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Underwater Image Quality Assessment: Subjective and Objective
Methods

Pengfei Guo, Lang He, Shuangyin Liu, Delu Zeng, Hantao Liu

Underwater image enhancement plays a critical role in marine
industry. Various algorithms are applied to enhance underwater
images, but their performance in terms of perceptual quality
has been little studied. In this paper, we investigate five popular
enhancement algorithms and their output image quality. To this
end, we have created a benchmark, including images enhanced
by different algorithms and ground truth image quality obtained
by human perception experiments. We statistically analyse the
impact of various enhancement algorithms on the perceived
quality of underwater images. Also, the visual quality provided
by these algorithms is evaluated objectively, aiming to inform the
development of objective metrics for automatic assessment of the
quality for underwater image enhancement. The image quality
benchmark and its objective metric are made publicly available.

Index Terms—Underwater image, image quality assessment,
perception experiment, statistical analysis, objective metric.

I. INTRODUCTION

AQUACULTURE is an important component of the ma-
rine industry. In order to reduce the costs of human

resources and protect the marine environment, research has
been undertaken to develop underwater robots for aquaculture
[1]. The main task of underwater robots is to detect and track
underwater objects based on capturing underwater images.
To make these images useful for underwater tasks, image
enhancement is often applied. However, the complex un-
derwater environment makes the enhancement of underwater
images a very challenging problem. Firstly, the underwater
images exhibit the haze-like property which is caused by
lights scattered and deflected by plankton, sand and minerals
in the ocean [2]. Secondly, the underwater images present
various color changes resulted from varying degrees of light
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attenuation for different wavelengths [3]. Moreover, with the
influence of the artificial lights and unstable conditions for
capturing raw images, the noise is hard to be expressed by
some known statistical distributions in the underwater images
[4].

For underwater image enhancement, the designed algo-
rithms should solve the following issues: (a) the color-casting
(greenish/bluish color) problem caused by light attenuation.
(b) the sharp-degradation (blurring effects) problem due to
forward scattering of light, especially, by enhancing the edges
and details of images will improve further processing such as
object detection, segmentation, saliency detection and so on.
(c) the contrast degradation (hazing) resulted from backward
scattering of light. However, the special properties of the
underwater images make the direct use of traditional image
enhancement methods rather infeasible [5].

Many dedicated algorithms have been proposed to enhance
the quality of underwater images. These algorithms can be
categorized into the physics-based approach and the non-
physics-based approach. The physics-based methods model the
processes of underwater optical imaging. This can be described
by the image formation model (IFM) [6], [7], [8]:

Ic(i, j) = Jc(i, j)tc(i, j)+Bc(1−tc(i, j)), c ∈ {r, g, b}, (1)

where Ic(i, j) is the intensity of the scene captured by the
camera in the c-channel at the position (i, j), Jc(i, j) is the re-
stored underwater scene in the c-channel at the position (i, j),
Bc is the homogeneous background light in the c-channel, and
tc(i, j) is the transmission medium map in the c-channel at the
position (i, j). The enhancement of underwater images using
the IFM can be also regarded as the IFM-based image restora-
tion methods, e.g., dark channel prior (DCP) [9], underwater
dark channel prior (UDCP) [10], minimum information loss
prior (MIP) [11], generalized dark channel prior (GDCP)[12],
non-local image dehazing (NLD) [13], restoration based on
image blurriness and light absorption (IBLP) [14] and so on.
The methods that do not adopt the information of underwater
optical imaging are called the non-physics-based methods
and can be regarded as the IFM-free methods. The IFM-free
based methods mainly deal with the improvement of color,
edges and contrast of underwater images based on the pixel
intensity re-distribution. The IFM-free methods range from
the traditional techniques (such as contrast limited adaptive
histogram equalization (CLAHE) [15], decorrelation stretch
(DS) [16], image fusion (IF) [17] and so on) to data-driven
techniques (e.g., generative adversarial network (GAN) [18]
and convolutional neural network (CNN) [19]).
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Notwithstanding the progress made on the development of
the image enhancement algorithms for underwater images,
there is little work on the comparative study of these al-
gorithms and a lack of a generic framework for the quality
assessment of the enhanced images.

In this paper, we selected five state-of-the-state under-
water image enhancement algorithms including both IFM-
free methods and IFM-based methods. Firstly, We describe
and compare these underwater enhancement algorithms and
analyse the signal properties of these algorithms. Secondly,
we build a benchmark of underwater image enhancement
through subjective image quality assessment. Furthermore,
we propose a novel objective quality metric for underwater
image enhancement that can automatically assess the quality
of enhanced images (note quality assessment must be reliant
on the enhanced image only; there is no reference of per-
fect/maximum quality as an enhanced image may be of higher
or lower quality relative to the original).

The contributions of this paper are:
• A comparative study of state-of-the-art algorithms for

underwater image enhancement;
• A benchmark for the assessment of underwater image

enhancement algorithms;
• An improved objective metric for underwater image qual-

ity assessment.
The rest of the paper is organized as follows: Section II

evaluates different underwater image enhancement algorithms.
Section III presents our new underwater image enhancement
benchmark and the subjective and objective evaluation of the
quality of the enhanced images. Section IV concludes the
paper.

II. STATE-OF-THE-ART UNDERWATER IMAGE
ENHANCEMENT ALGORITHMS

A. Underwater image enhancement algorithms

Recently, many image processing methods are adopted
to study the underwater image enhancement problem. Tra-
ditionally, Histogram Equalization (HE) [20] and Modified
Histogram Equalization (MHE), e.g., Contrast Limited Adap-
tive Histogram Equalization (CLAHE), and wavelet-HE are
considered as a typical tool that can be used to improve global
contrast of the low-light images. Qiao et. al. [21] presented a
CLAHE-wavelet enhancement algorithm for the underwater
sea cucumber images. They use CLAHE to increase the
contrast of underwater images with Rayleigh prior distribution.
The enhanced image is further improved by de-nosing using
soft threshold wavelet transform. Ahmad et.al. [22] proposed
a dual-image Rayleigh-stretched contrast-limited adaptive his-
togram specification algorithm to combine local and global
contrast and use color correction to improve the visual quality
of underwater images.

To deal with the color casting problem of underwater
images, the classical color correction methods such as White
Balance (WB) and Gray-Edge Assumption (GEA) are used to
adaptive change the saturation of the images to upgrade their
visual quality. These traditional color correction algorithms are
used as the pre-processing or post-processing procedures of

underwater enhancement algorithms [23]. Due to the influence
of artificial light and low-light environment, the use of contrast
enhancement algorithms and color correction algorithms often
give over-enhancement effects such as serious artificial details,
and halos.

Image fusion is another successful strategy for IFM-free
underwater enhancement. In 2012, Ancuti et.al. reported an
image fusion-based underwater enhancement algorithm [24].
The fused images are produced by using white balance to
correct color and using local adaptive histogram equalization
to increase contrast. The enhanced images with more detailed
information and better contrast are then obtained by using
underwater associated adaptive weighted multi-scale method.
The follow-up work of Ancuti et.al. presented a novel image
fusion method for underwater images based on color balance.
The fused images are obtained by using Gamma correction
and sharpness algorithms to solve the white balance problem.
The fused images deal with the low-light disadvantage of
underwater images, and show better quality in the dark regions
of underwater images [17].

Some researchers study the underwater image enhancement
problem based on the image formation model. Yang et.al. [10]
proposed a modified dark channel prior algorithm to enhance
the low complexity underwater images. They estimated the
depth map by median filter instead of the soft matting. The
restoration images are further improved by Gamma correction
to increase the contrast of the images. Li et. al. [11] proposed
a two-step underwater image enhancement method. The first
step employed a dehazing algorithm with minimum informa-
tion loss that restores the natural images. The second step was
to increase the local and global contrast of underwater images
by histogram distribution prior. Peng et. al. [14] presented
an underwater image restoration algorithm based on light
absorption and image blurriness. Based on estimation of the
background light from blurry regions of underwater images,
the transmission map and depth map gave a good enhanced
underwater image. Peng et. al. [12] proposed a generalized
dark channel prior algorithm (GDCP) for underwater images.
They employed the scene transmission map estimated by scene
ambient light differential instead of the transmission map. This
proposed GDCP was the first method to study the effect of
the color-dependent color change for degraded images caused
by light absorption and scattering. Dana et.al. [13] reported a
non-local image dehazing algorithm based on non-local prior
instead of patch-based prior. The performance of IMF-based
algorithms depends on the accuracy of the estimated depth
map and transmission map of underwater images.

In summary, the IFM-based methods use the image for-
mation model to transform the enhancement problem into
an inverse problem which can be solved by estimating the
background light map and transmission medium map. The
IFM-free methods attempt to improve the image quality by
dynamically changing the histogram of the pixel intensities. It
is also worth noting that recent studies demonstrate the poten-
tial of the deep learning-based underwater image enhancement
algorithms [25], [26], [27], [28]. However, due to the lack
of sufficient and high-quality training data, these algorithms
often rely on synthetic images for model training, therefore,
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(a) (b) (c)

(d) (e) (f)

Fig. 1. Illustration of the effect of state-of-the-art enhancement algorithms applied to underwater images. (a) original image, (b)-(f). images enhanced by HE
[15], DS [16], IF [17], UDCP [10], and NLD [13] algorithm, respectively.

are difficult to generalise to the entire space of real underwater
scenes.

We describe below the detail of the state-of-the-art under-
water image enhancement algorithms, focusing on IFM-based
and IFM-free methods.

1) Contrast Limited Adaptive Histogram Equalization (HE)
The histogram equalization (HE) algorithm has a good per-

formance for images of relatively equalized intensities. Since
the histogram of underwater images concentrates on some
ranges of intensities, we chose a modified histogram equal-
ization algorithm called Contrast Limited Adaptive Histogram
Equalization (CLAHE). The CLAHE method processes an
image patch by patch. For each patch, an adaptive threshold
is selected to control the noise caused by local histogram
equalization. The result of CLAHE for an RGB image is
obtained by using the CLAHE algorithms on each channel[15].

2) Decorrelation Stretch Enhancement (DS)
Decorrelation stretch is a PCA-based linear and pixel-

wise transformation conducted by the values of original and
enhanced image statistics [16]. For an RGB image I , set
input channel image Ic = [x1, ..., xh] and target channel
image Zc = [z1, ..., zh]. The covariance matrix of Ic
is ΣIc = ITc Ic, and the mean vector of each column of
Ic is m = 1

h

∑h
k=1 xk. The singular value decomposition

(SVD) of ΣIc can be expressed as ΣIc = V Tc ΛVc. By
defining a diagonal matrix Sc = diag{ΣIc(k, k)}k=1,...,h,
and Hc = diag{ 1√

Λ(k,k)
}k=1,...,h, the model of decorrelation

stretch can be expressed as:

zi = ScVcHcV
T
c (xi −m) + m. (2)

The decorrelation stretch can improve the image quality by
increasing the color differences.
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Fig. 2. Illustration of the histogram of MSCN coefficients for the enhanced
images (in comparison to the original image) of Fig. 1. In the figure, it shows
the MSCN histograms of the HE enhanced image (Fig.1.(b)), the DS enhanced
image (Fig.1.(c)), the IF enhanced image (Fig.1.(d)), the UDCP enhanced
image (Fig.1.(e)), the NLD enhanced image (Fig.1.(f)) and the original image
(Fig.1.(a)).

3) Image Fusion based Underwater Image Enhance-
ment(IF)

The image fusion enhancement algorithm operates on each
channel of RGB [17]. The enhanced fusion image can be
computed by the following formula:

Zc(p, q) =

r∑
k=1

W̄ k
c (p, q)Ikc (p, q), c ∈ {r, g, b}, (3)

where Ikc is the k-th input image in the c channel, W̄ k
c is the

k-th normalized weight map in the c channel (
∑r
k=1 W̄

k
c = 1



4

for any (p, q)), and (p, q) is the position in image Ikc and Zc.
The above naive fusion strategy may bring in some unde-

sirable artifacts and halos. The Laplacian multi-scale image
fusion method is adopted to overcome the disadvantages of
the direct fusion method. In this multi-scale image fusion
algorithm, let Gi denote a sequence of operators including
low-pass Gaussian filtering, decimation, and up-sampling op-
erations. The Laplacian pyramid decomposition form of image
Ic is:

Ic(p, q) =

L∑
i=1

Li(p, q) =

L∑
i=1

[Gi−1(p, q)−Gi(p, q)], (4)

where Li(p, q) is the i-th level of Laplacian pyramid,
Gi(p, q) = Gi(Ic(p, q)) is the i-th level of Gaussian pyramid
and G0(p, q) = Ic(p, q). Then the Laplacian pyramid based
multi-scale image fusion model can be expressed as:

Rc,i(p, q) =

r∑
k=1

Gi[W̄
k
c (p, q)]Li[I

k
c (p, q)], (5)

where Rc,i is the i-level fused image, and Gi[W̄
k
c ] is the i-

level Gaussian pyramid of the normalized weight map (note
there are good weight map choices taking into account the
characteristics of underwater images [17], [24], [29]).

4) Underwater Dark Channel Prior Enhancement (UDCP)
The underwater dark channel prior algorithm is a IFM-

based enhancement method [10]. We rewrite the information
formation model as:

I(x) = J(x)t(x) + B(1− t(x)), (6)

where x is the pixel position of an image, I is the observed
image, J is the enhanced image, t is the transmission medium
map, and B is the background light.

The dark channel of the enhanced image (haze-free image)
J can be defined as:

Jdark(x) = min
c∈{r,g,b}

( min
y∈Ω(x)

Jc(y)), (7)

where Jc is the c channel of image J, Ω(x) is the neighbor-
hood of x. It is well-known that the haze-free image should
satisfy the following prior: Jdark(x) = 0.

The background light is estimated by selecting the brightest
position in the dark channel:

B̃c(I) = Ic(arg max
x∈I

Idark(x)), c ∈ {r, g, b}, (8)

In a local patch Ω(x), the transmission medium map t̃(x)
is assumed as a constant. The transmission medium map t̃(x)
can be obtained by the operation of minimizing the equation
(6) in the local patch for three channels of the image based
on haze-free image prior:

t̃(x) = 1− min
c∈{r,g,b}

( min
y∈Ω(x)

(Ic(y)/B̃c)). (9)

Combining the equations (8) and (9) with equation (6), the
enhanced image J can be estimated by the following model:

J̃(x) =
I(x)− B̃

max(t̃(x), t0)
+ B̃. (10)

where 0.1 is one of the typical values of t0.

5) Non-local Dehazing Enhancement (NLD)
The input image of the non-local dehazing algorithm is

regarded as a 3D RGB image [13]. The model of the non-
local dehazing method is the same as equation (6). Define a
new image IB as:

IB(x) = I(x)− B̃, (11)

where B̃ is the background light estimated by equation (8).
IB(x) can be rewritten as the spherical coordinate:

IB(x) = [r(x), θ(x), φ(x)]. (12)

The pixel-wise transmission medium map based on the non-
local haze-free prior can be estimated as:

t̃NLD(x) =
r(x)

r̂max(x)
. (13)

where r̂max(x) = maxx∈H(r(x)), and H = {x ∈ I‖θ(x) =
φ(x)} is a haze line. In order to control the background light of
the dehazing image, the final estimated transmission medium
map is given by: t̃LB(x) = max{t̃NLD(x), tLB(x)}, where
tLB(x) = 1 − minc∈{r,g,b}(Ic(x)/B̃c) is a low bound of
transmission medium map.

The non-local dehazing enhanced image J̃NLD can be
computed as:

J̃NLD(x) =
I(x)− B̃

t̃LB(x)
+ B̃. (14)

B. Impact of enhancement algorithms on image quality
related signal properties

The above selected algorithms reflect diverse approaches
in image enhancement, including three IFM-free algorithms
(HE, DS, and IF) and two IFM-based algorithms (UDCP and
NLD). For the IFM-free approach, HE, DS and IF re-distribute
the histogram of image intensities with different representa-
tion models and their corresponding natural scene statistical
priors. More specifically, the HE algorithm alters the intensity
distribution in the single colour model space (RGB) based on
the grey-level assumption; the DS algorithm produces a large
range of image intensities using the high dimensional colour
space centering prior by considering the RGB colour model as
a 3D vector space; and the IF algorithm wraps the advantages
of preprocessing enhancement algorithms and reduces the
artificial noise by the Laplacian image representation model.
For the IFM-based approach, the UDCP and NLD algorithms
attempt to compensate the degradation of light across water
by solving the IFM inverse problem using different physical
priors. More specifically, the UDCP algorithm tackles the in-
verse problem considering an RGB image as three independent
channels; while the NLD algorithms considers an RGB image
as a 3D vector space which corresponds to the high-level
physical prior. Overall, all algorithms have a significant effect
on the pixel-wise intensity. Fig. 1 shows the effect of applying
these enhancement algorithms on an underwater image. Now,
this paper will investigate the output image quality of these
algorithms.



5

The histogram of mean subtracted contrast normalized
(MSCN) coefficients [30] represents important statistical prop-
erties of an image. Based on the circular-symmetric Gaussian
function sampling, the MSCN coefficients can be computed
by the local estimates of the weighted mean µ(x) and the
weighted variance σ(x) in a neighborhood of x, and the
MSCN coefficients at the image position x can be expressed
as [30]:

MSCN(x) =
I(x)− µ(x)

σ(x) + ε
, (15)

where ε is a small positive constant. For natural scene images,
Ruderman et. al. [31] first found that the histogram of MSCN
coefficients follow a Gaussian distribution. The above equation
means that the local irregularities of the image can be repre-
sented by the histogram of MSCN coefficients. Adrian et. al.
[30] reported that the change of visual quality of an image is
directly proportional to the variance of the histogram of MSCN
coefficients. We compare the histogram of MSCN coefficients
of an original image and its enhanced versions. Fig.2 shows the
histogram of MSCN coefficients for the images of Fig. 1. It can
be seen that the enhancement algorithms enlarge the variances
of the histograms which implies the increase in image quality.

III. PROPOSED METHODS FOR SUBJECTIVE AND
OBJECTIVE QUALITY ASSESSMENT

A. Image acquisition

To form a framework for the assessment of underwater
image enhancement algorithms, we acquired a set of new
images in a sea cucumber farm at Qingdao Ocean Lake in
Shandong Province, China. The sea cucumber fishery stays
uncovered with the depth of water about 3-4m. The image
capturing equipment is a C-Watch remotely operated under-
water vehicle (ROV) which is composed of a battery pack
and a digital camera. The battery pack can provide power to
the electrics and propulsion units which include a pressure
sensor, GPS sensor, attitude and heading reference unit, and
camera with a housing device. The model of camera is Canon
PowerShot G12. The camera faces down and focuses on the
sea cucumbers which live in different complex backgrounds
in a shallow pool. The resolution of the images with JPEG
format is 1280× 720 pixels. The captured underwater images
have the following characteristics: (1) the distance between
sea surface and object is about 3-4m; (2) the brightness of the
images is caused by sunlight (no artificial light); and (3) most
of the photos are taken from top to bottom. Fig. 1(a) illustrates
an exemplar image captured by the equipment.

B. Database of underwater image enhancement

In order to analyse the output image quality of the under-
water enhancement algorithms, an image quality assessment
database needs to be constructed. Considering the inherent
limitations of performing a controlled perception experiment,
a set of source images reflecting the diversity in image content
is often selected, e.g., the LIVE database selected 29 source
images to reflect the space of diverse natural scenes[32]. We
selected 40 source images from over 1800 captured images

based on the following criteria: the selected images should
reflect scene complexity combined with various underwater
environments, including color-casting, sharp-degradation, and
contrast degradation problems. We applied the above men-
tioned five enhancement algorithms, HE, DS, IF, UDCP, and
NLD on the 40 selected images. By doing so, we created a
benchmark dataset of underwater image enhancement which
consists of 40 original images and 200 enhanced images. We
now perform experiments to evaluate the enhanced images
produced by these algorithms as follows.

C. Subjective quality assessment

1) Perception experiment
A fully-controlled perception experiment was conducted to

obtain a benchmark (i.e., ground truth) for the quality of
underwater image enhancement. The experiment followed the
guidelines described in [33], [34]. A single-stimulus method
was used, in which human subjects were asked to score
the overall quality for each stimulus in the absence of any
reference. The scoring scale ranged from 0 to 100, and
included additional semantic labels, i.e., Bad, Poor, Fair, Good
and Excellent at intermediate points to help subjects with
expressing their opinions on the numerical scale.

The subjective experiments were carried out in a standard
office environment with approximately constant ambient light.
The test stimuli were displayed on a 19-inch LCD screen,
with a native resolution of 1920 × 1080 pixels. The viewing
distance was maintained around 60cm. The participants of the
study consisted of eighteen viewers naive to image quality
assessment. They were nine males and nine females and
between the ages of 23 and 52. Before the start of each
experiment, written instructions describing the experimental
procedure, including the scoring scale and timing, were given
to each subject. A training set of five typical images was
presented to the participants in order to familiarise them with
the issues in underwater image quality and with use of the
scoring scale. The stimuli used in training were different from
those used for the real assessment. After training, the test
images were presented to each participant in a random order.
Each stimulus was shown once, and the participants were
requested to assess its quality immediately after viewing it.
To avoid fatigue, each session per subject was divided into
two sub-sessions of having half amount of stimuli each and
with a 10-minute break between sub-sessions.

2) Mean opinion scores
First, z-scores were calculated to account for the differences

between subjects in the use of the scoring scale and calibrate
them towards the same mean and standard deviation [35],
[36]. The raw subjective scores were converted into z-scores
as follows:

zij =
rij − µi
σi

, (16)

where rij denotes the raw score given by the i-th subject to the
j-th test stimulus, µi is the mean of all scores for the subject
i, and σi is the corresponding standard deviation.

Second, an outlier detection and subject removal procedure
as suggested in [35] was performed, where results more than
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two standard deviations from the mean for a test image were
considered to be outliers and an individual was an outlier if
20% of scores submitted were outliers. This procedure resulted
in 4% of scores being detected and removed as outliers (note
the outliers are evenly distributed across different enhancement
algorithms), and no participant being rejected. Finally, the
mean opinion score (MOS) of each stimulus was computed
as the mean of the remaining z-scores over all subjects:

MOSj =
1

s

s∑
i=1

zij , (17)

where s is the number of remaining scores (after outlier
removal) for the j-th image. To make the final scores easier
to interpret, the resulting mean opinion scores were linearly
remapped to the range of [0, 10], as the histogram shown in
Fig. 3. This gives a new image quality assessment database
for underwater image enhancement (UEIQA).

Fig. 3. Illustration of the histogram of subjective ratings (MOS) of stimuli
contained in the UEIQA database.

3) Statistical properties of the UEIQA database
Since the ground truth image quality (i.e., MOS) is obtained,

this can be used to assess the performance of underwater
image enhancement algorithms. Fig. 4 illustrates the impact
of the five different algorithms on image quality, averaged
over all corresponding test images. The observed tendencies
were statistically analysed with a hypothesis testing. Pairwise
comparisons were performed with a t-test preceded by a
test for the assumption of normality (note in the case of
non-normality, a non-parametric version analogue to the t-
test is applied), selecting the enhancement algorithm as the
independent variable and the image quality as the dependent
variable. The test reveals the following order in quality (Note
”<” means is statistically significantly (p−value < 0.05) less
than, except for the case that jointly underlined algorithms
do not significantly differ): DS < Original < HE <
UDCP < NLD < IF . The ground truth shows that using
algorithms HE, UDCP, NLD and IF improves image quality
relative to original images (i.e., the quality of enhanced images
are statistically significantly better than that of the original
images), and that NLD and IF outperforms other algorithms
in term of final image quality. IF and NLD algorithms (see
Fig. 1. (d) and (f)) successfully remove haze from the original
images while preserving the details of the main objects. Also,
the results show that the DS algorithms deteriorates the quality
of original images significantly, which means DS fails in

enhancing underwater images. This might be due to the fact
that the DS algorithm yields significant changes in colour
to the original images (see Fig. 1. (c)), and consequently
enhances unimportant objects in the underwater scenes.

Fig. 4. Mean opinion score (MOS) averaged over all corresponding test
images for each algorithm in our subjective quality experiment. The error bar
indicates a 95% confidence interval.

D. Objective evaluation of visual quality

Subjective experiments when properly conducted are the
most reliable means of assessing image quality. However, sub-
jective testing is time-consuming, expensive, and impractical
in many circumstances. A more realistic way to evaluate the
output quality of enhancement algorithms is to use compu-
tational models, which can automatically predict the quality
of images as perceived by humans. These objective metrics
can be classified into full-reference (FR) ([37], [38]), reduced-
reference (RR) ([39], [40], [41]), and no-reference (NR) ([42],
[43], [44], [45], [46], [47], [48]) approaches, depending on
whether the original image is used as the reference of highest
quality [37], [49], [50]. But in image enhancement the original
image does not represent such reference of perfect/maximum
quality as an enhanced image may be of higher or lower
quality relative to the original. Thus, our objective evaluation
for underwater image enhancement must rely on no-reference
approaches.

Now, the first attempt is to investigate whether existing im-
age quality metrics can assess the quality of enhanced images.
We used six state of the art metrics, including three general-
purpose NR image quality metrics (i.e., Blind/Referenceless
Image Spatial Quality Evaluator (BRISQUE) [51], Natural-
ness Image Quality Evaluator (NIQE) [52], and Blind Image
Quality Assessment in the DCT Domain (BLIIND-II) [53])
and two dedicated underwater image quality metrics (i.e.,
Underwater Color Image Quality Evaluator (UCIQE) [54], and
Underwater Image Quality Metric (UIQM) [55]). Each metric
was applied to assess the quality of the images contained in our
new UEIQA database, resulting in an objective image quality
score (IQS) per image. The Person linear correlation (CC)
between the subjective MOS and objective IQS is calculated
and is 0.4148, 0.3999, 0.1718, 0.5230, 0.6159 for BRISQUE,
NIQE, BLIIND-II, UCIQE, and UIQM, respectively (note the
detail of the performance evaluation will be given below).
BRISQUE, NIQE, BLIIND-II metrics were mainly devised
to assess artifacts in image compression and transmission,
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Fig. 5. Scatter plot of MOS versus BRISQUE, NIQE, BLIIND-II, UICQE, UIQM, and proposed UEIQM, respectively.

and their CC values are rather low. UCIQE, and UIQM
metrics give better performance, but unfortunately, they are
not adequate for assessing the quality of underwater image
enhancement. Hence, our next attempt is to build a problem-
specific objective metric. Note, the goal here is to investigate a
proof-of-concept model, and developing a sophisticated quality
metric for underwater image enhancement will be treated in a
separate contribution in our future research.

1) Proposed Metric
We extracted the underwater enhancement related image

features including underwater image colorfulness measure,
underwater image sharpness measure, and underwater image
contrast measure proposed by Panetta et. al. [55].

With the influence of light attenuation, underwater images
often display a greenish and bluish appearance. The low-light
condition of the environment is the other reason of color-
casting problem of underwater images. The underwater image
colorfulness measure (UICM) can be defined as:

UICM = λ1

√
µ2
α,RG + µ2

α,Y B + λ2

√
σ2
α,RG + σ2

α,Y B , (18)

where λ1 = −0.0268 and λ2 = 0.1586 [56], µα,RG and
µα,Y B are the α-trimmed mean [57] of RG and YB color
plane computed by the following equations:

µα,RG =
1

K − TαR − TαL

K−TαR∑
i=TαL+1

IntensityRG,i, (19)

µα,Y B =
1

K − TαR − TαL

K−TαR∑
i=TαL+1

IntensityY B,i, (20)

and σ2
α,RG, σ2

α,Y B are the corresponding second-order statistic
α-trimmed variance of RG and YB color plane:

σ2
α,RG =

1

K

K∑
p=1

(IntensityRG,p − µα,RG)2, (21)

σ2
α,Y B =

1

K

K∑
p=1

(IntensityY B,p − µα,Y B)2. (22)

With the complex underwater environment, the underwater
images suffer serious blurriness due to the forward scattering
of light by plankton, sand and minerals. The underwater image
sharpness measure (UISM) can be calculated as:

UISM =

3∑
c=1

λcEME(grayscale edgec), (23)

where c is the color channel of the RGM image, λc, c ∈
{R,G,B} indicate the relative visual responses of the RGB
color components, and EME(·) is the enhancement measure
estimation function defined as:

EME =
2

k1k2

k1∑
l=1

k2∑
k=1

log(
Imax,k,l
Imin,k,l

), (24)

where k1k2 is the number of image blocks, Imax,k,l and
Imin,k,l are the local maximum and minimum in each block.

The stereoscopic disappearance of underwater images is
caused by the contrast-degradation due to the backward
scattering of light. The underwater image contrast measure
(UIConM) is defined as the logAMEE operated on the
grayscale Igray image of the RGB image:

UIConM = logAMEE(Igray), (25)



8

where Igray is defined as (R + G + B)/3 in this paper, and
the logAMEE(·) is the log-Agaian measure of enhancement
by entropy defined by the following equation[58]:

logAMEE =
1

k1k2
⊗

k1∑
l=1

k2∑
k=1

Imax,k,lΘImin,k,l
Imax,k,l ⊕ Imin,k,l

× log(
Imax,k,lΘImin,k,l
Imax,k,l ⊕ Imin,k,l

),

(26)

where k1k2 is the number of image blocks, and ⊗, Θ, ⊕,
× denote the parameterized logarithmic image processing
(PLIP) operations inspired by the human visual system: scalar
multiplication, subtraction, addition, multiplication.

Based on the fundamental characteristics of the relationships
between the above-mentioned features and the subjective eval-
uation, we build a non-linear regression model to correspond
the features vector to the subjective MOS. Similar to the
approaches used in [51], [59], we use Support Vector Regres-
sion (SVR) to estimate the image quality by the underwater
enhancement features (UICM, UISM, and UIConM).

Let UIFi = (UICMi,UISMi,UIConMi) denotes the feature
vector of the i-th image, and MOSi is the MOS of the i-
th image. The training data can be expressed as Dtrain =
{(UIFi,MOSi)}ri=1. The standard SVR is modelled by the
following optimal problem:

min
w,b,ξi,ξ∗i

1

2
‖w‖2 + λ

r∑
i=1

(ξi + ξ∗i )

s.t. wTφ(UIFi) + b−MOSi ≤ ε+ ξi,

MOSi − wTφ(UIFi)− b ≤ ξ∗i ,
ξi, ξ

∗
i ≥ 0, i = 1, · · · , r.

(27)

where φ is the low-to-high feature map, λ > 0 is the model pa-
rameter, and ξi, ξ∗i indicate the violated degree of each training
sample. This SVR training settings were configured as follows:
a) The radial basis function (RBF) was adopted as the kernel
function to fit a non-linear map; b) 10-folder cross-validation
approach was used to guarantee the generalized stability of
the SVR model. Let αi, α∗i , i = 1, · · · , r be the solution of
the dual problem of Equation (27) which formulated the final
trained model denoted as UEIQM (underwater enhancement
image quality metric).

2) Performance evaluation
As prescribed by the Video Quality Experts Group (VQEG)

[60], we evaluate the performance of objective image qual-
ity metrics by quantifying their ability to predict subjective
ratings (i.e., MOS) contained in our UEIQA database, using
Pearson linear correlation coefficient (PLCC), Spearman rank
order correlation coefficient (SROCC), Kendalls rank order
correlation coefficient (KROCC) and root mean square error
(RMSE). As suggested by VQEG [60], to account for any
nonlinearity due to the subjective rating process and to fa-
cilitate comparison of metrics in a common analysis space,
a nonlinear regression is first applied to the objective image
quality score (IQS) and fitted to the [MOS, IQS], using the
following function:

f(xc) = β1{
1

2
− 1

1 + exp[β2(xc − β3)]
}+ β4xc + β5, (28)

where xc indicates the objective IQS, and βi, i = 1, · · · , 5
indicate the parameters for fitting of logistic regression. Once
the nonlinear transformation was applied to the output of an
objective metric, the PLCC, SROCC, KROCC and RMSE are
computed between the subjectively measured MOS and the
objective IQS.

Fig. 5 shows the scatter plots of the MOS versus BRISQUE,
NIQE, BLIIND-II, UCIQE, UIQM and our proposed UEIQM,
respectively. Table I lists the results of the PLCC, SROCC,
KROCC and RMSE. The figure and table demonstrate that
our proposed metric UEIQM outperforms other metrics in the
prediction of the quality of enhanced underwater images. The
good performance of the proposed metric demonstrates the
importance of taking into account the specific characteristics
of underwater environment. To verify whether the performance
comparison, as shown in Table I, is statistically significant,
hypothesis testing is conducted. As suggested in [60], the
test is based on the residuals between the MOS and the
quality predicted by a metric (i.e., referred to as M-MOS
residuals). First, we evaluate the assumption of normality of
the M-MOS residuals. When paired M-DMOS residuals are
both normally distributed, an independent samples t-test is
performed; otherwise, in the case of non-normality, a non-
parametric version (i.e., Mann-Whitney U test) analogy to a
t-test is conducted. The test results are given in Table II. This
means the proposed metric is statistically significantly better
than all other six state-of-the-art metrics.

TABLE I
OVERALL PERFORMANCE COMPARISON OF NIQE, BRISQUE,

BLIIND-II, UIQM, UCIQE AND OUR PROPOSED UEIQM

Metrics PLCC SROCC KROCC RMSE

BRISQUE 0.4148 0.4024 0.2737 1.9200
NIQE 0.3999 0.2366 0.1662 2.1998

BLIIND-II 0.1718 0.2708 0.1948 2.0779
UCIQE 0.5230 0.2886 0.1832 1.7977
UIQM 0.6159 0.5691 0.4101 1.6617

Proposed UEIQM 0.8055 0.7657 0.5806 1.2508

TABLE II
RESULTS OF STATISTICAL SIGNIFICANCE TESTING BASED ON

M-MOS RESIDUALS. 1 MEANS THAT THE DIFFERENCE (AS
SHOWN IN TABLE I) IN PERFORMANCE IS STATISTICALLY

SIGNIFICANT. 0 MEANS THAT THE DIFFERENCE (AS SHOWN IN
TABLE I) IS NOT STATISTICALLY SIGNIFICANT

versus BRISQUE NIQE BLIIND-II UCIQE UIQM

Proposed UEIQM 1 (Sig.) 1 (Sig.) 1 (Sig.) 1 (Sig.) 1 (Sig.)

IV. CONCLUSION

We have investigated five state-of-the-art enhancement algo-
rithms and their impact on the perceptual quality of underwater
images. Through human perception experiments, we found
that DS algorithm degrades quality rather than enhancing the
quality of images. Other four algorithms produce good results,
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and IF and NLD significantly outperform other algorithms
in enhancing image quality. This suggests that having a
ground truth benchmark would be useful to faithfully compare
enhancement algorithms and evaluate their capability and
suitability for this problem. More enhancement algorithms
are available in the literature or will be developed in the
future. Therefore, constructing and sharing more subjective
image quality databases is essential to facilitate research in this
field. We have also indicated that a much faster approach to
evaluating the output quality of enhancement algorithms is the
use of an objective metric. Current metrics are unsuitable for
application to the results of underwater image enhancement,
and work is needed to devise new metrics. A proof of
concept metric has been proposed, and there is still room for
improvement. Future work will focus on developing a more
sophisticated metric to approximate human judgment of the
output quality of underwater image enchantment.
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[30] A. Galdran, T. Araújo, A. M. Mendonça, and A. Campilho, “Retinal
image quality assessment by mean-subtracted contrast-normalized coef-
ficients,” in European Congress on Computational Methods in Applied
Sciences and Engineering. Springer, 2017, pp. 844–853.

[31] D. L. Ruderman and W. Bialek, “Statistics of natural images: Scaling
in the woods,” in Advances in neural information processing systems,
1994, pp. 551–558.

[32] H. R. Sheikh, M. F. Sabir, and A. C. Bovik, “A statistical evaluation
of recent full reference image quality assessment algorithms,” IEEE
Transactions on image processing, vol. 15, no. 11, pp. 3440–3451, 2006.

[33] R. I.-R. BT, “Methodology for the subjective assessment of the quality
of television pictures,” International Telecommunication Union, 2002.

[34] J. Li, L. Krasula, Y. Baveye, Z. Li, and P. Le Callet, “Accann: A
new subjective assessment methodology for measuring acceptability and
annoyance of quality of experience,” IEEE Transactions on Multimedia,
vol. 21, no. 10, pp. 2589–2602, 2019.

[35] L. Janowski and M. Pinson, “The accuracy of subjects in a quality exper-
iment: A theoretical subject model,” IEEE Transactions on Multimedia,
vol. 17, no. 12, pp. 2210–2224, 2015.

[36] T. Xiang, Y. Yang, and S. Guo, “Blind night-time image quality
assessment: Subjective and objective approaches,” IEEE Transactions
on Multimedia, 2019.

[37] Z. Wang and A. C. Bovik, “Mean squared error: Love it or leave it? a
new look at signal fidelity measures,” IEEE signal processing magazine,
vol. 26, no. 1, pp. 98–117, 2009.
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