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Abstract 9 

In recent years, society has become more aware and concerned with the environmental and 10 

human health impacts of population growth and urbanisation. In response, a number of 11 

legislative measures have been introduced within Europe (and globally), which have sparked 12 

much cross-disciplinary research aimed at predicting and quantifying these impacts, and 13 

suggesting mitigation measures.  14 

In response to such measures this paper is focused on improving current understanding of, and 15 

simulating water quality, in the form of bacterial transport and decay, in the aquatic environment 16 

and particularly in macro-tidal environments. A number of 2D and 3D hydro-epidemiological 17 

models were developed using the TELEMAC suite to predict faecal bacterial levels for a data rich 18 

pilot site, namely Swansea Bay, located in the south west of the UK, where more than 7,000 FIO 19 

samples were taken and analysed over a two year period. 20 

A comparison of 2D and 3D modelling approaches highlights the importance of accurately 21 

representing source momentum terms in hydro-epidemiological models. Improvements in 2D 22 

model bacterial concentration predictions were achieved by the application of a novel method for 23 



2 

representing beach sources within the nearshore zone of a macro-tidal environment. In addition, 24 

the use of a depth-varying decay rate was found to enhance the prediction of Faecal Indicator 25 

Organism concentrations in 3D models. Recommendations are made for the use of these novel 26 

approaches in future modelling studies.  27 

 28 

Keywords: Faecal Indicator Organisms (FIOs), bathing water quality, T90, decay rate, revised EU 29 

Bathing Water Directive  30 

 31 

1 Introduction 32 

The health of nearshore coastal waters is a topic of great concern globally. As a result of population 33 

growth and industrialisation, the number of polluted discharges into water bodies has increased 34 

during the 20th and 21st centuries, with much detriment to the aquatic environment. Such 35 

contamination has far reaching consequences, which include: human health impacts through 36 

recreational activity (Weiskerger and Phanikumar, 2020) and the consumption of polluted food in 37 

the form of shellfish, reduced tourism, and economic losses (DeFlorio-Barker et al. 2018; Bussi et 38 

al. 2017; Given et al. 2006).  39 

 40 

For example, domestic and international visitors to the coast contributed $6 billion to the UK 41 

economy in 2017 (BBC, 2017; Visit Britain, 2017). In a recent study, the Scottish Government 42 

(2018) predicted a loss of $3 million per year should bathing water quality not be maintained at 43 

an acceptable level at popular beaches. Another financial incentive is the healthcare savings 44 

associated with reduced exposure of beach goers to contaminated water (Given et al., 2006). For 45 

example, DeFlorio-Barker et al. (2018) estimated that recreational waterborne illnesses cost the 46 

US economy $2.2 to $3.7 billion every year. It is therefore important to address these issues by 47 

determining the primary sources of pollution at any one location, developing an understanding of 48 

the mechanisms which lead to adverse water quality, beach closure, and implementing mitigation 49 

strategies.  50 
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To ensure protecting human health as highlighted above, legislative measures have been 51 

introduced with regard to bathing water quality. The existing legislation applicable in the EU is the 52 

revised Bathing Waters Directive (rBWD) (European Parliament, 2006) which ensures the 53 

monitoring of water quality and defines acceptable standards, based on human health risk and 54 

following guidelines released by the World Health Organisation on safe standards for recreational 55 

waters (World Health Organization, 2003). The revised Bathing Waters Directive was introduced 56 

by the European Parliament in 2007 requiring Member States to ensure all bathing waters were 57 of ’sufficient’ quality by the close of the 2015 bathing season (European Parliament, 2006). 58 

Compliance criteria are based on the monitored concentration of two Faecal Indicator Organisms 59 

(FIOs); Intestinal enterococci and Escherichia coli (E. coli) in colony forming units per 100ml 60 

(cfu/100ml). The directive requires the concentration of these organisms to be monitored over 61 

consecutive bathing seasons (May to September), in accordance with a sampling calendar. Based 62 

on the Directive 2006/7/EC of the European Parliament, samples showing abnormally elevated 63 

concentrations, caused as a result of short-term pollution incidents, or contamination attributable 64 

to a cause, expected to last less than 72 hours, such as high level of pollution following a heavy 65 

rainfall may be disregarded and retaken (European Environment Agency, 2005). Efforts must also 66 

be made to reduce the risk of bather exposure to contaminants in addition to providing regular 67 

information on bathing water quality. Therefore, the directive requires the public to be made 68 

aware of short-term pollution incidences in advance, in order for these events to be disregarded, 69 

thereby making public health a key driver for prediction.  70 

 71 

Due to the time lag between the collection and assessment of individual samples, monitoring in 72 

this manner is not a practical way of providing rapid public feedback to prevent exposure (Feng 73 

et al., 2015). To enable accurate and fast dissemination of information it is therefore in the interest 74 

of the governing authority to develop predictive tools to provide water quality forecasts and 75 

warning systems (Bedri et al., 2014, 2016; Chen and Liu, 2017; DHI, 2017a, b; Weiskerger and 76 

Phanikumar, 2020). Not only would this comply with the rBWD but it could enable the 77 
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identification, reduction and removal of major pollution sources, increasing the likelihood of a 78 

bathing water being assigned Blue Flag status (Bedri et al., 2015; Lea, 1996). 79 

There are two main approaches to the development of predictive tools to provide water quality 80 

forecasts and warning systems: data driven modelling based on extensive field measurements, 81 

and process-based hydro-epidemiological models. Herein the latter approach is used, with the aim 82 

being to improve our understanding of fundamental processes affecting the fate and transport of 83 

bacterial pollution, in order to enhance the management of bacterial sources, development of 84 

predictive tools, and assessing beach monitoring and management practices.  85 

 86 

This study examines and investigates the use of two novel techniques, as well as the methods 87 

which have been used to date for the prediction of bacterial decay in 2D and 3D model frameworks, 88 

using a data rich macro-tidal bay as a study site.  89 

 90 

2 Methodology 91 

2.1 Study Site 92 

Swansea Bay is situated on the north shoreline of the Bristol Channel, located in the south west of 93 

the UK, and is a popular location among tourists and the local community (see Figure 1). The Bay 94 

contains two bathing water sites: Swansea Bay and Aberafan, both of which received a ‘good’ 95 

rating in the most recent bathing water assessment period. Swansea Bay was chosen for this study 96 

due to the tidal nature of the Bay, the number of FIO point sources and, more importantly, a large 97 

quantity of measured FIO data, where more than 7,000 FIO samples were taken and analysed over 98 

a two-year period. 99 

 100 

The Bay is subject to 85 different inputs (see Figure 1b) including three main rivers discharging 101 

into the Bay: The River Tawe, River Neath and River Afan. There is a semi submerged barrage 102 

located on the River Tawe, which only overtops at tides over 3.05 m above Ordinance Datum. 103 

However, the River Neath and River Afan are tidal up to about 10 km and 1 km upstream from 104 
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the coast, respectively. Primary surface water and sewage discharges were recorded at 15-105 

minute intervals over the 2011 bathing season (May - September) and October - November 2012 106 

for the Smart Coasts project (Aberystwyth University and University College Dublin, 2018) as 107 

shown in Figure 1c, although data were unavailable for Combined Sewer Overflow (CSO) spills. 108 

The rBWD requires samples to be taken at a minimum depth of 0.5 m (Bedri et al., 2016; 109 

Bomminayuni, 2015) at the Designated Sampling Point (DSP) for each bathing water site. 110 

However, the tidal range in the Bay exceeds 10 m and the tidal flats are exposed up to a distance 111 

of 1500 m from shore during high spring tides. This prevents readings being taken at each 112 

bathing water site at only one location for the rBWD. Therefore, the water quality at Swansea 113 

Bay and Aberafan were monitored along BW1 and BW2 transects respectively as shown in 114 

Figure 1c. Figure 1c also depicts the locations of offshore sampling points used for model 115 

validation and calibration. The variability in the sampling location is shown in Figure 2 which 116 

presents the sampling points along BW1, recorded throughout the 2011 bathing season at 30-117 

minute intervals from 07:00 to 16:00. 118 
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 119 

Figure 1: (a) Location of bathing waters within Swansea Bay, Severn Estuary, UK: BW1 - Swansea 120 

Bay, BW2 – Aberafan (b) Location of FIO inputs (c) Location of transects (dashed lines) and 121 

offshore monitoring points (dots) 122 

 123 

Figure 2: FIO sampling locations throughout the 2011 bathing season (a) [Aberystwyth University 124 

and University College Dublin, 2018], and the respective 2D mesh nodes (b) 125 

2.2 Hydrodynamic models 126 

The open-source models TELEMAC-2D and TELEMAC-3D (Galland et al., 1991) were chosen for 127 

this study to compliment previous research applications in the field of hydro-epidemiological 128 

(a) (b) 
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engineering (Abu Bakar et al., 2017a, Bedri et al., 2013; Kopmann and Markofsky, 2000). 129 

Developed by Electricité de France, the models solve the Navier-Stokes Equations over an 130 

unstructured finite element grid (Hervouet, 2007). Further details are provided in the next 131 

section.  132 

 133 

Two computational meshes of the Bristol Channel and Swansea Bay were created, one each for the 134 

2D and 3D models. The 3D domain comprised a 2D mesh repeated over 5 uniformly distributed 135 

sigma layers and extends over the same area apart from the rivers in Swansea Bay, as shown in 136 

Figure 3. To remove the need for coupling with a 1D model, the 2D model was extended up the 137 

River Tawe and to the tidal limits of the rivers Afan and Neath. However, these reaches were 138 

excluded from the 3D model to reduce the computational time and unnecessary vertical 139 

refinement in regions where 3D effects were of limited concern. Note that at the time of writing, 140 

coupling between the latest release of TELEMAC-3D (v7p3r2), and the 1D river model TELEMAC-141 

MASCARET, was not possible. 142 

 143 

Figure 3: Extent of 2D (a) and 3D (b) unstructured computational meshes of Swansea Bay. 144 

Bathymetry relative to mean sea level (MSL) 145 

Bacterial sources were included as a concentration (cfu/100 ml) time series. Source locations 146 

within each domain are shown in Figures 4 and 5, respectively. In the 3D model, the bacterial 147 

source inputs distributed within each reach were combined into a single source point, whereas 148 

those in the 2D model retained their true position. 149 
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 150 

Figure 4: Primary input locations of bacterial sources within the 2D model domain of Swansea Bay 151 

– year 2012; point sources (red dots) and boundary conditions (yellow dots) with the relative ID 152 

No. 153 
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 154 

Figure 5: Primary input locations of bacterial sources within the 3D domain – year 2012; point 155 

sources (red dots) with the relative ID No. 156 

Both meshes extend from the River Severn tidal limit close to Gloucester to the outer Bristol 157 

Channel close to Lundy Island, as shown in Figure 6, in order to capture the hydrodynamics of the 158 

Severn Estuary and Bristol Channel as has been widely used in previous studies (Ahmadian et al, 159 

2014, Coz et al., 2019 and Guo et al., 2020). Bathymetry data was obtained from EDINA Digimap, 160 

relative to chart datum (CD), at a 30 m grid resolution (The University of Edinburgh, 2016a, b). An 161 

open boundary with a tidal water level series is imposed along the westward edge of the domain 162 

where the Bristol Channel meets the Celtic Sea.  163 
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 164 

 165 

Figure 6: Extent of the unstructured computational mesh within the Bristol Channel and Severn 166 

Estuary, showing the water level monitoring locations (blue dots) 167 

Stapleton et al. (2007a) found that a coarse grid (600 m by 600 m), was incapable of capturing 168 

localised features, such as pollutant plume shapes. The minimum grid size in the bay was limited 169 

to 30 m to capture bathymetric features as closely as possible. Therefore, the mesh size in Swansea 170 

Bay was determined based on sensitivity analysis of the different meshes. Two computational 171 

meshes were developed; using a 25 m and 50 m mesh in Swansea Bay, and increasing at a uniform 172 

rate of 1.2 to 1,000 m in the outer Bristol Channel and the Severn Estuary. From the grid 173 

dependence model tests the model results were found to be insensitive to the mesh size for the 174 

grid resolutions studies and a 50 m grid size was therefore used within Swansea Bay to increase 175 

computational efficiency. Further refinements of the grid size to 10m were used at various 176 

locations within the Bay to capture shoreline complexities. The 2D mesh contained 142,533 nodes 177 

and 281,440 elements, the 3D mesh contained 133,341 nodes and 264,237 elements, repeated 178 

over 5 sigma layers giving 666,705 nodes and 1,059,648 elements in total. As for similar studies 179 

the Smagorinski turbulence closure model was used in the horizontal (Bedri et al., 2015, 2013, 180 

Abu Bakar et al., 2017b, Guo et al., 2020) and vertical directions. 181 
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 182 

2.3 Fate and transport of bacteria: governing equations 183 

Bacteria was simulated in TELEMAC as a non-conservative passive numerical tracer, represented 184 

by the advection-diffusion equation. Herein this is referred to as the tracer equation, written in 3D 185 

as shown in Equation 1 (Hervouet, 2007): 186 

 187 

𝜕𝐶𝜕𝑡 +  𝑈 𝜕𝐶𝜕𝑥 +  𝑉 𝜕𝐶𝜕𝑦 +  𝑊 𝜕𝐶𝜕𝑧 = 𝜕𝜕𝑥 (𝜈𝑇 𝜕𝐶𝜕𝑥) + 𝜕𝜕𝑦 (𝜈𝑇 𝜕𝐶𝜕𝑦) + 𝜕𝜕𝑧 (𝜈𝑇 𝜕𝐶𝜕𝑧) + 𝑆𝐶 
1 

 188 

where C is the tracer concentration (units depend on the tracer but for bacteria it is cfu/100ml), t 189 

is time (s), h is the water depth (m), U, V and W are layer averaged velocities (m/s) in the x, y and 190 

z directions respectively, νT is the diffusion coefficient (m/s2). SC is the source or sink term, 191 

including both explicit and implicit terms. Bacterial decay is governed by the first order decay 192 

rate k which is commonly written as shown in Equation 2 (Chapra, 1997; Thomann and Mueller, 193 

1987).  194 

 195 𝜕𝐶𝜕𝑡 =  −𝑘𝐶 
2 

 196 

The decay rate k (1/d) is transposed into a T90 value, i.e. the time required for the concentration 197 

to reduce by 90% (Guillaud et al., 1997), as shown in Equation 3. This is traditionally required as 198 

a user input value in TELEMAC and many other models. 199 

 200 

𝑇90 =  2.303𝑘  
3 

 201 
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Multiple methods exist to determine the T90 value, and which have been applied in a number of 202 

studies (Chapra, 1997; Droste, 1997; Mancini, 1978; Stapleton et al., 2007a; Ahmadian et al., 2010; 203 

de Brauwere et al., 2011; Bedri et al., 2013; Boye et al., 2015; Huang et al., 2015; Abu Bakar et al., 204 

2017b). Two methods have been implemented in this paper: a pre-defined constant decay rate, 205 

and that proposed by Stapeleton et al (2007a). The widely used approach proposed by Mancini 206 

(1978) was also used within the study but is not described herein due to its exclusion of sediment 207 

effects and the inclusion of non-site-specific data. For further information, see King (2019).  208 

 209 

Stapleton et al. (2007a) carried out a study on water samples taken from the Bristol Channel and 210 

Severn Estuary to determine the impact of light intensity and turbidity on bacterial decay. As a 211 

result of laboratory experiments, the T90 decay rate for Enterococci was found to follow Equations 212 

4 to 8: 213 

 214 

 𝑇90 =  𝑇902 + (𝑇901 −  𝑇90∗1) 4 

 215 

𝑇901 =  𝑙𝑛10𝐾𝐵  ∗  60 ∗  𝐼  5 

 216 

𝑇90∗1 =  𝑙𝑛10𝐾𝐵  ∗  60 ∗  𝐼𝑒𝑥𝑝  6 

 217 𝐿𝑜𝑔𝑇902 =  (0.0047 ∗ 𝑇𝑢𝑟𝑏𝑖𝑑𝑖𝑡𝑦) + 0.677 7 

 218 𝑇𝑢𝑟𝑏𝑖𝑑𝑖𝑡𝑦 = 139.479 ∗ 𝐿𝑜𝑔(𝑆𝑆) − 244.736 ± 32.678 8 

 219 

 220 
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where I is the sunlight intensity (W/m2), Iexp is the fixed irradiance for the experiments (26,014 221 

W/m2), T90*1 is the sunlight dependent Enterococci mortality rate, T901 is the Enterococci mortality 222 

rate obtained from laboratory experiments, T902 is the turbidity related Enterococci mortality rate 223 

and KB = 1.1×10-5 and SS is the suspended sediment concentration (mg/l). While Stapleton et al. 224 

(2007a) only investigated the decay of Enterococci, the value for E. coli can be calculated using an 225 

appropriate magnitude of KB (KB = 1.3×10-5) (Alkan et al. 1995). 226 

 227 

2.4 Model refinements 228 

2.4.1 Depth-varying decay rate 229 

Bedri et al. (2013) published the first attempt at including a spatially and temporally variant decay 230 

rate within TELEMAC-3D, using the decay formula proposed by Mancini (1978), but neglected the 231 

ability of a 3D model to incorporate light attenuation throughout the water column. The decay rate 232 

was calculated using Equations 9 and 10 (Bedri et al., 2013): 233 

 234 𝑘𝑖 =  𝛼𝐼  ̅ 9 

 235 

𝐼 ̅ =  𝐼𝑎𝑘𝑒𝐻 (1 −  𝑒−𝑘𝑒𝐻) 
10 

 236 

 237 

where H is the water depth (m), Iα is the average daily light intensity (langleys/h), 𝐼  ̅is the depth 238 

averaged light intensity, αs a proportionality constant and ke is the light attenuation coefficient 239 

(1/m). Equation 10 is an integration of the Beer-Lambert law which, over the fully mixed water 240 

depth (Xu et al., 2002; Chapra, 1997), can be expressed as: 241 

 242 
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𝐼(𝑧) = 𝐼0𝑒−𝑘𝑒𝐻 11 

 243 

where I0 is the surface light intensity. The light attenuation coefficient ke (1/m) may be calculated 244 

using (Chapra, 1997): 245 

 246 𝑘𝑒 = 0.55 𝑆𝑆 12 

 247 

where SS is the suspended solids concentration (mg/l). For a finite element model, such as 248 

TELEMAC, the governing equations are solved at each node and Equation 11 can be used without 249 

integration, such that the irradiance induced decay rate at depth is given by Equation 13 (Chapra, 250 

1997):  251 

 252 

𝑘𝑖(𝑧) =  𝛼𝐼(𝑧) 13 

 253 

where the light penetration at depth is given as a function of z, i.e. I(z), and where this function is 254 

calculated using the Beer-Lambert law (see Equation 11). Experimental studies have confirmed 255 

this reduction in the decay rate at increasing depths below the water surface (Mattioli et al., 2017).  256 

For completeness and to assist future studies a comparison is made with the application of 257 

Equation 11 in a finite volume model: the average light penetrating over each layer would be used. 258 

This can be calculated using the layer averaged Beer-Lambert law and using the mean value 259 

theorem for integrals:  260 

   261 

𝐼�̅�𝑎𝑦𝑒𝑟 =  𝛼𝐼0𝑘𝑒(𝑧𝑏𝑜𝑡𝑡𝑜𝑚 −  𝑧𝑡𝑜𝑝) (𝑒−𝑘𝑒𝑧𝑡𝑜𝑝 −  𝑒−𝑘𝑒𝑧𝑏𝑜𝑡𝑡𝑜𝑚) 
14 

 262 
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where zbottom and ztop, are the elevations at the bottom and top of the horizontal layer respectively. 263 

Figure 7 presents depth-irradiance curves calculated using Equations 10, 11 and 14. Equations 11 264 

and 14 exhibit a comparable reduction in light intensity with depth, whereas the rate of reduction 265 

is less when using Equation 10 (i.e. a depth averaged representation). Since TELEMAC is a finite 266 

element model, Equation 11 was used in this study.  267 

 268 

Figure 7: Comparison between irradiance at depth, calculated using: Equations 10 (depth 269 

averaged), 11 (at depth), 14 (layer averaged) and ke calculated using Equation 12 where SS = 270 

84.82 mg/l 271 

2.4.2 Representation of beach sources  272 

In modelling studies to date, bacterial sources such as CSOs and outfalls have been represented at 273 

a single point source within numerical models. However, when the grid size is too coarse, a source 274 

is distributed over a disproportionately large area and the local bathymetric features, such as that 275 

shown in Figure 8, are not captured accurately.  276 

Furthermore, in models such as TELEMAC, where the minimum permissible water depth is 0 m, 277 

when these sources are released within shallow gradient regions the contaminated water spreads 278 

over a large area in a thin film, as shown in Figure 9 (i.e. of depth less than 1 cm, up to 1×10-5 m). 279 

For further details see King (2019).  280 

 281 
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 282 

 283 

 284 

Figure 8: Stream track of beach source, South Wales, UK 285 

 286 

Figure 9: Depth averaged E.coli concentration in Swansea Bay at mid-tide; black line indicates a 287 

depth of 0.05m (i.e. the waterline) 288 

While inaccurate, this is necessary to ensure mass conservation. In reality, these inputs form small 289 

streams in the beach sand (as illustrated in Figure 8), which run from the source point to the tide 290 

line. These streams can run for up to a kilometre, from the sea defence wall to the tide line, at low 291 

spring tide for this case study site. The major streams at Swansea Bay were tracked by staff at 292 

Natural Resources Wales and Swansea City Council for this research study and as a part of Smart 293 
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Coast project (Aberystwyth University and University College Dublin, 2018). The path of these 294 

streams can be seen in Figure 10. 295 

 296 

Figure 10: Stream tracks of beach sources along Swansea Bay; purple lines and red dots respectively 297 

(Aberystwyth University and University College Dublin, 2018) 298 

From Figure 10 it is clear that including sources at high water will not represent what happens in 299 

the field and will cause inaccuracy in the predictions. The method proposed herein implements a 300 

mobile source point which tracks the waterfront along the stream path and activates releases 301 

based on the depth field. To achieve this, each source point is treated as a transect running from 302 

the sea wall to the low water line based on the field tracking of that stream. Each transect is 303 

represented by multiple source points, which discharge the same volume of water and 304 

concentration of bacteria. The source release location is changeable to ensure release is always at 305 

a point below the water line, mimicking transport within a stream. To ensure mass conservation, 306 

modifications to the TELEMAC source code only permit one point to discharge per time step, i.e. 307 

that which is closest to, and below, the waterline. Figure 11 shows the multiple source points 308 

which were used along the transects for Swansea Bay. Up to 10 source points were selected on 309 

each transect in this study as can be seen in the figure. However, more source points can be 310 

considered if the path of the streams are more complicated. 311 
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 312 

Figure 11: Static source points at the outlet location and respective source transects along Swansea 313 

Bay beach; (a) and (b) respectively 314 

An illustration of this source representation for release at four different tidal phases is shown in 315 

Figure 12a to d. It can be seen as the tide recedes the 0.05 m depth threshold is activated at 316 

different source points along the transect (black dot). The source points along each transect were 317 

processed by multiple CPUs in parallel and the code was modified to implement this. Further 318 

information on the implementation of this method when using parallel computing methods can be 319 

found in King (2019). A similar approach was used by Feng et al. (2015), who developed a 320 

microbial transport model accounting for loading from beach sand and storm water run-off at a 321 

beach in Florida, U.S. However, the model was reduced to a 1D case for a single lumped source, 322 

and solved using the finite difference method. The grid followed a transect perpendicular to the 323 

straight uniform shoreline, which was assumed to be representative of the beach.  324 

 325 

 326 

Figure 12: Illustration of improved source representation at four different tidal phases for transect 327 

A in Figure 11; blue line = threshold depth (0.05 m) which retreats seaward (right) from figure a 328 

to d, red squares = transect points, black circle 329 

A 

B 

C 

D 

E 

F 
G H 
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 330 

2.4.3 Parameter selection 331 

Swansea Bay is well mixed (Ahmadian et al., 2013) with variations in temperature and salinity 332 

being shown in Figure 13. As variations through the water column are negligible they were not 333 

considered herein. Typically, in such environments a 2D modelling approach would be adopted, 334 

thus making it an ideal environment to study the difference between using depth-averaged and 335 

depth-varying approaches to calculate bacterial decay due to light intensity. Water temperature 336 

and salinity were set at 15˚C and 32 ppt respectively to match values used in previous studies 337 

(Aberystwyth University and University College Dublin, 2018; White et al., 2014).  338 

 339 

Figure 13: Typical vertical salinity profile in Swansea Bay (location V3A; Ahmadian et al., 2013) 340 

The interaction between suspended sediment levels and FIOs has been studied previously and its 341 

importance highlighted (Haung et al., 2015 and 2018, Ahmadian et al., 2010, Yang et al., 2008). 342 

Since this study was mainly focused on implementation of the decay rate in the absence of 343 

sediment data, sediment modelling was not considered as a part of this study. While surveys have 344 

shown variations in suspended sediment concentrations throughout the water column, data are 345 

sparse and a constant value of 84.82mg/l was assumed, based on measurements taken nearby at 346 

Langland Bay and Porthcawl (Stapleton et al., 2007b). Based on this assumption Equations 4 to 8 347 

are considered a function of light intensity and water depth. The relationship between the T90 348 

value and these variables is shown in Figure 14, using Latin hypercube sensitivity analysis (Iman, 349 

2008; Stein, 1987). The water depth, which varied up to the maximum natural (i.e. not dredged) 350 
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water depth in Swansea Bay and irradiance varied over the feasible parameter range from the 351 

reviewed literature (Stapleton et al., 2007a) and site measurements (Aberystwyth University and 352 

University College Dublin, 2018).  353 

 354 

Figure 14: Latin hypercube sensitivity analysis of decay rate based on depth and irradiance 355 

variations with suspended solid concentrations, salinity and temperature being considered 356 

constant 357 

Data recorded over the 2012 simulation period shows an average daily maximum of 170 W/m2. 358 

This fits within the 0 to 260 W/m2 range of light intensity reported by Stapleton et al. (2007a). A 359 

sine function, covering the range 0 to pi, was used to represent the variation in light intensity over 360 

daylight hours (06:00 to 18:00), as proposed by Boye et al. (2015) and as shown in Figure 15. 361 

Night-time values were recorded at 0.15 W/m2. However, a lower limit of 15 W/m2 was placed on 362 

this value to prevent the T90 value tending towards infinity as depth and solar intensity 363 

approached zero.  364 
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 365 

Figure 15: Assumed light intensity function over a typical day 366 

3 Hydrodynamic model validation 367 

A constant Manning's coefficient was used throughout the model domain. Based on the range of 368 

suggested roughness values presented in Chow (1959), water levels were calibrated by testing 369 

values of 0.02, 0.025 and 0.03 respectively, which were deemed suitable for excavated or dredged 370 

channels, and clean, straight main channels. The model was found to have low sensitivity to the 371 

bed roughness and a value of 0.025 was selected as that producing the best fit. Calibration and 372 

validation of water levels were initially carried out against tide gauge records provided by the 373 

British Oceanographic Data Centre (BODC) (https://www.bodc.ac.uk/), at four sites throughout the 374 

domain, as shown in Figure 6, over a spring-neap tidal cycle. Two sites, namely Illfracombe and 375 

Avonmouth, were used for model calibration and the sites at Mumbles and Hinkley Point were 376 

used for model validation. A plot comparing measured and predicted water levels at the Mumbles 377 

site, which is located at the Western edge of Swansea Bay, is shown in Figure 16. The Root Mean 378 

Square Error (RMSE) and Nash Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 1970; Coz et al., 379 

2019) values were used to assess the correlation of the predicted and measured data. The RMSE 380 

and NSE values for the Mumbles site were 0.31 and 0.99, respectively, which showed good 381 

correlation between the measured and predicted data. There is a gap in the BODC data record for 382 

this site, which can be seen in Figure 16.  383 

https://www.bodc.ac.uk/
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 384 

Further validation of water level predictions was carried out using Acoustic Doppler Current 385 

Profilers (ADCP), deployed at 5 sites within Swansea Bay (as shown in Figure 17), from 386 

21/07/2012 to 28/08/2012 (Aberystwyth University and University College Dublin, 2018; EMU 387 

Limited, 2012) . The survey was carried out using a bed mounted Nortek Aquapro (EMU Limited, 388 

2012). This further validation also confirmed good correlation between the measured and 389 

predicted water levels. The velocity magnitudes and directions predicted by the model were 390 

validated against the ADCP measurements, which were averaged over depth. The comparisons of 391 

the measured and predicted velocity magnitudes and directions showed that model predictions 392 

matched the measured data and that the model predictions were reliable. Typical comparisons of 393 

measured and predicted velocity magnitudes and directions are shown in Figures 15 and 16. 394 

Current direction are presented with respect to due north. 395 

 396 

Figure 16: Plot of calibrated water levels measured at Mumbles, adjusted relative to MSL, n = 0.025 397 

 398 
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 399 

Figure 17: ADCP survey locations in Swansea Bay 400 

 401 

Figure 18: Plot of validated current speed in Swansea Bay at location L2 402 
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 403 

Figure 19: Plot of validated current direction in Swansea Bay at location L2 404 

4 Results  405 

The model performance was next assessed using the E. coli records taken on 15th November 2012 406 

(Aberystwyth University and University College Dublin, 2018). Monitoring at the Swansea Bay and 407 

Aberafan DSPs was done along the transects shown in Figure 1. The measured and predicted 408 

values were compared using the new developments discussed in 2.4.1 and 2.4.2, to assess the 409 

performance of each method. For supplementary data omitted from this paper for brevity, see 410 

King (2019).  411 

 412 

Figure 20 presents a comparison between the 2D and 3D modelled E. coli concentration 413 

predictions at the Swansea Bay DSP, using stationary point sources and a depth-averaged decay 414 

function. To mirror the sampling strategy used in the field the predictions shown are taken at the 415 

shallowest transect point greater than or equal to the sampling depth (0.5 m, see Section 2.1 and 416 

Figure 2b). Thus, the line plots shown correspond to multiple locations. Note that all 3D results 417 

presented herein have been averaged over the vertical layers to provide an indication of the 418 

concentration throughout the water column, rather than within a single layer. It can be seen in 419 

Figure 20 that the 2D model predicts higher concentrations than the 3D model. 420 
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 421 

The predicted concentrations using the depth averaged decay function at all points along the DSP 422 

transect within the 2D model are plotted in Figure 21, while the concentration plots around the 423 

DSP and the monitoring points along the DSP transect are shown in Figure 22. It can be seen in 424 

Figure 21 that at any point in time, there are significant spatial differences in the predicted E. coli 425 

concentrations at each transect point, with a range of up to half the magnitude of the highest 426 

predicted concentrations. The point which is considered a best fit to the measured data has been 427 

highlighted.  428 

 429 

Figure 23 presents a comparison between the measured and predicted E.coli concentrations at the 430 

Swansea Bay DSP using depth-averaged and varying decay rates. It can be seen that lower 431 

concentrations were predicted when using the depth-varying decay function. 432 

 433 

 434 

 435 

Figure 20: Comparison between the measured and predicted E.coli concentrations at the Swansea 436 

Bay DSP, using the Stapleton et al. (2007a) (S) decay function in the 2D and 3D models  437 
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 438 

Figure 21: Comparison between the measured and predicted E. coli concentrations at each 439 

monitoring location along the Swansea Bay DSP transect (TP), using the Stapleton et al. (2007a) 440 

decay function in the 2D model. Plotted alongside the predicted water level at the most offshore 441 

monitoring location 442 

 443 

Figure 22: Surface plot of the predicted E. coli concentrations along the Swansea Bay DSP transects, 444 

using the Stapleton et al. (2007a) decay function in the 2D model at 19:11:57 on 15/11/12 (high 445 

tide) 446 
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 447 

Figure 23: Comparison between the measured and predicted E.coli concentrations at the Swansea 448 

Bay DSP using depth-averaged and varying Stapleton et al. (2007a) (S) decay functions in the 3D 449 

model 450 

Plots comparing the measured and predicted E.coli concentrations at the Swansea Bay DSP using 451 

the static and improved source release models are shown in Figures 24 and 25. Figure 24 presents 452 

this comparison at the Swansea Bay DSP whereas Figure 25 includes the wider Bay area and 453 

highlights the spatial variability in concentration predictions between the methods.  454 

 455 

Figure 24: Comparison between the predicted E. coli concentrations at the Swansea Bay DSP, using 456 

static sources, and improved source representation with two threshold depths (TH) 457 

 458 
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 459 

Figure 25: Comparison of the predicted E. coli concentration distributions in Swansea Bay, using the 460 

2D model with static sources, improved source representation (TH = 0.05), and deep water sources; 461 

(a), (b) and (c), respectively 462 
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 463 

 464 

5 Discussion 465 

5.1 Comparison of 2D and 3D decay model setup  466 

It can be seen in Figure 20 that the 2D model predicts higher bacterial concentrations than the 3D 467 

model. This can be partly attributed to the method used in inclusion of the rivers Tawe and Neath 468 

in the 2D model, which were included in the 3D model by accumulating the flow and bacterial input 469 

at a single point due to computational time issues, and can be explained by looking at Figures 26 470 

and 27. 471 

 472 

Figure 26: Comparison of the predicted E. coli concentration distribution in Swansea Bay, at 19:16 473 

on 15/11/12 (HT), using the Stapleton et al. (2007a) decay function in the 2D (a) and 3D (b) 474 

models. Depth-averaged decay function used in the 3D model 475 
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 476 

Figure 27: Comparison of the predicted E. coli concentration distribution in Swansea Bay, at 12:09 477 

on 15/11/12 (LT), using the Stapleton et al. (2007a) decay function in the 2D (a) and 3D (b) 478 

models. Depth-averaged decay function used in the 3D model. The black line represents a water 479 

depth of 0.05 m.  480 

Based on the location of the model E. coli inputs (see Figures 4 and 5), it can be reasoned that the 481 

plume from the River Tawe is responsible for the water quality at the Swansea Bay DSP. While this 482 

input is included accurately within the 2D model, it is represented as a point source at the river 483 

mouth in the 3D model, without an assigned velocity. In this case the flow speed is greatly reduced 484 

and the plume does not extend far enough into the Bay during the ebb tide. This highlights the 485 

importance of including source term momentum when representing bacterial inputs in 3D models. 486 

This may be either by assigning a velocity to point sources or linking 1D river models with the 3D 487 

coastal model, with momentum transfer across the linked boundaries. 488 

 489 
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5.2 Spatial and temporal variability  490 

It is suggested that because of the spatial variance in bacterial concentrations shown in Figures 21 491 

and 22, when modelling and sampling it may be prudent to predicted and record FIO levels at 492 

multiple locations to ascertain the spatial distribution in bacterial concentration and adequately 493 

determinate the risk to bathers. Not doing so may lead to under prediction of this risk and 494 

erroneous calibration of the hydro-epidemiological models.  495 

In addition, Figure 21 shows a diurnal pattern in the predicted E. coli concentrations at the 496 

Swansea Bay DSP. On day 320 this is also seen in the measured data. This diurnal pattern is 497 

expected to be due to the accumulative impact of decay during the day following an increase in the 498 

solar radiation, as shown in Figure 15. However, other influential factors might be affecting the 499 

diurnal pattern, such as a contribution from the sources, tidal dilution or interaction with 500 

sediments, and which need to be considered in more detail.  501 

 502 

High spatial, and potentially diurnal, variations are seen along all other transects too, thus 503 

highlighting the variability of the concentration along a beach and at different times. Therefore, 504 

although this highlights a potential limitation of the model to calculate processes which take place 505 

at a high spatial resolution, it may also be prudent to consider different methods of classifying 506 

bathing water sites based on a non-stationary DSP.  507 

 508 

5.3 Depth-varying decay 509 

It can be seen in Figure 23 that lower concentrations were predicted when using the depth-varying 510 

decay function. To discuss the reason for this reduction in concentration and highlight the 511 

applicability of the depth-averaged decay approach, a simplified vertical 1D case is considered. 512 

Equation 15 represents a simplified form of Equation 1, reduced to 1D in the vertical and with zero 513 

vertical velocity.  514 

   515 
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𝜕𝐶𝜕𝑡 =  𝜕𝜕𝑧 (𝜈𝑇 𝜕𝐶𝜕𝑧) − 𝑘𝐶 
15 

 516 

In this situation the problem is reduced to one controlled by turbulent and molecular diffusion 517 

between the layers and decay. This can be further reduced to Equation 2 by setting the turbulent 518 

diffusion term to zero. The analytical solution of Equation 15 is then given in Equation 16: 519 

  520 

𝐶(𝑡) =  𝐶0𝑒−𝑘𝑡 16 

 521 

where C(t) is the concentration at time t, C0 is the concentration at time t = 0 and k is the decay 522 

rate (1/d). For a simple 5-layer problem, with a node spacing of 1 m, we look at the decay of an 523 

initial tracer (bacteria) concentration of 1,000 (dimensionless) over 2 days. The equation was 524 

solved at a time step of 1 minute using the finite different method, with a first order forward 525 

difference scheme in time and a second order central difference scheme in space. The boundary 526 

value problem was solved at the surface and bed introducing phantom layers, with a value equal 527 

to the adjacent real boundary. Thus, diffusion only acts within the domain. Values for suspended 528 

sediment concentration, salinity and temperature were set as those used in the Swansea Bay 529 

study, and with the light intensity fixed at 260 W/m2. 530 

 531 

A comparison of the concentrations over depth predicted by the analytical solution and two 532 

different decay approaches used in this study is illustrated in Figure 28. As can be seen there is 533 

good agreement between the analytical solution and the finite difference solutions, using a depth-534 

varying decay, when the tracer diffusion term is set to zero. This result confirms the validity of this 535 

method. For further information, see King (2019) wherein the data plotted in (a) is presented in 536 

tabular form. Comparing the use of the depth-varying and depth-averaged decay functions, it can 537 

be seen in (b) that the overall concentration in the water column is less when a depth-varying 538 
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approach was used. This is because the exponentially larger decay rate in the surface layers causes 539 

a greater reduction in the concentration than that predicted at depth (see Figure 7). 540 

 541 

Due to the increased transport of bacteria from regions of high concentration at depth to lower 542 

concentrations at the surface, this results in higher concentrations in the surface layers, reduced 543 

concentrations at depth and a reduction in total concentration in the water column. Bacteria in the 544 

surface layers continues to decay at a faster rate, increasing the concentration gradient and hence 545 

the movement of bacteria between layers. 546 

 547 

Figure 28: Solution of simplified 5 layer decay problem; (a) comparison between analytical and 548 

finite difference (FD) solutions using a depth-varying decay rate, where T = 0; and (b) 549 

comparison between FD solutions using depth-averaged (DA) and varying solutions 550 

This interchange between layers will be further increased by including the velocity term in 551 

Equation 15, where there is an upward flow such as in Swansea Bay, and in the vicinity of long 552 

sea outfall diffusers with a vertical orientation. 553 

5.4 Moving discharge 554 

The following section presents a comparison between the use of static and non-stationary 555 

bacterial point inputs in the 2D model of Swansea Bay. In considering the predicted surface 556 

concentration distributions (see Figure 25), there are clear differences observed when comparing 557 

the two approaches over a tidal cycle. At high tide there are elevated concentrations in the static 558 

discharge model and the E. coli plume extends a greater distance into the western region of 559 
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Swansea Bay. During the ebb tide the differences become more pronounced as the plume spreads 560 

over a larger beach area above the water line. In comparison, the predicted concentrations in the 561 

improved source model are greatly reduced and the plume below the water line is reduced in size. 562 

There are also small regions with high E. coli concentrations immediately below the waterline, and 563 

in the vicinity of the source points, which have more serious implications on the predicted risk to 564 

bathers. Therefore, implementation of the mobile source point could significantly impact the 565 

results and should be considered in future studies. With regard to the E. coli distribution above the 566 

water line, this will have a greater implication if the beach sand is considered as a diffuse bacterial 567 

source and sink, in a similar manner to how Abu Bakar et al. (2017b) modelled inter-tidal 568 

marshland in the Loughor Estuary, UK. Furthermore, these regions may aid in providing more 569 

accurate predictions of the location of ‘safe' and ‘no go zones', on the beach and in the water, which 570 

is of utmost importance when disseminating bathing water information to beach goers, as advised 571 

in the rBWD. 572 

As shown in Figure 24, for the majority of the simulation period, use of the improved source model 573 

results in lower concentrations. This is due to increased dilution as the tracer is released into 574 

deeper water. While it is not possible to discern a difference between the two improved source 575 

models using different threshold depths, it can be seen in Figure 25 that if all release locations are 576 

moved to a point below the low tide line, E. coli concentrations in the nearshore region are under 577 

predicted throughout the tidal cycle, due to increased dilution. This indicates that correctly 578 

modelling the beach sources is important in order to predict accurately the dynamics governing 579 

bacterial transport. It is therefore suggested that the apparent invariance between the static and 580 

improved source release models seen in Figure 24 is due to the distance of the DSP from the 581 

bacterial beach source locations (see Figure 1), as well as the influence of the River Tawe on the 582 

DSP as previously explained. 583 

It can be seen from these results that although using the new model results in minor 584 

improvements in E. coli concentration predictions at the DSP and within Swansea Bay, the 585 
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differences between model predictions are not significant enough to warrant the choice of one 586 

method over the other for this case study, or at this stage in model development.  587 

 588 

6 Conclusions 589 

Two computational models, one 2D and one 3D, were set up using the TELEMAC suite of models 590 

to implement new enhancements in simulating the transport and decay of E. coli in a data rich case 591 

study site. The models and the data were then compared for a range of different modelling 592 

approaches. The case study site was Swansea Bay, located in South West of the UK, where over 593 

7,000 samples were taken during 2011. The 3D model was found to under predict bacterial 594 

concentrations due to the inclusion of the Rivers Neath and Tawe as point sources, and without 595 

momentum conservation. The application of a 3D model in a well-mixed marine environment, 596 

where a 2D depth averaged approach is usually adopted, highlights the impact of a vertically 597 

variable decay through the water column. Application of this method is an important step in 598 

improving the reliability of 3D deterministic epidemiological models, to ensure that decay 599 

processes are represented realistically. Of the two methods used to calculate decay throughout the 600 

water column in the 3D model, namely depth-varying and depth-averaged, the depth-varying 601 

approach was found to predict lower bacterial concentrations due to the exponential decrease in 602 

light intensity with depth and the associated effect on the decay rate. It is therefore suggested that 603 

in 3D modelling studies a depth-varying decay model should be used as it provides a more 604 

accurate representation of the vertical spatial variation in bacterial die-off rates. Using the 2D 605 

model, an improved method of representing beach sources was developed to mimic the streams 606 

discharging along the Swansea Bay beach. Rather than being considered stationary, the sources 607 

were moved along a transect throughout the simulation period, to ensure they discharged just 608 

below the waterline. This provided more accurate predictions of the spatial distribution of E. coli 609 

within the domain, with the most significant effects noticed above and near the waterline, such as 610 

zones of elevated bacterial concentration where the beach streams enter the water. In addition, it 611 

highlights the limitations of using TELEMAC to model static beach sources on shallow gradient 612 
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beaches, subject to wetting and drying throughout the tidal cycle. Spatial and diurnal variations in 613 

bacterial concentrations were seen along the Swansea Bay Designated Sampling Point transect, 614 

highlighting the variability of water quality along the beach and at different times. Therefore, it is 615 

suggested that bathing water monitoring based on a stationary Designated Sampling Point may 616 

lead to incorrect classification of the bathing water quality and provide a false indication of the 617 

risk of infection. In addition, it highlights a potential limitation of bacterial models to calculate 618 

processes accurately, which take place at a high spatial resolution. 619 
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