)

where f(i) = − ∂E
∂x(i) is the force acting on the ith atom, then

an equilibrium configuration can be found by solving F0 = 0.
The usual numerical procedure is to prescribe some reason-
able K and check whether there exists a solution to F0 = 0 for
that K. For a fixed K, in Mode III, this corresponds to solv-
ing a system of N1 equations for N1 variables, and, in Mode I
there are 2N1 equations for 2N1 variables. In a fully 3D case,
to be considered in numerical tests in Section III B, the system
considered consists of 3N1 equations for 3N1 variables.

The remaining difficulty is the interplay between the choice
of K and the crack tip position. This will be addressed in Sec-
tion II D with the help of numerical continuation, in particu-
lar highlighting fundamental limitations of the static boundary
scheme.

C. Flexible boundary scheme

1. Standard formulation

The central idea of the flexible boundary scheme described
by Sinclair [3] is to allow the crack tip position (α,0) to vary.
The displacements can be shifted to account for the current
crack tip position by redefining the polar coordinates used in
(5) and (6) so that

ri(cosθi,sinθi) = x̂(i)− (α,0).

The configurations considered are, similarly to (7), of the form

x(i) = x̂(i)+KUα
CLE(i)+U(i),

where the CLE displacement is now written as Uα
CLE to em-

phasise the dependence on α through the shift of the polar co-
ordinate system. Note that the initial unrelaxed configuration
{x0(i)} from (4) corresponds to setting α = 0 and U(i) = 0
for all i, whereas K is again the same for both x and x0.

The effect that varying α has on the system can be captured
by considering the notion of a generalised force

f ∞
α =−∂E

∂α
= ∑

i
− ∂E

∂x(i)
· ∂x(i)

∂α
= ∑

i
f(i) ·KVα(i), (9)

where Vα = −∂1U
α
CLE, noting that, morally, Uα

CLE is a func-
tion from R2 → R3, so one can write Uα

CLE(x), where
x= (x1,x2) ∈ R2, and ∂1 simply refers to the derivative with
respect to x1, which is consistent with the fact that we vary the
horizontal position of the crack tip. As stated, (9) is an infinite
sum, which can be shown to be convergent since UCLE solves
the CLE equation [25, 27].

Somewhat arbitrarily, Sinclair assumes that in Region 3 the
crystal is fully ’linearly elastic’ [3], in the sense that the con-
tinuum CLE displacement is an equilibrium by itself, meaning
that

f(i) = 0, for i > N2, (10)

for any choice of K and α , effectively truncating the infinite
sum in (9).

The Sinclair scheme can be formalised by defining a func-
tion of ({U(i)},K,α}) given by

F1 = F1({U(i)},K,α}) =(({f(i)}N1
i=1, fα), (11)

where

fα =
N2

∑
i=1

f(i) ·KVα(i). (12)

An equilibrium configuration in this scheme is then obtained
by solving F1 = 0 where K is as again a priori fixed at some
reasonable value.

Notably, the summation in (12) is effectively over
{i}N2

i=N1+1, since at an equilibrium f(i) = 0 for i ≤ N1. The
reasoning behind including the extra condition fα = 0 can be
explained as follows. With atoms outside Region 1 following
the CLE displacement (determined by K and α), it can never
be true that f(i) = 0 for i > N1 – optimising over α is hence
the best we can hope to achieve outside the defect core.

Obviously, (10) is only true in an approximate sense, which
leaves open to interpretation whether the truncation enforced
through (10) is the optimal choice.

It is further worth noting that in the limit when N1→∞, the
generalised force fα in (12) is null at any equilibrium, hence
the extra equation fα = 0 is effectively redundant, which
strongly hints that the role of the flexible scheme lies in im-
proving the convergence rate to the single infinite limit. A
mathematically rigorous proof of this result will be a subject
of further study.

To compute the energy difference E−E0 in the new
scheme, we follow the procedure described in Ref. 3,
Appendix 1, with the far-field contribution to the energy
E(2)−E(2)

0 from (3) approximated as

E(2)−E(2)
0 =−1

2

N2

∑
i=N1+1

(
f (2)(i)+f

(2)
0 (i)

)
· (x(i)−x0(i)) ,

(13)
where f (2)(i) =− ∂E(2)

∂x(i) . We in particular note that in this ap-
proximation the contributions from atoms in Region 3 (i>N2)
are disregarded completely, due to the truncation in (10),
which holds for both f (2) and f

(2)
0 , and that the difference

x(i)−x0(i) for i > N1 is only a function α .
Making sense of the arguably unsubstantiated far-field ap-

proximation in (10) as well as addressing the question of con-
vergence leads to several interesting realisations that will be
addressed in the next section.

2. Predicting admissible stress intensity factors

The strain fields associated with atomistic corrections
{U(i)} are known to decay more quickly away from the core
than the strain fields associated to {UCLE(i)} (proven rigor-
ously in a simplified setup in Ref. 25), meaning that their



5

contributions are effectively negligible beyond a small region
around the crack tip. It can thus be conjectured that a reason-
able approximation to the flexible boundary scheme condition
fα = 0, defined in (12), is to allow the unrelaxed configuration
{x0(i)} to depend on α and look at the generalised force at
the unrelaxed configuration, namely

−∂E0

∂α
= ∑

i
− ∂E0

∂x0(i)
· ∂x0(i)

∂α
= ∑

i
f0(i) ·KVα(i).

Employing the same truncation as in (10), we can postulate a
condition f 0

α = 0, where

f 0
α(K,α) =

N2

∑
i=1

f0(i) ·KVα(i). (14)

With the unrelaxed configuration {x0(i)}, now determined
solely by K and α , verifying whether f 0

α = 0 holds is numer-
ically very straightforward and comes at minuscule compu-
tational cost. Note, however, that with f 0

α(i) representing the
forces acting on the ith atom at the unrelaxed configuration
x0, which depends on K, f 0

α exhibits a nonlinear dependence
on K.

It will be shown in Section III A 3 and Section III B that
solving f 0

α = 0 provides a good estimate for the admissible
values of the stress intensity factor and that there in fact ex-
ists a continuous path of solutions with K values nearly per-
fectly oscillating around a fixed interval of admissible values
K− < K < K+.

With the numerical tests indicating that the predicted in-
terval is strongly dependent on the size of the computational
domain, it seems plausible that changing the far-field trunca-
tion rule from (10) can have a drastic effect on the computed
solution path. This will be investigated in the next section.

3. Effect of changing far-field truncation rule

The truncation in (10) is equivalent to stating that the atom-
istic information associated with atoms in Region 3, which
conceptually is an infinite far field, is completely disregarded,
except for tiny strip, as shown in Figure 2. One can provide
the flexible boundary scheme with more atomistic input from
Region 3 by changing the truncation in (10) to

f(i) = 0, for i > N3, (15)

where N3 > N2 is much larger, e.g. N3 = 4N2. Conceptu-
ally, this is equivalent to increasing the width of Region 2 (c.f.
Figure 1), but in our phrasing N2 is uniquely specified by N1
and the interaction range of the potential, hence the need for
the introduction of a much larger N3 is simply dictated by the
wording – see Figure 2 for further insight.

As a result, a new condition is f̃α = 0, where

f̃α =
N3

∑
i=1

f(i) ·KVα(i).

(a) (b)

FIG. 2. The effective computational domain for (a) the standard flex-
ible scheme and (b) the flexible scheme with extended far field, with
colouring system matching the one in Figure 1 and with Region 1
being the inner ball and the interface being the strip around it. The
standard truncation f(i) = 0 for all i>N2 from (10) implies that only
a narrow strip of Region 3 (the outermost strip in pink in (a)) has to be
simulated, so that f(i) can be computed for i = N1+1, . . . ,N2, while
the rest of the infinite far field (the outermost atoms in grey) can be
disregarded. If on the other hand the truncation is imposed for i > N3
(as in (15)), where N3 is much larger, then atoms i = N2 + 1, . . . ,N3
have to also be simulated (the in-between thick strip presented in or-
ange in (b), but conceptually part of Region 3), as well as a further
strip around then so that all relevant forces can be computed. Atoms
in the orange and pink regions on the right still simply follow the
CLE displacement determined by K and α , so the enlarged domain
still contains the same number of degrees of freedom.

Thus, the new approach testing the effect of different
truncation can be formalised by defining a function of
({U(i)},K,α) given by

F2 = F2({U(i)},K,α) =({f(i)}N1
i=1, f̃α), (16)

with an equilibrium configuration obtained by solving F2 = 0.
The difference between the new scheme F2 = 0 and the

standard F1 = 0 from (11) is most pronounced by observing
that at an equilibrium in the new scheme, the previously de-
fined truncated generalised force fα from (12) satisfies

fα =
N3

∑
i=N2+1

f(i) ·KVα(i). (17)

The right-hand side admits input only from atoms in Region 3,
whose displacements are determined solely by α and K, since
by design, U(i) = 0 for i ≥ N1, which highlights the general
rationale behind this formulation: the far-field region within
the computational domain is vastly enlarged, but only two de-
grees of freedom remain attached to it, meaning that in prac-
tice there is virtually no additional computational cost, apart
from the ability to compute the right-hand side of (17).

It will be shown through numerical tests presented in Sec-
tion III A 4 that the new scheme results in much improved
accuracy for small sizes of the core region, implying that in
practice the new scheme is numerically preferable, enabling
increased accuracy to be achieved with decreased numerical
cost.
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D. Pseudo-arclength numerical continuation

The basic premise of numerical continuation applied to the
problem at hand is as follows. Suppose we have identified
some Kn for which some equilibrium configuration xn exists.
Can we use this knowledge to quickly find another equilib-
rium for Kn + δK, for some small δK? A similar approach
has been previously applied in the continuum study of cracks
deviating from straightness [28]. In the present setting, such
an approach will work well if there exists a continuous path
of solutions K 7→ {UK(i)}N1

i=1 (and K 7→ αK in the case of the
flexible boundary scheme). Such a path can be shown to exist,
courtesy of Implicit Function Theorem [29], in the neighbour-
hood of Kn if the associated Hessian operator is invertible at
Kn.

A more sophisticated version, which is particularly useful
for the problem at hand, is known as the pseudo-arclength
continuation. It postulates that the quantities involved all
are smooth functions of an arclength parameter s. The ar-
clength parametrisation of a curve, also known as the nat-
ural parametrisation, is a classical concept in mathematical
analysis – it ensures that the curve is traversed at a con-
stant unit speed [30]. The question thus changes to: given
some triplet (Ksn ,{Usn(i)},αsn) (in the case of static boundary
α ≡ 0 throughout) which specifies an equilibrium configura-
tion {xsn(i)}, can we find a new triplet for sn+1 := sn+δ s, for
some small δ s, which gives us a new equilibrium {xsn+1(i)}?
The key advantage of this approach is that it can handle index-
1 saddle points, which makes it a useful tool for studying en-
ergy barriers and the phenomenon of lattice trapping.

Numerical continuation can be incorporated into the frame-
work by including K as a variable in the systems of equations
Fj = 0 for j = 0,1,2 defined in (8), (11), (16). The inclusion
of K as a variable renders each system of equations Fj = 0
under-determined. While it might be tempting to optimise
over K by requiring that ∂E

∂K = 0, as was the case for α , we
stress that the nature of K is fundamentally different to α – the
value of K specifies the dominant behaviour at infinity, scal-
ing like ∼ r1/2 in the displacement and ∼ r−1/2 in the strain,
where r is the distance from the crack tip. Due to this dom-
inant behaviour at infinity, it was shown in [18] that optimis-
ing over K is not mathematically sound. On the other hand,
α specifies the next order behaviour, with its contributions
∼ r−1/2 in the displacement and ∼ r−3/2 in the strain. This is
"small enough" at infinity to justify the constraint ∂E

∂α
= 0.

The principles of pseudo-arclength continuation, as intro-
duced at the beginning of this section, dictate that, under the
assumption of there existing a continuous path of solutions,
given a solution triplet (Ksn ,{Usn(i)},αsn), one should instead
impose the equation f (n)K = 0 to close the system, where

f (n)K =
N1

∑
i=1

(
Usn+1(i)−Usn(i)

)
· U̇sn(i) (18)

+(αsn+1 −αsn)α̇sn +(Ksn+1 −Ksn)K̇sn −δ s.

The schematic plot presented in Figure 3 explains this con-
struction. Here

(
K̇sn ,{U̇sn(i)}, α̇sn

)
refer to derivatives with

respect to s evaluated at sn. Note that in the static boundary
scheme we simply have αsn = 0, and hence α̇sn = 0, for all n.

Xsn

Xsn + 1

Xsn

s

FIG. 3. Suppose Xsn = (Ksn ,{Usn(i)},αsn) belongs to the solution
path, which is smooth (solid curved green line). The schematic two-
dimensional plot indicates that imposing an extra constraint in the
form of f (n)K = 0 from (18) is is equivalent to looking for solutions
along the direction of the orange arrow pointing up, which is per-
pendicular to Ẋsn , represented by a purple arrow pointing right, with
δ s determining how far along Ẋsn we choose to travel. Choosing δ s
small enough ensures that the algorithm can safely traverse the solu-
tion path even along folds. It is further clear from the plot that, for
δ s sufficiently small, Xsn + δ sẊsn (orange dot on the arrow pointing
right) is a very good initial guess for subsequent steps of the Newton
iteration.

If there indeed exist a continuous path of solutions, it can be
shown [31] that for a step size δ s small enough, a simple New-
ton iteration will converge to a new solution of (Fj , fK) = 0.

The remaining difficulty is to compute
(
K̇sn ,{U̇sn(i)}, α̇sn

)
.

This can be achieved by first noting that with s being an ar-
clength parameter, by definition (unit speed) it has to hold that

N1

∑
i=1

U̇sn(i) · U̇sn(i)+(K̇sn)
2 +(α̇sn)

2 = 1. (19)

This eliminates one degree of freedom. The remaining de-
grees of freedom can be eliminated by differentiating both
sides of F j = 0 with respect to arclength parameter s, which is
possible under the assumption of there existing a smooth path
of solutions. Details are presented in the Appendix.

The resulting pseudo-arclength continuation algorithms as-
sociated with both schemes are presented as Algorithm 1 and
Algorithm 2.
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Algorithm 1 Static boundary condition pseudo-arclength con-
tinuation

1: Given δ s;
2: given a stable equilibrium configuration solving (F0, fK) = 0

determined by (Ks1 ,{Us1(i)});
3: compute (K̇s1 ,{U̇s1(i)}) using (A.3);
4: compute a new stable equilibrium configuration (Ks2 ,{Us2(i)})

by solving (F0, fK) = 0 using Newton iteration with initial
guess (Ks1 +δ sK̇s1 ,{Us1(i)+δ sU̇s1(i)});

5: for n > 1 do
6: given (Ksn ,{Usn(i)}) and (K̇sn−1 ,{U̇sn−1(i)});
7: compute (K̇sn ,{U̇sn(i)}) by solving linear system (A.6);
8: compute a new equilibrium configuration (Ksn+1 ,{Usn+1(i)})

by solving (F0, fK) = 0 using Newton iteration with initial
guess (Ksn +δ sK̇sn ,{Usn(i)+δ sU̇sn(i)}).

9: end for

Algorithm 2 Flexible boundary condition pseudo-arclength
continuation

1: Given δ s;
2: given a stable equilibrium configuration solving (F1, fK) = 0

determined by (Ks1 ,{Us1(i)},αs1);
3: compute (K̇s1 ,{U̇s1(i)}, α̇s1) using (A.5);
4: compute a new stable equilibrium configuration

(Ks2 ,{Us2(i)},αs2) by solving (F1, fK) = 0 using New-
ton iteration with initial guess (Ks1 + δ sK̇s1 ,{Us1(i) +
δ sU̇s1(i)},αs1 +δ sα̇s1);

5: for n > 1 do
6: given (Ksn ,{Usn(i)},αsn) and (K̇sn−1 ,{U̇sn−1(i)}, α̇sn−1);
7: compute (K̇sn ,{U̇sn(i)}, α̇sn) by solving linear system (A.7);
8: compute a new equilibrium configuration

(Ksn+1 ,{Usn+1(i)},αsn+1) by solving (F1, fK) = 0
using Newton iteration with initial guess
(Ksn +δ sK̇sn ,{Usn(i)+δ sU̇sn(i)},αsn +δ sα̇sn).

9: end for

Bearing in mind that most realistic interatomic potentials
only provide analytic forces but not Hessians, meaning that
Algorithm 2 cannot be readily used, as it requires a computa-
tion of the Hessian while differentiating Fj = 0 to get the tan-
gent (K̇sn ,U̇sn , α̇sn), we also propose a simple finite-difference
based approximate scheme as a Hessian-free alternative.

The method consists of first computing two stable equi-
librium configurations determined by (Ks0 ,{Us0(i)},αs0)
and (Ks1 ,{Us1(i)},αs1), which crucially satisfy Ks1 ≈ Ks0
(and also αs1 ≈ αs0 ). In the first step the tangent
(K̇s1 ,{U̇s1(i)}, α̇s1) can be approximated as

U̇s1(i) =
1

Ks1 −Ks0

(
Us1(i)−Us0(i)

)
, (20a)

α̇s1 =
1

Ks1 −Ks0

(
αs1 −αs0

)
, (20b)

K̇s1 = 1, (20c)

with the last line a direct consequence of K being the effective
continuation parameter in the first step, since it is K that is
varied to obtain two stable equilibrium configurations.

With the tangents computed, one can now assemble the ex-
tended system and solve (F1, fK) = 0 to obtain an equilib-

rium determined by (Ks2 ,{Us2(i)},αs2). The switch to the
extended system entails that now the arclength s is the contin-
uation parameter and in particular s2− s1 = δ s, with δ s fixed
throughout. As a result, subsequent tangent approximations
are computed, for n = 2, . . . , as

U̇sn(i) =
1

δ s

(
Usn(i)−Usn−1(i)

)
, (21a)

α̇sn =
1

δ s

(
αsn −αsn−1

)
, (21b)

K̇sn =
1

δ s

(
Ksn −Ksn−1

)
. (21c)

The details of this approximate scheme are summarised as
Algorithm 3 below. In practical applications, to avoid pos-
sible numerical artefacts, the finite-difference approach could
be substituted by the automatic differentiation approach [32].

Algorithm 3 Hessian-free approximate flexible boundary
condition pseudo-arclength continuation

1: Given δ s;
2: given two stable equilibrium configurations solving (F1, fK) =

0, determined by (Ks0 ,{Us0(i)},αs0) and (Ks1 ,{Us1(i)},αs1),
and satisfying Ks1 ≈ Ks0 and αs1 ≈ αs0 ;

3: compute an approximate (K̇s1 ,{U̇s1(i)}, α̇s1) using (20);
4: compute a new stable equilibrium configuration

(Ks2 ,{Us2(i)},αs2) by solving (F1, fK) = 0 using New-
ton iteration with initial guess (Ks1 + δ sK̇s1 ,{Us1(i) +
δ sU̇s1(i)},αs1 +δ sα̇s1);

5: for n > 1 do
6: given (Ksn ,{Usn(i)},αsn) and (Ksn−1 ,{Usn−1(i)},αsn−1);
7: compute an approximate (K̇sn ,{U̇sn(i)}, α̇sn) using (21);
8: compute a new equilibrium configuration

(Ksn+1 ,{Usn+1(i)},αsn+1) by solving (F1, fK) = 0
using Newton iteration with initial guess
(Ksn +δ sK̇sn ,{Usn(i)+δ sU̇sn(i)},αsn +δ sα̇sn).

9: end for

III. RESULTS

In this section we discuss numerical tests based around ap-
plying the pseudo-arclength continuation to both the static and
flexible boundary schemes.

We begin by directly comparing the static boundary scheme
and the flexible boundary scheme when applied to a simple toy
model, highlighting the superiority of the latter. This is then
followed by a study of fracture on the (111) cleavage plane in
silicon with two interatomic potentials.

A. Mode III toy model

We first consider a toy model of anti-plane Mode III frac-
ture posed on a triangular lattice with lattice constant equal to
unity and atoms interacting according to a nearest neighbour
pair potential. The total energy is thus of the form

E = ∑
i 6= j

|x̂(i)−x̂( j)|=1

φ(ri j), where ri j = |x3(i)− x3( j)|,
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Quantity Value
a 1.0
µ 3.464
γ 0.333
KG 0.49501

TABLE I. Values of the lattice constant a, shear modulus µ , sur-
face energy γ and Griffith stress intensity factor KG computed for the
Mode III toy model.

where

φ(r) =
1
6
(
1− exp(−3r2)

)
.

The resulting material properties are reported in Table I, in-
cluding the shear modulus, the surface energy and the Griffith
prediction for the critical stress intensity factor KG.

To investigate domain size effects, we consider computa-
tional domains of different sizes, each geometrically repre-
sented by ball of radius R around the origin (we refer to Fig-
ures 1 and 2 for visual insight). The three choice of radii are
(1) R = 32, (2) R = 64 and (3) R = 128. The fully atomistic
Region 1 is chosen to consists of all atoms with

|x̂(i)|< R−Rout−Rφ , (22)

where Rout = 2.1 corresponds to the width of the annulus of
atoms in the far field (Region 3), and Rφ = 1.1 corresponds to
the interaction radius, specifying the width of the annulus of
atoms in the interfacial Region 2. As a result in each scheme
(1) N1 = 3003, (2) N1 = 13402 and (3) N1 = 56500, respec-
tively.

1. Pseudo-arclength continuation with static boundary scheme

Algorithm 1 is first employed to compute solution paths
presented in Figure 4. With no knowledge of the actual crack
tip position, the y-axis was chosen to represent the Euclidean
norm of {Us(i)}.

The plot confirms the intuitively clear notion that |Us| will
be smallest when there is no mismatch between the predicted
crack tip position (in the static boundary scheme fixed at α =
0) and the actual crack tip position. Periodic wiggles further
indicate a repeating bond-breaking behaviour.

The solution paths are heavily tilted, with no clear range of
stress intensity factors for which equilibria exist, as K grows
to effectively compensate for α being fixed. In particular, no
unstable equilibria are found and the energy is monotonically
increasing in K, implying that no study of energy barriers is
possible.

An ad-hoc post-processing way of estimating actual values
of α and K is to find

min
α,K

(
N∗

∑
i=1
|KsUCLE(i)+Us(i)−KUα

CLE(i)|2
)
, (23)

where, in order to avoid boundary effects, {i}N∗
i=1 corresponds

to all atoms such that |x̂(i)|< 3
4 R. The resulting plots of α

against K are shown with dashed lines in Figure 5.
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FIG. 4. Solution paths obtained for Mode III toy model using Al-
gorithm 1 for three choices of domain size (the more vertical the
path, the greater the domain size), with examples A, B and C of
the computed equilibrium configurations, clearly showing that the
crack propagates as the solution curve is traversed – note that this is
Mode III in the anti-plane approximation, so the greater the strain on
a bond, the more visible the bond.

2. Pseudo-arclength continuation with flexible boundary scheme

Algorithm 2 is now employed to compute solution paths of
the toy model for three different domain sizes, as described in
Section III A.

A direct comparison of both scheme is shown in Figure
5, revealing that the flexible scheme is superior to the post-
processing of the static scheme in terms of predicting the
range of the stress intensity factors for which equilibria exist.
In particular, the flexible scheme employed on a core region
with radius R = 32 is as accurate as the post-processed static
scheme employed on a core region with radius R = 128.

Note that in the flexible boundary scheme, outside the tiny
interval for K presented in Figure 5, no equilibrium configu-
rations exist. Physically this corresponds to loads being large
enough for the crack to propagate through the whole mate-
rial. This is made possible by the adjustment in α – if K is
‘strong’ enough for the crack to propagate by one lattice spac-
ing from α to α + 1 (where the lattice spacing is normalised
to 1), then it will also be strong enough to propagate to α +2
and so on. This of course terminates near the actual boundary
of the computational domain, but there the boundary effects
are too strong for the model to be in any way meaningful. The
finiteness of the computational domain also comes into play
in the form a slight tilt of the solution path.

With unstable equilibrium configurations corresponding
to index-1 saddle points captured in the flexible boundary
scheme, a study of energy barriers is now feasible, as show-
cased in Figure 6 and later in Figure 8.
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FIG. 5. Comparison of solutions paths obtained for Mode III toy
model using Algorithm 2 (solid lines) and Algorithm 1 (dotted lines,
post-processed via (23)) for three domain sizes (progressing to the
left as the domain size grows, with static R = 32 case too far away
to the right to include). The insets present examples of the computed
configurations, clearly showing crack propagation, with the line in-
tensity convention as in Figure 4.

3. Predicting the admissible range for K

The ideas developed in Section II C 2 are now checked nu-
merically for the toy model presented in Section III A, again
employing three domain sizes. The results are presented in
Figure 7.

The prediction of the range of admissible values of the
stress intensity factor based on the CLE displacements only is
shown to be fairly accurate, with the magnitude for K match-
ing, while the predicted length of the interval considerably
larger than in reality. Importantly, the prediction correctly
shifts with the changing domain size, indicating that the range
of admissible values for K is to a considerable extent deter-
mined by the far-field behaviour only, thus strongly motivat-
ing the new formulation of the flexible scheme presented in
Section II C 3, which will be tested numerically in the next
section.

4. Pseudo-arclength continuation with flexible boundary scheme
with extended far-field region

To test the effect of extending the far-field region discussed
in Section II C 3, we consider a computational domain in the
form of a ball of radius R = 128 with varying sizes of Re-
gion 1. We refer the reader to the schematic plots in Figures 1
and 2 for visual insight.

As before, the core region is chosen to consists of all atoms
satisfying (22), this time with (1) R= 8, (2) R= 16, (3) R= 32
and (4) R = 64. Region 2 is again an annulus of width
Rφ = 1.1 around Region 1. Highlighting the key conceptual
change, the width of the outer annulus corresponding to Re-
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FIG. 6. A study of energy barriers in the Mode III toy model for
computational domain of radius R = 128, showing (a) the solution
path and (b) the resulting changes in energy. The rescaled energy
gain is (E−E∗)/E∗, where E∗ is the energy of the bottom left config-
uration. The dashed parts of the solution path denote index-1 saddle
points, which correspond to energetic cost of crack propagation at a
given value of K, which can be seen by observing in the lower plot
that dashed lines lie above their neighbouring solid lines. A nudged
elastic band calculation further confirming this being the case is pre-
sented in Figure 8. The point where stable parts of the solution paths
cross corresponds to the critical stress intensity factor Kc, notably
not quite matching the Griffith stress intensity factor KG. This phe-
nomenon is elaborated upon in Section III A 5.

gion 3 is now R− R + Rout, as opposed to just Rout = 2.1
in the standard formulation. As a result N3 = 58407 and in
each scheme (1) N1 = 292 (2) N1 = 1046, (3) N1 = 3946 and
(4) N1 = 15323.

A suitably adjusted Algorithm 2 is now employed to com-
pute solutions paths. The resulting plots of K against α are
presented in the middle panel of Figure 9, which also include
the solution path computed with the standard flexible scheme
with R = 256 for comparison.

The extension of the far-field region drastically increases
the accuracy of the flexible boundary scheme, with a tiny fully
atomistic region required to have a very accurate prediction
for the admissible range of values for the stress intensity fac-
tor. This is demonstrated quantitatively in the error analysis in
Section III A 5.

Despite the large far-field region, the system of nonlinear
equations associated with the new scheme when R = 8 con-
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FIG. 7. Solutions paths computed for the Mode III toy model with
Algorithm 2 (solid lines) for the three domain sizes (progressing to
the left as the domain size grows), plotted against a corresponding
path of approximate solutions obtained by solving f 0

α = 0 from (14)
(dashed lines).

sists of merely 294 equations, as compared to the standard
scheme when R = 128, which consists of 56502 equations,
thus rendering the new scheme vastly superior.

Finally, to further confirm that the unstable solutions com-
puted are indeed saddles and that no other critical points can
be found along the way, a modified version of the nudged elas-
tic band method [33] has been employed on the domain with
R = 32, with details presented in Figure 8.
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FIG. 8. A study of energy barriers in the flexible boundary scheme
with extended far-field with R = 32 and R = 128. In (a) the solu-
tion path is in black alternating between a solid and a dashed line.
Six values of K are chosen and in each case an initial minimum en-
ergy path (MEP) is formed by linear interpolation between the first
stable equilibrium, the saddle in between and the second stable equi-
librium. The path is then optimised using the nudged elastic band
method [33]. The resulting MEPs are shown in (b) with the leftmost
path from (a) corresponding to the lowest energy pathway in (b),
together with larger dots representing the equilibria computed with
pseudo-arclength continuation, thus confirming that the middle equi-
librium is indeed a saddle and also confirming lack of other critical
points along a given path.

5. Error analysis

To conclude the numerical investigation of the toy model,
a brief error analysis is presented in Figure 9. The reference
solution path, imitating the infinite limit N1 → ∞ is obtained
with the standard flexible boundary scheme, as described in
Section III A, with R = 256. Subsequently solution paths ob-
tained with the standard flexible scheme with R = 8,16,32,64
are computed, as well as solution paths obtained with the
extended flexible boundary scheme, as discussed in Section
III A 4, with R = 128 and R = 8,16,32,64.

The right-hand side plot in Figure 9 is produced by comput-
ing the Hausdorff distance [34] (intuitively the greatest of all
the distances from a point on one line to the closest point on
the other line) between a solution path of a given radius and
the reference solution path.

Two things are apparent: firstly, the standard flexible
scheme yields a rate of convergence of order O(R−1), which
improves upon a known rate of convergence O(R−1/2) of the
static scheme proven in Ref. 18. A mathematically rigorous
proof of the improved rate of convergence will be a subject
of further study. Notably, the error analysis together with the
study of energy barriers presented in Figure 6 and 8 clearly
show that the Griffith prediction for the critical stress inten-
sity factor KG is only valid in the limit N1→ ∞.

Secondly, the extended far field flexible boundary scheme
remains as accurate as the outer radius, which in the current
study is fixed at R = 128. The difference in accuracy is thus
most apparent for small values of R, confirming the intuition
behind this reformulation of the flexible boundary scheme.
The underlying reasons for this are also to be explored in a
future work.

B. Mode I fracture of silicon on the (111) cleavage plane

We next test our new algorithms on a more complex prob-
lem: fracture of silicon on the (111) cleavage plane in the
[112̄] propagation direction. This is known to be the preferred
low-energy cleavage orientation, but the precise details of the
lattice trapping barriers to brittle fracture remain elusive for
the reasons outlined in the introduction, making this a prob-
lem of scientific interest as well as an interesting test case.

We consider two interatomic potentials known to give a
qualitatively correct description of brittle fracture for this sys-
tem: modifications of the Tersoff [35] and Kumagai [36] po-
tentials, with the interaction length increased and additional
screening functions introduced to improve the description of
bond-breaking processes [24]. Without these modifications,
neither potential predicts brittle behaviour. The modified po-
tentials have been shown to predict lattice trapping ranges
K− < K < K+ for the (110) cleavage plane in reasonable
agreement with DFT, albeit restricted to a small model system
with static boundary conditions [24], and we thus use them
here as a proxy for a fully description of interatomic bond-
ing in silicon. The potentials have not previously been ap-
plied to study fracture on the (111) plane, in part because of
the complexities introduced by surface reconstructions such
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FIG. 9. Solution paths and error analysis for (a) flexible and (b) extended far field flexible boundary schemes (note the change of scale on the
x-axis between (a) and (b)). In (a) paths move to the left as R increases, but in (b) they remain nearly exactly confined to a fixed interval in K.
The leftmost solution path in both (a) and (b) is computed with the standard flexible boundary scheme with R = 256 and serves as a reference
in the error analysis shown in (c). The R−1 convergence rate is observed for the flexible scheme from (a).

as the Pandey 2×1 π-bonded chain [13, 37], which we do not
study here.

A number of small modifications to the FBC method de-
scribed above are needed. Since analytical Hessians are
not readily available for these potentials, we use the finite-
difference reformulation of the scheme outlined in Algorithm
3. For comparison with the static case, we also consider a
Hessian-free version of Algorithm 1, which can be obtained
from Algorithm 3 by fixing α = 0 and α̇ = 0 throughout. The
linear elastic predictor Uα

CLE and its derivative Vα are also
redefined to account for the anisotropy of the silicon crys-
tal using the near field solution for a crack in a rectilinear
anisotropic elastic medium (noting that Vα can conveniently
be obtained from the xx and xy elements of the deformation
tensor) [38]. The CLE solutions are expanded from two to
three dimensions using plane strain loading conditions appro-
priate for a simulation cell periodic along the crack front line,
i.e. Y3 = 0, with the atomistic corrector U(i) for each atom
also becoming three dimensional. In place of the Newton iter-
ation, we solve (F1, fK) = 0 with a Newton-Krylov solver as
implemented in the LGMRES package [39].

For large systems, it is necessary to precondition the solver.
We used a general purpose preconditioner for materials sys-
tems [40], augmented by a diagonal rescaling of the fα and
fK components of the preconditioner to balance their mag-
nitudes with that of the atomic forces f(i) (as suggested by
Sinclair [3]). Finally, the crack tip force fα is now computed
by summing only over atoms in Region 2 (or Regions 2 and
3 for the extended far-field variant); as discussed after (12)
this does not affect the equilibria obtained. A software imple-
mentation of the algorithm is available with the framework of
the Atomic Simulation Environment (ASE) [41] as part of the
open source matscipy package [42].

To setup the simulations, the lattice and elastic constants
and the surface energy of the (111) plane are computed for

Quantity Tersoff+S Kumagai+S
rc [Å] 6.0 6.0
a [Å] 5.432 5.429
C11 [GPa] 143 165
C12 [GPa] 75 65
C44 [GPa] 69 77
γ(111) [Jm−2] 1.20 0.89
KG [MPa

√
m] 1.07 0.97

TABLE II. Values of the cutoff radius rc, lattice constant a, cubic
elastic constants C11, C12, C44, surface energy γ(111) and Griffith
stress intensity factor KG computed with the screened versions of
the Tersoff and Kumagai interatomic potentials.

each potential and are reported in Table II, along with the
Griffith prediction for the critical stress intensity factor KG,
obtained using the relaxed surface energy γ(111).

Similar to the toy model above, we consider three domain
radii (1) R = 32 Å, (2) R = 64 Å and (3) R = 128 Å, with
the radius of the fully atomistic Region 1 chosen to consider
atoms with crystal positions

|x̂(i)|< R−Rout−Rφ

where now we take Rout = 2rc = 12 Å as the width of the
annulus of atoms defining Region 3 and Rφ = rc = 6.0 Å for
the width of annulus of atoms in the interfacial Region 2. For
the extended far-field scheme, a further outer annular region
of width rc is added to ensure the forces on atoms in Region
3 are unaffected by the presence of the outer surface. The
corresponding numbers of atoms in Region 1 are (1) N1 =
119, (2) N1 = 1273, (3) N1 = 7286, respectively. Since we
now work in 3D, there are 3N1 + 1 degrees of freedom for
the Newton-Krylov solver for the static arc-length calculation,
and 3N1 +2 for the flexible case.
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FIG. 10. Comparison of solution paths obtained with Algorithm 3 for
a Si(111)[112̄] crack modelled with the screened Kumagai potential
using (a) static (dashed lines) and (b) flexible (solid lines) boundary
conditions, for three choices of domain size. For the static cases α

and K are obtained by a post-processing fit to the CLE solution.

1. Pseudo-arclength continuation with the Static and Flexible
Boundary Conditions

We first perform arc-length continuation calculations with
the Kumagai potential for three choices of domain radii, using
both static and flexible boundary conditions. The results are
shown in Figure 10. For the static cases, we employ the post-
processing fit for K and α given in (23), leading to the results
shown with dashed lines in the figure. For small domain sizes,
the static solutions are highly tilted, while the flexible solu-
tions show the correct periodic behaviour even at the smallest
domain size. We note, however, that the finite domain effects
are not yet fully understood for the realistic model, such as
the apparent significant change from R = 64 to R = 128 seen
in Figure 10. From the purely mathematical point of view, as
noted in the concluding section of [25], it appears that it is not
enough to just prescribe KÛα

CLE as the boundary condition at
infinity – it should be supplemented by the next order term
which behaves like ∼ r−1 in the strain (this term is absent
in the toy model due to the inherent symmetry). A separate
consideration is also needed for near-crack-surface terms, as
the continuum models do not account for atomistic surface
phenomena – unless they can be shown to be negligible in
comparison with bulk terms, an extra surface far-field term is
needed too. Expanding further upon this in the current work
would obscure other useful aspects of the developed method,
hence we defer this to future work on this topic.

Finite domain effects aside, the high accuracy of the flexi-
ble scheme allows a careful comparison of the lattice trapping

predicted by different choices of interatomic potential to be
made, as shown in Figure 11. At a domain size of 128 Å the
solution paths are already very close to periodic in the crack
propagation direction. The energy differences computed with
(3) (using the far-field approximation from (13)) illustrated in
the lower panels confirm that there is a critical stress intensity
factor Kc for which the total energy of the atomistic plus con-
tinuum system is equal at all stable energy minima, i.e. before
and after crack advance. While the range of lattice trapping
K− < K < K+ predicted by the two potentials is similar, for
both potentials Kc is less than the Griffith equilibrium value
KG. The values of KG used here were computed from the re-
laxed (111) surface energy, indicating, as well as remaining
finite size effects, some of the difference could be attributed
to local modifications of the surface energy close the crack
tip — a discrepancy that could be further exacerbated by the
presence of more complex surface features such as the Pandey
2×1 reconstruction.

The unstable part of the screened Tersoff solution path con-
tains an interesting additional feature around K = 0.95KG.
The inset schematics illustrate how this feature arises: moving
along the stable path from (A) to (B), the bond at the crack tip
remains intact as the centre of the continuum field α advances.
The bond gradually opens as we move towards point (C) in the
unstable part of the solution path, while between (C) and (D)
it opens more rapidly as the atoms ‘snap’ apart. We postu-
late that this sharp feature is associated with the finite cutoff
of the potential, which, despite the screening terms that make
fracture simulations feasible, is still a modelling assumption.
In future work we aim to compute solution paths with DFT
to remove the uncertainty associated with the use of simpli-
fied potentials: this remains out of reach for the present since,
despite the considerable improvements in accuracy afforded
by the flexible scheme, converged solution paths still require
a large number of force evaluations on systems comprising
several thousand atoms.

2. Predicting the admissible range of K

The admissible range of K is now predicted by the simple
procedure introduced in Section III A 3, i.e. by finding roots of
equation (14), namely f 0

α(K,α)= 0, leading to the predictions
shown with the dashed lines in Figure 12, compared against
full solution paths computed with pseudo-arclength continua-
tion with flexible boundary. Here, K is found numerically for
each value of α in a 200-element grid.

For both potentials, the admissible range of K is in reason-
able agreement with that computed in the full solution paths,
suggesting that our approach provides a useful way to esti-
mate the stable range of K for the cost of a fixed number of
force evaluations on the full domain.

3. Pseudo-arclength continuation with an extended far-field region

To conclude the numerical tests, we also apply the extended
far-field scheme of (16) to the Si(111)[112̄] crack system,
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(1) = 5.7 K/KG = 0.85

(2) = 7.1 K/KG = 1.17

(3) = 7.7 K/KG = 0.98

(4) = 8.3 K/KG = 0.95

FIG. 11. Comparison of lattice trapping of Si(111)[112̄] cracks predicted by the screened Kumagai (a, c) and Tersoff (b, d) potentials. Panels
(a) and (b): solution paths obtained with Algorithm 3, including stable parts (solid lines) corresponding to energy minima and unstable parts
(dashed lines) corresponding to saddle points. Panels (c) and (d): energy difference with respect to the CLE solution with α = 0,K = KG.
Insets: near-tip atomic positions corresponding to marked points 1, 2, 3, 4 on the Tersoff solution and energy paths, with the opening bond
highlighted in red.

modelled using the screened Tersoff potential. The overall
domain size is fixed at R̄ = 128 Å, and two choices of radii
for Region 1 are considered: RI = 14 Å and RI = 46 Å, cho-
sen since these lead to problems with the same numbers of
degrees of freedom as the R = 32 Å and R = 64 Å flexible
models considered earlier.

The results are illustrated in Figure 13. Although there is
an improvement over the standard flexible scheme in conver-
gence towards the reference R = 128 Å solution path, par-
ticularly for the smallest Region 1 size, these results do not
provide convincing evidence that a larger far-field region sig-
nificantly enhances the accuracy of the scheme. This in in
contrast to the results obtained with the toy model, again sug-
gesting that an enhanced far-field predictor that improves the
match with the atomistic model is needed to further increase
accuracy. This will be explored in a separate work.

IV. CONCLUSIONS

In this work we have reported an extension of Sinclair’s
flexible boundary condition algorithm to allow full solution
paths for cracks to be computed using pseudo-arclength con-
tinuation. We have also introduced an extension of the FBC
algorithm which allows information to be incorporated from
a larger far-field region, and which also provides a stepping
stone towards putting the method on a more rigorous math-
ematical footing. We demonstrated the approach for Mode
III fracture with a 2D toy model, and for Mode I fracture of
silicon using realistic interatomic potentials that give a quali-
tatively correct description of fracture.

In future, our approach will enable a detailed study of lat-
tice trapping barriers to brittle fracture to be carried out us-
ing increasingly realistic models of interatomic bonding, go-
ing beyond the screened bond-order potentials demonstrated
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FIG. 12. Comparison of full solution paths obtained by arc-length
continuation with Algorithm 3 (solid lines) and corresponding ap-
proximate solution paths for f 0

α = 0 (dashed lines) for a Si(111)[112̄]
crack modelled with (a) screened Kumagai and (b) screened Tersoff
potentials, using a domain radius of 128 Å.
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(b)

RI = 110 Å (R = 128 Å) flex
RI = 14 Å (R = 128 Å) flex ext 
RI = 46 Å (R = 128 Å) flex ext

FIG. 13. Comparison of original (denoted ‘flex’, panel (a), solid
lines) and extended far field (denoted ‘flex ext’, panel (b), dashed
lines) variants of the flexible boundary condition approaches to
pseudo-arclength continuation in an Si(111)[112̄] crack system mod-
elled with the screened Tersoff potential. The R = 128 Å ‘flex’ result
is shown in both panels to allow comparison. Calculations with the
extended scheme show improved accuracy at smaller domain radii.

here, for example by using machine-learning interatomic po-
tentials [43] or DFT directly. This could help to resolve ques-
tions such as the role of blunt-sharp-blunt crack tip recon-
struction observed during fracture in the Si(110)[11̄0] crack
system [44], where NEB calculations demonstrated the crack
is bluntened at stable minima and sharp at the unstable tran-

sition states. Moreover, the new approach could be ex-
panded to study crack path selection, known to exhibit com-
plex phenomenon in anisotropic materials [45], or the dy-
namics of three dimensional crack fronts, going beyond pre-
vious work that was limited to simple interatomic potentials
and small model systems [10]. Truly accurate predictions
of critical stress intensity factors and lattice trapping ranges
require a quantum mechanical approach, at least near the
crack tip. Hybrid schemes such as QM/MM (quantum me-
chanics/molecular mechanics), previously applied to dynamic
fracture [13], could be combined with the algorithms intro-
duced here to make quantitative fracture toughness calcula-
tions accurate and affordable. A potential route to extend-
ing the NCFlex scheme to the QM/MM framework is to use
a buffered QM/MM approach presented in [46], allowing to
converge force accuracy with respect to the buffer width. Es-
tablished routes could then be followed to produce atomisti-
cally informed continuum models [47–49].

Before this can be done, however, further work is needed to
assess finite-size effects. For the silicon fracture application,
we have demonstrated that the flexible scheme is superior to
static boundaries, but not yet quantified the convergence rate,
meaning that the new algorithms cannot yet be used for pre-
dictive materials science. Ultimately, it is hoped that the flex-
ible boundary scheme and numerical continuation techniques
can be combined with higher-order far-field predictions to in-
crease accuracy in a quantifiable manner.

Finally, we note that the pseudo-arclength continuation
used here would also be applicable to other defects such as
dislocations by replacing the stress intensity factor K as a bi-
furcation parameter with the applied shear stress, which also
enters as a prefactor in front of the CLE solution.
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Appendix: Computation of tangents in the pseudo-arclength
continuation scheme

In the static boundary scheme given by F1 = 0, differenti-
ating both sides with respect s yields

0= HsnU̇sn + K̇snb
K
sn , (A.1)

where (
HsnU̇sn

)
(i) =

N1

∑
j=1

Hsn(i, j) · U̇sn( j). (A.2)
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Here Hsn(i, j) is (i, j)-th entry of the Hessian operator evalu-
ated at sn. In an infinite crystal, this is an infinite block matrix
with

Hsn(i, j) =
∂ 2E

∂xsn(i)∂xsn( j)
,

with a short-hand notation Hsn used to denote its part related
to atoms in Region 1, which is thus a N1×N1 block matrix.

The other term on the right-hand side of (A.1) is given by

bK
sn(i) =

N2

∑
j=1

Hsn(i, j) ·Uαsn
CLE( j),

where crucially the summation here is over both the core and
the interface regions (thus the Hessian operator here is effec-
tively a rectangular block matrix of size N2×N1), whereas in
(A.2) the summation is only over the core region.

It follows from (19) (with α̇ ≡ 0 in the static boundary
scheme) and (A.1) that

U̇sn =−K̇sn

(
H−1

sn bK
sn

)
, K̇sn =±

(
|H−1

sn bK
sn |

2 +1
)−1/2

,
(A.3)

provided the square block matrix Hsn is invertible. The case
when it is not invertible is known as a bifurcation point and it
will be discussed below.

In the flexible boundary scheme given by F1 = 0 differen-
tiating with respect to s implies{

0 = HsnU̇sn + K̇snb
K
sn + α̇snb

α
sn

0 = bα
sn · U̇sn + K̇snCα,K

sn + α̇snCα,α
sn ,

(A.4)

where

bα
sn(i) =

N2

∑
j=1

Hsn(i, j) ·KVαsn ( j),

Cα,K
sn =

N2

∑
i=1

(
bK

sn(i) ·KVαsn (i)+f(i) ·Vαsn (i)
)
,

Cα,α
sn =

N2

∑
i=1

(
bα

sn(i) ·KVαsn (i)+f(i) ·KV
(2)

αsn
(i)
)
,

with V
(2)

α =−∂1Vα .
Note that (A.4) applies to the newly formulated scheme

F2 = 0 as well, except that the sums defining bK
sn(i), b

α
sn(i),

Cα,K
sn and Cα,α

sn should be over i = 1, . . . ,N3.
If Hsn is invertible, then equations (19) and (A.4) together

imply that

K̇sn =±
(
|A3|2 +

A2

A1
+1
)−1/2

, U̇sn = K̇sn A3, α̇sn = K̇sn

A2

A1
,

(A.5)

where

A1 =
N2

∑
i=1
−
(
H−1

sn bα
sn(i)

)
·bα

sn(i)+Cα,α
sn ,

A2 =
N2

∑
i=1

(
H−1

sn bK
sn(i)

)
·bα

sn(i)−Cα,K
sn ,

A3 =−
A2

A1
H−1

sn bα
sn −H−1

sn bK
sn .

With (Ksn ,{Usn(i)},αsn) and (K̇sn ,{U̇sn(i)}, α̇sn) known, a
standard Newton iteration with initial guess

(Ksn ,{Usn(i)},αsn)+δ s(K̇sn ,{U̇sn(i)}, α̇sn),

is guaranteed to converge to a new solution
(Ks2 ,{Us2(i)},αs2) satisfying (Fi, fK) = 0 provided δ s
is small enough (see Figure 3 for visual insight behind this).

Furthermore, the s derivative (K̇s2 ,{U̇s2(i)}, α̇s2) can now
be handily computed with an approximate finite-difference-
like scheme, given, for F0 = 0, by

0= HsnU̇s2 + K̇s2b
K
sn , (A.6a)

1 =
N1

∑
i=1

U̇sn(i) · U̇s2(i)+ K̇snK̇s2 (A.6b)

and, for F1 = 0 (and also for F2 = 0 after adjusting limits of
summation), by

0= HsnU̇s2 + K̇s2b
K
sn + α̇s2b

α
sn , (A.7a)

0 = bα
sn · U̇s2 + K̇s2Cα,K

sn + α̇s2Cα,α
sn , (A.7b)

1 =
N1

∑
i=1

U̇sn(i) · U̇s2(i)+ K̇snK̇s2 , (A.7c)

It is a standard assertion of bifurcation theory [50] that the lin-
ear systems of equations given by (A.6) or (A.7) remain solv-
able even at the points where stability change, corresponding
to cases when Hsn is not invertible, thus allowing us to traverse
full the full bifurcation diagram.
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