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Abstract

This paper presents the gravitational-wave measurement of the Hubble constant (H0) using the detections from the
first and second observing runs of the Advanced LIGO and Virgo detector network. The presence of the transient
electromagnetic counterpart of the binary neutron star GW170817 led to the first standard-siren measurement of
H0. Here we additionally use binary black hole detections in conjunction with galaxy catalogs and report a joint
measurement. Our updated measurement is H0= -

+69 8
16 km s−1 Mpc−1 (68.3% of the highest density posterior

interval with a flat-in-log prior) which is an improvement by a factor of 1.04 (about 4%) over the GW170817-only
value of -

+69 8
17 km s−1 Mpc−1. A significant additional contribution currently comes from GW170814, a loud and

well-localized detection from a part of the sky thoroughly covered by the Dark Energy Survey. With numerous
detections anticipated over the upcoming years, an exhaustive understanding of other systematic effects are also
going to become increasingly important. These results establish the path to cosmology using gravitational-wave
observations with and without transient electromagnetic counterparts.

Key words: Gravitational wave astronomy – Hubble constant

1. Introduction

Gravitational waves (GWs) from compact binary coales-
cences allow for the direct measurement of the luminosity
distance to their source. This makes them standard-distance
indicators, and in conjunction with an identified host galaxy or
a set of possible host galaxies, they can be used as standard
sirens to construct a redshift-distance relationship and measure
cosmological parameters like the Hubble constant (H0;
Schutz 1986; Holz & Hughes 2005; MacLeod & Hogan 2008;
Nissanke et al. 2010; Sathyaprakash et al. 2010). The GW
signature from the binary neutron star (BNS) merger
GW170817, along with its coincident electromagnetic (EM)
transient associated with the host galaxy NGC4993, led to a
first standard-siren measurement of H0 (Abbott et al. 2017a).
This measurement is independent of other state-of-the-art
measurements of H0, and in particular, independent of the
cosmic distance ladder used to calibrate standardizable sources
like SNe Ia (Type Ia supernovae). The importance of an
independent measurement of H0 is worth highlighting. With the
Planck 2018 data release (Planck Collaboration et al. 2020),
and the recalibration of supernovae using Large Magellanic
Cloud Cepheids (Riess et al. 2019), the tension between early

universe measurements of H0 from Planck and local measure-
ments from the Supernovae H0 for the Equation of State
(SH0ES) project has risen to the 4.4σ level. Independent
measurements using cosmological baryon acoustic oscillations
to calibrate SNe Ia via the inverse distance ladder (Macaulay
et al. 2019) and gravitational lensing of quasars in the nearby
universe (H0LiCOW Collaboration, Birrer et al. 2019) favor to
some degree the early universe Planck and the local SH0ES
measurements, respectively. A complementary measurement of
H0 from the multimessenger GW astronomy sector would help
clarify whether the current tension is a statistical anomaly or
evidence for new physics beyond the Lambda cold dark matter
(ΛCDM) model of cosmology.196

The GW standard-siren measurement in Abbott et al. (2017a) is
broadly consistent with other measurements. By combining
information from multiple detections, one can improve the
accuracy reaching about 1% with ( ) 100 detections in the
coming years (Dalal et al. 2006; Nissanke et al. 2013; Chen et al.
2018; Vitale & Chen 2018; Feeney et al. 2019; Mortlock et al.
2019).
An unambiguous identification of the host galaxy is unlikely

for all BNS detections; only a crude estimate of the sky
position may be available. Moreover there are sources such as

195 Deceased, 2018 July.

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

196 Cosmological parameters can potentially be inferred from GW observa-
tions alone by estimating the redshift using the known physics of neutron stars
(Messenger & Read 2012) or their astrophysical mass distribution (Finn 1994;
Taylor & Gair 2012); however these methods are not expected to find an
application in context of the current generation of advanced ground-based
detectors. Prospects of GW cosmology using robust astrophysical features of
black hole mass distributions have recently been explored in Farr et al. (2019).
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binary black hole (BBH) mergers with no expected EM
counterparts. Even in the absence of an EM counterpart, the
method outlined in Schutz (1986) can be used: with a set of
potential host galaxies identified in a galaxy catalog for each
detection, one can build up information by a process of
statistical cross-correlation. The method was demonstrated on a
set of simulations in Del Pozzo (2012), where a 5% estimate on
H0 was obtained from ( ) 100 detections in an idealized
situation of nearby events and complete galaxy catalogs;
similar results with projections for third-generation detectors
have been obtained in Nair et al. (2018). It has further been
shown in Chen et al. (2018) that the main benefit of the galaxy-
catalog method would be for the case of multiple well-localized
sources.

An understanding of GW selection effects (Abbott et al.
2017a; Chen et al. 2018; Mandel et al. 2019; Vitale et al. 2020)
and features of galaxy catalogs, such as their incompleteness
and measurement uncertainties, is necessary for an accurate
measurement of H0. Prescriptions to handle incomplete galaxy
catalogs have been outlined in Chen et al. (2018), Fishbach
et al. (2019), and Gray et al. (2020), and an extensive study of
selection effects including galaxy catalog completeness has
been performed in Gray et al. (2020). The simulations in Gray
et al. (2020) demonstrate that the current method is able to
handle galaxy catalog completeness down to∼25% for ( ) 100
detections in the nearby universe (luminosity distance
dL 115Mpc) with idealized galaxy catalogs, without intro-
ducing additional systematic features. The galaxy-catalog
method was used in Fishbach et al. (2019) to infer H0 from
GW170817 without its optical counterpart. An estimate of H0

from GW170814 and the photometric redshift catalog from the
Dark Energy Survey (DES) Year 3 data was also obtained in
Soares-Santos et al. (2019).

In this paper we report the first joint GW estimate of H0 from
detections during O1 and O2, the first and second observing runs
of the Advanced LIGO and Virgo detector network. For our final
result, along with the BNS GW170817, we choose the six O1 and
O2 BBH detections, which satisfy our selection criterion of a
network signal-to-noise ratio (S/N)> 12 in at least one search
pipeline for GW detections. The detections for which we have
significant galaxy catalog support are GW150914, GW151226,
GW170608, and GW170814. For these events, we expect the
inferred H0 posteriors to be driven by the additional EM
information. The two remaining BBHs that satisfy the selection
criterion, GW170104 and GW170809, need to be retained in the
analysis for consistency with the assumed population model.
These events for which a significant fraction of potential host
galaxies are missing in the associated galaxy catalog, can also
potentially contribute to the H0 measurement, since there is
information about cosmology present in the observed source
distribution (Taylor et al. 2012; Taylor & Gair 2012; Farr et al.
2019). The distribution of the observed source parameters,
including the observed luminosity distance distribution, is driven
by H0 in addition to the intrinsic astrophysical source distribu-
tions. With a known underlying astrophysical distribution of
sources, H0 would be measurable solely from the observed
distance distribution of BBH detections (Chen & Holz 2014). This
latter contribution is not expected to provide significant informa-
tion at this stage given how uncertain the inferred astrophysical
distribution parameters such as the power-law index of the binary
mass distribution, or the index characterizing the evolution of the
binary merger rate with redshift are, even when H0 is held fixed

(Abbott et al. 2019a). In an ideal situation, one should jointly
estimate these astrophysical population parameters along with H0.
We choose to fix the astrophysical population to a fiducial
distribution instead, and perform our analysis with different
choices for the mass distribution and binary merger rate evolution
with redshift in order to quantify possible systematic effects
resulting from this assumption. We set aside a more thorough
treatment involving the marginalization over the unknown
astrophysical distribution for future work.
The main result of our analysis—a posterior distribution on

H0—is dominated by the contribution from GW170817 with its
optical counterpart, with a modest improvement from the
inclusion of the O1 and O2 BBH. These results, possibly
refined and marginalized over the aforementioned assumptions,
can be used as a prior for future GW estimates of H0. The
analysis performed in this paper thus serves as a precursor of
future analyses for the third and subsequent observing runs of
the advanced detector network.
The rest of this paper is arranged as follows. We describe our

method in Section 2. We summarize the GW detections we use
in our analysis and the corresponding EM data in Section 3.
Our main results are presented in Section 4, with a more
detailed discussion and a study of possible systematic effects in
Section 5. We conclude in Section 6 and highlight some future
directions and prospects.
Throughout this paper we assume a ΛCDM cosmology and

use the best-fit Planck 2015 values of Ωm= 0.308 and
ΩΛ= 0.692, respectively for the fractional matter and dark
energy densities in the present epoch (Planck Collaboration
2016). Although these parameters enter the redshift-distance
relationship central to the method for Bayesian inference of H0,
we have verified that our results are robust with regards to a
variation of their values within the current measurement
uncertainties.

2. Method

We follow and apply the Bayesian analysis described in
Gray et al. (2020) to compute the posterior probability density
on H0, given the set {DGW} of Ndet detections and the
associated GW data {xGW}:

( )

( ∣{ } { }) ( ) ( ∣ ) ( ∣ )µ

1

p H x D p H p N H p x D H, , .
i

N

i i0 GW GW 0 det 0 GW GW 0

det

Here, DGWi indicates that the event i was detected as a GW,
p(H0) is the prior on H0, and the term ( ∣ )p N Hdet 0 is the
likelihood of detecting Ndet events over the time of observation
with the associated detector configuration for the given value of
H0. The number of detected events is some fraction of the total
number of sources Ns, and this fraction depends on H0; thus,

( )=N f H Nsdet det 0 . If the intrinsic astrophysical merger rate, R,
which Ns is proportional to,

197 is marginalized over with a prior
p(R)∝ R−1, then ( ∣ ) ( ∣ ) ( )ò=p N H p N H R p R dR,det 0 det 0 is inde-
pendent of ( )f Hdet 0 , and thus loses its dependence on H0 (see,
e.g., Fishbach et al. 2018). For simplicity, we make this
approximation throughout our analysis. The final term

197 The astrophysical merger rate is defined as R ≡ ∂Ns/(∂V ∂T), where Ns is
the number of sources as in the text, V the comoving sensitive volume, and T
the time of observation or survey.
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factorizes into the individual likelihoods for each detection. In
the following, we write out the expressions for a single GW
event i, omitting the subscript i for brevity of notation:

( ∣ ) ( ∣ ) ( ∣ )
( ∣ )

( )=p x D H
p D x H p x H

p D H
,

,
. 2GW GW 0

GW GW 0 GW 0

GW 0

The denominator, p(DGW|H0), is evaluated as an integral over
all possible xGW (Abbott et al. 2017a; Chen et al. 2018; Mandel
et al. 2019):

( ∣ ) ( ∣ ) ( ∣ ) ( )ò=p D H p D x H p x H dx, , 3GW 0 GW GW 0 GW 0 GW

where p(DGW|xGW, H0)= 1 in the case where the S/N of xGW
passes some detection threshold, and 0 in the case where it
does not.

2.1. The EM Counterpart Case

In the presence of an EM counterpart, there is additional
information in the EM data, xEM, which appears as an EM
likelihood term. Together with this, there is an underlying
assumption that there has been an EM detection; we denote this
assumption as DEM. Thus, for a single event with an EM
counterpart,

( ∣ )
( ∣ ) ( ∣ )

( ∣ ) ( ∣ )
( )

=

p x x D D H
p x H p x H

p D D H p D H

, , ,

,
.

4
GW EM GW EM 0

GW 0 EM 0

EM GW 0 GW 0

We assume that the detectability of an EM counterpart is
dependent on luminosity distance (as opposed to redshift)
because it is flux limited. As GW detectability is also a function
of luminosity distance, we expect p(DEM|DGW, H0) to be a
constant that does not depend on H0. This leads to

( ∣ ) ( ∣ ) ( ∣ )
( ∣ )

( )»p x x D D H
p x H p x H

p D H
, , , . 5GW EM GW EM 0

GW 0 EM 0

GW 0

2.2. The Galaxy-catalog Case

In the absence of an EM counterpart, the analogous data
comes from galaxy catalogs that provide a set of galaxies and
their associated sky locations, redshifts, and apparent magni-
tudes. As we are in the regime where the detectability of GW
sources extends beyond the distance to which current catalogs
are complete, the possibility that the GW host galaxy is not
contained in the catalog, because it is too faint, has to be taken
into account. This is done by marginalizing over the cases
where the host is in the catalog (denoted G), and where it is not
(denoted ¯ )G :

( ∣ ) ( ∣ ) ( ∣ )
( ∣ ¯ ) ( ¯ ∣ )

( )

=
+

p x D H p x G D H p G D H

p x G D H p G D H

, , , ,

, , , .
6

GW GW 0 GW GW 0 GW 0

GW GW 0 GW 0

In the case where the host galaxy is in the catalog, the EM data
enters in the form of information available in the galaxy
catalog, as also in Fishbach et al. (2019) and Soares-Santos
et al. (2019). This assumption is included in our conditioning
on G. The EM information is used to modify our priors on
galaxy redshift, sky location, and (apparent) magnitude, which
are common among all GW events using the same catalog. This

differs from the counterpart case where the EM data enters the
expression as a likelihood term, xEM, a transient which is
informative for only one GW event. In the case where the host
galaxy is not in the catalog, the complementary condition Ḡ
implies that we include the information about the limitations of
the EM survey. Following Gray et al. (2020), we model the
galaxy catalog as having an apparent magnitude threshold, mth,
since galaxy catalogs are flux limited. This magnitude thresh-
old, alongside the intrinsic (absolute) brightness of a galaxy
and its luminosity distance, determines the probability that the
galaxy is inside or outside the galaxy catalog.
The formalism which we adopt from Gray et al. (2020) is

closely analogous to the method described in Chen et al. (2018)
and Fishbach et al. (2019). The in-catalog and out-of-catalog
terms in Equation (6) above correspond to the two terms in
Equation (3) of Fishbach et al. (2019). However, the methods
start formally differing in the way that the (in)completeness of
the galaxy catalog is treated. In the current formalism from
Gray et al. (2020), the (in)completeness of the galaxy catalog
follows naturally from the parameters of the underlying EM
survey(s). The assumption that a galaxy catalog can be
modeled by a single mth in each direction of the sky is an
idealization. However, this can in the future be extended to
include nontrivial selection functions modeling the optical
sensitivity of the telescope instead of a sharp cutoff at mth, and
to composite catalogs coming from multiple surveys.
The quantities appearing on the right in Equation (6) can be

written out explicitly as follows:

( ∣ )

( ∣ ) ( ∣ ( )) ( )

( ∣ ) ( ∣ ( )) ( )

( )

å ò

ò
=

W

å W
=

=

p x G D H

p x z H p s M z m H p z dz

p D z H p s M z m H p z dz

, ,

, , , ,

, , , ,
.

7

j

N

j j j j j j

j
N

j j j j j j

GW GW 0

1
GW 0 0

1 GW 0 0

gal

gal

Here, Ngal is the total number of galaxies in the galaxy catalog,
Ωj and mj are respectively the sky coordinates and apparent
magnitude for galaxy j, and p(zj) is a distribution representing
the redshift of galaxy j. This quantity, p(zj), which enters as a
prior for our analysis, is the posterior distribution on the galaxy
redshift obtained following analysis of EM data; details of the
profiles chosen for p(zj) are deferred until Section 3.4.1. The
quantity M(zj, mj, H0) is the absolute magnitude (for the given
H0), and p(s|M(zj, mj, H0)) is the probability of a galaxy with
these parameters to host a GW source during the observation
time, relative to other galaxies. Formally, s is the statement that
a GW has been sourced or emitted (as opposed to being
detected); the previous expressions are all implicitly condi-
tioned on the assumption of s. In writing p(s|M), we make the
approximation that the probability of a galaxy hosting a source
depends only on the intrinsic luminosity of the galaxy, and not
on its other parameters or on the properties of the GW source.
In essence, this term allows for weighting galaxies by their
luminosities L(Mj(H0)) as

( ∣ ( )) ( ( ))
( )

⎧⎨⎩µp s M z m H
L M H

, ,
constant if unweighted

if luminosity weighted.

8

j j
j

0
0
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The likelihood when the host galaxy is not in the catalog,
( ∣ ¯ )p x G D H, ,GW GW 0 , is a ratio of marginalized integrals:

∭

∭
( )

( ∣ ¯ )
( ∣ ) ( ) ( ) ( ∣ ) ( ∣ )

( ∣ ) ( ) ( ) ( ∣ ) ( ∣ )
( )

( )

=
W W W

W W W

¥

¥

9

p x G D H

p x z H p z p p M H p s M dzd dM

p D z H p z p p M H p s M dzd dM

, ,

, ,

, ,
.z m M H

z m M H

GW GW 0

, , GW 0 0

, , GW 0 0

th 0

th 0

Here, the fact that the terms are conditioned on Ḡ is
incorporated into the redshift limits as a function of the
apparent magnitude threshold mth of the galaxy catalog.
Finally, the prior probabilities that a given GW detection has
or does not have support in the galaxy catalog are, respectively,

∭
∭

( )

( ∣ )

( ∣ ) ( ) ( ) ( ∣ ) ( ∣ )

( ∣ ) ( ) ( ) ( ∣ ) ( ∣ )

( ¯∣ ) ( ∣ )

( )

=
W W W

W W W

= -

¥

10

p G D H

p D z H p z p p M H p s M dzd dM

p D z H p z p p M H p s M dzd dM

p G D H p G D H

,

, ,

, ,
,

and , 1 , .

z m M H

GW 0

0

, ,
GW 0 0

0 GW 0 0

GW 0 GW 0

th 0

In Equations (9) and (10), p(z) is the prior on the redshift of
host galaxies of GW events, taken to be of the form

( ) ( ) ( ) ( )µ
+

p z
z

dV z

dz
R z

1

1
. 11c

Here, Vc(z) is the comoving volume as a function of redshift
and the factor (1+ z)−1 converts the merger rate from the
source frame to the detector frame. The merger rate density
may in general be a function of redshift; however, we set

( ) =R z constant throughout (other than in Section 5, where we
consider an alternative redshift-dependent rate model). The
prior on the GW sky location p(Ω) is taken to be uniform across
the sky. The term p(M|H0) is the prior on absolute magnitudes
for all the galaxies in the universe (not just those inside the
galaxy catalog), which we set to follow the Schechter
luminosity function:

( ∣ ) [ ]
( )

( )( ( )) ( ( ))µ -a- + - - -p M H 10 exp 10 .
12

M M H M M H
0

0.4 1 0.40 0* *

Following Gehrels et al. (2016), we use B-band luminosity
function parameters α=− 1.07 for the slope of the Schechter
function and ( ) = - +M H h19.7 5 log0 10* for its characteristic
absolute magnitude (with h≡H0/100 km s−1Mpc−1) throughout,
unless otherwise specified.198 For the upper limits of integration
over M, we choose the magnitude of the dimmest galaxies to be
- + h12.2 5 log10 . The integrals are not sensitive to the choice of
their lower limits, i.e., the magnitudes of the brightest galaxies.
More complex models for p(M|H0) can be used; in fact, we expect
the luminosity distribution of galaxies to also evolve with redshift
(Caditz & Petrosian 1989), as well as to depend on galaxy type
and color (Madgwick et al. 2002). While the consideration of such
dependence is beyond the scope of the current work, we refer the
reader to Gray et al. (2020) for a brief discussion on the
misspecification of the luminosity function parameters.

Further details and complete derivations for the framework
described above are discussed in Gray et al. (2020).

2.3. Posterior Samples Re-weighting

The GW data xGW has undergone parameter estimation,
providing a set of posterior samples on source parameters,
including the luminosity distance dL, sky coordinates Ω, and
the observed component masses in the detector frame m1,2

det . We
need the likelihood of the GW data p(xGW|H0), which requires
removing the priors used for the parameter estimation. In
particular, this means that the dL

2 prior must be removed before
the priors on z and H0 can be applied.
Additionally, a more subtle effect comes into play regarding

source- and detector-frame masses. The treatment of GW
selection effects requires a marginalization over the source-
frame mass distribution, while the data xGW contains informa-
tion about the detector-frame masses. In order to be self-
consistent, the analysis must be performed using the same prior
assumptions on both the individual event data and the
normalizing p(DGW|H0) term. This requires removing the
detector-frame mass prior and re-weighting the posterior
samples with the source-frame mass prior.
The source-frame mass distribution is p(m1, m2| μ), where μ

denotes the hyper-parameters describing the astrophysical
model (concrete details of the assumed model are discussed
later in Section 4). To re-weight the likelihood we use the
measured detector-frame masses and luminosity distances to
compute the corresponding source-frame masses as a function
of H0,

( )
( )=

+
m

m

z d H1 ,
. 131,2

1,2
det

L 0

We marginalize out the source-frame mass dependence using
the prior p(m1, m2| μ). The GW likelihood is a function of dL
and Ω as before, but now is also a function of H0. This effect
will be most pronounced for high distance (redshift) events,
where the conversion between detector-frame and source-frame
masses is most noticeable. Additionally, posterior samples
from events with particularly high or low detector-frame
masses may become inconsistent with the source-frame mass
prior for certain values of H0, leading to additional constraining
power (see Section 5.2 for details).

3. Data

3.1. GW Data

The GW searches performed during the first and the second
observation runs of the Advanced LIGO and Virgo have led to
the identification of 10 BBHs and one BNS merger (Abbott
et al. 2019b). The BNS event GW170817, well localized and at
a nearby distance of -

+40 10
10 Mpc, helped discover the EM

transient from the merger and was subsequently associated with
host galaxy NGC4993. The BBHs span a large range of
distances from -

+320 110
120 to -

+2840 1360
1400 Mpc and are distributed

over the sky with 90% credible regions as low as 39 deg2 to as
high as 1666 deg2. A summary of the relevant parameters of all
the GW detections are given in Table 1.
For the main results presented in Section 4 of this work, we

choose the events which meet the selection criterion of network
S/N>12 in at least one of the two pipelines for modeled
searches, namely, PyCBC and GstLAL. The sensitivity of the

198 The absolute magnitude is related to the intrinsic luminosity of a galaxy by
the relation, ( )- º -M M L L2.5 log10* * . The parameter M

*

of the Schechter
function itself depends on H0, which we take into account.
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results to this choice is explored in Section 5 by reducing the
network S/N threshold to 11. In each case, this S/N threshold
is also used in the treatment of GW selection effects as
described in Equation (3) above. In practice a detection is
claimed not solely on the basis of the S/N, but additionally by
applying data quality vetoes in order to remove noise
transients, and eventually constructing a ranking statistic such
as an inverse false alarm rate or a likelihood ratio (Abbott et al.
2019b). A careful treatment should use a threshold on a ranking
statistic rather than the S/N as the selection criterion. However
a distinction between the two does not cause an appreciable
difference if the considered detections are significantly louder
than transient noise artifacts (see, e.g., Appendix A.1 of Abbott
et al. 2019a). In order to keep the computation of the GW
selection effects tractable, one can thus place a more stringent
threshold on the S/N and select a subset of loud events from
the detected population, which is what we do for our analysis.
We note that placing an S/N threshold lower than or close to
that set by the detection pipelines would again be problematic
without modifications to the current method of accounting for
GW selection effects.

3.2. Galaxy Catalogs

The analysis with BBHs is performed in conjunction with
appropriate galaxy catalogs. We use the Galaxy List for the
Advanced Detector Era (GLADE) catalog (Dálya et al. 2018)
as a default, due to its depth and coverage over an extensive
region of the sky (see Section 3.2.1). For GW observations that
are particularly well localized, certain galaxy catalogs show a
clear improvement in completeness over GLADE within the
relevant localization volume of the event. In particular, we use
the DES Year 1 (Y1A1 GOLD or simply Y1) catalog (Abbott
et al. 2018b; Drlica-Wagner et al. 2018) for the analysis of
GW170814 (see Section 3.2.2). GW170818 lies within the
footprint of the Sloan Digital Sky Survey (SDSS). While not
used in this work, galaxy catalogs based on Data Release 14
(Abolfathi et al. 2018) or Data Release 16 (Ahumada et al.
2020) of the SDSS (including curated versions such as
the Gravitational Wave Events in Sloan (GWENS) catalog,
M. Rahman et al. 2019, in preparation), could be used to

improve the current analysis for events that fall in the SDSS
footprint.
In Table 1 we summarize the galaxy catalogs that we use for

our analysis for each of the detections, along with the number
of galaxies in the 90% error volume calculated from 3D
skymaps constructed from posterior samples associated with
the data release of Abbott et al. (2019b),199 and estimates of the
probability that the host galaxy is in the catalog, evaluated at
the median redshift for each detection assuming a Planck 2015
cosmology.
In the following, we describe in more detail the galaxy

catalogs that we use, quantify the probability that the host
galaxy for each event is in the galaxy catalog that is used for its
analysis, and discuss the assessment of the completeness over
the relevant localization volume for the best localized events.
Finally, we quantify the uncertainties associated with the
photometric measurement of redshifts in some of these
catalogs.

3.2.1. GLADE

We use the GLADE version 2.4 galaxy catalog (Dálya et al.
2018),200 to construct the observed redshift distributions for the
majority of the detected BBHs. The GLADE catalog has an all
sky coverage (Figure 1 of Dálya et al. 2018) since it is
constructed from the Gravitational Wave Galaxy Catalogue
(GWGC; White et al. 2011), 2MASS Photometric Redshift
(2MPZ; Bilicki et al. 2014), Two Micron All Sky Survey
(2MASS) Extended Source Catalog (Skrutskie et al. 2006),
HyperLEDA (Makarov et al. 2014), and SDSS-DR12Q (Pâris
et al. 2017) catalogs. The GLADE catalog is complete (in
B-band luminosity) out to 37Mpc and has an estimated
completeness of 50% out to 91Mpc (Figure 2 of Dálya et al.
2018). At low redshifts (0.05), we expect to be dominated by
the peculiar-velocity field. GLADE reports peculiar-velocity-
corrected redshifts following the reconstruction of Carrick et al.
(2015). GLADE provides apparent magnitudes in the B-band,

Table 1
Relevant Parameters of the O1 and O2 Detections: Network S/N for the Search Pipeline (PyCBC/GstLAL) in Which the Signal is the Loudest, 90% Sky Localization
Region ΔΩ (deg2), Luminosity Distance dL (Mpc, Median with 90% Credible Intervals), and Estimated Redshift zevent (median with a 90% Range Assuming Planck

2015 Cosmology) from Abbott et al. (2019b)

Event S/N ΔΩ/deg2 dL/Mpc zevent V/Mpc3 Galaxy Catalog Number of Galaxies mth p(G|zevent, DGW)

GW150914 24.4 182 -
+440 170

150
-
+0.09 0.03

0.03 3.5 × 106 GLADE 3910 17.92 0.42

GW151012 10.0 1523 -
+1080 490

550
-
+0.21 0.09

0.09 5.8 × 108 GLADE 78195 17.97 0.01

GW151226 13.1 1033 -
+450 190

180
-
+0.09 0.04

0.04 2.4 × 107 GLADE 27677 17.93 0.41

GW170104 13.0 921 -
+990 430

440
-
+0.20 0.08

0.08 2.4 × 108 GLADE 42221 17.76 0.01

GW170608 15.4 392 -
+320 110

120
-
+0.07 0.02

0.02 3.4 × 106 GLADE 6267 17.84 0.60

GW170729 10.8 1041 -
+2840 1360

1400
-
+0.49 0.21

0.19 8.7 × 109 GLADE 77727 17.82 < 0.01

GW170809 12.4 308 -
+1030 390

320
-
+0.20 0.07

0.05 9.1 × 107 GLADE 18749 17.62 < 0.01

GW170814 16.3 87 -
+600 220

150
-
+0.12 0.04

0.03 4.0 × 106 DES-Y1 31554 23.84 > 0.99

GW170817 33.0 16 -
+40 15

7
-
+0.01 0.00

0.00 227 L L L L
GW170818 11.3 39 -

+1060 380
420

-
+0.21 0.07

0.07 1.5 × 107 GLADE 1059 17.51 < 0.01

GW170823 11.5 1666 -
+1940 900

970
-
+0.35 0.15

0.15 3.5 × 109 GLADE 117680 17.98 < 0.01

Note. In the remaining columns we report the corresponding 90% 3D localization comoving volumes, the number of galaxies within each volume for public catalogs
which we find to be the most complete, and the apparent magnitude threshold, mth, of the galaxy catalog associated with the corresponding sky region (as described in
Section 3.3). The final column gives the probability that the host galaxy is inside the galaxy catalog for each event, p(G|zevent, DGW), also evaluated at the median
redshift for each event.

199 Available at: https://www.gw-openscience.org/GWTC-1.
200 GLADE is publicly available at: http://glade.elte.hu.
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which we can use directly (i.e., without any photometric
transformations) for luminosity weighting of the galaxies.

3.2.2. DES Year 1

The DES is a 5 yr survey mapping≈300 million galaxies in
five filters (grizY) over 5000 deg2. It is worth noting that the
GW170814 sky localization is fully enclosed within the
footprint of the SDSS (Drlica-Wagner et al. 2018; Abbott
et al. 2018b) Year 3 (Y3) GOLD catalog. An estimate of H0

from the GW170814 distance and the Y3 catalog of the DES
has been carried out (Soares-Santos et al. 2019). In this work,
we use the publicly available DES-Y1 catalog (Abbott et al.
2018b)201 to compute the H0 posterior for GW170814.
Approximately 87% of the probability region for the
GW170814 sky localization is enclosed within the DES-Y1
catalog. Analysis with a different catalog provides a parallel
measurement of H0 with GW170814, and (given the catalog
differences) can potentially be indicative of systematic effects
in the catalogs, such as the treatment of redshift uncertainties
(provided that a similar set of galaxies are present in both
catalogs).

We select the objects in the DES-Y1 catalog that are classified
as high-confidence galaxies using the default classification
scheme, “MODEST_CLASS” (Drlica-Wagner et al. 2018;
Sevilla-Noarbe et al. 2018). We use the photometric redshifts
that are derived using the Bayesian photometric redshift (BPZ)
template fitting method (Hoyle et al. 2018). We use the median
redshifts provided in the catalog and discard (around 5%) galaxies
with redshift errors larger than twice their corresponding quoted
median redshift value. Such a choice is not expected to bias our
result since the discarded galaxies are highly uninformative.

We convert from the DES grizY magnitudes to the SDSS ugriz
system using the photometric transformations provided in the
DES-Y1 paper (Drlica-Wagner et al. 2018), which requires
discarding a further ∼5% of galaxies with inadequate color
information. This transformation enables us to apply K corrections

to obtain source-frame luminosities (see Section 3.4.2 for details).
We use the SDSS g-band magnitudes, as these are closest to
B-band, and update the Schechter parameters of our analysis to
have α=−0.89 and ( ) = - +M H h19.39 5 log0 10* based on
Blanton et al. (2003).

3.3. Probability That the Host Galaxy is in the Catalog

In this work, we assume that we can characterize the
completeness of a galaxy catalog using an apparent magnitude
threshold (limiting magnitude) mth. We estimate mth by
calculating the median value from the apparent magnitude
distribution of all the galaxies within the sky localization of
each event. For GLADE, this choice allows us to account for
some of the larger changes in completeness across the sky,
which come from it being a composite catalog, comprised of
many surveys of differing depths. Galaxy catalogs are
directional, and a more sophisticated analysis would involve
calculating the limiting magnitude for a given line of sight.
Obtaining the H0 posterior distribution would thus require a
joint estimate of mth along the lines of sights within an event’s
sky localization. We leave this for future work. That the
completeness of a galaxy catalog is modeled by a set of
limiting magnitude thresholds, can by itself be a nontrivial
assumption, especially for photometric catalogs, since galaxies
may be missing for various reasons other than them being too
faint. This will also need to be revisited in the future in a
catalog-specific manner.
For now, we use the mth estimated as described above, and

show in Figure 1 the probability of a host galaxy being inside
the catalog p(G|z, DGW) as a function of redshift z, for each of
the galaxy catalogs under consideration. For GLADE this
quantity is calculated for each event using the mth calculated for
each event’s sky localization. For DES-Y1, the curve is for the
patch of sky covering GW170814. These probabilities are
calculated using the expressions in Equation (10), but as a
function of z, and are therefore independent of the choice of H0.
We additionally show as the vertical lines in Figure 1 the
median redshift for each event zevent (calculated assuming a

Figure 1. The probability that the host galaxy is inside the galaxy catalog, shown for GLADE (gray curves) and DES-Y1 (orange curve), as a function of redshift. For
GLADE, this quantity is calculated for each individual event, using the completeness estimated within each event’s sky localization. For DES-Y1, the curve is only
valid in the patch of sky covering GW170814. Each curve is independent of the value of H0. The vertical lines show the median redshift (assuming a Planck 2015
cosmology) for each event as in Table 1. These lines are thick and solid up to the intercept with the galaxy catalog they are used with, and thin and dashed above.

201 DES-Y1 is available at: https://des.ncsa.illinois.edu/releases/y1a1.
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Planck 2015 cosmology). In the final two columns of Table 1,
we report the mth of the relevant catalog within the sky
localization of each event, and the probability of the host
galaxy being in the catalog at the median redshift of each event.

3.4. Detailed Analysis of DES-Y1

The high completeness fraction of DES-Y1 within the
GW170814 sky localization is apparent from Figure 1. The
catalog is expected to be more complete than GLADE since it
has a limiting magnitude of approximately 23.8 for DES-Y1.
We analyze the EM information coming from this catalog in
greater detail. It is helpful to have an assessment of the
contribution from potential host galaxies as a function of
redshift for these events. In order to quantify this contribution,
we perform a treatment analogous to Fishbach et al. (2019) and
compute the ratio pcat(z)/pvol(z) between the probability
distribution for the redshifts of potential host galaxies pcat(z)
and of a uniform in comoving volume distribution of galaxies
pvol(z). When computing pcat(z), we include all galaxies
brighter than L0.05 g* within the corresponding event’s 99%
sky localization region defined as

( ) ( ∣ ) ( ) ( )òº W W Wp z p x p z d, , 14cat GW 0

where p(xGW|Ω) is the GW likelihood as a function of the sky
position Ω (this effectively weights each galaxy with the 2D
skymap probability), and p0(z, Ω) represents the galaxy catalog
contribution, obtained from the distribution of galaxies in the
catalog, marginalized over their redshift uncertainties also
obtained from the catalog, and weighted by their probability of
hosting a GW source (assuming a Planck 2015 cosmology for
the required magnitude conversion). We consider weights for
each galaxy proportional to their g-band luminosity as well as
uniform weights to explore the effects due to this choice.

In Figure 2, we show the distributions pcat(z)/pvol(z) for the
DES-Y1 galaxies within the GW170814 sky localization
region, for the redshift range 0< z< 0.5. The unweighted
curve traces the over/under-density of galaxies, and then falls
off at larger redshift due to incompleteness in the catalog. The
luminosity-weighted redshift distribution is driven partially by
the overdensity of galaxies at z≈ 0.4, and partially by bright
high-redshift galaxies. The host galaxies for GW170814 are
more likely to be located near the higher galaxy density regions
in the DES-Y1 catalog—these features in the redshift prior are
expected to drive the inferred H0 posteriors for the corresp-
onding events. Features we see in the DES-Y1 catalog are not
as pronounced as the overdensity in the DES-Y3 data seen in
Soares-Santos et al. (2019). While the DES-Y3 survey is
deeper, and may reveal finer features, a part of the above
difference is likely also driven by the difference in the
photometric redshift estimation algorithms, namely, template
fitting methods such as BPZ (Hoyle et al. 2018) and machine-
learning-based methods such as the ANNz2 algorithm (Sadeh
et al. 2016), with the latter used for GW170814 in (Soares-
Santos et al. 2019). Only the former of the two has been used
for the DES-Y1 catalog and a combination of both for the DES-
Y3 catalog. The different selection criteria for choosing
galaxies from the two catalogs, such as the stringent redshift
cut placed in Soares-Santos et al. (2019) versus a more relaxed
redshift prior used in this work, is another potential source of
difference between the corresponding redshift distributions.

3.4.1. Redshift Uncertainties

An important source of measurement uncertainty with galaxy
catalogs is in the galaxy redshifts, which are often photometric
estimates due to lack of spectroscopic measurements out to large
redshifts. In our formalism, the uncertainty in redshift is reflected
in the term p(zj) in Equation (7). We model the individual galaxy
redshift probability distributions, p(zj), as a Gaussian distribution
with the mean set to the quoted median photometric redshift zphoto
and with a standard deviation of szphoto (both obtained from the
galaxy catalog data). Photometric redshift estimates are often not
approximated by Gaussian distributions, and we make this
assumption only due to limited information present in some of
the public galaxy catalogs that we use. A rigorous quantification
of the effect of this assumption is beyond the scope of this work.
In practice, we implement the redshift uncertainty by the process
of a Monte Carlo integration: the integral over zj in Equation (7)
becomes an additional sum over Nphoto random samples. This
number varies between the different galaxies and is always high
enough to ensure that the final event likelihood is independent of
the set of random draws from each galaxy.

3.4.2. Source-frame Luminosities

For galaxy catalogs that are complete to high redshifts, it is
important to note that the observed apparent magnitudes are
redshifted from their source frame. Galaxies do not emit
uniformly in all wavelengths, and galaxy surveys are only
sensitive in certain bands. In order to compare the properties of
galaxies at different redshifts, e.g., to apply luminosity
weighting, or to apply a luminosity cut to the galaxy sample,
the K correction, described in Oke & Sandage (1968) and Hogg
et al. (2002), needs to be applied. In particular, the K correction
term is redshift dependent and so neglecting it could lead to
systematic bias in the estimation of H0.
For DES, we compute the K corrections using the calculator

described in Chilingarian et al. (2010) and Chilingarian &
Zolotukhin (2012). These K corrections are valid out to redshifts

Figure 2. Probability distribution for the redshifts of potential host galaxies pcat(z),
with redshift uncertainties taken into account, divided out by a uniform in
comoving volume distribution pvol(z) of galaxies. When computing pcat(z) we
include all galaxies brighter than L0.05 g* within the corresponding event’s 99%
sky localization region and weight each galaxy by weights proportional to their
g-band luminosity (solid lines) as well as with uniform weights (dotted lines). We
show these distributions for the DES-Y1 galaxies within the GW170814 sky
localization region. We also show the 90% median estimated redshift range for
GW170814 (calculated assuming a Planck 2015 cosmology) for reference.
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of 0.5 and so we apply a hard redshift cut. In order to remain self-
consistent, the method is adjusted to include this redshift cut, such
that the probability of the host galaxy being in the catalog above
z= 0.5 is zero, and below the cut it is determined according to the
apparent magnitude threshold, as before.

In the case where galaxies have high redshifts and large
redshift uncertainties, this uncertainty must be accounted for in
the calculation of the K corrections. Using only the mean
redshift to calculate the K correction would lead to unrealis-
tically bright or faint luminosities at the tail ends of the redshift
distribution. In our implementation, the K corrections are
calculated in situ for each redshift Monte Carlo random draw
described in Section 3.4.1, automatically taking the galaxy
redshift uncertainties into account.

4. Results

We apply the method described above to obtain a measure-
ment of H0 using GW standard sirens only. We carry out our
analysis with a prior on H0 uniform in the interval of [20,
140] km s−1Mpc−1; we report our final results also using a flat-
in-log prior ( ) µ -p H H0 0

1 in the same interval for ease of
comparison with previous studies. We use the marginalized
distance likelihood and skymaps constructed from the posterior
samples of Abbott et al. (2019b).202 For the BBHs, we choose
all galaxies in the 99.9% sky region of the corresponding
catalog and we further weight the galaxies in proportion to their

B(g)-band luminosities. In order to calculate the term
p(DGW|H0) in the denominator, we use a Monte Carlo
integration, sampling parameters that affect an event’s detect-
ability (masses, sky location, inclination angle, and polariza-
tion) from chosen priors. We choose a power-law mass
distribution for BBHs with ( ) µ a-p m m1 1 and m2 uniform in its
range with 5Me<m2<m1< 100Me in the source frame, and
a distribution of merger rates that does not evolve with redshift;
for the power-law index α, we choose α= 1.6 (which is
supported by Model B of Abbott et al. 2019a). For BNSs, we
use a Gaussian mass distribution with a mean of 1.35Me and a
standard deviation of 0.15Me (Kiziltan et al. 2013).203 The
remaining GW parameters are marginalized over their natural
distributions: uniform in the sky, uniform on the sphere for
orientation, uniform in polarization. We use the time-averaged
power-spectral-density of detector noise for the corresponding
observation run from Abbott et al. (2018a), and for the
selection criterion, we use a network S/N threshold of 12 in at
least one search pipeline. The O1 and O2 BBHs that pass this
criterion are GW150914, GW151226, GW170104, GW170608,
GW170809, and GW170814 (see Table 1).
Our result for these O1 and O2 BBHs is shown in Figure 3.

The detections for which there is considerable support from the
galaxies present in the catalog show features of the galaxy
catalog in their H0 posterior distribution. The GW170814
estimate is qualitatively similar to the result in Soares-Santos

Figure 3. Individual estimates of H0 from the six BBH detections that satisfy the selection criterion of a network S/N >12 in at least one search pipeline. These results
assume a m−1.6 power-law distribution on masses and a non-evolving rate model. All results assume a prior on H0 uniform in the interval [20, 140] km s−1 Mpc−1

(dotted blue). We also show the estimates of H0 from the cosmic microwave background (CMB; Planck Collaboration et al. 2020) and supernova observations
(SH0ES; Riess et al. 2019).

202 For computational convenience, we separately construct a marginalized
distance likelihood and a two-dimensional skymap; this approximation will be
revisited in the future.

203 While this does not significantly affect our current results, we will need to
revisit the BNS mass distribution in light of GW190425 (Abbott et al. 2020),
which is potentially a BNS merger with heavier components.
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et al. (2019) with analogous peaks in the posterior distribution.
The differences in peak locations can be attributed to a
difference in the redshift distribution for the DES-Y3 catalog
used in Soares-Santos et al. (2019) versus that for the public
DES-Y1 catalog used in this work. For the detections for which
the galaxy catalogs are relatively empty, we see the features of
the assumptions on mass distribution and redshift evolution of
binary merger rate that have entered our analysis. The more
distant events, such as GW170809, lead to H0 estimates pushed
to the lower end of the prior. This is due to the following
reason. In a universe where host galaxies are distributed
uniformly in comoving volume, for lower values of H0, the
expected distribution of detected GW events favors relatively
higher luminosity distances. Thus, events at high luminosity
distances have more support for smaller values of H0, while
relatively nearby events, namely, GW150914, GW151226,
GW170608, and GW170814, correspondingly, have lower
support at smaller values of H0. The information present in the
observed luminosity distance distribution would thereby
potentially contribute to the H0 measurement, independent of,
or even in absence of information in galaxy catalogs, if the
underlying distributions of source parameters were known.

In the absence of knowledge of the astrophysical distribution
of BBH source parameters, a thorough treatment would involve
a marginalization over all possible mass distributions and rate
models. The following section discusses the systematic
differences that the assumptions on the assumed population
model could lead to.

For our final result we combine the contribution of the BBHs
with the result from GW170817 obtained using the low spin
prior samples from Abbott et al. (2019b) and an estimated
Hubble velocity of vH≡ cz= 3017± 166 kms−1 (where c is
the speed of light) for NGC4993 from Abbott et al. (2017a).
Our final combined result is shown in Figure 4, with the
posterior distribution plotted assuming a uniform H0 prior: we
obtain H0= -

+70 9
20 km s−1 Mpc−1 (68.3% highest density

posterior interval). To compare with values in the literature,
we also use a flat-in-log prior, ( ) µ -p H H0 0

1, and calculate
H0= -

+69 8
16 km s−1 Mpc−1, which corresponds to an improve-

ment by a factor of 1.04 (about 4%) over the GW170817-only
value of -

+69 8
17 km s−1 Mpc−1. We also quote the median and

symmetric 90% credible interval for this measurement, which
is -

+75 14
39 km s−1 Mpc−1.

5. Systematic Effects

In this section, we repeat the previous analysis with a few
alternative assumptions for the GW selection criterion, the GW
population model, and source host properties. Subsequently,
we discuss other sources of systematic effects, a detailed study
of which is beyond the scope of this work.

5.1. Selection Criterion

We first look into the sensitivity of our results to the GW
selection criterion. We reduce the threshold on the network S/N
from 12 chosen in the previous section to 11 in least one search

Figure 4. The GW measurement of H0 (dark blue) from the detections in the first two observing runs of the Advanced LIGO and Virgo. The GW170817 estimate
(orange) comes from the identification of its host galaxy NGC4993 (Abbott et al. 2017a). The additional contribution comes from BBHs in association with
appropriate galaxy catalogs; for GW170814, we use the DES-Y1 galaxy catalog, while for the remaining five BBHs, GW150914, GW151226, GW170104,
GW170608, and GW170809, we use the GLADE catalog. The 68% maximum a posteriori intervals are indicated with the vertical dashed lines. All results assume a
prior on H0 uniform in the interval [20, 140] km s−1 Mpc−1 (dotted blue). We also show the estimates of H0 from the CMB (Planck Collaboration et al. 2020) and
supernova observations (SH0ES: Riess et al. 2019).
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pipeline. The computation of the GW selection effects is adjusted
accordingly. Figure 5 shows the results with the two sets of
assumptions. Reducing the S/N threshold to 11 introduces two
additional events in our analysis, namely, GW170818 and
GW170823, neither of which have a significant in-catalog
contribution. Differences are expected due to the fact that
additional low-S/N events are introduced, and also because the
individual likelihoods change slightly with a different S/N
threshold used in the GW selection term. In the regime of a large
number of events, these two effects are expected to cancel,
provided that the additional low-S/N events do not have
significant in-catalog support. For our result, this difference is
not significant; however, the small variation is a reminder that we
are still in the regime of a low number of events.

5.2. Population Model

Going back to our default assumption of a network S/N
threshold of 12, we test the sensitivity to our assumptions
regarding the population model, i.e., the mass distribution and
the distribution of binary merger rate with redshift. In addition
to the power-law mass distribution with α= 1.6 (median
inferred value using Model B of Abbott et al. 2019a), we
choose a shallower flat-in-log mass distribution with α= 1, and
a steeper distribution with α= 2.3 (both within the support of
the inferred range in Abbott et al. 2019a). Our results are
shown in the left panel of Figure 6, and they demonstrate that
the systematic differences due to the choice of power-law slope
α are insignificant.

As a test case, we vary the upper cutoff for the mass
distribution, Mmax. For our default analysis, Mmax was chosen to
be 100Me, consistent with all the considered BBHs for all
values of H0 within the prior range. Reducing this cutoff to a
slightly restrictive =M M50max (e.g., motivated by the pair
instability supernova process, Fowler & Hoyle 1964), we see a
significant difference (right panel of Figure 6). Lowering
Mmax corresponds to a closer GW detection horizon. This

systematically leads each event to prefer slightly lower values
of H0 than in the main result, for the reasons outlined in
Section 4, namely, the relationship between the predicted event
distribution (from our GW selection effects) and the real
detected event distribution.
Next, we relax our assumption on the evolution of rate of

binary mergers with redshift. A constant merger rate density,
( ) =R z constant, implicit in the previous treatment, assumed that

the merger rate traces the comoving volume. In addition, we
repeat our analysis using a merger rate R(z)∝ (1+ z)3 that traces
the star formation rate at low redshifts (z< 2.5) (Saunders et al.
1990), as well as a merger rate R(z)∝ (1+ z)−3 that could arise if
typical delay times are very long, as may be expected from the
chemically homogeneous evolution formation channel (Mandel &
de Mink 2016). These relaxed assumptions thus cover a large
fraction of physically viable and inferred population models
(Abbott et al. 2019a). We show our results for the different
assumed redshift evolution models in Figure 7. The model in
which the merger rate traces star formation shows a significant
difference, with a tendency to prefer lower values of H0,
compared to the other two models which are quite similar. This
is the only systematic effect that leads to a significant difference in
the results at this time.

5.3. Luminosity Weighting

The results in the previous section assumed a weighting of
galaxies by their luminosities in the B-band, which are
indicative of galaxies’ star formation rates. Luminosities in
the infrared (such as the K-band) are more indicative of the
total masses of galaxies; however, infrared luminosities are not
present in catalogs like DES-Y1. In order to quantify the
difference likely to be caused by alternate ways of weighting
the galaxies, we repeat our analysis with no luminosity
weighting. These results are shown in Figure 8.
With uniform luminosity weights, we obtain a result on a

joint BBH estimate that is close to flat (thin orange line in
Figure 8). This can be understood as follows: (1) The out-of-
catalog terms in Equation (6) take into account the lack of
galaxies beyond the apparent magnitude threshold mth of the
catalog in a uniform way. When galaxies are unweighted, the
probability of the host galaxy being inside the catalog is
reduced compared to the luminosity-weighted case. More
weight is given to the uniform out-of-catalog contribution, and
the events become less informative. (2) The catalogs used in
this analysis contain high numbers of low-luminosity galaxies.
The contribution from these more evenly distributed dim
galaxies, in the unweighted case, again reduces the informa-
tiveness of each event and flattens the final result. This is also
in agreement with our expectations from Fishbach et al. (2019)
and Gray et al. (2020), where weighting by luminosities
enhance the features in the posterior distribution coming from
the galaxy catalog.

5.4. Waveform Models

The posterior samples of Abbott et al. (2019b) used for the
results in this paper have been obtained combining the results
of gravitational waveform models that incorporate spin and
precession effects to different extents (Hannam et al. 2014; Pan
et al. 2014; Taracchini et al. 2014; Husa et al. 2016; Khan et al.
2016; Babak et al. 2017). These models are restricted to quasi-
circular orbits (i.e., they do not include orbital eccentricity) and

Figure 5. Sensitivity of the results to the selection criterion on the S/N. The
final joint result as well as the contribution from all the BBHs that satisfy the
selection criterion are shown for a threshold network S/N of 12 (thick orange)
and 11 (thin orange); the variation is shown as a shaded band. The GW170817
counterpart result (gray) is added to guide the eye. Six BBHs (GW150914,
GW151226, GW170104, GW170608, GW170809, and GW170814) pass the
selection criterion with an S/N >12. Two additional BBHs (GW170818 and
GW170823) are included with an S/N >11. These results assume the default
m−1.6 power-law distribution on masses and a non-evolving rate model.
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neglect higher-order harmonics. Systematic differences in GW
parameter estimation results with the employed waveform
models constitute only a small fraction of the total uncertainty
budget (see, e.g., Abbott et al. 2016a, 2017b), and given the
large statistical uncertainties, the ignored effects in waveform
modeling are not expected to cause a difference in the current
measurement of H0. However cumulative systematic effects
arising from limitations of waveform models will become
increasingly important as the statistical uncertainties become
smaller, and in particular, features that can lead to biases in the
GW estimation of distance will need to be incorporated.

5.5. Detector Calibration

An independent effect to be considered is the calibration of
the GW detectors. Currently, the GW parameter estimation
results are marginalized over the detector calibration uncer-
tainties (4% in amplitude in O1 and O2), which accounts for
both the statistical uncertainty and the systematic error
correlated between detections (Abbott et al. 2019b). Both the
statistical uncertainty and the systematic error in GW detector
calibration are much smaller than the other measurement
uncertainties, and thus negligible for H0 estimates from a
handful of detections that we have now or expect in the near
future (Cahillane et al. 2017). However, the impact of
correlated systematic calibration errors between detections will
become relatively more important in the long term, with an
increasing number of detections driving down the statistical
uncertainties, and an improved understanding of other
systematic effects that possibly govern our current uncertainty
budget. Further quantitative study of the effect of correlated
calibration uncertainties is ongoing.

6. Conclusion and Outlook

In this paper we have presented the first measurement of H0

using multiple GW observations. Our result reanalyzes and
combines the posterior probability distribution obtained from
the BNS event GW170817 using the redshift of the host galaxy
inferred from the observed EM counterpart (Abbott et al.
2017a), along with constraints using galaxy catalogs for the
BBH events observed by the Advanced LIGO and Virgo in

Figure 6. Sensitivity of the results to the assumed mass distribution model. Left panel: variation of the results with three different choices of the power-law index for
the mass distribution, α = 1.6 (thick solid), α = 2.3 (thin solid), and α = 1 (thin dashed), assuming a constant intrinsic astrophysical merger rate, ( ) =R z constant and

=M M100max . Right panel: variation of the results with two different choices for the allowed black hole maximum mass, =M M100max (thick solid) and
=M M50max (thin solid), both assuming R(z) = constant and α = 1.6.

Figure 7. Variation of the results with two different choices for the rate
evolution, ( ) =R z constant (thick solid), and R(z) ∝ (1 + z)3 (thin solid) and R
(z) ∝ (1 + z)−3 (thin dashed) for α = 1.6 and =M M100max .

Figure 8. Sensitivity of the results to luminosity weighting. We show how the
results vary when we weight the galaxies in the catalog by their B(g)-band
luminosity (thick solid) as well as with constant (uniform) weights (thin solid),
both assuming a power-law index for the mass distribution, α = 1.6, and
constant intrinsic astrophysical merger rate, ( ) =R z constant.
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their first and second observing runs. We measure H0= -
+69 8

16

km s−1 Mpc−1 (68.3% highest density posterior interval with a
flat-in-log prior). This result is mainly dominated by the
information from GW170817 with its counterpart, but does
show a modest improvement with the inclusion of the BBHs.
The BBHs contribute both from associated galaxy catalogs as
well as via their observed luminosity distance distribution.
Since the latter contribution is sensitive to the assumptions on
the mass distribution and rate evolution, a more thorough
treatment requires a marginalization over these unknown
population parameters.

The contribution from events without counterparts is dominated
by GW170814, for which the associated galaxy catalog is highly
complete. This highlights the importance of deeper surveys and of
dedicated EM follow-up of sky regions following GW triggers for
a better H0 measurement. With numerous anticipated detections in
the upcoming observing runs with improved detector sensitivities
(Abbott et al. 2016a, 2016b, 2017c, 2018a, 2019a, 2019b), these
results pave the way toward an era of precision multimessenger
cosmology to be performed with a multitude of sources, including
both neutron star and black hole mergers, with or without transient
EM counterparts.

Analyses in this paper made use of NUMPY (Harris et al.
2020), SCIPY (Virtanen et al. 2020), ASTROPY (Astropy
Collaboration et al. 2013, 2018), GWCOSMO (https://git.ligo.
org/lscsoft/gwcosmo), and IPYTHON (Perez & Granger 2007);
plots were produced with MATPLOTLIB (Hunter 2007), and
SEABORN (Waskom et al. 2017). This research made use of the
K-corrections calculator service available at http://kcor.sai.
msu.ru/.
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