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Abstract 13 

The concerns raised by Henderson, Hayes, Peacock, and Rehrig (2021) are based on 14 

misconceptions of our work. We show that Meaning Maps (MMs) do not predict gaze guidance 15 

better than a state-of-the-art saliency model that is based on semantically-neutral, high-level 16 

features. We argue that there is therefore no evidence to date that MMs index anything beyond 17 

these features. Furthermore, we show that although alterations in meaning cause changes in 18 

gaze guidance, MMs fail to capture these alterations. We agree that semantic information is 19 

important in the guidance of eye-movements, but the contribution of MMs for understanding its 20 

role remains elusive.   21 



We welcome the opportunity to clarify the rationale, results, and conclusions of our paper on 22 

Meaning Maps (MMs; Pedziwiatr et al., 2021) in response to the points raised by Henderson, 23 

Hayes, Peacock, and Rehrig (henceforth, HHPR; [reference to the commentary to be inserted]). 24 

HHPR’s core criticism of our paper is based on three misconceptions. They argue that (i) we are 25 

“denying the influence of semantic content” on eye-movements, that (ii) we claim that “because 26 

Meaning Maps do not capture object-scene semantic consistency, they do not capture any aspects 27 

of semantic content”, and that (iii) we argue that because MMs do not outperform DGII in 28 

predicting human gaze the two “must reduce to the same type of non-semantic underlying 29 

representation”. While we concede that the title of our paper could have been more nuanced, 30 

we made none of these claims. We agree with HHPR that semantic information is important in 31 

guiding eye-movements – in fact, our paper (Pedziwiatr et al., 2021) corroborates previous 32 

studies demonstrating this importance. A method that quantifies the spatial distribution of 33 

semantic information in images would therefore be a useful research tool. However, our findings 34 

suggest that it is unclear whether MMs as currently formulated can serve this purpose. Here, we 35 

will summarise the rationale of the MMs approach, describe how the logic of our own study 36 

directly builds on this rationale, and finally, detail key conclusions that can be derived from our 37 

findings. 38 

 39 

The paper that introduced the concept of MMs (Henderson & Hayes, 2017) contrasted two sets 40 

of predictions regarding where people look in images: one derived from MMs and the other from 41 

a saliency model called GBVS (Harel et al., 2006). The logic of this approach is simple: to the 42 

extent that one predictor outperforms the other, the winning predictor’s image features and/or 43 

computational mechanisms better capture the factors that guide eye movements. MMs are 44 

generated by using crowdsourced ratings of the ‘meaningfulness’ of image patches, and then 45 

spatially smoothing the ratings to create a map over the whole image. Henderson and Hayes 46 

showed that MMs that are created in this way outperform GBVS in predicting human fixation 47 

locations, and that they explain more unique variance in the eye-movements data. Based on the 48 

assumption that MMs measure semantic information, they concluded that “both previous and 49 

current results are consistent with a theory in which meaning is the dominant force guiding 50 

attention through scenes” (Henderson & Hayes, 2017). 51 

 52 



The first part of our study used the same logic but extended it to multiple saliency models. This 53 

approach was motivated by the finding that low-level features, on which classic saliency models 54 

(such as GBVS) rely, provide a poor explanation for gaze guidance in free viewing of natural 55 

scenes (Kümmerer et al., 2015; Kümmerer, Wallis, Gatys, Bethge, et al., 2017; Kümmerer et al., 56 

2020). It is therefore important to benchmark new methods against a range of saliency models, 57 

including state-of-the-art models. We replicated Henderson and Hayes’ (2017) key finding: MMs 58 

outperform GBVS in predicting human eye-movements, and explain more unique variance. 59 

However, MMs did not consistently outperform other models that also use exclusively low-level 60 

features (AWS and ICF; Garcia-Diaz et al., 2012; Kümmerer, Wallis, Gatys, & Bethge, 2017). 61 

Moreover, DeepGaze II (DGII; Kümmerer et al., 2016; Kümmerer, Wallis, Gatys, & Bethge, 2017), 62 

a modern saliency model based on high-level features, generated better predictions – a finding 63 

our paper replicates in two separate data sets – and explained more unique variance than MMs. 64 

Based on the reasoning outlined above, these results would imply that the image features and/or 65 

computational mechanisms underpinning DGII’s predictions provide better explanations for the 66 

guidance of eye movements in free-viewing of natural (non-contrived) scenes than those 67 

measured by MMs. Strong evidence supporting the usefulness of MMs in understanding 68 

oculomotor control, and of their utility for gaze prediction over and above alternative features 69 

or modelling frameworks, would require MMs to outperform these models and, ideally, explain 70 

more unique variance. 71 

 72 

Our findings are directly relevant to an evaluation of MMs as a tool to measure semantic 73 

information. Predictions by DGII are based on an image-computable, high-level feature space 74 

(Kümmerer et al., 2016; Kümmerer, Wallis, Gatys, & Bethge, 2017). We argue that these features 75 

can be carriers of meaning but, in and of themselves, do not amount to meaning. HHPR have an 76 

even stronger interpretation of DGII’s semantic emptiness, stating that it is not clear whether 77 

“deep learning models like DG2 can ever in principle capture object-scene semantic features, or 78 

indeed any type of semantic feature”. Based on (i) the assumption that MMs measure the 79 

distribution of semantic information and (ii) the logic of the original MMs study, the result that 80 

DGII outperforms MMs, and explains more unique variance, would therefore lead to the 81 

conclusion that (semantically-neutral) high-level features rather than ‘meaning’ guide eye-82 

movements. Note that this conclusion applies to any type of meaning that MMs might measure, 83 

including the concept of “context-free semantic density for local scene regions”. Critically 84 



however, due to the findings of the second part of our study, we do not subscribe to this view. 85 

Rather, we question whether MMs index unique semantic information relevant for gaze 86 

guidance over and above semantically-neutral, high-level features. 87 

 88 

In the second part of our study, we sought to determine how MMs (and DGII) predict fixations 89 

when meaning is dissociated from the presence of complex visual features. Specifically, we 90 

assessed the extent to which MMs (and DGII) capture semantic information related to object-91 

scene (in)consistencies. It is widely acknowledged in the literature that this type of meaning is 92 

important for eye-movements (Williams & Castelhano, 2019; Wu et al., 2014). In line with previous 93 

work (Henderson et al., 1999; Loftus & Mackworth, 1978), we found that people fixate more on 94 

objects that are semantically inconsistent with the scene than those that are consistent. This 95 

shows that semantic information changed gaze guidance. However, neither DGII nor MMs 96 

indexed this change.  97 

 98 

HHPR argue that MMs as originally proposed were never intended to be able to measure 99 

meaning associated with object-context relationships. This intention was unclear to us from the 100 

original paper, given that HHPR only define the limits of “context-free meaning” in later papers 101 

(Henderson et al., 2018; Henderson & Hayes, 2018) and their current commentary. Incidentally, 102 

because the coarse and fine patches seen by raters are fixed in size, the extent to which they are 103 

actually ‘context free’ depends on the size of objects in the image. It may be possible for a rater 104 

to recognize a (semantically inconsistent) shoe on a bathroom sink, if those objects are small 105 

enough in the image. In any case, our study provides empirical support for HHPR’s claim that 106 

‘context-free’ MMs do not index the semantic information contained in object-scene 107 

relationships. In our target paper, we explicitly acknowledge the possibility that MMs might 108 

capture other types of semantic information but highlight that their insensitivity to meaning 109 

related to object-scene relationships limits their usefulness. Moreover, this limitation may be 110 

difficult to fix:  data from a (forthcoming) follow-up study suggest that “contextualised MMs” 111 

(Peacock et al., 2019) also fail to capture semantic information linked to object-scene 112 

relationships, despite the fact that they have been designed to be sensitive to this type of 113 

meaning.  114 

 115 



Our study shows that MMs provide a worse explanation for oculomotor control than a saliency 116 

model that is based on semantically-neutral features, and that MMs fail to capture changes in 117 

gaze guidance in response to experimental manipulations of meaning. Taken together, these 118 

findings led us to favour the explanation that MMs do not measure unique semantic information 119 

that is relevant for gaze guidance over and above semantically-neutral, high-level features. What, 120 

then, do Meaning Maps measure? To construct MMs, raters are asked to “assess the 121 

meaningfulness of each patch based on how informative or recognizable they thought it was” 122 

(Henderson & Hayes, 2017). The ambiguity of key terms in these instructions allows raters to 123 

make up their own minds about how to approach the task. It seems entirely plausible that raters 124 

base their assessment on high-level image features similar to those used by DGII. We disagree 125 

with HHPR that this interpretation “requires assuming that raters ignore the instructions they are 126 

given”, since those features may often be “informative” as to the presence of “recognizable” 127 

objects. 128 

 129 

In summary, we argue that high-level features can often be the carriers of meaning but, in and 130 

of themselves, do not amount to meaning. We see no empirical evidence to suggest that MMs 131 

(and cMMs) index anything more than these high-level features (though that does not mean 132 

they must). When such features are experimentally dissociated from one specific but important 133 

type of meaning, current MMs (and contextualised MMs) do not capture changes in meaning 134 

relevant for human eye-movements. While our work highlights limitations of the current MMs 135 

approach, we hope that this debate will contribute to the development of a tool to index the 136 

distribution of meaning across an image, either within the MMs approach, or beyond. 137 

 138 
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