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Abstract

Background CART-cells have demonstrated clinical success for the treatment of multiple lymphomas and

leukaemias, but not for various solid tumours, despite promising data from murine models. Lower effective CART-cell

delivery rates to human solid tumours compared to haematological malignancies in humans and solid tumours in mice

might partially explain these divergent outcomes.

Methods We used anatomical and physiological data for human and rodent circulatory systems to calculate the

typical perfusion of healthy and tumour tissues, and estimated the upper limits of immune cell delivery rates across

different organs, tumour types and species.

Results Estimated maximum delivery rates were up to 10,000-fold greater in mice than humans yet reported

CART-cell doses are typically only 10-100-fold lower in mice, suggesting that the effective delivery rates of CART-

cells into tumours in clinical trials are far lower than in corresponding mouse models. Estimated delivery rates were

found to be consistent with published PET data.

Conclusions Results suggest that higher effective human doses may be needed to drive efficacy comparable to

mouse solid tumour models, and that lower doses should be tested in mice. We posit that quantitation of species

and organ-specific delivery and homing of engineered T-cells will be key to unlocking their potential for solid tumours.
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1 Introduction1

Cellular therapies such as CAR (Chimeric Antigen Receptor) T-cells have shown clinical efficacy against several leukaemias2

and lymphomas [1, 2]. This success has not yet been matched for solid tumours, despite the efficacy seen in pre-clinical3

models, and a suitable dosing strategy to maximise efficacy remains uncertain [3–8]. Typical response curves (amount of4

CART-cell transgene observed in blood versus time) in patients with haematological disorders are marked by an initial5

cellular expansion (typically 100-1000-fold [9]), due to the large numbers of CART and target cells colocalising in readily6

accessible tissues. Cellular expansion increases the effective cellular dose entering and proliferating within compartments7

with lower perfusion or less efficient access, which can drive the clearance of target cells required to achieve complete8

responses in these compartments. In solid tumours, relatively few target cells are in readily accessible compartments,9

whether due to poor perfusion or barriers to extravasation, preventing a strong initial expansion of CART-cells. Tumour10

regression is achieved when the rate of tumour clearance is greater than that of tumour growth, including in the least11

perfused/accessible tumour lesions. In this context, tumour clearance is a numbers game and the relative lack of success12

for solid tumours may in some cases be due to lower effective CART-cell doses, since the number of accessible target cells13

is too low to drive the early cellular expansion that, in the case of haematological malignancies, increases the effective14

dose.15
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The amount of cellular expansion depends on tumour burden, patient and cell-product-specific factors, which results16

in non-intuitive observations. Increasing cellular dosage does not always increase efficacy [10, 11], and patients with a17

high tumour burden may only require a low dosage, due to greater cellular expansion [12]. This has frustrated dose18

selection and the definition of a maximum tolerated dose. Early clinical studies of CAR T-cells found that high dosages19

(1010 to 1011 cells) were required for efficacy, but no dose-response relationship was found beyond this minimum level20

[13–15]. Later studies with next-generation CARs began to favour lower doses (109 or fewer) to balance efficacy with21

toxicity, which also increases with dosage [16]. Dosages in mice have trended similarly: early studies noted a need for22

high dosages (108 cells) [13], and more recent studies favour lower doses (106 to 108, with limited success seen in a23

‘stress-test’ study with 105 cells [17]). Experimental mice are hardy, short-lived and several strains are immunodeficient24

(which reduces early anti-CD19 activity, for example), so there is comparatively less focus on reduction of toxicity such25

as cytokine release syndrome. Scaling of dosages of any therapy between animals and humans is often assumed to26

depend on body mass or (erroneously [18]) surface area [19, 20], but this is complicated for CAR T-cells by the impact27

of tumour burden and the lack of a well-defined maximum tolerated dose. Additional factors such as tumour mass and28

receptor expression may also be considered, but to the best of our knowledge, there is no single standard for dosage29

scaling of CAR T-cell therapies.30

Haematological and solid cancers in humans and mice may be compared by considering early-time kinetics and31

dynamics of the adoptively transferred cells. Inflamed tissues exhibit increased regional blood flow, and it has been32

observed that localisation of lymphocytes is proportional to the regional blood flow of the tissue [21]. The delivery rate33

of cells to different compartments of the body will likely be of importance in CART-cell or eTCR (engineered T-cell34

receptor) responses. For intravenous (iv) administration, cells are delivered by the circulatory system. Only a small35

proportion of cells leave the vasculature and extravasate into tissues, but the effective delivery rate cannot exceed the36

vascular delivery rate. Systematic quantitation of the variation of vascular delivery rates across organs, tumour types37

and species will improve understanding of comparative preclinical and clinical outcomes and inform improved dosing38

and dosage scaling strategies. Physiologically-based pharmacokinetic modelling (PBPK) has been used extensively to39

predict drug concentration profiles and their variability across different tissues and individuals, to estimate the efficacy40

of clinical dosing regimens (for recent reviews, see [22–24]). PBPK models have also been used in drug development41

since 2000 and are readily accepted as providing supporting information by both the US Food and Drug Administration42

and the European Medicines Agency. They have been further implemented in the investigation of T-cell trafficking, for43

example to determine the strength of the abscopal effect and influence of metastases on the primary tumour [25, 26]44

and to study localisation of adoptively transferred T-cells or cellular therapies [27–32]. However, we have not seen such45

models be used for quantitative exploration of the simpler consequences of differences between anatomical parameters46

in different species, nor an attempt to quantify and compare the maximum likely values of delivery rates of immune47

cells across organs and species, the aim of the present work.48

We have made simple comparisons of the human, mouse and rat circulatory systems, using relevant organ, tumour49

and anatomical data [33–38]. We have calculated the upper bounds of cellular delivery from the circulation into each50

organ, considering only tissue perfusion and not factors that subsequently reduce rates of T-cell entry or engagement,51

such as tissue-specific extravasation probabilities or inflammation (see Figure 1B), or immunosuppression. The validity52

of predictions was tested through comparison to published PET imaging data [39–41] taken shortly after cellular transfer53

and radiological data 24 hours after cellular transfer, and the validity of maximum delivery rates for tumour tissue was54

found by comparing the typical perfusion of tumour and normal tissues [21]. Predicted maximum delivery rates exhibited55

extreme differences by species. The delivery rate of cells per minute per mm3 to lungs is 20,000-fold higher in mice than56

humans, yet typical doses of CART cells given to experimental mice are only 100-fold less than those in the clinic. This57

may partially explain the lack of success seen against solid tumours reported to date.58

2 Methods59

2.1 Model summary60

Most studies of physiologically-based pharmacokinetics (PBPK) or cellular kinetics (PBCK) make use of an ordinary61

differential equation (ODE) model representing the anatomy. A schematic of the anatomy appropriate for such equations62

is shown in Figure 1A. T-cells are assumed to flow from the heart to the vasculature of different organs, where they then63

return or extravasate into that organ’s interstitial space. Extravasated cells return to circulation via the lymphatics,64

except for the spleen and the pulmonary circuit, from which cells return directly. To calculate maximum delivery rates,65

we require the rate at which cells are delivered by the vasculature, as shown graphically in Figure 1B. This is equal to66
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Figure 1: Above, (A): A visual summary of a model of the circulatory system. Solid and dotted lines
represent blood and lymph flow, respectively. Cells flow from the heart to each organ, from which a proportion enters
the interstitial space. Cells from the interstitium flow via the lymphatics back to the heart. A tumour (“tmr”) can be
represented by choosing a tumour bearing organ (the skin in this example) from which proportions of its volume and
blood supply are occupied by the tumour. (B): Only a fraction of cells delivered by the vasculature extravasate into a
given organ, but the entry rate can be no higher than the vascular delivery rate. Calculation of these maximum delivery
rates yields insight into inter-species and inter-organ delivery of cellular therapies. (C, D): The perfusion of different
organs can differ substantially between humans (C) and mice (D). Multiplying cellular concentrations by perfusion gives
maximum delivery per volume (or mass) of tissue. Anatomical values given are examples; these parameters differ by
experimental reference used.

organ perfusion (blood flow B over total organ volume Ṽ ) multiplied by blood concentration C. More precisely,67

Maximum delivery rate to organ o =
Bo

Ṽo

Ntot

Vh +
∑

o
Vo

, (1)

where Ntot is the total number of cells of interest, Vo and Ṽo are the vascular and total volumes of organ o, and Vh is the68

volume in the heart and interconnecting blood vessels. This expression can be shown to be equivalent to a special case69

of standard PBPK/PBCK models, see supplementary sections A.1 and A.1.4. To compare tumour and healthy tissue70

in different organs, we define one organ as the tumour bearing organ, containing a 1mm3 tumour (‘tmr’) tissue volume.71

We consider this volume either as healthy or tumour tissue, to find how predicted delivery rates to each differ across72

organs and species.73

2.2 Parameter selection from literature74

Predicted T-cell delivery rates are dependent on assumed anatomical parameters (blood flow, blood volume and organ75

volume). We collected several anatomical reference banks from the literature [33–38], in particular the compilations by76

the ICRP and Shah et al [36, 38]. Each source has slightly differing fractional blood flows and volumes. To remove77

selection bias, delivery rates were calculated with many random values of anatomical parameters (n = 100 per organ78

per species), selected uniformly from the range of literature values, after which the means and standard deviations of79

estimated delivery rates were taken. This also serves as a proxy for population variability. To avoid using data from80

different studies for a single model animal, data sets that are as complete as possible were chosen. In particular, the81
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total blood flow and blood volume, the volume of each organ, and the fractional blood flow and blood volume of each82

organ were recorded from each reference. These data are shown in supplementary tables S2, S3 and S4. Presented83

results are the mean and standard deviation of predictions obtained by choosing random values from the literature.84

Random parameter values are selected from the range of literature values. We cannot be more confident in any one85

report than another, so we choose the random values for all parameters (for each organs and species) uniformly. This86

process is repeated 100 times to yield the presented results. When considering tumour perfusion distinct from healthy87

organ perfusion, we use measurements of tumour perfusion from the literature (see supplementary table S3) and suppose88

that, since these are all measurements of different tumours, the data should follow a normal distribution. Thus, we89

choose normally distributed random values of tumour perfusion.90

2.3 Generation of presented results91

Presented data are maximum delivery rates in each species for each organ o, calculated using Equation 1, with some92

deviation due to details of the vasculature. For example, the portal vein blood flow must be added to Bo for the liver93

(see supplementary section A.1 for further information). The results of Table 1 are obtained by applying data reported94

by Shah et al [36] to Equation 1. This is presented graphically in Figure 1C-D. The results of Table 2 are obtained by95

multiplying the ratio of mouse to human delivery rates by the dose administered to mice, 107.96

Random results in Figure 2 are obtained by drawing uniformly random values of organ parameters (n = 100),97

calculating the maximum delivery rate per volume with Equation 1 for each set of values, and subsequently finding98

their mean and standard deviation. n = 100 values were chosen for each organ to generate an indication of delivery99

rate variability, whilst ensuring that the mean of selected random parameters was within 5% of the actual mean of100

experimental parameter values.101

Random results in Figure 3 are obtained similarly, by drawing uniformly random values of organ parameters and normally102

distributed values of tumour perfusion Ptmr. The maximum delivery to tumour tissue is calculated from Ptmr
Ntot

Vh+
∑

o
Vo

,103

and the maximum delivery rate to non-tumour tissue is calculated using Equation 1 for comparison. As before, n = 100104

values were chosen for each organ.105

3 Results106

3.1 CART-cell delivery to organs in humans, mice and rats107

We calculated and compared predictions for the vascular delivery rate per volume (cells/min/mm3) of a typical number108

of CART-cells used in the clinic (108 [42, 43]) to non-tumour tissues in different human, rat and mouse organs. These109

rates are equal to the product of the organ perfusion and CART-cell blood concentration, as shown graphically in110

Figure 1B-D. Results calculated from a single anatomical data set ([36]) are shown in Table 1. Flow from both the111

hepatic artery and portal vein are included in delivery rates to the liver, and the pulmonary circuit and lung blood112

supply are both included for lung rates. The difference in delivery rates to the same organ in different species can be113

extreme, with predicted absolute lung delivery rates per volume in the mouse 21,000 times higher than in humans if the114

same number of CART-cells is administered to each species (obtained by dividing 3,700,000/180 from Table 1). Should115

a known blood concentration of endogenous cells be considered instead of a constant number, then rates per volume116

depend only on organ perfusion, and the absolute delivery rates for mice are up to 10 times higher than in humans.117

These data suggest that a more appropriate approach for scaling murine dosages to humans (or vice-versa) is to ensure118

that the same cellular delivery rate to tissues of interest is achieved. The results of Table 1 were used to calculate the119

CART-cell doses (introduced cell numbers) required to obtain the same delivery rates in humans as in mice given a120

typical pre-clinical dose of 107 CART-cells. Equivalent doses are organ-specific, and most are of order 1010 to 1011 cells121

(Table 2).122

The mean and standard deviation of predicted delivery rates obtained by random selection of anatomical parameters123

from all data sets [33–38] are plotted in Figure 2. To illustrate organ-specific scaling and to allow interspecies comparison124

of the distribution of delivery rates across organs, rates are scaled by species such that the sum of the mean predictions125

within each species is 100. The distributions share similarities but otherwise the relative rates exhibit organ-specific126

scaling. For each species, the lung has the highest delivery rate, followed by the kidneys.127
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Figure 2: Species-scaled predicted delivery rates to non-tumour tissue in organs in humans, rats and mice.
Rates are normalised so that the sum across organs for each species is 100. See Table 1 for a comparison of absolute
rates. Scatter points and bar extents indicate the mean and standard deviation of delivery rates over 100 repeats, with
each repeat using different random fractional blood flows and volumes, uniformly drawn from experimental data in the
literature. Text labels give the ratio of mean predicted delivery rates in rats and mice to human rates. The relative
distribution of rates across the major organs differs by species, and, consequently, inter-species scaling of delivery rates
is organ-specific. Note that the horizontal axis is a log scale.
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Max delivery rate/(cells/min/mm3) BF/V/minutes-1

Organ Human Mouse Rat Human Mouse Rat
Lungs 177.0 3,728,321 441,221 5.51 55.4 63.7
Kidneys 106.7 266,052 31,767 3.32 3.95 4.59
Thymus 53.6 269,612 26,656 1.67 4.01 3.85
Small intestine 31.3 162,734 16,729 0.97 2.42 2.42
Pancreas 28.6 131,174 13,298 0.89 1.95 1.92
Spleen 27.9 131,336 13,554 0.87 1.95 1.96
Large intestine 22.8 112,344 11,547 0.71 1.67 1.67
Liver (+ portal vein) 22.5 113,382 12,310 0.70 1.68 1.78
Heart vasculature 22.1 489,648 31,051 0.69 7.28 4.49
Brain 14.4 49,611 6,007 0.45 0.74 0.87
Lymph node 13.0 29,774 3,064 0.41 0.44 0.44
Stomach 12.3 6,687 19,437 0.38 0.10 2.81
Red marrow 9.3 117,661 7,012 0.29 1.75 1.01
Skin 3.3 11,292 841 0.10 0.17 0.12
Skeletal muscle 1.1 15,537 1,590 0.03 0.23 0.23
Fat 0.8 13,800 1,419 0.03 0.21 0.21

Total blood volume / mL 3110* 1.49 14.4

Table 1: Left: predicted absolute maximum CART-cell delivery rates per volume (in cells/min/mm3) to
non-tumour tissue in organs in humans, mice and rats, using previously compiled physiological parameter values [36].
It is assumed that organ perfusion is homogenous and 108 CART-cells are introduced to each species. The interspecies
differences in absolute delivery rates per volume depend only on organ perfusion and cell blood concentration. Right:
organ perfusion (blood flow / organ volume; BF/V) and the total blood volume in each species, obtained by summing
relevant volume data from [36]. *Note that the total blood volume from this reference is an underestimate, but it is
expected to be underestimated by a similar amount in each species. The left table can be generated from the right by

the formula B

Ṽ

108

Vtot

, where B and Ṽ are the organ blood flow and volume and Vtot is the total blood volume in each
species; see section 2.1.

3.2 CART-cell delivery to human tumours128

Predicted maximum delivery rates per mm3 of tissue described above assume that perfusion is homogeneous within a129

given organ. However, a tumour may have perfusion different to normal tissues. The literature was surveyed to quantify130

the variability of human tumour perfusion (supplementary figure S3) for incorporation into estimates of maximum131

delivery rates. As before, delivery rates were calculated with many random values of parameters (n = 100 per organ),132

drawn uniformly for all organ parameters and from a Gaussian distribution for tumour perfusion. The mean and133

standard deviation of predicted delivery rates for CART-cells to human tumours are shown in Figure 3, along with the134

corresponding delivery rates under the assumption of homogeneous perfusion (or equivalently, to non-tumour tissue;135

blue dotted boxes). The rank order of delivery rates to tumour and normal tissues are very different. In most cases, the136

average of predicted delivery rates for tumour tissue is similar to or less than that for normal tissue, but in some cases137

(e.g. the skin) it is considerably greater. However, their variation is considerable; extreme values (whiskers in the plot)138

vary over many orders of magnitude above and below that of the corresponding normal tissue, for most organs.139

3.3 Maximum delivery estimates are consistent with PET imaging and radiography data140

The validity of “maximum delivery rates” to organs can be tested by comparing data from PET imaging and radiography141

studies in humans and rodents, in which cell localisation at early time points has been recorded. The use of an early142

time point is critical, as it shows the location of cells that are still in the blood or recently extravasated into an organ,143

before they drain back into the blood and recirculate. At later time points, localisation is a function of both cell delivery144

to organs, return to circulation, and other factors that modulate these, such as antigen recognition. The delivery of145

radiolabelled natural killer cells from the bloodstream into individual organs has been studied in rats [39] and in human146

patients [40, 41]. These data are presented in Figure 4 and compared to predictions from Table 1. Patients in the human147

study were given 108 to 109 cells; the average fraction found in the liver at the first time point (30 minutes) was 8.9%.148

This corresponds to approximately 4.5×107 cells. The rats were given 106 to 107 cells; the average fraction found in the149
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Organ Equivalent dose (continued)
Lungs 1.7 × 1011 Heart vasculature 2.2 × 1011

Kidneys 2.5 × 1010 Brain 3.4 × 1010

Thymus 5.0 × 1010 Lymph node 2.3 × 1010

Small intestine 5.2 × 1010 Stomach 5.4 × 1009

Pancreas 4.6 × 1010 Red marrow 1.3 × 1011

Spleen 4.7 × 1010 Skin 3.4 × 1010

Large intestine 4.9 × 1010 Skeletal muscle 1.4 × 1011

Liver 5.0 × 1010 Fat 1.7 × 1011

Table 2: Human-equivalent dosages for delivery to non-tumour tissue: The dosage of CART-cells in humans predicted
to be required to give the same absolute delivery rate per mm3 as in a mouse given 107 cells. The numbers required are
much larger than many clinical dosages [42, 43].

liver at the first time point (30 minutes) was 23.0%, or 1.2×106 cells. Adjusting the rat numbers to the human dose150

gives 1.2×108 cells. If we then assume a liver volume of 1700ml in humans and 10ml in rats, we obtain cell number151

per unit volume in the liver: 2.6×104 in humans and 1.1×107 in rats, a ratio of 429. The ratio of predicted maximum152

delivery rates is 546 (Table 1), 1.27-fold larger than expected from the data. Repeating this analysis for the lungs and153

spleen gives experimental ratios 2.0-fold less than predicted from maximum delivery rates (see Figure 4).154

Further confirmation that localisation of lymphocytes is dependent upon blood flow can be obtained by measuring155

how the localisation of labelled cells depends on the regional blood flow for a given tissue. Ottaway and Parrott [21]156

measured how cell localisation and regional blood flow to the inflamed ear and various lymph nodes of experimental mice157

change in response to oxazolone-induced inflammation. They found a significant correlation between the localisation of158

lymphocytes after 24 hours and regional blood flow in most of their analyses, and that the increased blood flow occurs159

regardless of the applied antigen. One of their figures is replotted in figure 5.160

4 Discussion161

4.1 Vascular delivery and cell proliferation162

This study aimed to quantify physiological constraints on the rate of CART-cell delivery by the blood to target tissues163

in different species, to better predict appropriate clinical CART-cell doses from pre-clinical data. It has focused on164

adoptive T-cell cancer therapies, though the methodology may also apply to other therapeutic areas, including immune-165

related adverse event prediction. Values were calculated assuming that 108 T-cells are introduced; delivery rates due166

to any other desired number or blood concentration of cells can be calculated by multiplying results by the ratio of the167

desired number to 108 or multiplying blood concentration by the total blood volume in the target species. Although168

models to predict expansion of a T-cell population have been studied in the past [9, 44], it is difficult to quantify cellular169

proliferation in or fractional recirculation from a given tissue. However, proliferation itself depends on exposure of170

transferred T-cells to their target antigen, so early responses are expected to be constrained by delivery. Several studies171

have established a relationship between dose or effective early target engagement and response for cellular therapies,172

despite proliferation increasing the effective dose over time [17, 43, 45, 46]. Furthermore, delivery of cells that proliferate173

outside of a given tumour site would also be constrained by vascular delivery. The maximum rate of delivery due to the174

anatomy can be estimated with greater confidence and wider applicability than can an estimated time-course of T-cell175

concentration that considers proliferation and contraction, so proliferation was not considered in this work and will be176

the focus of future studies.177

4.2 Organ-specific delivery rates and their variation178

Results predict that the highest CART-cell delivery rates are in organs with the highest perfusion: the lungs and kidneys179

in humans (Figure 2). When measurements of tumour-specific perfusion are considered (Figure 3), it is the kidneys,180

skin, large intestine and lungs that are predicted to have the highest delivery rates per mm3, consistent with non-cellular181

immunotherapies (IL-2 and checkpoint blockade) having the highest efficacy in kidney, skin, colon and lung tumours182

[47–52], and the hypothesis that efficacy is driven in part by tissue perfusion. For cellular therapies including CART-183

cells, vascular delivery should similarly correlate with efficacy, with the additional factor that T-cells must extravasate184

into target tissues. Both naïve and ex vivo T-cells preferentially extravasate into lymph nodes, spleen and liver [53–55],185
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Figure 3: Absolute predicted delivery rates to human tumours, compared to non-tumour tissue, assuming
108 CART-cells are administered IV. Predictions are presented as a mean and standard deviation over 100 repeats,
with random anatomical parameters and tumour perfusion drawn from experimental data in the literature. Black boxes
represent the mean and standard deviation of predicted tumour delivery rates, and whiskers indicate predictions using
the extremes of possible tumour perfusion according to the literature. Blue dotted boxes indicate the mean and standard
deviation of predicted delivery to non-tumour tissue, i.e. the data used to generate Figure 2. The green dashed box
indicates delivery rates per mm3 to healthy lung tissue when the pulmonary circuit is assumed not to contribute. Note
that now the kidneys and skin have the highest predicted tumour delivery rates, and that the horizontal axis is a log
scale.

consistent with CART-cell efficacy in haematological disorders but not solid tumours [1, 42, 43]. Tumour tissue may be186

vascular or avascular, and inflamed or uninflamed, meaning that predicted ‘maximum’ delivery rates for normal tissues187

may not be applicable to tumours. However, predicted mean delivery rates into tumours exceed those to normal tissue for188

only a minority of organs (Figure 3), including the skin. Predicted delivery rates to tumours in the skin vary over many189

orders of magnitude but are usually greater than those for normal tissue. Healthy skin is not usually highly perfused and190

contains shunts to control blood flow in response to temperature. Most anatomical data for the skin describes the organ191

at rest and at room temperature with no inflammation, meaning most shunts will be open. Tumour tissue can increase192

its perfusion through inflammation or angiogenesis and likely subverts these shunts, which could explain the greater193

mean and variation in predicted delivery rates for skin tumours. Liver and kidney tissues are highly perfused at rest,194

which are unlikely to be improved by random tumour angiogenesis; accordingly, predicted delivery rates to tumours in195

these organs do not exceed normal tissue. Predictions for red bone marrow indicate that tumour perfusion can greatly196

outstrip normal tissue perfusion. Though surprising, the bone red bone marrow result is consistent with studies in which197

bone perfusion was measured in healthy control bone and tumour sites in patients with bone cancers and metastases [56].198

Predicted rates to bone marrow are particularly interesting because many haematological malignancies exist partially199

within this tissue; the increased tumour perfusion shown in figure 3 may explain why the relatively low delivery rate200
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b)

Lung Liver Spleen
Human Rat Human Rat Human Rat

Organ fraction after 30 mins 55.0% 59.0% 8.9% 23.0% 4.8% 4.9%
Number of cells in organ 2.7 × 108 3.0 × 106 4.5 × 107 1.2 × 106 2.4 × 107 2.5 × 105

Number scaled by dose 2.7 × 108 3.0 × 108 0.45 × 108 1.2 ×108 0.24 × 108 0.25 × 108

Number of cells / organ volume 2.4 × 105 3.0 × 108 2.6 × 104 1.1 × 107 1.7 × 105 4.1 × 107

Ratio of rat to human 1226 429 245
Ratio of predicted delivery rates 2437 546 485
Delivery ratio/localisation ratio 1.99 1.27 1.98

Figure 4: Comparison of reported localisation of radiolabelled natural killer (NK) cells in rats and humans
to predicted maximum delivery rates [39–41]. a) Reproductions of the reported data, after normalising data at each
time point such that the total radioactivity (localisation) is 1.0 at all time points. Annotations indicate the initial count
of cells in the lung in each species. b) Analysis of the data. The dosage and fractional localisation in each organ can be
used to calculate the number of NK cells present in each organ at each time point. By accounting for the different dose
given to each species and choosing an appropriate estimate for organ volumes in each species, the number of cells per
volume in each species can be calculated. The rat/human ratio of the number of cells in each organ can be compared
to the ratio of predicted maximum delivery rates per volume, obtained from Table 1.

predicted in table 1 does not contradict the relative success seen for CAR T-cells against haematological malignancies.201

Finally, predicted delivery rates to lung tumours may or may not exceed that of normal tissue, depending on whether202

the pulmonary circuit is assumed to contribute to tumour blood supply (blue dotted box) or not (green dashed box).203

Aside from these exceptions, results suggest that predicted maximum delivery rates to normal tissue are greater than204

those to tumour tissue of the same origin in most cases, and so appropriate to use as a guideline to compare species.205

Both figures 2 and 3 show that predicted delivery rates are highly variable, which may be caused by differences in experi-206

mental techniques or individual variation. Physiological differences and behaviour both impact blood flow distributions;207

blood flow to the mesentery increases after a meal, muscles during exercise, or the skin in response to temperature.208

This effect is utilised in the clinic to prevent hair loss in chemotherapy patients by cooling the scalp. CART-cell ther-209

apies could be targeted to organs such as the mesentery or skin through meal consumption or temperature control,210

and tumour-specific blood flow could be increased with vessel normalisation associated with anti-angiogenic therapies211

(e.g. Avastin). In patients with advanced metastatic disease, CART-cell dosage must be sufficient to drive tumour212

regression at the least perfused and/or the fastest growing site. To avoid dosage-linked increases in adverse events such213

as cytokine release or encephalopathy syndromes, methods to increase the effective dose on-site and not elsewhere should214

be considered, including alternate modes of administration, triggering proliferation at sites of interest, coadministration215
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Figure 5: Figure replotted from Ottaway and Parrott (J Exp Med 1979 [21]). The percentage localisation of Cr-51-
labelled lymphocytes after 24 hours against the regional blood flow to auricular, inguinal and mesenteric lymph nodes.
A regression line has been fitted to the data.

of inhibitors (e.g. anti-IL6), or interventions to alter blood flows should be utilised. Both human and rodent anatomical216

parameters vary, impacting any results that depend on anatomical parameters. If variability is not captured and/or care217

is not taken to control factors that alter blood flows (e.g. anaesthesia, exercise or the time of day [57]), then comparison218

of data sets may be invalid. Ideally, any study making use of blood flows and organ volumes should consider multiple219

measurements and include ‘error’ bars to indicate variation.220

4.3 Species-specific delivery rates and dosage scaling221

Relative delivery rates are distributed differently across organs in each species, meaning that dose scaling is organ-specific222

(Figure 2, Table 1). Predicted absolute delivery rates of the same dose of CART-cells (108) exhibited surprisingly extreme223

differences between species, with delivery per unit tissue volume to mouse lungs 21,000 times higher than in humans,224

largely because of the difference in total blood volumes between mice (2mL) and humans (5L). To test the relevance of225

these “maximum delivery rates” and validate the model, we analysed published PET imaging and radiography studies226

of natural killer (NK) cells in humans and rats [39–41] and calculated the cell numbers present in various organs at early227

time points (Section 3.3). The human/rat ratios of NK unit volume in the lungs, liver and spleen 30 minutes after infusion228

were compared to the human/rat ratios of predicted maximum delivery rates. The measured localisation ratios are 1.3229

to 2.0-fold greater than predictions for delivery rate ratios. Such small discrepancies are not unexpected, as delivery rate230

ratios would only equal localisation ratios if the blood concentration of NK cells and hence delivery rates were constant.231

However, the earliest experimental time point is 30 minutes, providing sufficient time for blood recirculation (as cardiac232

output/minute is greater than total blood volume in humans and rats). The rates of extravasation and return in each233

organ may differ between humans and rats, and the experimental technique and total amount of radioactivity at the234

first time point differs between the two studies. Regardless of these potentially confounding factors, the observations235

are consistent with predictions. This validation was made using NK cells rather than T-cells, which may have different236

homing receptors or trafficking. However, we have compared maximum delivery rates, which depend only on anatomical237

10



factors, not cell-specific factors, so maximum rates are identical for NK and T-cells with equal blood concentrations.238

Similarly, this validation was made using rats and not mice, though mouse-human comparison is the greater focus of239

this work. The comparison was made through anatomical parameters, which are well-characterised for both mice and240

rats. Given that the ratios of measured cell localisation in humans and rats were consistent with the differences in their241

cardiovascular systems, there is no reason to believe this would not be the case between humans and mice, particularly242

as rats are physically similar to mice.243

To further confirm that cell localisation depends in part on local tissue perfusion, we have replotted a figure by244

Ottaway and Parrott [21], Figure 5, who showed that localisation of lymphocytes in the ear and various lymph nodes245

after 24 hours correlates with regional blood flow. As many lymphocytes arrive in the lymph nodes from the lymphatics246

rather than directly from the blood, one might have expected that the correlation be poorest for this tissue type, but247

there is a significant correlation between localisation and regional blood flow for most of Ottaway and Parrott’s analyses.248

The increase in regional blood flow is due to local inflammation, so it may be that local inflammation correlates both249

with regional blood flow and with lymphocyte localisation, i.e. that there is no causal relationship between blood flow250

and lymphocyte localisation. However, this increased localisation was shown to occur regardless of applied antigen, and251

so it is unlikely that the increased localisation is due to an increase in the fraction of cells that extravasate, supporting252

the hypothesis that delivery of lymphocytes depends in part on their delivery by the vasculature.253

Despite the considerably greater delivery rates of cells in mice than humans, typical doses (cell numbers) introduced254

to mice are not considerably lower than those given to humans. Most patients are given CART-cell dosages between255

107 and 109 cells [42, 43], whilst mouse studies have used (for example) two doses of 1 to 2.5×106 cells a week apart256

[6], two doses of 107 cells a week apart [3], and a single dose of 107 cells [4]. To illustrate how large these doses are, we257

calculated equivalent human dosages that would yield the same absolute delivery rates in humans as in a mouse given258

107 CART-cells (Table 2). The resulting doses range between 1010 and 1011 T-cells, much higher than typical clinical259

doses and many dose escalation studies [43]. This may explain why pre-clinical success does not always translate to the260

clinic. A pre-clinical study of a CEA CART-cell therapy resulted in regression of subcutaneous tumours in mice with261

a dose of 5×106 cells (equivalent to 1.7×1010 in humans) [58]. In another study, a CART-cell therapy restricted the262

growth of pancreatic tumours in all treated mice to below the limit of detection with a dose of 107 cells (equivalent to263

4.6×1010 in humans) [59]. A study in which lower doses of around 105 anti-CD19 cells (human equivalent, using total264

blood volume only, of 2×108 cells) were given to mice as a ‘stress-test’ was associated with poor tumour control [17].265

In the clinic, a study of CEA CART-cells against colorectal cancer [46] escalated doses between 107 and 1010 cells. The266

authors found that the lower doses did not stop tumour progression (in 3 of 14 of presented patients) and higher doses267

achieved only stable disease. Our results suggest that dosages of order 1010 cells would be required to drive tumour268

regression at the primary site, and 1011 would be required for the lung metastases. Clinical studies in which Tumour269

Infiltrating Lymphocytes (TILs) were introduced in greater numbers (109 to 1011) [60–63] and in which CART-cells270

were introduced regionally (bypassing trafficking via the bloodstream) [42] are associated with greater efficacy. An271

important caveat of the simple comparisons made here is that some of the studies lymphodepleted the mice or patients272

before infusing T-cells, which aids proliferation, and some did not. Other differences in study design may also impact273

the choice of dosage. The relative human and mouse dosages reported in pre-clinical and clinical work with matching274

authors or centres are also similar to those discussed above: 106 in mice and 107–1010 in humans for anti-CEA CAR275

T-cells [46, 64], 105–106 cells in mice and 109 cells in humans for studies of anti-mesothelin CAR T-cells [65, 66], and276

106 cells in mice and 109–1011 cells in humans for TIL studies by Rosenberg and colleagues [62, 63, 67].277

We used natural killer cell localisation data to validate the model, by confirming that early localisation of cells278

correlates with predicted maximum delivery rates and assuming that natural killer and T-cells behave similarly to each279

other at short time scales. A more appropriate validation would compare predictions to the localisation of adoptively280

transferred cells to solid tumours in mice and humans, however, such data is sparsely published, and we have found no281

reported data for humans that includes organ and tumour localisation at an early time point (of the order of minutes).282

Such data would be useful for further work, as would a time course that could be used to quantify the subsequent283

constraints imposed by homing and proliferation of cells.284

The numbers presented here compare organs like-for-like between mice and humans, but many mouse studies use285

subcutaneous tumours, and scaling of perfusion is more uncertain for xenografts than for ordinary tissue. The ratio of286

the maximum delivery rate per volume to skin tissue between mice and humans is 2 if the same blood concentration of287

immune cells is assumed, or 3400 if the same number of immune cells is assumed (calculated from Table 1). The ratio288

of delivery rates per volume to mouse skin versus human kidney tissue, for example, is 0.05 if the same concentration289

of cells is used, or 100 if the same number of immune cells is assumed. A previous study [68] has shown that small290

xenografts have similar local perfusion to the original tissue, but larger xenografts have reduced perfusion relative to291

the original tissue. This non-linearity further confounds extrapolation of preclinical results and highlights some of the292
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historically observed difficulties in the clinical translation of preclinical mouse xenograft model results [69]. However, the293

predicted maximum delivery rate to mouse skin is still orders of magnitude above predicted rates for any human tissue,294

suggesting that subcutaneous mouse models would still show greater efficacy than human studies. Additionally, mouse295

studies of orthotopic tumour grafts report success with similar doses to those of subcutaneous tumours: orthotopic,296

species-matched pancreatic tumours were eradicated by 107 CAR T-cells [59], orthotopic glioblastoma xenografts were297

markedly slowed (but not eradicated) by 2×106 CAR T-cells [70], pontine glioma xenografts introduced to the pons,298

spinal cord or thalamus of mice were eliminated by 107 CAR T-cells [71] and orthotopic hepatocellular carcinoma299

xenografts were eliminated or substantially reduced in mice by 5–20×105 CAR T-cells [72]. These considerations300

suggest that interpretation of pre-clinical therapeutic success requires dosages to be appropriately scaled to humans,301

in addition to consideration of physiological and immunological differences (such as the adhesion molecules required302

for T-cell extravasation). A model that considers organ-specific blood flow and volumes across species can be used to303

estimate likely efficacious human doses more precisely than allometric scaling.304

4.4 Prediction refinement by T-cell homing and further considerations305

The presented results are the predicted maximum delivery rates of CART-cells per unit volume (cells/min/mm3) to306

organs and tumours, based on only organ blood flows and volumes. Refining these predictions requires quantification307

of CART-cell proliferation and organ-specific homing. The probability of T-cell extravasation differs by location and308

cell type. Naïve T-cells extravasate mainly into the lymph nodes or spleen and activated cells have a higher probability309

of extravasating into non-lymphoid tissues [53, 73], distributed according to upregulated homing receptors (e.g. L-310

selectin or CCR7 [74]). These probabilities may differ across species (e.g. homing receptor CXCR1 is present in humans311

but not mice [75]), further limiting inter-species extrapolation of pre-clinical results. Homing receptor density, vessel312

normalisation and hence homing probabilities may further differ in tumour tissue, particularly following therapies such313

as Avastin [76, 77]. It is possible to quantify organ-specific homing by fitting ODE models (like the model shown in314

supplementary section A.1) to T-cell localisation data in experimental animals, as previous authors have done, e.g.315

[31]. Such quantification of homing probabilities would allow application of T-cell trafficking models to case reports316

in which the final localisation of transgenic cells was measured (e.g. [78]), for diagnostic purposes. However, we have317

found limited human data with multiple, early time-points for cross-species comparison, which is the primary aim of318

this work. Parameters obtained from fits to multiple experiments would differ due to differences in the animals and319

the cells, so several datasets would be required to quantify the variation of and/or a confidence interval for parameter320

estimates. Additionally, the focus of this study is on anti-tumour therapies, where tumour homing would be further321

affected by factors such as inflammation. For this reason, we chose to quantify maximum delivery rates by examining322

the case where T-cells have a 100% probability of extravasation in the target organ, and no extravasation elsewhere.323

Species comparisons are made by implicitly assuming that homing probabilities to each organ or tumour tissue would324

be similar between species. Expected variation in predictions was quantified by using the variation among anatomical325

reference values as a proxy. Both maximum values and this variation could be improved by more precise measurements326

of blood flows and volumes using the same techniques in each species, or else finding anatomical parameters for a precise327

experimental animal of interest.328

Another challenge for CART-cells in solid tumours is the identification of suitable target antigen. The ideal antigen329

is highly expressed on tumour cells and not expressed on healthy cells elsewhere. A typical target for B-cell malignancies330

is CD19 [43], as it is expressed by the entire pool of B-cells and is limited almost exclusively to B-cells. Several different331

antigens have been targeted for solid tumours, but with limited success (for example, GD2 has had encouraging results332

[43]). Target antigen may only be expressed by a subset of tumour cells and may not be sufficiently rare elsewhere333

in the body. For example, CAIX is expressed in some renal cell carcinomas, but it is also expressed in the liver bile334

duct resulting in on-target, off-tumour toxicities in a phase III trial [79]. Tumours may evolve to reduce expression of335

target antigen in response to successful T-cell killing, reducing the rate of tumour elimination or promoting outgrowth336

of therapy-resistant cells. Although these considerations are a barrier to treatment success, the rate at which cells can337

be delivered is a parallel and important factor. CART-cells that are specific for an antigen that is expressed on most338

tumour cells will not drive tumour regression if their kill rate is lower than the tumour growth rate, given the combined339

rates of T-cell delivery and proliferation. On the other hand, CART-cells specific for a rarer antigen may drive tumour340

regression if they arrive in sufficient numbers to eliminate all cells carrying that antigen, subsequently proliferating to341

greater numbers to drive regression at more restricted sites and/or drive a secondary response against one or more other342

antigens (i.e. epitope spread). Like T-cell delivery rates and T-cell extravasation probabilities, typical tumour growth343

rates are species, organ and individual specific. Together, these considerations show that tumour immunotherapy is a344

numbers game and hence more generally quantitative studies can be a useful tool for understanding the translational345
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gap between pre-clinical and clinical outcomes.346

5 Conclusions347

Details of the human, rat and mouse circulatory systems were considered to predict CART-cell delivery to human348

tumours, and to human, rat and mouse organs. Predictions show up to an order of 10,000-fold increased CART-cell349

delivery per unit volume of target tissue in mice than humans, while typical clinical cell therapy dosages are 100-fold350

less than typical pre-clinical doses. These numbers are consistent with experimental studies of NK cell localisation and351

various clinical observations. These predictions could partially explain why pre-clinical models of solid tumour clearance352

by CART-cells show greater efficacy than in humans. Dosage scaling was found to be organ-specific and is particularly353

hard to quantify for xenografts, confounding the interpretation of pre-clinical results and lowering their potential clinical354

value, which is an important consideration in the context of the reduction and replacement of animal experiments.355

Control of tumour and organ-specific blood flow through exercise, circadian timing or food consumption could increase356

cellular delivery to tumour sites without raising the prospect of adverse outcomes, while vascular normalisation may also357

induce such benefits, though with accompanying risk. More generally, cellular kinetic and dynamic models will lead to358

better understanding of how pre-clinical outcomes translate to the clinic, and hence better determination of appropriate359

clinical dosages and treatment strategies for cell-based therapies.360
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