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Abstract Most existing 3D object detection methods recog-
nize objects individually, without giving any consideration
on contextual information between these objects. However,
objects in indoor scenes are usually related to each other
and the scene, forming the contextual information. Based
on this observation, we propose a novel 3D object detec-
tion network, which is built on the state-of-the-art VoteNet
but takes into consideration of the contextual information at
multiple levels for detection and recognition of 3D objects.
To encode relationships between elements at different lev-
els, we introduce three contextual sub-modules, capturing
contextual information at patch, object, and scene levels re-
spectively, and build them into the voting and classification
stages of VoteNet. In addition, at the post-processing stage,
we also consider the spatial diversity of detected objects
and propose an improved 3D NMS (non-maximum suppres-
sion) method, namely Survival-Of-the-Best 3DNMS (SOB-
3DNMS), to reduce false detections. Experiments demon-
strate that our method is an effective way to promote de-
tection accuracy, and has achieved new state-of-the-art de-
tection performance on challenging 3D object detection
datasets, i.e., SUN RGBD and ScanNet, when only taking
point cloud data as input.
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Fig. 1 Illustration of the importance of multi-level contextual infor-
mation for 3D object detection from point cloud data. (a) It is hard
to recognize the object when the point cloud is shown independently.
(b)-(d) When the surrounding environment information is given, we
can then recognize the chair easily. In fact, unlike general object de-
tection in open scenes, indoor scenes usually contain strong contextual
constraints, which can be utilized in indoor scene understanding tasks
such as 3D object detection.

1 Introduction

3D object detection is becoming an active research topic in
both computer vision and computer graphics. Compared to
2D object detection in RGB images, predicting 3D bounding
boxes in real world environments captured by point clouds
is more useful and essential for many tasks such as indoor
robot navigation (McCormac et al (2018)), robot grasping
(Wang et al (2019)), etc. However, unstructured point cloud
data makes the detection more challenging than in regular
2D images. In particular, the popular convolutional neural
networks (CNNs), which are highly successful in 2D object
detection, are difficult to be applied to point clouds directly.
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Fig. 2 Comparison of architectures between VoteNet Qi et al (2019)
and the proposed network. Three sub-modules are integrated to cap-
ture the multi-level contextual information in point cloud data. (a)
patch level context sub-module; (b) object level context sub-module;
(c) global scene context sub-module; (d) SOB (Survival-Of-the-Best)-
3DNMS (Non-Maximum Suppression) module.

Growing interests have been attracted to tackle this chal-
lenge. With the emergence of deep 3D point processing net-
works, such as PointNet Qi et al (2017a) and PointNet++ Qi
et al (2017b), several deep learning based 3D object detec-
tion works have been proposed recently to detect objects
directly from 3D point clouds (Hou et al (2019); Qi et al
(2019)). The recent popular work VoteNet Qi et al (2019)
proposed an end-to-end 3D object detection network on the
basis of Hough voting. VoteNet transfers the Hough voting
procedure into a regression problem implemented by a deep
network, and samples a number of seed points from the in-
put point cloud to generate patches voting for potential ob-
ject centers. The voted centers are then used to estimate the
3D bounding boxes. The voting strategy enables VoteNet to
significantly reduce the search space and achieve the state-
of-the-art results in several benchmark datasets. However,
treating every point patch and object individually, VoteNet
lacks the consideration of the relationships between differ-
ent objects and between objects and the scene they belong
to, which limits its detection accuracy.

An example can be seen in Fig. 1. Point clouds, cap-
tured by e.g. depth cameras, often contain noisy and missing
data. This together with indoor occlusions makes it difficult
even for humans to recognize what and where an object is in
Fig. 1(a). Nevertheless, considering the surrounding contex-
tual information in Figs. 1(b-d), it is much easier to recog-
nize it is a chair given the surrounding chairs and the table
in the dining room scene. Actually, the representation of a
scanned point set could be ambiguous when it is presented
individually, due to lack of color appearance and data miss-
ing problems. Therefore, we argue that indoor depth scans
are often so occluded that contexts could even play a more
important role in recognizing objects than the point data it-
self. This contextual information has been demonstrated to
be helpful in a variety of computer vision tasks, including

object detection (Hu et al (2018a); Yu et al (2016)), image
semantic segmentation (Fu et al (2019); Zhang et al (2019))
and 3D scene understanding (Zhang et al (2014, 2017)). In
this paper, we show how to leverage the contextual infor-
mation in 3D scenes to boost the performance of 3D object
detection from point clouds.

In our view, contextual information for 3D object detec-
tion consists of multiple levels. At the lowest is the patch
level where the data missing problem is mitigated with a
weighted sum over similar point patches to assist more accu-
rate voting of object centers. At the object level, coexistence
of objects provides strong hints on detection of certain ob-
jects. For example, as shown in Fig. 1(d), the detected table
can give a tendency for chairs to be detected at surround-
ing points. At the scene level, global scene clues can also
help prevent the detection of inappropriate objects in a given
scene. For example, we will not expect to detect a bed in a
kitchen. The contexts at different levels complement each
other and are utilized together to assist the correct inference
of objects in noisy and cluttered environments.

We thus propose a novel 3D object detection framework
to incorporate into VoteNet multi-level contextual informa-
tion for 3D object detection. Specifically, we propose a uni-
fied network to model the multi-level contexts, from local
patches to global scenes. The difference between VoteNet
and the proposed network is highlighted in Fig. 2. To model
the contextual information, three sub-modules are proposed
in the framework, i.e., patch-to-patch context (PPC) mod-
ule, object-to-object context (OOC) module and the global
scene context (GSC) module. In particular, similar to Zhang
and Xiao (2019), we use the self-attention mechanism to
model the contextual information in both PPC and OOC
modules. According to relation networks (Hu et al (2018a)),
the contextual information in object detection can be inter-
preted as the relations between objects. And there have been
many works (Cao et al (2019); Hu et al (2018a); Liu et al
(2019b); Yang et al (2018); Zambaldi et al (2018)) using
self-attention mechanism to encode relations between ob-
jects in scene understanding tasks. Specifically, we use the
Compact Generalized Non-Local block (CGNL) proposed
in Yue et al (2018) as our self-attention operation, which
is an extension work from non-local networks (Wang et al
(2018)). CGNL uses Taylor expansion to optimize the origi-
nal non-local module, and reduces the quadratic complexity
to linear with respect to the number of channels. Thus, it
requires light computation and little additional parameters,
making it more practical. The above two sub-modules aim at
adaptively encoding contextual information at the patch and
object levels, respectively. For the scene-level, we design a
new branch as shown in Fig. 2(c) to fuse multi-scale features
to equip the network with the ability of learning global scene
context.
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Fig. 3 Architecture of the proposed network MLCVNet++ for 3D object detection in point cloud data. Three new sub-modules are proposed to
capture the multi-level contextual information in 3D indoor scene object detection. Please see Figure 4 for the details of network.

In addition to capturing contextual information for better
detection, we also improve the removal of overlapping de-
tections by proposing an adaptive 3D NMS (Non Maximum
Suppression) method which better considers the spatial rela-
tions between objects in 3D space. The traditional 3D NMS
is inherited from 2D NMS. As 2D reveals the scene from
a single view, overlapping objects are common. However,
this is not the case for 3D, as objects in 3D space are natu-
rally separated. Ideally, there should be no overlapping be-
tween the detected 3D bounding boxes. In implementation,
we thus propose a more strict overlapping suppression strat-
egy, namely Survival-Of-the-Best 3D NMS (SOB-3DNMS)
which improves the traditional 3D NMS by adaptively ad-
justing the threshold to strictly suppress overlapping for con-
fident detections.

This paper is an extended version of Xie et al (2020),
where a Multi-Level Context VoteNet (MLVCNet) is pro-
posed. The major extensions in this journal paper include:
1) a novel Survival-Of-the-Best (SOB) 3D NMS is proposed
to replace the traditional 3D NMS in post-processing, which
is the first work on 3D NMS improvement for 3D object de-
tection in indoor scenes, to the best of our knowledge; 2)
an enhanced GSC sub-module compared to the original one
in Xie et al (2020) is proposed, to improve the global scene
information integration; 3) the related work is extended to
review literature on NMS in object detection; and 4) more
experiments are carried out to holistically verify the effec-
tiveness of the proposed components. For simplicity and clar-
ity, we refer to our new, extended approach MLVCNet++.

In summary, the contributions of this paper include:
– We propose the first 3D object detection network that ex-

ploits multi-level contextual information at patch, object
and global scene levels.

– We design three contextual sub-modules, including two
self-attention modules and a multi-scale feature fusion
module, to capture the contextual information at multi-
ple levels in 3D object detection, and integrate the new
modules into the state-of-the-art VoteNet framework.

– We design a novel SOB-3DNMS algorithm to eliminate
redundant 3D bounding boxes, which is more suitable

for 3D object detection in indoor scenes considering the
object layout in 3D space.

– Extensive experiments demonstrate the benefits of using
multi-level contextual information and the SOB-3DNMS.
The proposed network outperforms state-of-the-art meth-
ods on both SUN RGB-D and ScanNetV2 datasets, when
only taking point cloud data as input.

2 Related Work

2.1 3D Object Detection from Point Clouds

With the development of deep learning on 3D point clouds
(Atzmon et al (2018); Li et al (2018); Wang et al (2017)),
a large number of deep learning based 3D object detection
methods from point cloud have emerged (Chen et al (2020);
He et al (2020); Hou et al (2019); Lang et al (2019); Li et al
(2020b); Najibi et al (2020); Qi et al (2018, 2020); Shi et al
(2019a, 2020); Shi and Rajkumar (2020); Yang et al (2020)).

Among them, some are devoted to detecting objects in
outdoor scenes. F-PointNet (Qi et al (2018)) is a milestone
model which first generates 2D bounding boxes in images
and then uses a frustum to locate the object in the point
cloud. Dividing the point cloud into 3D voxels, VoxelNet
(Zhou and Tuzel (2018)) introduces a voxel feature encoding
(VFE) layer and stacks several VFE layers to learn complex
features for each voxel. Instead of voxels, PointPillars (Lang
et al (2019)) utilizes pillar shape to generate point-wise fea-
tures. Recently, PointRCNN (Shi and Rajkumar (2020)) in-
troduces a two-stage 3D object detector. Their method first
generates several 3D bounding box proposals, and then re-
fines these proposals to obtain the final detection results.

More pertinent to our work are the works on 3D ob-
ject detection in indoor scenes. Compared to outdoor, in-
door scenes have more variety of objects and heavier oc-
clusions, which make the detection more challenging. DSS
(Deep Sliding Shapes) (Song and Xiao (2016)) proposes the
first 3D Region Proposal Network (RPN) which takes a 3D
volumetric scene as input and outputs 3D object proposals.
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Similar to F-PointNet, PointFusion (Xu et al (2018)) also
uses a 2D detector to detect 2D boxes in RGB images. How-
ever, this kind of methods heavily depends on the perfor-
mance of 2D object detectors. Instead of treating 3D ob-
ject proposal generation as a direct bounding box regres-
sion problem, Yi et al (2019) proposed a novel 3D object
proposal approach called GSPN (Generative Shape Proposal
Network) which takes an analysis-by-synthesis strategy and
reconstructs 3D shapes from point clouds. Recently, by vir-
tual of PointNet/PointNet++, Qi et al. proposed end-to-end
trainable 3D object detection networks (Qi et al (2019, 2020))
which handle 3D point clouds directly. They are inspired by
the Hough voting strategy in 2D object detection and form
the baseline of our work.

Although a lot of methods have been proposed recently,
there is still large room for improvement especially for real-
world challenging cases. Previous works largely ignored con-
textual information, i.e., relationships within and between
objects and scenes. In this work, we show how to leverage
the contextual information to improve the accuracy of 3D
object detection.

2.2 Contextual Information

The work in Mottaghi et al (2014) has demonstrated that
contextual information has significant positive effect on 2D
semantic segmentation and object detection. Since then, con-
textual information has been successfully employed to im-
prove performance on many tasks such as 2D object detec-
tion (Hu et al (2018a); Liu et al (2018); Yu et al (2016)),
3D point matching (Deng et al (2018)), point cloud seman-
tic segmentation (Engelmann et al (2017); Ye et al (2018)),
and 3D scene understanding (Zhang et al (2014, 2017)).
The work in Hu et al (2018c) achieves reasonable results
on instance segmentation of 3D point clouds by analyzing
point patch context. The work Shi et al (2019b) proposes
a recursive auto-encoder based approach to detecting 3D
objects via exploring hierarchical context priors in 3D ob-
ject layout. Inspired by the self-attention idea in natural lan-
guage processing (Vaswani et al (2017)), recent works con-
nect the self-attention mechanism with contextual informa-
tion mining to improve scene understanding tasks such as
image recognition (Hu et al (2018b)), semantic segmenta-
tion (Fu et al (2019)) and point cloud recognition (Xie et al
(2018)). As to 3D point data processing, the work in Zhang
and Xiao (2019) proposes to utilize the attention network
to capture the contextual information in 3D points. Specifi-
cally, it presents a point contextual attention network to en-
code local features into a global descriptor for point cloud
based retrieval. In Paigwar et al (2019), an attentional Point-
Net is proposed to search regions of interest instead of pro-
cessing the whole input point cloud, when detecting 3D ob-
jects in large-scale point clouds. Different from previous

works, we are interested in exploiting the combination of
multi-level contextual information for 3D object detection
from point clouds. In particular, we embed two self-attention
modules and one multi-scale feature fusion module into a
deep Hough voting network to learn multi-level contextual
relationships between patches, objects and the global scene.

2.3 Non-Maximum Suppression

In object detection algorithms, it is prone to generate re-
dundant bounding boxes in the initial detection results to
avoid missing true positives. Thus, non-maximum suppres-
sion (NMS) is usually used as a post-processing to remove
these redundant detections. Dalal et al. (Dalal and Triggs
(2005)), for the first time, introduce the greedy NMS into
human detection in 2D images, and achieve promising per-
formance. Since then, NMS has become a basic component
for most deep learning based 2D object detectors (Liu et al
(2016); Redmon et al (2016); Ren et al (2015)). It is worth
mentioning that several methods (Carion et al (2020); En-
gelmann et al (2020); Hu et al (2018a)) have been proposed
in recent years as alternatives to avoid using NMS opera-
tions. For instance, relation networks (Hu et al (2018a)) pro-
pose to replace NMS by formulating duplicate removal as
a binary classification problem. However, NMS is still the
mainstream post-processor due to its simplicity. Consider-
ing different characteristics between 2D and 3D bounding
boxes, there is still room for improvement of NMS in 3D
cases, which previous methods rarely considered. Thus, we
focus on the improvement of NMS operation in 3D object
detection in this paper. The core idea of NMS is to keep
good bounding boxes, such as those with high classification
or confidence scores, while suppressing those which over-
lap too much with the good ones. However, traditional NMS
has drawbacks in dealing with complicated cases, such as
overlaps and occlusions, that are common in 2D object de-
tection. Recently, several improved variants based on the
traditional NMS have been proposed to tackle these issues,
such as soft-NMS (Bodla et al (2017)), softer-NMS (He et al
(2018)), Adaptive NMS (Liu et al (2019a)) and FeatureNMS
(Salscheider (2020)). Nevertheless, 3D NMS has not been
formally studied before, which could be a new research di-
rection to improve 3D object detection. In 3D object de-
tection, most 3D detectors (Qi et al (2019); Song and Xiao
(2016)) directly employ the 3D version of 2D NMS by sim-
ply replacing the 2D IOU (Intersection Over Union) calcu-
lation with 3D. However, this straightforward conversion is
not suitable in 3D space where 3D bounding boxes overlap
much less than 2D boxes in 2D space. Considering this spa-
tial relationship between 3D objects, we propose a novel 3D
NMS algorithm to remove redundant 3D bounding boxes as
many as possible, while preserving the best ones.
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3 Approach

As shown in Fig. 3, our network contains three main compo-
nents: a fundamental 3D object detection framework based
on VoteNet which follows the architecture in Qi et al (2019),
the multi-level context module and the SOB-3DNMS mod-
ule. The multi-level context module consists of three con-
text encoding sub-modules. The PPC (patch-patch context)
sub-module combines the point groups to encode the patch
correlation information, which helps to vote for more accu-
rate object centers. The OOC (object-object context) sub-
module is for capturing the contextual information between
object candidates. This module helps to improve the results
of 3D bounding box regression and classification. The GSC
(global scene context) sub-module is to integrate the global
scene contextual information. In brief, the proposed three
sub-modules are designed to capture complementary con-
textual information in 3D object detection at multiple lev-
els, with the aim to improve the detection performance in
3D point clouds. The subsequent SOB-3DNMS is further
proposed to improve the typical 3DNMS on removing re-
dundant detections during post-processing.

3.1 VoteNet

VoteNet (Qi et al (2019)) is the baseline of our work. As
illustrated in Fig. 2, it is an end-to-end trainable 3D object
detection network consisting of three main blocks: point fea-
ture extraction, voting, and object proposal and classifica-
tion.

To extract point features, PointNet++ (Qi et al (2017b))
is used as the backbone network for seed sampling and ex-
tracting high dimensional features for the seed points from
the raw input point cloud. The features of each seed point
contain information from its surrounding points within a ra-
dius as illustrated in Fig. 4(a). Analogous to regional patches
in 2D, we thus call these seed points point patches in the
remaining of this paper. The voting block takes the point
patches with extracted features as input and regresses object
centers. This center point prediction is performed by a multi-
layer perceptron (MLP) which simulates the Hough voting
procedure. Clusters are then generated by grouping the pre-
dicted centers, and form object candidates, from which the
3D bounding boxes are then proposed and classified through
another MLP layer.

Note that in VoteNet, both the point patches and the ob-
ject candidates are processed independently, ignoring the
surrounding patches or objects. Thus, we introduce our ML-
CVNet++ network to encode context information in VoteNet
with three context related sub-modules. Moreover, we also
replace the typical 3DNMS with a novel SOB-3DNMS, con-
sidering the nature of non-overlapping spatial layout of ob-
jects in 3D space.
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Fig. 4 Architecture details of the proposed three sub-modules.
CGNL Yue et al (2018) is adopted as the self-attention module in our
paper.

3.2 Context Module

1) PPC sub-module: We take relationships between point
patches as the first level of context, i.e., patch-patch con-
text (PPC), as shown in Fig. 4(a). At this level, contextual
information between point patches, on the one hand, helps
relieve the data missing problem via gathering supplemen-
tary information from similar patches. On the other hand,
it considers inter-relationships between patches for voting
(Wang et al (2013)) by aggregating voting information from
both the current point patch and all the other patches. We
thus propose a sub-network, PPC module, to capture the re-
lationships between point patches. The basic idea is, for each
point patch, to employ a self-attention module to aggregate
information from all the other patches before sending it to
the voting stage.

As shown in Fig. 4(a), after feature extraction using Point-
Net++, we get a feature map A ∈ R1024×D, where 1024
is the number of point patches sampled from the raw point
cloud, and D is the dimension of the feature vector. We in-
tend to generate a new feature map A′ that encodes the cor-
relation between any two point patches, and it can be formu-
lated as a non-local operation:

A′ = f(θ(A), φ(A))g(A) (1)

where θ(·), φ(·), g(·) are three different transform functions,
and f(·, ·) encodes the similarities between any two posi-
tions of the input feature. Moreover, as shown in Hu et al
(2018b), channel correlations in the feature map also con-
tribute to the contextual information modeling in object de-
tection tasks, we thus make use of the compact generalized
non-local network (CGNL) (Yue et al (2018)) as the atten-
tion module to explicitly model rich correlations between
any pair of point patches and of any channels in the feature
space. CGNL requires light computation and little additional
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parameters, making it more practically applicable. After the
attention module, each row in the new feature map still cor-
responds to a point patch, but contains not only its own lo-
cal features, but also the information associated with all the
other point patches.

2) OOC sub-module: Most object detection frameworks
detect each object individually. Each cluster in VoteNet is
independently fed into the MLP layer to regress its object
class and bounding box. However, combining features from
other objects gives more information on the object relation-
ships, which has been demonstrated to be helpful in image
object detection (Chen et al (2018)). Intuitively, objects will
get weighted messages from those highly correlated objects.
In such a way, the final predicted object result is not only
determined by its own individual feature vector but also af-
fected by object relationships. We thus regard the relation-
ships between objects as the second level contextual infor-
mation, i.e., object-object context (OOC).

We get a set of vote clusters C = {C1, C2, . . . , CK} af-
ter grouping the voted centers. K is the number of clus-
ters in this work. A cluster C = {v1, v2, . . . , vn}, where
vi represents the i-th vote in C, and n is the number of
votes in C. Each cluster is fed into an MLP followed by a
max pooling to form a single vector representing the cluster.
Then comes the difference from VoteNet. Instead of process-
ing each cluster vector independently to generate a proposal
and classification, we consider the relationships between ob-
jects. Specifically, we introduce a self-attention module be-
fore the proposal and classification step. Fig. 4(b) shows the
details inside the OOC module. Specifically, after max pool-
ing, the cluster vectors C ∈ RK×D′

are fed into the CGNL
attention module to generate a new feature map to record
the affinity between all clusters. The encoding of object re-
lationships can be summarized as:

COOC = Attention( max
i=1,...,n

{MLP (vi)}) (2)

where COOC is the enhanced feature vector in the new fea-
ture map COOC ∈ RK×D′

, and Attention(·) is the CGNL
attention mapping. By doing so, the contextual relationships
between these clusters (objects) are encoded into the new
feature map.

3) GSC sub-module: The whole point cloud usually con-
tains rich scene contextual information which can help en-
hance the object detection accuracy. For example, it would
be highly possible that a chair rather than a toilet is iden-
tified when the whole scene is a dining room rather than a
bathroom. Therefore, we regard the information about the
whole scene as the third level context, i.e., global scene con-
text (GSC). Inspired by the idea of scene context extrac-
tion in Liu et al (2018), we propose the GSC module (the
green module in Fig. 3) to leverage the global scene con-
text information to improve feature representation for 3D

(a) Typical 3DNMS (b) Groundtruth

Fig. 5 Typical 3DNMS results with VoteNet Qi et al (2019) on Scan-
NetV2 dataset. As can be seen, there are still boxes overlapping with
each other after typical 3DNMS. Visually, there appear to be large over-
laps between these boxes; however, the computed IOUs between these
boxes are below the given NMS threshold. That is, these remaining
boxes still satisfy the filter criteria of typical 3DNMS and thus they are
retained, which is exactly the unreasonable point of typical 3D NMS
and cannot be resolved by changing the threshold.

bounding box proposal and object classification, without ex-
plicit supervision of scenes. Note that we improve the global
scene information integration procedure via replacing the
simple addition operation in Xie et al (2020) with the at-
tention mask weighting, which is proven to be a more effi-
cient way to capture the global scene contextual information
through experiments.

The GSC module is designed to capture the global scene
contextual information by introducing a global scene feature
extraction branch. Specifically, we create a new branch with
the input from the patch and object levels, concatenating the
features at layers before applying self attention in PPC and
OOC. As shown in Fig. 4(c), at the two layers each row rep-
resents a point patch P ∈ P = {P1,P2, . . . ,PM} or an ob-
ject candidate C ∈ C = {C1, C2, . . . , CK}, where M and K
are the numbers of the sampled point patches and clusters,
respectively. Max-pooling is first applied to get two vectors
(i.e., the patch vector and the cluster vector), combining in-
formation from all the point patches and object candidates.
Following the idea of multi-scale feature fusion in the con-
textual modeling strategy of 2D detectors, these two vectors
are then concatenated to form a global feature vector Fg ,
which is formulated as:

Fg = [max(P);max(C)] (3)

The global feature vector is expanded to the same size as C,
and then concatenated with C. An MLP layer is applied to
further aggregate global information by generating a context
attention mask Ag , which is formulated as:

Ag =MLP ([expand(Fg);C]) (4)

We then apply this weight mask Ag on the cluster feature
map C to embed the global contextual information. The in-
tegration procedure can be summarized as:

Cnew = COOC ⊗ (1 +Ag) (5)
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IOU 0.9 IOU 0.8 IOU 0.6 IOU 0.3 IOU 0.1 IOU 0.0

Classification score: 1.0 Classification score: 0.0IOU threshold 0.5 GT

Prediction

IOU 0.9 IOU 0.6 IOU 0.3 IOU 0.0

Classification score: 1.0 Classification score: 0.0

IOU threshold

0.5
GT Prediction

Fig. 6 Illustration of classification score in box quality measurement.
As can be seen, the 0/1 classification score representation is so coarse
that it ignores so much localization information.

where ⊗ is element-wise multiplication. To retain the orig-
inal proposal information, we adopt the residual connection
strategy by adding the refined features to the original feature
map, hence 1 is added to Ag .

In the original version, the integration is done by sim-
ply adding a global scene-level feature to the object-level
features. In this version, we revisited the integration strat-
egy, and took the more direct weight multiplication strat-
egy instead of feature addition. It is based on the motiva-
tion that we should give low weights to incompatible detec-
tions and high weights to compatible detections. The inte-
gration of global scene context is designed to improve the
detection results by suppressing false detection (objects not
compatible with the scene type) and enhancing correct de-
tection (objects compatible with the scene type), accord-
ingly, the weight multiplication step in our paper is to assign
different weights to the detections according to the global
scene information, which is a more direct way to embed
the global scene context. Moreover, as the weight measures
the compatability of the object and the scene, it should be
co-determined by both the global scene-level information
and the object-level information. Thus, we concatenate the
output of OOC (i.e., object-level information) to the global
scene features to generate the weights. Our experiments also
demonstrate that the feature fusion and the weight multipli-
cation help achieve better detection results compared with
the original version.

3.3 SOB-3DNMS

Most of the existing 3D object detection methods post pro-
cess the box proposals by using a typical 3DNMS which is a
direct 3D version of a simple 2DNMS. Specifically, the 3D
boxM with the highest classification score is first selected,
and then the IOU values betweenM and the remaining 3D
boxes are computed. Then, for a specific box bi, it is retained
only when the IOU value, which measures the overlapping
betweenM and bi, is less than a threshold, i.e.,

si =

{
si, iou (M, bi) < Nt

0, iou (M, bi) ≥ Nt
(6)

Input :ℬ = {𝑏1, . . , 𝑏𝑁}, 𝒮 = {𝑠1, . . , 𝑠𝑁}, 𝑁𝑡
ℬ is the list of initial detection boxes

𝒮 contains corresponding confidence scores

𝑁𝑡 is the NMS threshold

begin

𝒟 ← {}
while ℬ ≠ empty do

𝑚 ← argmax𝒮
ℳ ← 𝑏𝑚
𝑁ℳ ← 𝑚𝑖𝑛(𝑁𝑡, 1 − 𝑠ℳ)
𝒟 ← 𝒟⋃ℳ;ℬ ← ℬ −ℳ
for 𝑏𝑖 in ℬ do

end

end

return 𝒟, 𝒮
end

if 𝑖𝑜𝑢(ℳ, 𝑏𝑖) ≥ 𝑁𝑡 then

ℬ ← ℬ − 𝑏𝑖; 𝒮 ← 𝒮 − 𝑠𝑖
end

if 𝑖𝑜𝑢(ℳ, 𝑏𝑖) ≥ 𝑁ℳ then

ℬ ← ℬ − 𝑏𝑖; 𝒮 ← 𝒮 − 𝑠𝑖
end

Typical 3DNMS

SOB-3DNMS

Fig. 7 The pseudocode in red is replaced by that in green in SOB-
3DNMS, which adaptively suppresses the detections by scaling their
NMS threshold according to their box confidences. Note that NMS is
only performed within bounding boxes of the same class.

where Nt is the pre-defined IOU threshold, and si is the
classification score of box bi. Setting si to 0 means bi will
be deleted.

However, as shown in Fig. 5, many false positives still
exist after applying the typical 3DNMS. The reason lies in
the difference between 2D and 3D layouts of objects. Over-
laps are unavoidable (and plausible) for 2D boxes due to
the projection onto a single view. However, in 3D space,
large overlaps between 3D objects of the same class are rare,
which means the IOU threshold should be set to a much
lower value to suppress false positives.

How about setting a lower fixed NMS threshold? It
seems that setting a lower threshold may be a solution to
remove the redundant boxes in 3D. However, there are two
main problems. First, it is hard to determine a proper fixed
threshold for all the objects. Second, a too low threshold,
due to the imperfect box proposal, is prone to remove true
positives as well.

In all, the typical 3DNMS, as the direct conversion of
2DNMS, is inappropriate for 3D object detection in indoor
scenes. Thus, we propose to use an adaptive IOU threshold
which depends on the confidence of the boxes. That is, for
the current box M, the IOU threshold is adaptively deter-
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mined by the confidence score ofM, i.e.,

NM := min (Nt, 1− sM)

si =

{
si, iou (M, bi) < NM
0, iou (M, bi) ≥ NM

(7)

whereNM is the adaptive IOU threshold for the current box
M. From the definition, our IOU threshold NM incorpo-
rates both the fixed threshold Nt and the confidence score
sM of the current box. The larger the confidence score of the
box, the lower the IOU threshold. And lower IOU thresholds
in NMS mean stricter criteria with surrounding overlapping
boxes, i.e., more boxes will be suppressed. Moreover, in-
stead of directly taking the classification score as the confi-
dence score sM, we use a more reasonable scoring scheme
to measure the quality of boxes, as explained below.

As is known, the box ranking is also an important fac-
tor for the performance of NMS. We argue that the classi-
fication score is not sufficient to measure the quality of 3D
boxes. The classification score measures the likelihood of a
box being an object, but neglects the location of the object,
and therefore cannot predict the accuracy of the box well. As
illustrated in Fig. 6, taking the two boxes on the left for ex-
ample, they both have a classification score of 1.0 (showing
that they are likely to contain an object), but the first box is
of much higher quality than the second, as it well overlaps
with the ground truth box. This similarly applies to other
boxes. So in addition to the classification score, the location
of an object is a more important factor determining the qual-
ity of the proposed box. Thus, inspired by Jiang et al (2020),
we add one more element to the final output vector for each
proposal for predicting a single value to evaluate the box,
which is supervised by the IOU between the predicted box
and the ground truth during training, and therefore predicts
the IOU value sM when it is trained. Specifically, instead of
directly using the classification score as the ranking criterion
in NMS, our SOB-3DNMS adopts the newly predicted IOU
scores to rank 3D boxes, considering that the new scores can
reflect the quality of the boxes more accurately.

A formal algorithm description of the SOB-3DNMS is
shown in Fig. 7 with highlighted difference from the typical
3DNMS.

4 Results and Discussions

4.1 Datasets

We evaluate our approach on SUN RGB-D Song et al (2015)
and ScanNet Dai et al (2017) datasets. SUN RGB-D is a
well-known public RGB-D image dataset of indoor scenes,
consisting of 10,335 frames with 3D object bounding box
annotations. Over 64,000 3D bounding boxes are given in
the entire dataset. As described in Zhang et al (2017), these

Input mAP@0.25 mAP@0.5
DSS Song and Xiao (2016) Geo+RGB 15.2 6.8

MRCNN 2D-3D He et al (2017) Geo+RGB 17.3 10.5
F-PointNet Qi et al (2018) Geo+RGB 19.8 10.8

GSPN Yi et al (2019) Geo+RGB 30.6 17.7
3D-MPA Engelmann et al (2020) Geo+RGB 64.2 49.2

3D-SIS Hou et al (2019) Geo+5views 40.2 22.5
3D-SIS Hou et al (2019) Geo only 25.4 14.6
VoteNet Qi et al (2019) Geo only 58.6 33.5

HGNet Chen et al (2020) Geo only 61.3 34.4
DOPS Najibi et al (2020) Geo only 63.7 38.2

MLCVNet Xie et al (2020) Geo only 64.5 41.4
MLCVNet++ (Ours) Geo only 66.2 45.3

Table 1 Performance comparison on ScanNetV2 validation set.

scenes were mostly taken from household environments with
strong context. The occlusion problem is quite severe in SUN
RGB-D dataset. Sometimes, it is even difficult for humans to
recognize the objects in the scene when merely a 3D point
cloud is given without any color information. Thus, it is a
challenging dataset for 3D object detection.

ScanNet dataset contains 1513 scanned 3D indoor scenes
with densely annotated meshes. The ground-truth 3D bound-
ing boxes of objects are also provided. The completeness of
scenes in ScanNet makes it an ideal dataset for training our
network to learn the contextual information at multiple lev-
els.

4.2 Training details

Our network is trained end-to-end using an Adam optimizer
and batch size 8. The base learning rate is set to 0.01 for
ScanNet dataset and 0.001 for SUN RGB-D dataset. The
network is trained for 220 epochs on both datasets. The steps
that the learning rate decays are set to be {120, 160, 200}
for ScanNet, {100, 140, 180} for SUN RGB-D, and the de-
cay rates are {0.1, 0.1, 0.1}. Training the model until con-
vergence on one RTX 2080 ti GPU takes around 4 hours on
ScanNetV2 and 11 hours on SUN RGB-D. During training
we found the mAP result fluctuates within a small range on
different runs. To accommodate the difference, the mAP re-
sults reported in the paper are the mean results over three
runs.

For parameter size, the stored PyTorch model size of our
network is 13.9MB, compared reasonably with the 11.2MB
of VoteNet. For training time, VoteNet takes around 40s for 1
epoch with batch size of 8, while ours is around 42s. For in-
ference time, measuring for one batch, VoteNet takes around
0.13s, while ours takes 0.14s. The time reported here are all
tested on ScanNet dataset. These show that our method only
slightly increases the complexity of VoteNet.
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wind bed cntr sofa tabl showr ofurn sink pic chair desk curt fridge door toil bkshf bath cab mAP
3DSIS5views 10.88 69.71 10.00 71.81 36.06 35.96 16.2 42.98 0.00 66.15 46.93 14.06 53.76 30.64 87.6 27.34 84.3 19.76 40.23

3DSISGeo 2.79 63.14 6.92 46.33 26.91 12.17 7.05 22.87 0.00 65.98 33.34 2.47 10.42 7.95 74.51 2.3 58.66 12.75 25.36
VoteNet 38.1 87.92 56.13 89.62 58.77 57.13 37.2 54.7 7.83 88.71 71.69 47.23 45.37 47.32 94.94 44.62 92.11 36.27 58.65

MLCVNet 46.98 88.48 63.94 87.4 63.50 65.91 47.89 59.18 11.94 89.98 76.05 56.72 60.86 56.93 98.33 56.94 87.22 42.45 64.48
MLCVNet++ (Ours) 44.34 88.12 62.97 90.88 66.38 71.44 53.15 66.63 13.60 92.45 72.84 55.70 56.76 57.68 95.33 62.70 92.33 47.62 66.16

Table 2 Per-category evaluation on ScanNetV2, evaluated with mAP@0.25 IoU.

(b) Ours (c) Groundtruth(a) VoteNet

(b) VoteNet (c) MLCVNet (d) Groundtruth(a) image

Fig. 8 Qualitative comparison results of 3D object detection in ScanNetV2. Our multi-level contextual information analysis strategy enables more
reasonable and accurate detection. Color is for depiction only, and not used for detection.

(b) Ours (c) Groundtruth(a) VoteNet

(b) VoteNet (c) Ours (d) Groundtruth(a) image

Fig. 9 Qualitative results of 3D object detection on SUN RGB-D.

4.3 Qualitative Results

Fig. 8 shows the predicted bounding boxes using our method
and VoteNet on the validation set of ScanNetV2. It is ob-
served that the proposed network detects more reasonable

objects (red arrows), and predicts more precise boxes (blue
arrows). The pale blue box detected by VoteNet is classified
as a window, but improperly overlaps with a detected door
(green box). The boxes detected by our method are with less
overlaps and more accurate localization. The qualitative re-
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Input table sofa booksh chair desk dresser nightst bed bathtub toilet mAP@0.25
DSS Song and Xiao (2016) Geo+RGB 50.3 53.5 11.9 61.2 20.5 6.4 15.4 78.8 44.2 78.9 42.1

2D-driven Lahoud and Ghanem (2017) Geo+RGB 37.0 50.4 31.4 48.3 27.9 25.9 41.9 64.5 43.5 80.4 45.1
COG Ren and Sudderth (2016) Geo+RGB 51.3 51.0 31.8 62.2 45.2 15.5 27.4 63.7 58.3 70.1 47.6

F-PointNet Qi et al (2018) Geo+RGB 51.1 61.1 33.3 64.2 24.7 32.0 58.1 81.1 43.3 90.9 54.0
VoteNet Qi et al (2019) Geo-only 47.3 64.0 28.8 75.3 22.0 29.8 62.2 83.0 74.4 90.1 57.7

MLCVNet Xie et al (2020) Geo only 50.4 66.3 31.9 75.8 26.5 31.3 61.5 85.8 79.2 89.1 59.8
MLCVNet++ (Ours) Geo only 50.7 68.3 36.5 77.1 28.7 31.6 61.4 85.3 79.3 90.0 60.9

Table 3 Performance comparison with state-of-the-art 3D object detection networks on SUN RGB-D V1 validation set.

sults on SUN RGB-D are shown in Fig. 9. As shown, our
model is able to produce high-quality boxes even though the
scenes are much occluded and less informative. As shown in
the bedroom example in Fig. 9, there are overlaps and miss-
ing detections (red arrows) using VoteNet, while our model
successfully detects all the objects with good precision com-
pared to the ground-truth. For the second scene in Fig. 9,
VoteNet misclassifies the table, produces overlaps, and pre-
dicts inaccurate boxes (red arrows), while our model pro-
duces much cleaner and more accurate results. However, it is
worth noting that our method may still fail in accurate local-
ization of some predictions when most of the data is missing,
such as the door (green) in the red square in Fig. 8(b). There
is still room for improvements on 3D bounding box predic-
tion, especially when dealing with complicated scenes.

4.4 Comparison with the State-of-the-art

We first compare the detection results on ScanNet using our
method and the state-of-the-art methods on this benchmark,
including MRCNN 2D-3D (He et al (2017)), GSPN (Yi et al
(2019)), 3D-SIS (Hou et al (2019)), 3D-MPA (Engelmann
et al (2020)), HGNet (Chen et al (2020)) and DOPS (Na-
jibi et al (2020)). The results are shown in Table 1. Both
mAP@0.25 and mAP@0.5 are used for evaluation. As seen,
our method achieves the best performance on mAP@0.25
among all the compared methods. Specifically, the proposed
network reaches 66.2% making 7.5 absolute points improve-
ment over the baseline VoteNet, and 1.7 points improvement
over the original MLCVNet which ranked the second best.
On mAP@0.50, even higher improvements over VoteNet
and MLCVNet are observed. The improvements confirm the
effectiveness of the proposed method. Note that 3D-MPA
has better performance than ours on mAP@0.50. However,
3D-MPA utilizes the point-wise segmentation label to super-
vise their network. Moreover, 3D-MPA makes use of RGB
and normal information in addition to geometry. Our method
outperforms all the methods with geometry only input. Ta-
ble 2 shows the detailed results at mAP@0.25 for each object
category in ScanNetV2 dataset. As can be seen, for some
specific categories, such as shower curtain and sink, the im-
provements exceed 10 points. It is found that plane-like ob-
jects, such as doors, windows, pictures and shower curtains,

usually get higher improvements. A possible reason is that
these objects contain more similar point patches, which, via
the attention module, complement each other to a great ex-
tent.

We also evaluate our network on SUN RGB-D dataset
using the same 10 most common object categories as in Qi
et al (2019). Table 3 gives a quantitative comparison of our
method with DSS (Song and Xiao (2016)), cloud of gra-
dients (COG) (Ren and Sudderth (2016)), 2D-driven (La-
houd and Ghanem (2017)), F-PointNet (Qi et al (2018)) and
VoteNet (Qi et al (2019)).

Remarkably, our method achieves better overall perfor-
mance than all the other methods on SUN RGB-D dataset.
The overall mAP (mean average precision) of the proposed
network reaches 60.9% on SUN RGB-D validation set, 3.2%
higher than the current state-of-the-art, VoteNet. The heavy
occlusion presented in SUN RGB-D dataset is a challenge
for methods (e.g., VoteNet) that consider point patches in-
dividually. However, the use of contextual information and
improved NMS in our method helps with the detection of
occluded objects with missing parts, which we believe is the
reason for the improved detection accuracy.

4.5 Effectiveness of PPC

As described in Section 3.2, patch-to-patch context (PPC)
sub-module is integrated in our network to exploit the useful
information between these point patches (i.e., seed points).
In this group of experiments, we perform an ablation study
to evaluate the effectiveness of the PPC sub-module, which
is visualized in Fig. 10. As shown, with the PPC module,
the voted centers (green) are more meaningful with more of
them appearing on objects rather than on non-object regions.
Moreover, the voted centers are more closely clustered com-
pared to those without the module (red). The results demon-
strate that our self-attention based weighted fusion over lo-
cal point patches can indeed enhance the performance of
voting for object centers.
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with PPC without PPC

(b) With PPC(a) Without PPC

Fig. 10 A voting example for our method with or without the PPC sub-module. Compared to our network without PPC, the whole model generates
more accurate voting centers. Pink dots are object center ground truth.

Without OOC With OOC Groundtruth

(b)  With OOC(a) Without OOC (c) Groundtruth

(a) Without OOC (b) With OOC (c) OOC & SOB-3DNMS (d) Groundtruth with image

Fig. 11 A detection example using our method with or without the OOC sub-module. Compared to without OOC, the complete model generates
more desirable result. Black: toilet; Red: chair.

Without GSC With GSC Groundtruth

(b) With GSC(a) Without GSC (c) Groundtruth

Fig. 12 A detection example for our method with or without the GSC sub-module. Compared to our network without GSC, the whole model
generates less unreasonable boxes which are inconsistent with the global scene type. Red: sofa; Pink: counter. Scene type: conference room.

4.6 Effectiveness of OOC

Fig. 11 shows a detection example using the proposed net-
work with and without the OOC sub-module. It is found that
without OOC, boxes with wrong labels are detected. As can
be seen in Fig. 11(a), a toilet (black box) that is close to a
chair (red box) is wrongly detected without OOC. Actually,
the point cloud in the black box could be mis-classified as
toilet even by humans, if we look at it separately. So, it is

reasonable that the false detection, i.e., the toilet, is gener-
ated, since the feature of each box is individually processed,
without consideration of the surrounding boxes. When the
OOC sub-module is integrated, the surrounding red boxes
are taken into consideration. Then, as shown in Fig.11 (b),
the wrong label of toilet (black) is changed to the label of
chair (red). Finally, we can get the very similar detection
result (c) to the groundtruth (d) after the post-processing
of SOB-3DNMS. This example demonstrates that the OOC
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(a) Typical 3DNMS (b) SOB-3DNMS

Fig. 13 Two examples on comparison of typical 3DNMS and the pro-
posed SOB-3DNMS. As seen, the false positive boxes retained by typ-
ical 3DNMS are successfully eliminated by SOB-3DNMS.

Method
typical NMS SOB-3DNMS

Cls score IoU score Cls score IoU score
mAP 65.0 65.1 65.5 66.2

Table 4 Quantitative comparison between typical NMS and the pro-
posed SOB-3DNMS on ScanNetV2, evaluated with mAP@0.25 IoU.
Cls means classification. The IOU score is predicted by the network,
similar to 3D IOU-Net Li et al (2020a)

.

sub-module enables communication between object propos-
als and provides more comprehensive information to im-
prove 3D object detection.

4.7 Effectiveness of GSC

As described in Section 3.2, the GSC sub-module is pro-
posed to learn the contextual information at the global level.
In this way, the inference of the final 3D bounding boxes
and the object classes will consider the compatibility with
the scene context, making the final predictions more reli-
able under the global cues. As shown in Fig. 12, the given
scene is a conference room. However, without considera-
tion of global scene context, VoteNet generates detections
of a sofa (colored in red) and a counter (colored in pink),
which rarely happens in the training data. In contrast, the
GSC module in our method effectively reduces false detec-
tions in the scene, which implies that the integration of GSC
sub-module to capture global context is beneficial for the
object labeling task.

4.8 Effectiveness of SOB-NMS

As described in Section 3.3, the proposed SOB-3DNMS can
further refine the duplication removal in post-processing.

Fig. 13 and Fig. 14 compare the final results using SOB-
3DNMS and the typical 3DNMS after the box proposal and
classification.

From Fig. 13, we can see that false positive 3D boxes
still remain using the typical 3DNMS, while using SOB-
3DNMS, the results are much cleaner with all the false pos-
itives removed. Specifically, in the first scene (first row),
three redundant chairs (pointed by yellow arrows) are still
detected. Because their overlaps (i.e., 3D IOU) with any
other boxes are below the fixed NMS threshold, which is
set to be 0.25. It may look as if their overlaps with other
boxes are large visually, but the calculation of their 3D IOU
could be much smaller. Using our method, as shown in Fig-
ure 13(b), the above three redundant boxes are all success-
fully removed with the adaptive threshold. The reason is that
the surrounding boxes are detected with higher confidence
scores, resulting lower thresholds to suppress the redundant
boxes even harder.

We also evaluate the new box ranking strategy. Figs. 14(b)
and (c) compare the detection results using the classifica-
tion score for ranking and using the predicted IOU score for
ranking. It can seen that using the latter generates boxes with
more accurate locations. This is because using the predicted
IOU scores specifically takes object location into consider-
ation, and thus provides a measure that better reflects the
detection quality.

Table 4 reports the quantitative results on the typical
NMS and the proposed SOB-3DNMS. Similar to 3D IOU-
Net Li et al (2020a), we adopt the typical NMS strategy, and
use the network-predicted IOU score to replace classifica-
tion confidence as the ranking metric. As seen, when using
typical NMS, the IOU score can merely get marginal im-
provement. However, the combination of IOU score and the
proposed SOB-3DNMS achieves the best performance. Ta-
ble 5 quantitatively compares the results using the two dif-
ferent ranking scores. Consistent with the visual results in
Fig. 14, using the proposed IOU score as the ranking crite-
rion achieves better performance than using the traditional
classification score for both mAP@0.25 and mAP@0.50.
Moreover, it is noticed that the improvement onmAP@0.50
is more significant on both datasets. The reason is that when
using the IOU score for ranking, the selected boxes tend to
have more accurate locations. The improved accuracy makes
the results more robust to changes of evaluation criterion,
and thus the performance is less decreased when the cri-
terion becomes stricter from mAP@0.25 to mAP@0.50.
These results further demonstrate the effectiveness of SOB-
3DNMS, especially the IOU ranking score as a better quality
measure of boxes and its suitability in 3DNMS for ranking.
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(a) Typical 3DNMS
SOB-3DNMS

Cls Score
(b) 

SOB-3DNMS

IOU Score
(c) Groundtruth(d) 

Fig. 14 Qualitative results of 3D object detection on SUN RGB-D. Cls (classification) score chooses the wrong box, while our IOU score keeps
the correct box and eliminates the wrong one, which has a relatively high classification score but a low IOU score.

Ranking
scores

mAP@0.25 mAP@0.5
ScanNet SUN RGB-D ScanNet SUN RGB-D

IOU score 66.2 60.9 45.3 39.7
Cls score 65.5 60.3 43.1 38.5

Table 5 Quantitative comparison on two kinds of ranking scores un-
der the proposed SOB-3DNMS framework. It is obvious that using the
predicted IOU score is more effective than Cls (classification) score.

4.9 Ablation Study

To quantitatively evaluate the effectiveness of the proposed
contextual sub-modules and the SOB-3DNMS, we conduct
experiments with different combinations of these compo-
nents. The quantitative results are shown in Table 6. The
baseline method is VoteNet. We then add the proposed con-
textual sub-modules one by one into the baseline model. Ap-
plying the PPC module leads to improvements in mAP@0.25
of 0.8 and 2.6. The combination of PPC and OOC modules
further improves the evaluation scores to 59.1 and 63.4 re-
spectively. As expected, when equipped with all the three
sub-modules, the mAP@0.25 of our network is boosted up

to higher scores on both datasets. It can be seen that con-
textual information captured by the designed sub-modules
indeed brings notable improvements over the state-of-the-
art method. In terms of performance improvement for the
SOB-3DNMS, it alone improves the baseline model by 1.1
and 2.9 on the two datasets. When it is further combined
with the contextual model, we achieve the best final results
of 66.2 and 60.9 on mAP@0.25, compared to the baseline at
57.8 and 59.6.

To further evaluate our multi-level context encoding strat-
egy with a stronger backbone, we replace the PointNet++
backbone in VoteNet with a Sparse Residual U-Net, which
is proposed in (Choy et al (2019)) and achieves promis-
ing results on ScanNet benchmark in the instance segmen-
tation task. We evaluate the detection performance on the
ScanNet dataset. As shown in Table 7, using the new back-
bone can increase mAP@0.25 to 61.5. It is noticed that the
improvement brought in by PPC using the new backbone
is smaller than using PointNet++ backbone, while the im-
provements brought in by OOC and GSC are almost the
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Method
Multi-level context

SOB-3DNMS
mAP@0.25

PPC OOC GSC
SUN

RGB-D
ScanNet

Baseline 57.8 59.6
Ours X 58.9 62.5
Ours X 58.6 62.2
Ours X X 59.1 63.4
Ours X X X 60.1 65.0
Ours X X X X 60.9 66.2

Table 6 Ablation study on the validation dataset. The baseline model is trained by ourselves using the official VoteNet code released by the
authors.

Method PPC OOC GSC mAP@0.25

Baseline 61.5
Ours X 62.3
Ours X X 63.6
Ours X X X 65.0

Table 7 Ablation study on the validation dataset of ScanNet. Baseline:
VoteNet with a Sparse Residual U-Net (Choy et al (2019)) as backbone
network.

same. We reckon the reason is that the Sparse Residual U-
Net can also capture the context between seed points (lo-
cal point patch level) to some extent. However, the object
and global scene level context cannot be captured in the
Sparse Residual U-Net backbone. In semantic segmentation,
the dominant convolution and deconvolution operations ben-
efit the most from sparse convolutional layers, which leads
to the huge success. However, unlike semantic segmenta-
tion, there are two key components subsequent to Point-
Net++/sparse convolutional backbone in the architecture of
VoteNet, the Voting and the Proposal&Classification steps.
These two steps are not as directly influenced by the sparse
convolutional backbone as in semantic segmantation. This
may be a reason why the improvement brought in by a bet-
ter backbone feature representation in the VoteNet-based 3D
object detection is not as significant as in semantic segmen-
tation. Moreover, the PPC sub-module in our paper is also
an enhancement of the PointNet++ backbone, as it helps get
more representative features of point patches by enabling
the information communication between seed points. That
means the PPC sub-module has overlapped advantages with
the sparse convolutional backbone, and thus the combina-
tion of the two sees insignificant further improvements. As
can be seen in Tables 6 and 7, the improvement brought in
by the PPC sub-module with the sparse convolutional back-
bone is smaller than with PointNet++.

4.10 Limitation

While our method improves the accuracy performance of
deep Hough voting based 3D object detector via introduc-
ing contextual information, it is not without limitation. As
shown in Fig. 15, our method may get the wrong detec-

(b) Typical 3DNMS (c) SOB-3DNMS(a) Groundtruth

Fig. 15 A failure case of our method. There are two connected desks
in the scene (a). However, our SOB-3DNMS removes the right desk in
(b) since it overlaps “too much” with the left one.

tion result when two desks are connected together. In that
case, our model may detect two desks as one whole desk
(Fig. 15(c)). As seen in Fig. 15(b), the left box incorrectly
covers most part of the two connected desks. Then, our SOB-
3DNMS would only keep one box with the highest ranking
score, as it treats the overlapping box (the right box in (b)) as
a duplication. The reason is that SOB-3DNMS assumes that
3D bounding boxes of the same category should not overlap
too much with each other in a 3D scene. However, we think
it is reasonable to some extent that our method tends to de-
tect these two desks as a united one in (c), since these two
desks are closely connected to each other, and the left box
coincidentally covers almost the two desks. Moreover, we
realize that the assumption of our SOB-3DNMS is still not
strictly true, as, although not observed in our experiments,
some objects of the same class may still overlap. For exam-
ple, a small table may be placed under a large table.

5 Conclusions

In this paper, we propose a novel network that integrates
contextual information at multiple levels into 3D object de-
tection. We make use of self-attention mechanism and multi-
scale feature fusion to model the multi-level contextual in-
formation, and propose three sub-modules. The PPC module
encodes the relationships between point patches, the OOC
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module captures the contextual information of object candi-
dates, and the GSC module aggregates the global scene con-
text. Moreover, an enhanced 3DNMS, i.e., SOB-3DNMS, is
proposed to improve the filtering of boxes in post-processing
by considering the spatial locations of objects in 3D space.
Ablation studies demonstrate the effectiveness of the pro-
posed contextual sub-modules and the SOB-3DNMS. Quan-
titative and qualitative experiments further demonstrate that
our architecture successfully improves the performance of
3D object detection.

Future work. Contextual information analysis in 3D ob-
ject detection still offers huge space for exploration. For ex-
ample, to enhance the global scene context constraint, one
possible way is to use the global feature in the GSC module
to predict scene types as an auxiliary learning task, which
can explicitly supervise the global feature representation.
Another direction would be a more effective mechanism to
encode the contextual information as in Hu et al (2018a).
Moreover, the reasoning behind the intuition that self-attention
may be learning spatial context is not yet perfectly demon-
strated by the experimental validation. We plan to make a
much deeper study of this point in the future. Apart from
contextual information analysis, another promising direc-
tion is about the NMS post-processing. First, there is room
to improve the current 3D IOU calculation. Several works
have been proposed based on the typical IOU formula, such
as Generalized-IoU Rezatofighi et al (2019) and Distance-
IoU Zheng et al (2020) in 2D field, which may inspire better
3D IOU calculation in future work. Second, traditional NMS
methods are usually considered to be not efficient enough,
owing to their complex designs. Non-NMS based methods
are becoming increasingly popular both in 3D Wang et al
(2020); Yin et al (2020) and 2D Carion et al (2020); Hu et al
(2018a). Thus, how to design the 3D detectors that eliminate
NMS is another promising direction of future work.
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