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Abstract

This paper addresses various statistical and empirical challenges associated
with modelling farmers’ decision-making processes concerning agricultural
land-use. These include (i) use of spatially high-resolution data so that id-
iosyncratic effects of physical environment drivers, e.g. soil textures, can
be explicitly modelled; (ii) modelling land-use shares as censored responses,
which enables consistent estimation of the unknown parameters; (iii) incor-
porating spatial error dependence and heterogeneity, which leads to accurate
formulation of the variances for the parameter estimates and more effec-
tive statistical inferences; and (iv) reducing the computational burden and
improving estimation accuracy by introducing an alternative GMM/QML
hybrid estimation procedure. We also provide extensive evidence, which
suggests that our approach can construct more accurate land-use predic-
tions than existing methods in the literature. We then apply our method to
empirically investigate how the climatic, economic, policy and physical de-
terminants influence the land-use patterns in England over time and spatial
space. We are also interested in examining whether environmental schemes
and grants have assisted in freeing up land used for arable, rough grazing,
temporary and permanent grasslands and converting it to bio-energy crops
to help to achieve deep emission reductions and prepare for climate change.
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1. Introduction10

By now, it is a common knowledge that changes in land-use patterns
significantly affect both the environment (e.g. biodiversity, water pollution
and soil erosion) and economic/social welfare (see e.g. Mattison and Norris
(2005), Reidsma et al. (2006), and Chakir and Le Gallo (2013)). In the
UK, there is also a strong belief that freeing up some types of agricultural15

land-use and converting it to alternative usages can help to achieve deep
emission reductions and prepare for climate change (Committee on Climate
Change (2018, 2020)). In 2018, the UK’s Committee on Climate Change
(CCC) proposed a number of changes to the way we use land. These changes
aim at (a) reducing land-use for grasslands, i.e. permanent and temporary20

grasslands, and rough grazing by 26 to 36%, (b) introducing new woodlands
to store carbon by 1.5 million hectares, and (c) increasing land use for bio-
energy crops, e.g. oilseed rape, by up to 1.2 million hectares. It is believed
that these changes should lead to 35 to 80% overall reductions in Metric
tons of carbon dioxide equivalent by 2050.25

These factors give rise to the necessity to manage how land is used
and the need for a better understanding of farmers’ behavioral responses to
drivers of land-use changes. In particular, we are interested in (i) climatic
drivers (e.g. rain and temperature), (ii) economic drivers (e.g. input and
output prices), and (iii) environmental policies and governmental schemes30

(e.g. greenbelts, set-asides, environmentally sensitive areas (ESAs), and
other subsidies and grants). A better understanding of how these drivers
influence the land-use patterns over time and spatial space should help policy
makers not only to evaluate existing practices, but also to formulate new
environmental policies.35

In this paper, we embrace this necessity and aim to address various
well-known methodological challenges associated with modelling farmers’
decision-making processes about land-use allocation. Moving beyond that of
existing studies (e.g. Fezzi and Bateman (2011), Chkir and Le Gallo (2013),
Ay et al. (2017), and Marcos-Martinez et al. (2017)), our new framework (i)40

explores use of spatially disaggregated data, (ii) models land-use shares as
censored responses, (iii) allows for potential spatial error dependence (SED),
(iv) models unobserved heterogeneity in an error component structure, and
(v) reduces computational burden via a hybrid estimation procedure. We
shall discuss the statistical and empirical underpinnings of these explorations45

in detail in Section 2.1. Taking into account these features gives rise to
estimation of a system of two-limit (TL) random-effect (RE) Tobit models
with SED (TL-RE-SED-Tobit hereafter) for spatially high-resolution panel
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data. We thoroughly explain the establishment of such a system in Sections
2.2 and 2.3, while introducing a new hybrid QML/generalised method of50

moments (GMM) estimation procedure in Section 3.
Section 4 provides an insight into the predictive power under the newly

proposed TL-RE-SED-Tobit specification. Subsecquently, in Section 5 we
present an empirical investigation of how the climatic, economic and policy
drivers influence the agricultural land-use patterns in England over time and55

spatial space. We also give special attention on the question whether existing
environmental schemes and grants in England have helped to incentivise a
switch in land-use. In this section, we show firstly that the newly introduced
TL-RE-SED-Tobit specification leads to a significant improvement in the
predictive accuracy of land-use. Since prediction of future land-use areas is60

essential, such a superior predictive power lays an important foundation for
the use of our model. Finally, Section 6 draw some important conclusions,
while mathematical proof is presented in the Appendix.

2. Tobit system with spatial error dependence and random effects

This section formulates the system of simultaneous Tobit equations of65

land-use shares. We begin with the key analytical considerations that lead
to establishment of such a system, then discuss its formulation in detail.

2.1. Methodological explorations

We have identified a number of methodological shortfalls in the existing
studies of agricultural land-use modelling and prediction (see, for example,70

Fezzi and Bateman (2011), Chkir and Le Gallo (2013), Ay et al. (2017),
and Marcos-Martinez et al. (2017)). Below we discuss these shortfalls and
suggest strategies to remedy.

2.1.1. Exploring the use of spatially disaggregated data

In an empirical analysis of land-use, different techniques are required for75

different data resolutions. At the two extreme ends of the spectrum, we have
individual data, which correspond to the parcel level, and aggregated data
on a larger geographical region (e.g. regional and national levels). Regarding
the former, analysis is often conducted within a discrete choice modelling
framework (see e.g. Li et al. (2013)). The analysis of the latter involves80

tools in panel-data regression models and seemingly unrelated regressions
(see e.g. Baltagi and Pirotte (2011), Chakir and Gallo (2013), Marcos-
Martinez et al. (2017), and Ay et al. (2017)). In this paper, we believe
that there are benefits to be gained by exploring spatially disaggregated
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data, which represent a convenient middle ground. In this regard, individual85

choices are aggregated in order to construct land use shares. However, unlike
the case for national level data, aggregation is done only on a scale that
is (i) small enough to capture the spatial variation in the environmental
and climatic drivers of farmers’ behavior, and (ii) proportionate with the
scale of the decision-making unit. The first characteristic suggests that90

an important benefit, which we are able to enjoy, is the ability to explicitly
model the idiosyncratic effects of policies (e.g. ESA and subsidies) and other
other physical environmental drivers (e.g. mean elevation, land slope and
altitude). Moreover, to satisfy the second characteristic, we shall assume in
Section 5 that each of the spatial units considered is a decision-making unit95

(see Remark 5.1 in particular).

2.1.2. Modeling land-use shares as censored responses

A well-known difficulty of modelling spatially disaggregated data resides
in the problem referred to in the literature as censoring problem. In par-
ticular, we are likely to see a wide range of land-use share values between100

zero and one with pile-ups at the two endpoints of zero and one. In empiri-
cal models, the failure to account for these features likely lead to numerous
methodological shortfalls, especially the biasness and inconsistency of the
parameter estimates (see e.g. Greene (2008), and Wooldridge (2010)). In
this paper, we address the problem by modelling land-use share equations,105

which are based on farmers’ profit maximisation, as a system of simulta-
neous Tobit equations. Hence, we have drawn upon a set of tools recently
developed for estimating censored household demand systems (see e.g. Yen
et al. (2003), and Dong et al. (2004)). These are explained in detail in
Sections 2.3 and 3 below.110

2.1.3. Allowing for potential spatial error dependence:

Often the use of the spatially disaggregated data involves some degree
of spatial dependence. This may be brought about by endogenous interac-
tion effects (e.g. peer effects), which indicates a spatial lag specification, or
by the so-called Durbin effects, which is simply the exogenous interaction115

counterparts. Nonetheless, in our view these effects seem to be secondary
within the context of a land-use share model. In this regard, a more rele-
vant type of dependence is the SED (see also Moscone et al. (2007), and
Chakir and Le Gallo (2013)). Measurement errors that spill across grid
boundaries, for example, can lead to the SED. Otherwise, there may exist120

unobservable latent variables that might be unaccounted for in the model.
For instance, some specific land characteristics, which cannot be accounted
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for in the model due to unavailability of the data, may lead to the SED
if they are spatially correlated. When SED is not properly addressed, the
usual maximum likelihood and quasi maximum likelihood (QML) methods125

can be severely affected, which renders statistical inferences unreliable. In
the current paper, we first construct a panel-data Tobit model with error
components that allow both spatial and time-wise correlations. Then, this
model forms the basis for the development of our system of simultaneous
Tobit equations of land-use shares (see Sections 2.2 and 2.3 for details).130

2.1.4. Modelling unobserved heterogeneity in an error component structure:

Some previous studies, which are based on the aggregated data e.g.
Lacroix and Thomas (2011), control for unobserved heterogeneity among
farmers by using a fixed-effects model. However, by using the spatially dis-
aggregated data, we can explicitly model the idiosyncratic effects of soils and135

other physical environmental drivers, which render the fixed-effects specifi-
cation unnecessary. Moreover, in the fixed-effect model, factors such as land
quality and other soil characteristics are assumed to be time-invariant and
are therefore swept away by the estimation. Nonetheless, since data limi-
tations can hinder a complete assessment of the influence of inter-regional140

biophysical and socioeconomic differences on land-use dynamics, in this pa-
per, we model such leftover individual-effects via a random-effects model.
The random effects render our model closer to a traditional censored demand
system discussed in e.g. Meyerhoefer et al. (2005).

2.1.5. Reducing the computational burden via a hybrid estimation procedure:145

In the literature, the SED is often modelled on the basis of one of the
many spatially distinct variants of Cliff and Ord (1973, 1981) formulations.
Practical estimation of the Cliff-Ord type specifications can be computa-
tionally burdensome. This is the case even for spatial panel-data models of
uncensored responses (e.g. Kapoor et al. (2007), Yang (2013), and Liu and150

Yang (2015)). To lighten the computational burden, Liu and Yang (2015)
suggested an alternative QML procedure that involves concentrating out a
subset of the parameters and maximisation of a concentrated log likelihood
function. Nonetheless, it is not straightforward to apply such a tool to our
case of censored responses. Hence, in this paper, we formulate a hybrid155

method that is a combination of the QML and the GMM techniques for
estimating our system of simultaneous Tobit equations of land-use shares.
Even though Kelejian and Prucha (1999) and Kapoor et al. (2007) have
presented some key asymptotic results for the GMM procedure, here, we
discuss additional properties that are crucial to the statistical validity of160

our hybrid framework (see Section 3 for details).
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2.2. Constructing the TL-RE-SED-Tobit Model for Panel Data

The censoring problem, which was discussed in Section 2.1.2, suggests
that we model the land-use shares using the the two-limit Tobit model of
the form

y∗k,it = xk,itβk + uk,it (2.1)

yk,it =


0 if y∗k,it ≤ 0

y∗k,it if 0 < y∗k,it < 1,

1 if y∗k,it ≥ 1

(2.2)

where k specifies the land-use category, xk,it = [1, xk,1,it, . . . , xk,J,it] with J
denoting the number of land-use determinants included in the model, and i
and t signify the i-th grid of land and t-th time period, respectively. In this165

regard, let k = 1, . . . ,K, i = 1, . . . , N and t = 1, . . . , T.
With regard to the latent specification in (2.1), the general form of model

is obtained by replacing 0 and 1 in (2.1) and (2.2) with a and b, where
a, b ∈ R and a < b. Furthermore, the model is well founded since it can
be viewed as a reduced form model of the well-known structural profit-170

maximisation problem in Chambers and Just (1989), which is extended to
the context of the agricultural land-use by Fezzi and Bateman (2011), and
Bateman et al (2020)).

In addition, we incorporate the RE-SED component in the two-limit
Tobit model by specifying the disturbance process in each time period as
following the first order spatial autoregressive (SAR) process

uk(t) = ρkWkuk(t) + εk(t), (2.3)

where uk(t) = (uk,1t, uk,2t, . . . , uk,Nt)
> (i.e. an N × 1 vector of disturbance

terms), Wk is an N ×N weighting matrix of known constants (which does
not involve t), ρk is a scalar autoregressive parameter and εk(t) is an N × 1
vector of innovations in period t. We also assume that the innovation vector
εk(t) follows the error component structure

εk(t) = µk + vk(t), (2.4)

where µk denotes a vector of the unit specific error component. Equations
(2.3) and (2.4) suggest that the disturbances are auto-correlated both spa-
tially and timewise. This can be seen more clearly in the scalar notations

uk,it = ρk

N∑
j=1

Wk,ijuk,jt + εk,it, εk,it = µk,i + vk,it.
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We maintain the following assumptions throughout this paper.

Assumption 2.1. (a) Let T be a fixed positive integer.175

(b) For all 1 ≤ t ≤ T and 1 ≤ i ≤ N, where N ≥ 1, vk,it are identically and
independently distributed (iid) with zero mean, variance of 0 < σ2

k,v <
bv < ∞, and finite fourth moment. In addition, E(vk,it|Xk,it) = 0
almost surely.

(c) For all 1 ≤ i ≤ N, where N ≥ 1, the unit-specific error components µk,i180

are iid with zero mean, the variance of 0 < σ2
k,µ < bµ < ∞, and finite

fourth moment. In addition, E(µk,i|Xk,it) = 0 almost surely.

(d) The processes {vk,it} and {µk,i} are independent. �

Assumption 2.1(a) suggests that our analysis corresponds to the case
where T is fixed and N → ∞, while Assumptions 2.1(b) and 2.1(c) imply
Eεk,it = 0 and

E(εk,itεk,js) =


σ2
k,µ + σ2

k,v if i = j; t = s

σ2
k,µ if i = j; t 6= s

0 otherwise.

In the other words, the innovations εk,it are intertemporally correlated within
a unit, but are not spatially correlated across units. Also, the concatenation
of the innovation vector with respect to time periods t = 1, . . . , T leads to

εk = (eT ⊗ IN )µk + vk,

where eT is a T × 1 vector of 1s and

vk = (v>k (1), v>k (2), . . . , v>k (T ))> = (vk,11, vk,21, . . . , vk,N1, vk,12, . . . , vk,NT )> .

Hence, E(εk) = 0 with the variance-covariance matrix of

Ωk,ε = E(εkε
>
k ) = σ2

k,vINT + σ2
k,µ(JT ⊗ IN ) = σ2

k,vQ0 + σ2
k,1Q1,

where σ2
k,1 = σ2

k,v + Tσ2
k,µ, Q0 =

(
IT − JT

T

)
⊗ IN , Q1 = JT

T ⊗ IN , and

JT = eT e
′
T is a T ×T matrix of unit elements. In this regard, Q0 and Q1 are

transformation matrices often seen in the error component literature (see e.g.
Baltagin (2008)). These matrices are symmetric, idempotent, orthogonal to
each other and satisfy the following properties: (i) Q0 + Q1 = INT , (ii)
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TR(Q0) = N(T − 1) and TR(Q1) = N, and (iii) Q0Q1 = 0. In the light of
these properties, it is immediately the case that

Ω−1
k,ε = σ−2

k,vQ0 + σ−2
k,1Q1 and Ω

−1/2
k,ε = σ−1

k,vQ0 + σ−1
k,1Q1.

Furthermore, the similar concatenation of (2.3) leads to

uk = ρk(IT ⊗Wk)uk + εk = [IT ⊗ (IN − ρkWk)
−1]εk, (2.5)

where ⊗ denotes the Kronecker product and the following assumptions are
maintained throughout this paper.185

Assumption 2.2. (a) The matrix IN − ρkWk is nonsingular. (b) |ρk| < 1.
(c) All diagonal elements of Wk are zero. �

Assumption 2.2(a) ensures that the model is closed, in the sense that
it can be uniquely solved for the disturbance uk in terms of the innovation
εk, while Assumption 2.2(c) is a normalisation, which implies that no unit190

is related in a meaningful way or being a neighbour to itself. Although the
elements of Wk are assumed to be nonvarying over t, they are allowed to
depend on the cross-sectional dimension N (i.e. they are allowed to form a
triangular array). This corresponds to models in which the weighting matrix
is row-normalised and the number of neighbors for a given unit depends on195

the sample size. In this respect, we also assume:

Assumption 2.3. Row and column sums of Wk and Hk = (IN − ρkWk)
−1

are bounded in absolute values by cW <∞ and cH <∞, respectively. �

Accordingly, E(uk) = 0 and E(uku
>
k ) = Ωk,u, where

Ωk,u =
[
IT ⊗ (IN − ρkWk)

−1
]

Ωk,ε

[
IT ⊗ (IN − ρkW>k )−1

]
. (2.6)

It is immediately the case that200

Ω−1
k,u =

[
IT ⊗ (IN − ρkW>k )

]
Ω−1
k,ε [IT ⊗ (IN − ρkWk)] .

From (2.6), it is clear that the variance-covariance matrix of the disturbance
vector uk(t) is proportional to Hk. Since this property is preserved under
matrix multiplication, Assumption 2.3 implies that the row/column sums
of this matrix are bounded uniformly in absolute values, which restricts the
degree of cross-sectional correlation between the model disturbances.205
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2.3. The System of TL-RE-SED-Tobit Models

Having discussed the TL-RE-SED-Tobit panel data model of land-use
shares for each k = 1, . . . ,K category, we can now construct the system of
Tobit equations as simply a collection of these models over K categories.

Assuming that the cross-equation correlations satisfy

E

(
µk
vk

)(
µ>l v>l

)
=

(
σ2
kl,µ(JT ⊗ IN ) 0

0 σ2
kl,vINT

)
for all k, l = 1, . . . ,K, leads to the covariance matrix of the innovations of
the form

Ωkl,ε = E(εkε
>
l ) = σ2

kl,µ(JT ⊗ IN ) + σ2
kl,vINT , (2.7)

where σ2
kl,v = E(vkv

>
l ) and σ2

kl,µ = E(µkµ
>
l ). Alternatively,

Ωkl,ε = σ2
kl,vQ0 + σ2

kl,1Q1, (2.8)

which is obtained by defining σ2
kl,1 = σ2

kl,v + Tσ2
kl,µ. The covariance matrix

of ε = (ε1, ε2, . . . , εK)> is then

Ωε = E(εε>) = Σε ⊗ IN ,

where Σε = Ωµ ⊗ JT + Ωv ⊗ IT is KT × KT in which Ωµ = [σ2
kl,µ] and

Ωv = [σ2
kl,v] both with dimension K ×K. Alternatively,

Ωε = Ωv ⊗Q0 + Ω1 ⊗Q1 = [Ωkl,ε],

where Ω1 = [σ2
kl,1].210

Regarding the disturbances, we note first that

Ωkl,u ≡ E[uku
>
l ] = E[εkε

>
l ]{IT ⊗HkH

>
l },

where Hk = B−1
k with Bk = (IN − ρkWk), so that

Ωkl,u =
{
σ2
kl,1J̄T + σ2

kl,v(IT − J̄T )
}
⊗HkH

>
l (2.9)

by (2.7) and (2.8), where J̄T = JT /T . The variance-covariance matrix of
the system disturbances is then

Ωu = E(uu>) = AΩεA
>,

where u = (u1, u2, . . . , uK)> and A = diag(A11, A22, . . . , AKK) with Akk =
IT ⊗Hk.
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Finally, we conclude this section by introducing spatial transformations
that will be useful for discussion in the next section. Let eNT denote an
NT × 1 vector of ones, Y = [Y1, . . . , YK ]>, where Yk = [Yk(1), . . . , Yk(T )]>

with Yk(t) = [yk,1t, . . . , yk,Nt]
>, and X = diag[x1, x2, . . . , xK ], in which xk =

[xk(1), . . . , xk(T )]> and xk(t) = [xk,1(t), . . . , xk,J(t)]. In this regad,

Ẋ = A−1X and Ẏ = A−1Y

are the Cochrance-Orcutt-type spatial transformations, which will be essen-
tial components of the estimation procedure in the next section.

3. Hybrid QML/GMM estimation procedure215

This section proposes a hybrid QML/GMM estimation procedure for es-
timating the system of TL-RE-SED-Tobit equations for the K land-use cat-
egories. Overall, this hybrid procedure consists of four main steps, namely
(1) estimating the TL-RE-SED-Tobit panel data model for the k-th category
of land-use, (2) performing GMM estimation of the spatial parameter ρk,220

(3) constructing the spatial Cochrane-Orcutt-type transformation, and (4)
estimating the system of TL-RE-SED Tobit equations for the K land-use
categories. We will now discuss these steps in more detail.

Step 1: Estimating the TL-RE-SED-Tobit panel data model

The first step involves estimating the TL-RE-SED-Tobit panel data225

model for the k-th category of land-use using the QML estimation. Our
goal is to obtain a consistent estimate of the disturbance, uk,it. Nonetheless,
a number of issues must be taken into consideration to this end.

(a) Regarding the QML estimation, it is well known that the presence
of heteroskedasticity is likely to lead to inconsistent estimates. However,
consistent estimation can made be possible by specifying a model for het-
eroskedasticity, particularly

σk,u,it = exp(zk,itαk), (3.1)

where zk,it = [1, zk,1,it, . . . , zk,J,it]. In this regard, “J” is used with a slight
abuse of the notation since it may not be the same as the number of determi-230

nants in (2.1). In this paper, we assume a multiplicative error specification
as is often done in the auto-regressive heteroskedasticity literature (see e.g.
Tsay (2005)).
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(b) Following the popular pooled method, the pooled QML estimators
maximise the quasi-log-likelihood function

Lk,N =
1

NT

N∑
i=1

T∑
t=1

`k,it(β̄k, ᾱk), where

`k,it(β̄k, ᾱk) = 1[yk,it = 0] log
[
Φ((−xk,itβ̄k)/σk,u,it(ᾱk))

]
+ 1[0 < yk,it < 1] log

[
(1/σk,u,it(ᾱk)φ((yk,it − xk,itβ̄k)/σk,u,it(ᾱk))

]
+ 1[yk,it = 1] log

[
Φ(−(1− xk,itβ̄k)/σk,u,it(ᾱk))

]
and 1[ · ] signifies an indicator function. Lemma 3.1 below confirms that235

consistent estimates of the disturbances can be obtained from this QML
estimation. Mathematical proof of this lemma requires imposing further
assumptions as follows.

Assumption 3.1. (a) xk has a full column rank, i.e. rank(xk) = J , where
J <∞. (b) For a column of xk, i.e. xk,l,

lim
N→∞

x>k,lxk,l →∞, lim
N→∞

x2
k,l,it/x

>
k,lxk,l → 0 and E(x4

k,l,it) <∞

for all l = 1, . . . , J and it = 11, 21, . . . , N1, 12, . . . , NT. (c) The empirical
distribution function Gk,N defined by Gk,N (xk) = j/NT, where j is the240

number of points xk,it ≤ xk, converges to a distribution function Gk for all
it = 11, 21, . . . , N1, 12, . . . , NT and k = 1, . . . ,K. �

Lemma 3.1. Let B1 denote the vector of true parameters
(
β>k α>k

)>
and B̂1 be the QML estimator of B1. Under Assumptions 2.1 to 3.1, B1 is
uniquely identifiable and B̂1 = B1 +Op((NT )−1/2) as N →∞. �245

With the exception of the finite fourth moment condition on xk,l,it, which
is necessary for the proof of Theorem 1 below, Assumption 3.1 is standard
in the Tobit model literature (e.g. Amemiya (1973)). Furthermore, the
proof of Lemma 3.1 can be found in Amemiya (1973). The only exception
resides in an additional random variable, which reflects that our model is a250

two-limit case, as follows

vk,1,it =

{
1 with probability Fk,1,it
0 with probability 1− Fk,1,it

vk,2,it =

{
1 with probability Fk,2,it
0 with probability 1− Fk,2,it

vk,3,it =

{
1 with probability 1− Fk,1,it − Fk,2,it
0 with probability Fk,1,it + Fk,2,it

,

where Fk,1,it = Prob(y∗k,it ≤ 0) and Fk,2,it = Prob(y∗k,it ≥ 1).
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Step 2: Performing the GMM estimation of the spatial parameter ρk
Upon the completion of Step 1, consistent residuals are obtained for

the k-th land-use category. Then, for uncensored observations, the required
devolatilised residuals are constructed as

ũk,it/σ̃k,u,it = (yk,it − xk,itβ̃k)/σ̃k,u,it,

where σ̃k,u,it and β̃k represent the QML estimates for the standard errors
defined in (3.1) and parameter estimates obtained in Step 1, respectively.
Otherwise, generalised residuals for censored observations are computed via
the inverse Mills ratio

λk,it = φ(xk,itβk/σk,u,it)/{Φ(xk,itβk/σk,u,it)},

where φ(·) and Φ(·) are the normal density and cumulative distribution
functions, respectively. For example, for observations left-censored at 0,255

the generalised residuals can be computed as ũk,it = −λ̃k,it. Let ũk =

(ũk,11, ũk,21, . . . , ũk,N1, ũk,12, . . . , ũk,NT )> .
The current step involves estimating the SAR parameter by using the

GMM procedure introduced in Kapoor et al. (2007), in which ũk is used in
place of the true disturbances.To be accustomed to such practice, one only260

has to note that generalised residuals are commonly used for performing
diagnostic tests in the standard Tobit model literature (e.g. Cameron and
Trivedi (2005)). Although the QML estimation is used in Step 1, unlike
Kapoor et al. (2007) who employed the ordinary least squares, Lemma 3.1
suggests that consistency of our GMM estimators for ρk, σ

2
k,v and σ2

k,1 can265

be shown in a similar fashion. In particular:

Lemma 3.2. Let B2 denote the vector of true parameters
(
ρk σ2

k,v σ2
k,1

)>
,

and B̂2 is the GMM estimator of B2. Under Assumptions 2.1 to 3.1, B2 is
uniquely identifiable and B̂2 = B2 +Op((NT )−1/2) as N →∞. �

Step 3: Constructing the spatial Cochrane-Orcutt-type transformations270

Upon the completion of Steps 1 and 2, for all k = 1, . . . ,K, the GMM
estimates ρ̂1, . . . , ρ̂K are readily available. These are then used in the esti-
mation of the matrix Akk, namely

Âkk = IT ⊗ Ĥk,

where Ĥk = (IN − ρ̂kWk)
−1. The current step involves computation of the

Cochrane-Orcutt-type spatial transformations of Y and X. Particularly,

Ẋ = Â−1X̃ and Ẏ = Â−1Ỹ ,
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where Ỹ = [Ỹ1, Ỹ2, . . . , ỸK ] and X̃ = [x̃1, x̃2, . . . , x̃K ] are the devolatilised
versions of Y and X based on σ̃k,u,it, respectively.

Step 4: Estimating the system of TL-RE-SED Tobit equations

We first note an important drawback of the traditional Amemiya-Tobin
mechanism, which resides in the fact that the adding-up restriction holds275

only for the latent equations but not for the observed land-use shares. We
address this issue by treating the K-th land-use share as a residual category
with no specific land-use demand of its own. As the results, the current step
focuses on estimating the system of TL-RE-SED Tobit models of (K − 1)
land-use shares based on the Cochrane-Orcutt-type spatial transformations280

and the QML estimation.
This step involves the QML estimation of the system of TL-RE-SED

Tobit models of land-use shares. We follow the suggestion made by Yen
et. al. (2003) and specify the quasi-likelihood function based on a sequence
of bivariate Tobit likelihoods. In this regard, since a pooled estimation is
considered, it is notationally simpler to write

Ẏk = (ẏk,11, ẏk,21, . . . , ẏk,N1, ẏk,12, . . . , ẏk,NT )> ≡ (ẏk,1, ẏk,2, . . . , ẏk,NT )>

and ι = 1, 2, . . . , NT. For the k-th and j-th TL-RE-SED equations, let
u̇k,ι = [ẏk,ι − ẋk,ιβ̄k]/σ̄k and u̇j,ι = [ẏj,ι − ẋj,ιβ̄j ]/σ̄j , respectively, where
ẋk,ι = [ẋk,1,ι, . . . , ẋk,J,ι] (the ι-th row of ẋk). In addition, 1[ẏk,ι = 0, ẏj,ι = 0]
is a dichotomous indicator which equals 1 when ẏk,ι = 0 and ẏj,ι = 0. The285

bivariate Tobit likelihood for the ι-th observation is then

Lk,j,ι =
{

Ψ(u̇k,ιu̇j,ι; r̄kj)
}1[ẏk,ι=0,ẏj,ι=0]

×
{
σ̄−1
k σ̄−1

j (1− r̄2
kj)
−1/2ψ(u̇k,ι, u̇j,ι; r̄kj)

}1[0<ẏk,ι<1,0<ẏj,ι<1]

×
{

Ψ(−u̇k,ι, u̇j,ι;−r̄kj)
}1[ẏk,ι=1,ẏj,ι=0]

(3.2)

×
{

Ψ(u̇k,ι,−u̇j,ι; r̄kj)
}1[ẏk,ι=0,ẏj,ι=1]

×
{
σ̄−1
k φ(u̇k,ι)Φ

[
(u̇j,ι − r̄kj u̇k,ι)/(1− r̄2

kj)
1/2
] }1[0<ẏk,ι<1,ẏj,ι=0]

×
{
σ̄−1
j φ(u̇j,ι)Φ

[
(u̇k,ι − r̄kj u̇j,ι)/(1− r̄2

kj)
1/2
] }1[ẏk,ι=0,0<ẏj,ι<1]

,

where ψ(·, ·, ·) and Ψ(·, ·, ·) are the bivariate standard normal probability
density function and corresponding cumulative distribution, respectively.
Hence, the QML estimators of the vector of true parameters

θ =
(
β>1 . . . β>K−1 σ2

1,ε . . . σ2
K−1,ε r12 . . . rK−2,K−1

)>
13



can be obtained by maximising the quasi-likelihood of

L =
NT∏
ι=1

L1,K−1,ι

K−1∏
k=2

k−1∏
j=1

Lk,j,ι

 .

Let us conclude the current section by discussing the consistency of the
proposed QML estimation. We first define

L0 =
NT∏
ι=1

L0
1,K−1,ι

K−1∏
k=2

k−1∏
j=1

L0
k,j,ι


in which

L0
k,j,ι =

{
Ψ(u̇0

k,ιu̇
0
j,ι; r̄kj)

}1[ẏ0k,ι=0,ẏ0j,ι=0]

×
{
σ̄−1
k σ̄−1

j (1− r̄2
kj)
−1/2ψ(u̇0

k,ι, u̇
0
j,ι; r̄kj)

}1[0<ẏ0k,ι<1,0<ẏ0j,ι<1]

×
{

Ψ(−u̇0
k,ι, u̇

0
j,ι;−r̄kj)

}1[ẏ0k=1,ẏ0j=0]

×
{

Ψ(u̇0
k,ι,−u̇0

j,ι; r̄kj)
}1[ẏ0k,ι=0,ẏ0j,ι=1]

×
{
σ̄−1
k φ(u̇0

k,ι)Φ
[
(u̇0
j,ι − r̄kj u̇0

k,ι)/(1− r̄2
kj)

1/2
] }1[0<ẏ0k,ι<1,ẏ0j,ι=0]

×
{
σ̄−1
j φ(u̇0

j,ι)Φ
[
(u̇0
k,ι − r̄kj u̇0

j,ι)/(1− r̄2
kj)

1/2
] }1[ẏ0k,ι=0,0<ẏ0j,ι<1]

,

where u̇0
k,ι = [ẏ0

k,ι − ẋ0
k,ιβ̄k]/σ̄k, u̇

0
j,ι = [ẏ0

j,ι − ẋ0
j,ιβ̄j ]/σ̄j , ẏ

0
k,ι and ẋ0

k,ι denote

elements of the transformed Ỹ and X̃, respectively, with A−1 instead of Â−1.
Then, establishing the consistency of the proposed QML estimation requires
showing that

L(θ̄) = L0(θ̄) +OP

(
(NT )−1/2

)
(3.3)

uniformly over a compact parameter space Θ, where θ̄ ∈ Θ, and L and L0

represent 1
NT lnL and 1

NT lnL0, respectively. Theorem 3.1 below presents
the consistency of the proposed QML estimation, whereas its proof is rele-290

gated to the appendix.

Theorem 3.1. Let inf
uk,ιuj,ι∈R2

ψ(uk,ι, uj,ι) = δ1 and inf
uk,ι∈R

φ(uk,ι) = δ2, where

δl > 0 is an arbitrary small value for l = 1 or 2. In addition, let

lim sup
N→∞

{
max

θ̄∈D̄δ(θ)∩Θ
EL0(θ̄)

}
6= lim sup

N→∞
EL0(θ)
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for any θ̄, where D̄δ(θ) is the complement of the δ-neighborhood of θ. Then,
under the conditions of Lemma 3.2, θ is uniquely identified and

θ̂ = θ +OP

(
(NT )−1/2

)
as N →∞. �

4. Prediction under the TL-RE-SED Tobit Model

For a given Ωkk,u, studies in spatial econometrics (e.g. Baltagi and Li
(2006), Baltagi et al. (2012), Chakir and Gallo (2013), and Ay et al. (2017))
suggest that the best linear unbiased predictor for the i-th individual at a
future period T + τ is of the form

ŷ ∗k,i,T+τ = Xk,i,T+τ β̂k + ω′k,iΩ
−1
kk,uûk, (4.1)

where β̂k denotes the parameter estimate obtained in Step 4 of Section
3 and ωk,i = E[uk,i,T+τuk] is the co-variance between future and current295

disturbances. Below, we construct the predictor ŷ ∗k,i,T+τ in the context of
the above-discussed system.

To derive ωk,i, we first note that uk(t) = B−1
k (µk + vk(t)) and uk =

(eT ⊗Hk)µk + (IT ⊗Hk)vk, then write

E[uk(T + τ)u′k] = E[B−1
k (µk + vk(T + τ))((eT ×Hk)µk + (IT ⊗Hk)vk)

′]

= σ2
µ,kkHk(e

′
T ×H ′k),

which is N × TN. These lead to

E[uk,i,T+τu
′
k] = σ2

µ,kkhk,i(e
′
T ×H ′k), (4.2)

where hk,i is the i-th row of Hk = B−1
k , for an individual i at time T + τ.300

Equations (2.9) and (4.2) suggest collectively that

ω′k,iΩ
−1
kk,u =

σ2
µ,kk

σ2
1,kk

hk,i(e
′
T ⊗Bk), (4.3)

which is obtained due to e′T = e′T J̄T and
σ2
µ,kk

σ2
v,kk
− σ2

µ,kk

σ2
v,kk
· Tσ

2
µ,kk

σ2
1,kk

=
σ2
µ,kk

σ2
1,kk

.

Since hk,i is the i-th row of Hk = B−1
k and B−1

k Bk = IN , it is clear that
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hk,iBk = l′k,i, where l′k,i is the i-th row of IN . Accordingly, hk,i(e
′
T ⊗ Bk) =

(1⊗ hk,i)(e′T ⊗Bk) = (e′T ⊗ l′k,i), which is (1× TN), and hence

ω′k,iΩ
−1
kk =

σ2
µ,kk

σ2
1,kk

(e′T ⊗ l′k,i). (4.4)

Substitution of these results into (4.1) leads to two equivalent unbiased
predictors for the i-th individual at a future period T + τ, namely

ŷ ∗k,i,T+τ = Xk,i,T+τ β̂k +
σ2
µ,kk

σ2
1,kk

hk,i(e
′
T ⊗Bk)ûk, (4.5)

and

ŷ ∗k,i,T+τ = Xk,i,T+τ β̂k +
σ2
µ,kk

σ2
1,kk

(e′T ⊗ l′k,i)ûk. (4.6)

The following remarks provide further clarifications of these predictors.
Firstly, ŷ ∗k,i,T+τ modifies the usual predictor simply by adding a fraction
of the corresponding residuals to the i-th unit of land. A similar result
was obtained in Baltagi and Li (2006), Baltagi et al. (2012) and Ay et
al. (2017). Here, the addition is equivalent to that of a random-effects
model without the spatial autocorrelation, which deviates from the results
formulated in Baltagi and Li (2004, 2006). This is because our SAR random
effects model differs from that of Anselin et al. (1988) in that the disturbance
term itself follows a SAR process whereas the remainder term follows an
error component structure. This point will be useful when performing the
hypothesis test for comparing our model’s predictive accuracy in Section
5.3. Secondly, although a single equation model should lead to the same
formulas, here via practical computation of such predictors relies on the
residual vectors obtained via a system that takes inter-equation correlations
into account. If the innovations are known, Baltagi (1980) (also Baltagi and
Pirotte (2011)) suggests that the required variances could be calculated via

Ov = ε>Q0ε/N(T − 1) and O1 = ε>Q1ε/N,

where ε = [ε1, ε2, . . . , εK ] is the NT ×K matrix of innovations. However, in
an empirical analysis, we must rely on residuals formulated from the system
estimation in Step 4 of Section 3.
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5. Empirical Analysis of Selected Land-Use Shares in England

Our objective is twofold. Firstly, it is to examine the predictive accuracy305

of the TL-RE-SED specification. Since prediction of future land-use areas
is essential, superior predictive power should lay an important foundation
for the use of such a specification in an empirical analysis. Secondly it is
to investigate how the above-mentioned determinants influence the land-use
patterns in England over time and spatial space. It is also our goal to ex-310

amine whether environmental schemes and grants have assisted in freeing
up land used for arable, rough grazing, temporary and permanent grass-
lands and converting it to bio-energy crops to help to achieve deep emission
reductions and prepare for climate change.

To achieve these goals, the analysis in this section focuses on five types of315

land-use, namely (1) arable, i.e. land planted to cereals (e.g. wheat, barley,
and oats) and root crops (e.g. potatoes and sugar beet excluding oilseed
rape), (2) temporary grassland, i.e. grassland that is typically part of an
arable crop rotation, (3) permanent grassland, i.e. grassland maintained
perpetually without reseeding, (4) rough grazing, i.e. uncultivated land320

used for grazing livestock, and (5) oilseed rape. The first four categories are
the main land-use types for the English agricultural sector, while the fifth
is a representation of bio-energy crops, which should be financially incen-
tivised in order to help to reduce emissions and prepare for climate change.
These land-use shares are computed by constructing the total farm land as a325

summation of these five land-uses. Moreover, land-use determinants can be
classified into three categories, namely (i) economics, (ii) climatic and phys-
ical environment, and (iii) environmental policy. Moreover, Table 2 presents
a full list of the exogenous variables used in our analysis.

In the sections that follow we first present detailed descriptions of the330

data and their sources, then specify a set of empirical specifications, which
form the basis of our analysis.

5.1. Data descriptions and sources

We use a unique database that consists of data compiled from various
sources at the Land, Environment, Economics and Policy (LEEP) Institute,335

University of Exeter. Below, we give some details about these data.
Agricultural land-use data: Data on agricultural land-use are derived

from the June Agricultural Census on a 2-km2 (400 ha) grid, which are
available online from the Edinburgh University Data Library. These data
cover England and Wales for seventeen 17 spaced years between 1969 and340

2006 and yield roughly 38,000 grid-square records each year.
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Physical environment and climatic data: These data concern climate,
environmental and topographic variables as follows. (i) Climate related
variables are for a growing season (i.e. April to September), namely average
temperature and accumulated rainfall. These data were initially obtained345

on a 5-km2 grid from the Met Office, which are calculated as the average
climate between years 1981 and 2010, then interpolated to the 2-km2 grid.
(ii) Environmental and topographic variables that may influence farmers’
decisions. The former include soil characteristics (namely the portion of
peat, stones, gravel or fragipan soil) and three dummy variables for various350

soil textures (specifically the proportion of fine, medium, and coarse soils),
all obtained from the Harmonised World Soil Database. The latter include
the mean altitude and slope, which are both derived from the 50-m resolution
Integrated Hydrological Digital Terrain Model (licensed from the Centre for
Ecology and Hydrology).355

Policy determinants of land-use decisions: These include share of each
grid square designated as National Parks, ESA, set-asides and greenbelts.
ESAs were introduced in 1987 (and extended in subsequent years) to con-
serve and enhance areas of particular landscape and wildlife significance. In
addition, the spatial data for English greenbelts were licensed by Defra from360

the Ordnance Survey.
Transportation cost: Transportation cost is proxied by the the distance

to the closest major market (defined as an urban centre with more than
300,000 inhabitants according to the 2011 Census data).

Remark 5.1. (a) A lack of information on the spatial variation of market365

input and output prices hinders an explicit modelling of their effects on land-
use shares. Hence, in our analysis these are accounted for by a set of yearly
and regional dummy variables (see also Sterling et al. (2013) and Fezzi et
al. (2015) who used a similar approach). (b) We suggested in Section 2.1.1
that here the aggregation of the individual data is done only on a scale that370

is (i) small enough to capture the spatial variation in the environmental and
climatic drivers of farmers’ behavior, and (ii) proportionate with the scale
of the decision-making unit. In order to satisfy the second characteristic, we
shall assume that the spatial unit considered, i.e. the 2-km2 grid, represents
a decision-making unit. The average farm size in the North East of England,375

for example, was just below 1.5-km2 (150 hectares) in 2018 (Department for
Environment, Food and Rural Affairs (2020)).

The formulation in Section 2.2 suggests that the TL-RE-SED-Tobit
Model only accepted balanced panel data. To satisfy such a condition, a
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subset of the data in the space dimension is selected by randomly extract-380

ing one grid square and then sampling every fourth grid cell along both
the latitude and longitude axes. In the time dimension, since the original
data cover unevenly spaced years, only observations from 1976, 1979, 1981,
1988, 2000 and 2004 are selected to stay as close to a regular time series
as possible. In the other words, T = 6 years. For England, this leads to385

NT = 10, 034 or N = 1, 729 observations. This spatial sampling method
has been used extensively in the literature (see e.g. Nelson and Hellerstein
(1997), Carrión-Flores and Irwin (2004), and Fezzi and Bateman (2011))
and should help to improve estimation performance since undesirable noises
are also removed.390

Table 1 presents descriptive statistics for the areas of land used in hectares.
The total agricultural land is computed as the sum of land used for each of
the categories. In addition, the table indicates cases in which p-values for
Welch’s unequal variances t-test for mean-comparison are less than 0.01, 0.05
and 0.1, respectively. These results suggest that only the area used for tem-395

porary grassland has steadily (statistically significantly) declined between
1976 and 2004. The level of land used for permanent grassland (arable)
remained unchanged between 1976 and 1988, then fluctuated slightly (de-
creased steadily) between 1988 and 2004. Moreover, Table 2 presents a
full list of the exogenous variables used in our analysis and their definitions.400

These will form competing empirical specifications to be used in conjunction
with the TL-RE-SED Tobit model, in which an interaction term is included
to allow for the effect of temperature to depend on rainfall and vice versa.

5.2. Empirical Specifications

This section discusses a number of empirical specifications, which are405

important to the analysis that follows.
Conditional mean: Regarding the empirical specifications of the condi-

tional mean, the most basic specification is to impose linear effects on all the
determinants of the land-use shares. In the other words, how the expected
value of the unobserved and censored land-use share y∗k,it varies with the
environmental, climatic and policy variables is described by

E
[
y∗k,it|xk,it

]
= xk,itβk, (5.1)

where xk,it is an 1 × 29 row-vector whose elements are a constant one and
the variables listed under Group 1 in Table 2.

Since the specification in (5.1) can be overly restrictive, we also con-
sider an alternative which (i) allows for some nonlinear flexibility within
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the parametric specification, and (ii) does so without imposing too much
computational pressure. This is to capture the potential nonlinear effects
of climatic factors by modelling the measures of rainfall and temperature
as piecewise linear functions. In particular, how the expected value of the
unobserved and censored land-use share y∗k,it varies with the environmental,
climatic and policy variables is described by

E
[
y∗k,it|xk,it

]
= xk,itβk + ϑk(rainit) + ζk(tempit),

where ϑk(rainit) = βk,r300rain300,it+· · ·+βk,r600rain600,it and ζk(tempit) =
βk,t9temp9,it+ · · ·+βk,t14temp14,it. Such a specification leads to the inclusion410

of 41 exogenous variables in the model.
Spatial Weighting Matrices Let us recall that Wk denotes an N × N

weighting matrix of known constants that satisfies Assumption 2.3. A num-
ber of previous studies suggest that predictive accuracy and empirical results
in general may be sensitive to the choice of Wk (i.e. Anselin and Bera (1998)415

and Bhattacharjee, and Jensen-Butler (2006)). To investigate such sensitiv-
ity, we consider weighting matrices based on both the inter-point-distance
and the graph-based neighbours. In particular, we construct the κ-Nearest-
Neighbours weighting matrices, W κNN

k , where either κ = 2 or κ = 5, and
the Sphere-of-Influence-Neighbours weighting matrix, WSOI

k . Finally, all the420

spatial weighting matrices are row-normalized (i.e. each elements is divided
by the sum of its rows).

The Reference Land Use Category: Note that the adding-up restriction
on the land-use shares only holds for the latent shares in (2.1), but it is
unsatisfiable for the observed shares. In the demand study literature, such425

a problem is avoided by treating one of the land-use categories as a reference
and omitting it from the system (i.e. Yen et al. (2003), Chakir and Le Gallo
(2013), and Rarcos-Martinez et al. (2017)). In the study that follows, we
drop the land use category “oilseed rape” and jointly estimate a system of
four TL-RE-SED-Tobit models for arable, temporary grassland, permanent430

grassland and rough grazing for England.

5.3. Predictive Evaluation

First observe that ŷk,i,T+τ in (4.6) is the best linear unbiased predictor
of the latent variable y∗k,i,T+τ . As a result, the predictive evaluation must be
performed by treating

ŷk,i,T+τ =


0 ŷ ∗k,i,T+τ ≤ 0

ŷ ∗k,i,T+τ if 0 < ŷ ∗k,i,T+τ < 1,

1 if ŷ ∗k,i,T+τ ≥ 1
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as the test dataset. In addition, the training data are from 1976, 1979, 1981,
1988, 2000 and 2004, which suggests that T = 6, whereas the loss function
of interest is the root mean squared errors (RMSE), by which the observed435

land-use shares in 2010 are treated as the validation dataset.
Moreover, our examination focuses on comparing RMSEs from a number

of alternative predictors. These are formulated based on:

(A.1) Linear two-limit Tobit model without the random effects and spatial
error dependence:

ỹ ∗k,i,T+τ = xk,i,T+τ β̃k

(A.2) Partially linear two-limit Tobit model without the random effects and
spatial error dependence:

ỹ ∗k,i,T+τ = xk,i,T+τ β̃k + ϑ̃k(rainit) + ζ̃k(tempit)

(B.1) Linear two-limit Tobit model with the random effects and spatial error
dependence, but without the fraction of the residuals corresponding
to the i-th unit of land:

ŷ ∗k,i,T+τ = xk,i,T+τ β̂k

(B.2) Partially linear two-limit Tobit model with the random effects and
spatial error dependence, but without the fraction of the residuals
corresponding to the i-th unit of land:

ŷ ∗k,i,T+τ = xk,i,T+τ β̂k + ϑ̂k(rainit) + ζ̂k(tempit)

(C.1) Linear two-limit Tobit model with the random effects and spatial error
dependence, and with the fraction of the residuals corresponding to the
i-th unit of land:

ŷ ∗k,i,T+τ = xk,i,T+τ β̂k +
σ̂2
µ,kl

σ̂2
1,kl

(e′T ⊗ l′k,i)ûk

(C.2) Partially linear two-limit Tobit model with the random effects and
spatial error dependence, and with the fraction of the residuals corre-
sponding to the i-th unit of land:

ŷ ∗k,i,T+τ = xk,i,T+τ β̂k + ϑ̂k(rainit) + ζ̂k(tempit) +
σ̂2
µ,kl

σ̂2
1,kl

(e′T ⊗ l′k,i)ûk
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We are interested in two set of comparisons. Firstly, they are compar-
isons between the predictors listed under categories A and B. These are440

important because they can help to confirm the asymptotic compatibility
between β̃k and β̂k. Secondly, they are comparisons between the predictors
listed under categories B and C. These are significant since they can affirm
the need to incorporate the random effects and spatial error dependence into
the model in order to improve the predictive accuracy.445

Furthermore, we reinforce these results by conducting hypothesis testing
for the equivalence of predictors listed under categories B and C. To this end,
it is useful to recall the difference between the predictors in these categories,
namely the added fraction of the corresponding residuals to the i-th land.
Unlike other error component models (e.g. those formulated in Baltagi and450

Li (2004, 2006)), the addition here is equivalent to that of a random-effect
model without the spatial autocorrelation. This suggests that the absence
of random effect should lead to simplification of the predictors in category C
to those in B, and therefore that a testing procedure such as that of Breusch
and Pagan (1980), which tests for the random-effects model, could be used455

for checking the equivalence of these predictors.
Breusch and Pagan (1980) devised a Lagrange multiplier test for the

random-effects model, in which the test statistic is

LMBP =
NT

2(T − 1)



∑N

i=1

[∑T
t=1 εit

]2

∑N
i=1

∑T
t=1 ε

2
it

− 1


2

. (5.2)

The limiting distribution of LMBP is chi-squared with one degree of freedom
under the null hypothesis H0 : σ2

k,µ = 0. The practical implementation of
the test relies on computation of ε̂k,it using ρ̂k and ûk, and based either on
(2.5) or εk = uk − ρk(IT ⊗Wk)uk.460

Tables 3 to 6 present the RMSEs for the out-of-sample predictions of
the land-use shares in 2010. Some important findings are as follows: (i)
It is clear that the RMSEs reported in rows [a] in each table do not vary
significantly from one another. These suggest that β̃k and β̂k do not vary
significantly from one another. Such findings are expected and theoreti-465

cally deducible from the estimation consistency. (ii) The RMSEs reported
in rows [b] in each table (even under the different weighting matrices) are
always smaller than those in rows [a]. These differences are particularly sig-
nificant for permanent grassland and arable. Such findings stress the need to
incorporate the random effects and spatial error dependence into the model470

in order to improve the predictive accuracy. (iii) It seems that at κ = 5,
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the RMSEs reported for W κNN
k are relatively close to those of WSOI

k . In
addition, the corresponding estimates of ρ̂k are also relatively close between
the two weighting matrices (see rows [c] in particular). The most likely rea-
son underpinning such closeness is the similarity in the degree of spareness475

implied by these weighting matrices. Furthermore, we find that a higher de-
gree of spareness (in the weighting matrix) is usually associated with higher
estimates of ρ̂k but lower estimates of σ̂2

k,µ. Nonetheless, the evidence is not
conclusive on which specifications of the weighting matrices are able to bring
about better forecasting.480

In Tables 3 to 6, rows [d] present the corresponding LMBP test statis-
tic and the associated p-value under different weighting matrices. In all
cases, the LMBP test statistics far exceed the 95% critical value for the chi-
squared distribution with one degree of freedom, which is 3.84. These lead
to rejection of the null hypothesis and therefore suggest that the superiority485

in predictive accuracy reported above was not caused by measurement error.
The predictors under category C are statistically different from those listed
under category B and are able to provide more accurate prediction.

5.4. Estimation results and important findings

Having taken into consideration the empirical and statistical issues as490

outlined in Section 2.1, our TL-RE-SED framework is able to formulate
consistent parameter estimates and more accurate variance and covariance
structures. In addition, we have shown that the TL-RE-SED specification
possesses a greater predictive power of future land-use. Hence, it serves
an excellent platform for investigating (i) how the climatic, economic and495

physical-environment determinants influence land-use patterns in England
over time and spatial space, and (ii) whether environmental schemes and
grants have assisted in freeing up land used for arable, rough grazing, tem-
porary and permanent grasslands and converting it to bio-energy crops,
especially oilseed rape, to help to achieve deep emission reductions and pre-500

pare for climate change.
Tables 8 to 11 present the estimation results in five columns. The second,

third and fourth columns present the parameter estimates associated with
W 5NN
k , W 2NN

k , and WSOI
k , respectively. For the sake of comparison, we also

present in the fifth column the parameter estimates obtained without taking505

into consideration the random effects and spatial error dependence. Below,
we discuss a number of important findings.

We begin with some general observations. Although they are based
on different weighting matrices, the parameter estimates presented in the
second to fourth columns are fairly similar with respect to both their signs510
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and magnitude. In addition, except for those of the time dummies, these
estimates show similar congruence to that in the fifth column. However,
the same cannot be said for the associated p-values. Clearly, in the fifth
column, a higher proportion of the computed p-values are less than 0.01,
0.05 and 0.1 than in other columns. In this regard, since the spatial error515

dependence is entirely ignored, the variance estimates might be significantly
under-estimated, which could lead to a superfluous number of rejections.
It should be also noted that among the three spatial weighting matrices,
W 2NN
k contains the largest proportion of zeros. In this regard, the resulting

model offers the most congruent results in terms of the number of rejections520

with the model without RE-SED.
We now focus on a list of policy-related findings. Among the schemes

being considered, set-asides and national parks are the only two schemes
whose results agree across all model specifications. Our results suggest that
set-asides are the most effective scheme, which achieves the intended nega-525

tive effect statistically significantly across all types of agricultural land-use
shares. The opposite is true for national parks, however. For the remaining
schemes, there appears to be conflicting findings about their effectiveness
among models with and without the RE-SED. With regard to greenbelts,
the RE-SED-based models suggest that there are effective in reducing the530

share of permanent-grassland, but the effect becomes positive and statisti-
cally insignificant for a model without the RE-SED. In addition, the scheme
seems to have an unwanted positive effect on the shares of rough grazing and
temporary grassland. For the former, this effect is statistically significant
in all models, for the latter, it is significant only in the model without the535

RE-SED. Moreover, only the models without the RE-SED suggest that the
ESAs has statistically significant effects. These effects are positive, however.

Next, we proceed to the results that involve the time dummies, where
2004 is used as the reference year. Let us recall that these time dummies are
instrumental in capturing the effects of economic and financial incentives,540

such as prices and other environmental grants, the spatial observations of
which cannot be accurately formulated in practice. With only a few ex-
ceptions, the parameter estimates are generally positive and statistically
significant. Here, the positivity suggests that on increase in time (e.g. from
2000 to 2004) is associated with negative effects on the corresponding land-545

uses. Clearly, these effects can be brought about by financial incentives to
the farmers via price changes and other government grants. Estimating the
model without the RE-SED results in statistically significant effects for all
cases. The spatial models suggest, nonetheless, that the effects of govern-
ment grants might only become statistically significant in recent years (i.e.550

24



from 1988 onward). This finding is congruent with the fact that the govern-
mental grants have been more widely and systematically introduced since
the early 1990s.

We now shift our attention to the physical environment and climatic
drivers. Our results suggest that physical environment (e.g. soil texture555

and characteristics) are more influential on farmers’ land-use decisions than
temperature and rainfall. All the models (both with and without RE-SED)
suggest that rainfall does not statistically and significantly affect the land-
use shares in question. We think the underpinning reason for this might be
the fact that farmers usually have more complete information about these560

physical determinants. On the other hand, only the RE-SED models suggest
that temperature affects the shares of temporary and permanent grasslands.
The effect is negative for the former, while it is positive for latter. Slope
is shown by all the models to have positive effect on the rough grazing
share and a negative effect on arable. Similar effects are also reported for565

permanent and temporary grasslands, but are not statistically significant
(with an exception of a case under the model without RE-SED).

A general observation can be made regarding the estimation results for
soil characteristics and textures. Across all types of land-use, models with
W 2NN
k and without RE-SED are more likely to have larger p-values than570

their the W 5NN
k -based and WSOI

k -based counterparts. Our estimation re-
sults also suggest that differences in soil characteristics have significant effect
on the share of temporary grassland. A higher share of peat seems to show
some negative effects, whereas the opposite is true for the shares of gravel
and stone. The same can also be said about the share of permanent grass-575

land, but only the effect of gravel share appears to be statistically significant
across all models. Regarding rough grazing, the only statistically significant
effect is the negative effect of the share of stone. By holding “medium” as
the reference category, our estimation results suggest that an increase in the
proportion of fine texture with a proportionate decrease in medium texture,580

leads to a statistically significant positive effect on the share of temporary
grassland. In addition, an increase in the proportion of coarse texture, with a
proportionate decrease in medium texture, leads to a statistically significant
negative effect on the share of permanent grassland. Such an increase has
a positive effect on the share of rough grazing, however. Lastly, an increase585

in the collective proportion of fine and fragipan soil with a proportionate
decrease in medium texture leads to a statistically significant negative effect
on the share of arable land-use. Finally, the shares of temporary grassland,
rough grazing and arable tend to be higher for lands located in the south
of England than those in the central part. The opposite is true, however,590
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for the share of permanent grassland. Land being located in the north of
England does not seem to cause the land-use shares to differ from those in
the Midlands.

6. Conclusions

This paper addressed a number of statistical and empirical challenges as-595

sociated with modelling farmers’ decision-making processes concerning the
agricultural land-use. These included (i) the use of spatially disaggregated
data so that the idiosyncratic effects of soils and other physical environ-
ment drivers could be explicitly modelled; (ii) modelling land-use shares
as censored responses which enabled consistent estimation of the unknown600

parameters; (iii) incorporating SED and heterogeneity within an error com-
ponent structure, which led to accurate formulation of the variances for the
parameter estimates and, consequently, to better effective statistical infer-
ences; and (iv) reducing the computational burden (and therefore improving
estimation accuracy) under an alternative GMM/QML hybrid estimation605

procedure. In addition to these statistical advantages, we also provided ex-
tensive empirical evidence, which illustrated that our approach was able to
construct more accurate land-use predictions than existing models in the
literature. We then applied our method to empirically investigate how the
climatic, economic, policy and physical determinants influence the land-use610

patterns in England over time and spatial space. We were also interested
in examining whether environmental schemes and grants have assisted in
freeing up land used for arable, rough grazing, temporary and permanent
grasslands and converting it to bio-energy crops to help to achieve deep emis-
sion reductions and prepare for climate change. We found that the effects615

of government grants might only become statistically significant in recent
years (i.e. from 1988 onward), which was congruent with the fact that the
governmental grants have been more widely and systematically introduced
since the early 1990s. We also found that set-asides were the most effective
scheme, which achieved the intended statistically significant negative effects620

across all types of agricultural land-uses. However, the opposite was true
for national parks.
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7. Appendix: Proof of Theorem 3.1:

The proof of Theorem 3.1 consists of two steps. The first step is to prove (3.3).
The identification condition is established by discussing a counter-argument. Let us625

show the convergence of L →P L0 uniformly over the parameter space, Θ. Firstly,
let us note that lnL− lnL0 = lnL− lnL∗ + lnL∗ − lnL0, where

L∗ =

NT∏
ι=1

L∗1,K−1,ι

K−1∏
k=2

k−1∏
j=1

L∗k,j,ι

with

L∗k,j,ι =
{

Ψ(u̇0
k,ιu̇

0
j,ι; r̄kj)

}1[ẏk,ι=0,ẏj,ι=0]

×
{
σ̄−1
k σ̄−1

j (1− r̄2
kj)
−1/2ψ(u̇0

k,ι, u̇
0
j,ι; r̄kj)

}1[0<ẏk,ι<1,0<ẏj,ι<1]

×
{

Ψ(−u̇0
k,ι, u̇

0
j,ι;−r̄kj)

}1[ẏk,ι=1,ẏj,ι=0]

×
{

Ψ(u̇0
k,ι,−u̇0

j,ι; r̄kj)
}1[ẏk,ι=0,ẏj,ι=1]

×
{
σ̄−1
k φ(u̇0

k,ι)Φ
[
(u̇0
j,ι − r̄kj u̇0

k,ι)/(1− r̄2
kj)

1/2
] }1[0<ẏk,ι<1,ẏj,ι=0]

×
{
σ̄−1
j φ(u̇0

j,ι)Φ
[
(u̇0
k,ι − r̄kj u̇0

j,ι)/(1− r̄2
kj)

1/2
] }1[ẏk,ι=0,0<ẏj,ι<1]

.

Clearly, L∗ −L0 →P 0 uniformly over Θ, where L∗ = 1
NT

∑NT
ι=1 lnL∗. Since

the only difference between L∗ and L0 is the number of corresponding di-630

chotomous indicators for each component of the quasi-likelihood functions,
establishing L − L0 →P 0 is equivalent to showing that L − L∗ →P 0 uni-
formly over Θ.

This can be achieved by the following two steps. We first show the point-
wise consistency of L to L∗, then establish the stochastic equi-continuity by635

showing the uniform Lipschitz continuity over Θ. For the sake of conve-
nience, let us present L − L∗ as follows

1

NT
lnL− 1

NT
lnL∗ =

1

NT

NT∑
ι=1

(
lnL1,K−1,ι − lnL∗1,K−1,ι

+

K−1∑
k=2

k−1∑
j=1

{
lnLk,j,ι − lnL∗k,j,ι

} , (5.3)
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where

NT∑
ι=1

lnLk,j,ι =
∑
S1

ln Ψ(u̇k,ι, u̇j,ι; r̄kj) +
∑
S2

ln
(
σ̄−1
k σ̄−1

j (1− r̄2
kj)
−1/2ψ(u̇k,ι, u̇j,ι; r̄kj)

)
+
∑
S3

ln Ψ(−u̇k,ι, u̇j,ι;−r̄kj) +
∑
S4

ln Ψ(u̇k,ι,−u̇j,ι; r̄kj)

+
∑
S5

ln
(
σ̄−1
k φ(u̇k,ι)Φ

[
(u̇j,ι − r̄kj u̇k,ι)/(1− r̄2

kj)
1/2
])

+
∑

NT−
∑5
i=1 Si

ln
(
σ̄−1
j φ(u̇j,ι)Φ

[
(u̇k,ι − r̄kj u̇j,ι)/(1− r̄2

kj)
1/2
])

and

NT∑
ι=1

lnL∗k,j,ι =
∑
S1

ln Ψ(u̇0
k,ι, u̇

0
j,ι; r̄kj) +

∑
S2

ln
(
σ̄−1
k σ̄−1

j (1− r̄2
kj)
−1/2ψ(u̇0

k,ι, u̇
0
j,ι; r̄kj)

)
+
∑
S3

ln Ψ(−u̇0
k,ι, u̇

0
j,ι;−r̄kj) +

∑
S4

ln Ψ(u̇0
k,ι,−u̇0

j,ι; r̄kj)

+
∑
S5

ln
(
σ̄−1
k φ(u̇0

k,ι)Φ
[
(u̇0
j,ι − r̄kj u̇0

k,ι)/(1− r̄2
kj)

1/2
])

+
∑

NT−
∑5
i=1 Si

ln
(
σ̄−1
j φ(u̇0

j,ι)Φ
[
(u̇0
k,ι − r̄kj u̇0

j,ι)/(1− r̄2
kj)

1/2
])

where Si represents the number of corresponding dichotomous indicators in
(3.2) for i = 1, . . . , 5 (e.g. S1 is the number of dichotomous indicators of
1[ÿk,ι = 0, ÿj,ι = 0]). In this proof, we mainly focus on the three main terms
of the differences in a single bivariate quasi log-likelihood function in (5.3).
Because other two terms can be shown in a similar manner to those three
terms, the rest of the bivariate quasi log-likelihood functions can be dealt in
the same manner. In addition, the parameter space, Θ, is a countable union
of the compact parameter spaces of Θks, where Θk is the compact subset of

Θ such that θ̄k ∈ Θk with θ̄k =
(
β̄>k σ̄2

k r̄kj
)>

. The three main terms
to be considered are:

ln Ψ(u̇k,ι, u̇j,k; r̄kj)− ln Ψ(u̇0
k,ι, u̇

0
j,ι; r̄kj),

ln (ψ(u̇k,ι, u̇j,ι; r̄kj))− ln
(
ψ(u̇0

k,ι, u̇
0
j,ι; r̄kj)

)
640 (

lnφ(u̇k,ι) + ln Φ

[
(u̇j,ι − r̄kj u̇k,ι)

(1− r̄2
kj)

1/2

])
−

lnφ(u̇0
k,ι) + ln Φ

 (u̇0
j,ι − r̄kj u̇0

k,ι)√
1− r̄2

kj

 .
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By using Taylor expansion and triangular inequality, the first term is

∣∣ln Ψ(u̇k,ι, u̇j,k; r̄kj)− ln Ψ(u̇0
k,ι, u̇

0
j,ι; r̄kj)

∣∣ ≤ ∣∣∣∣∣
∣∣∣∣∣Ψ′ρ(u̇0

k,ι, u̇
0
j,ι; r̄kj)

Ψ(u̇0
k,ι, u̇

0
j,ι; r̄kj)

∣∣∣∣∣
∣∣∣∣∣ · ||ρ̂− ρ||, (5.4)

where ρ =
(
ρk ρj

)>
, ρ̂ =

(
ρ̂k ρ̂j

)>
, and

Ψ′ρ(u̇
0
k,ι, u̇

0
j,ι; r̄kj) = φ(u̇0

k,ι)Φ

 u̇0
j,ι − r̄kj u̇0

k,ι√
1− r̄2

kj

R111N (5.5)

−r̄kjφ(u̇0
j,ι)Φ

 u̇0
k,ι − r̄kj u̇0

j,ι√
1− r̄2

kj

R112N

with R111N =
∑N

l=1Ak,nluk,lt and R112N =
∑N

l=1Aj,nluj,lt where Am =
∂A−1

mm
∂ρm

for m = k or j, um,lt = (ym,lt − xm,ltβ̄m)/σ̄m and l ∈ N and t ∈ T .

For the sake of notational simplicity, let
Ψ′ρ(·)
Ψ(·) = A1N . The convergence of

(5.4)→P 0 can be achieved by showing that A1N = Op(1) because ||ρ̂− ρ|| =645

OP ((NT )−1/2) as a result of Lemma 2

E(A2
1N ) ≤

E
(
Ψ′ρ(·)

)2
δ

= O(1),

under Assumptions 2.1 to 2.3 and the additional condition of inf
uk,ι,uj,ι∈R2

ψι =

δ1, where δ represents an arbitrary small value. The uniform Lipschitz
continuity of (5.4) over Θk, can be established as follows. By letting Ψ(·) =
Ψ(u̇k,ι, u̇j,ι; r̄kj) and Ψ0(·) = Ψ(u̇0

k,ι, u̇
0
j,ι; r̄kj), we have650

sup
||θ̄k−θ̆k||≤δ

| ln Ψ(θ̄k)− ln Ψ0(θ̄k)− {ln Ψ(θ̆k)− ln Ψ0(θ̆k)}|

≤ sup
||θ̄k−θ̆k||≤δ

∣∣∣∣∣∣{ln Ψ(θ̃k)}′ − {ln Ψ0(θ̃k)}′
∣∣∣∣∣∣ · ||θ̄k − θ̆k||

= oP (1), (5.6)

where θ̆k ∈ Θk lies on an δ-neighbourhood of θ̄k such that ||θ̄k − θ̆k|| → 0

as δ → 0, θ̃k lies on the line segment of {λθ̄k + (1 − λ)θ̆k : λ ∈ (0, 1)}, and
{ln Ψ(·)}′ and {ln Ψ0(·)}′ denote the gradients of ln Ψ(·) and ln Ψ0(·) with

respect to θ̃k, respectively. (5.6) can be established by showing∣∣∣∣∣∣{ln Ψ(θ̃k)}′ − {ln Ψ0(θ̃k)}′
∣∣∣∣∣∣ = OP (1). (5.7)
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By using Taylor expansion and triangular inequality, we have655 ∣∣∣∣∣∣{ln Ψ(θ̃k)}′ − {ln Ψ0(θ̃k)}′
∣∣∣∣∣∣ ≤ ∣∣∣∣∣
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ẋ0
k,ιφ

0
k,ιΦ

0
jk,ι −

u̇0
k,ι − r̃kj u̇0

j,ι

2σ̃2
kσ̃

2
j (1− r̃2

kj)
{σ̃2

j (1− r̃2
kj)− 2σ̃2

kσ̃
2
j r̃kj}ψ0

kj,ι

by letting φ0
k,ι = φ(u̇0

k,ι), Φ0
jk,ι = Φ

(
u̇0j,ι−r̃kj u̇0k,ι√

1−r̃2kj

)
and where ψ0

kj,ι denotes

the corresponding probability density function (pdf) of Ψ(u̇0
k,ι, u̇

0
j,ι; r̃kj),

Ψ0′′
ρ,θ̃k

(·) =
1

σ̃k
ẋ0
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there Ψ0′
ρ (·) is as defined in (5.5). (5.7) holds because E

∣∣∣∣∣∣∂2 ln Ψ0(θ̃k)

∂θ̃k∂ρ

∣∣∣∣∣∣ = O(1)660

under Assumptions 2.1 to 3.1 and the condition of inf
uk,ι,uj,ι∈R2

ψι = δ1.

The second term can be shown to be oP (1) uniformly over Θk by using
similar arguments to those above. Let us represent the second term as
follows

| lnψkj,ι − lnψ0
kj,ι| ≤

∣∣∣∣∣
∣∣∣∣∣∂ lnψ0′

kj,ι,ρ

∂ρ

∣∣∣∣∣
∣∣∣∣∣ · ||ρ̂− ρ||

= oP (1), (5.8)
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where ψ(u̇k,ι, u̇j,ι; r̄kj) = ψkj,ι and ψ(u̇0
k,ι, u̇

0
j,ι; r̄kj) = ψ0

kj,ι. By Taylor ex-665

pansion and triangular inequality, where

∂ lnψ0′
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Here, (5.8) holds because E
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The uniform Lipschitz continuity over Θk can be shown by∣∣∣∣∣∣{lnψkj(θ̃k)}′ − {lnψ0
kj(θ̃k)}′

∣∣∣∣∣∣ = OP (1),

where{lnψkj}′ and {lnψ0
kj}′ denote the gradients of lnψ and lnψ0 with

respect to θ̃k, respectively. By using the same arguments to the above, we
have ∣∣∣∣∣∣{lnψkj(θ̃k)}′ − {lnψ0
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where670
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(5.9) holds because E

∣∣∣∣∣∣∣∣∂2 lnψ0
kj(θ̃k)

∂θ̃k∂ρ

∣∣∣∣∣∣∣∣ = O(1) under Assumptions 2.1 to 3.1.

Finally, the last term is

lnφ(u̇k,ι)− lnφ(u̇0
k,ι) + {ln Φjk − ln Φ0

jk} (5.10)

by letting Φjk = Φ

(
u̇j,ι−r̄kj u̇k,ι√

1−r̄2kj

)
. The convergence of (5.10) →P 0 can

be established by using similar arguments to those above. By using Taylor
expansion and triangular inequality, the first term of (5.10) is

| lnφ(u̇k,ι)− lnφ(u̇0
k,ι)| ≤

∣∣∣∣∣φ′ρ(u̇0
k,ι)

φ(u̇0
k,ι)

∣∣∣∣∣ · |ρ̂k − ρk|,
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where φ′ρ(u̇
0
k,ι) = −u̇0

k,ιφ(u̇0
k,ι)R111N . The second term of (5.10) is675

| ln Φjk − ln Φ0
jk| ≤

∣∣∣∣∣
∣∣∣∣∣Φ0′

jk,ρ

Φ0
jk

∣∣∣∣∣
∣∣∣∣∣ · ||ρ̂− ρ||

according to the same arguments, where

Φ0′
jk,ρ = φ0

jk,ι (R112N − r̄kjR111N ) . (5.11)

By letting A3N =
φ′ρ(u̇0k,ι)

φ(u̇0k,ι)
and A4N =

Φ0′
jk,ρ

Φ0
jk

, we need to show that A3N =

OP (1) andA4N = OP (1). These results are easily obtained because E(A2
3N ) =

O(1) under Assumptions 2.1 to 2.3 and E(A2
4N ) = O(1) with the additional

condition, inf
uk,ι∈R

φ(uk,ι) = δ2. The uniform Lipschitz continuity of (5.10)680

over Θk can then be shown as follows. By denoting the gradients of lnφ and
lnφ0 with respect to θ̃k as {lnφ}′ and {lnφ0}′, respectively, and by using
Taylor expansion and triangular inequality, we have∣∣∣∣∣∣{lnφ(θ̃k)}′ − {lnφ0(θ̃k)}′

∣∣∣∣∣∣ ≤ ∣∣∣∣∣
∣∣∣∣∣∂2 lnφ0(θ̃k)

∂θ̃k∂ρ

∣∣∣∣∣
∣∣∣∣∣ · |ρ̂k − ρk|

= oP (1),

where

∂2 lnφ0(θ̃k)

∂θ̃k∂ρ
=

1

σ̃k

(
ẋ0
k,ιR111N + u̇0

k,ι

N∑
l=1

Ak,nlxk,lt

)

+
1

2σ̃2
k

(
u̇0
k,ιR111N + u̇0

k,ι

N∑
l=1

Ak,nluk,lt

)
and

E

∣∣∣∣∣
∣∣∣∣∣∂2 lnφ0(θ̃k)

∂θ̃k∂ρ

∣∣∣∣∣
∣∣∣∣∣
2

= O(1)

under Assumptions 2.1 to 3.1. Hence,
∣∣∣∣∣∣{lnφ(θ̃k)}′ − {lnφ0(θ̃k)}′

∣∣∣∣∣∣ = OP (1).685

Now let us consider the stochastic Lipschitz continuity of the second term in
(5.10). By denoting {ln Φjk(θ̃k}′ and {ln Φ0

jk(θ̃k)}′ as the gradients of ln Φjk

and ln Φ0
jk with respect to θ̃k, respectively, and using the same arguments

as the above, we have∣∣∣∣∣∣{ln Φjk(θ̃k)}′ − {ln Φ0
jk(θ̃k)}′

∣∣∣∣∣∣ ≤ ∣∣∣∣∣
∣∣∣∣∣∂2 ln Φ0

jk(θ̃k)

∂θ̃k∂ρ

∣∣∣∣∣
∣∣∣∣∣ · ||ρ̂− ρ||

= oP (1),

where690
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∂2 ln Φ0
jk(θ̃k)

∂θ̃k∂ρ
=

Φ0′′
jk,ρ,θ̃k

(θ̃k)Φ0
jk(θ̃k)− Φ0′

jk,ρ(θ̃k)Φ0′
jk,θ̃k

(θ̃k)

{Φ0
jk(θ̃k)}2

,

Φ0′′
jk,ρ,θ̃k

(θ̃k) =
∂2Φ0

jk,ι(θ̃k)

∂ρ∂θ̃k

=

{
− 1

(1− r̃2
kj)

(u̇0
j,ι − r̃kj u̇0

k,ι)r̃kj
ẋ0
k,ι

σ̃k
φ0
jk,ι

}
(R112N − r̃kjR111N ) + r̃kj

N∑
l=1

Ak,nl
xk,lt
σ̃k

φ0
jk,ι

+

{
1

(1− r̃2
kj)

(u̇0
j,ι − r̃kj u̇0

k,ι)r̃kj
u̇0
k,ι

2σ̃2
k

φ0
jk,ι

}
(R112N − r̃kjR111N ) + r̃kj

N∑
l=1

Ak,nl
uk,lt
2σ̃2

k

φ0
jk,ι{(

r̃kj{(u̇0
j,ι − r̃kj u̇0

k,ι)
2 − (1− r̃kj)} − 2u̇0

k,ι(u̇
0
j,ι − r̃kj u̇0

k,ι)(1− r̃2
kj)

(1− r̃2
kj)

2

)
× φ0

jk,ι(R112N − r̃kjR111N )
}
− φ0

jk,ιR111N

and

Φ0′
jk,θ̃k

(θ̃k) =
∂Φ0

jk(θ̃k)

∂θ̃k

= φ0
jk,ι

(
r̃kj

ẋ0
k,ι

σ̃k
+ r̃kj

u̇0
k,ι

2σ̃2
k

− u̇0
k,ι +

r̃kj(u̇
0
j,ι − r̃kj u̇0

k,ι)

(1− r̃2
kj)

)
.

Here Φ0′
ρ (θ̃k) is as defined in (5.11). Hence,∣∣∣∣∣∣{ln Φjk(θ̃k)}′ − {ln Φ0

jk(θ̃k)}′
∣∣∣∣∣∣ = OP (1)

under Assumptions 2.1 to 3.1 and the condition inf
uk,it∈R

φ(uk,it) = δ2.

The final step of this proof is to establish the unique identification con-
dition for θk. Let us establish the identification condition in Theorem 1 by
presenting a counter argument. By Jensen’s inequality, we have

EL0
k,j(θ̄k)− EL0

k,j(θk) ≤ 0.

This equality holds when θ̄k = θk. Hence θk is not uniquely identified
when there is a sequence such that θ̄kN ∈ Dδ(θ

∗
k), where Dδ(θ

∗
k) is the δ-

neighbourhood of θ∗k, converges to θ∗k ∈ D̄δ(θk)∩Θk, where D̄δ(θk) is the com-
plement of the δ-neighbourhood of θk, and lim

N→∞
L0
k,j(θ

∗
k) → lim

N→∞
L0
k,j(θk).

Hence the identification condition requires

lim sup
N→∞

(
max

θ̄k∈D̄δ(θk)∩Θk
EL0

k,j(θ̄k)

)
6= EL0

k,j(θk)

for any θ̄k for all k = 1, · · · ,K − 1. �

33



8. References695

Amemiya, T. (1973). Regression analysis when the dependent variable is truncated
normal. Econometrica: Journal of the Econometric Society, 997-1016.

Anselin, L. (1988). Spatial econometrics: Methods and models. Kluwer Academic:
Boston, MA.

Anselin, L. & Bera, A. K. (1998). Spatial dependence in linear regression models with an700

introduction to spatial econometrics: Regression models. In Handbook of applied
economic statistics (pp. 257-259). CRC Press: Boca Raton, FL.

Ay, J. S., Chakir, R., & Le Gallo, J. (2017). Aggregated versus individual land-use
models: Modeling spatial autocorrelation to increase predictive accuracy. Environ-
mental Modeling & Assessment, 22(2), 129-145.705

Baltagi, B. H. (1980). On seemingly unrelated regressions with error components. Econo-
metrica: Journal of the Econometric Society, 1547-1551.

Baltagi, B. H. (2008). Econometric analysis of panel data. John Wiley & Sons.

Baltagi, B. H., Bresson, G., & Pirotte, A. (2012). Forecasting with spatial panel data.
Computational Statistics & Data Analysis. 56(11):3381-97.710

Baltagi, B. H., & Li, D. (2004). Prediction in the panel data model with spatial cor-
relation. In Advances in spatial econometrics (pp. 283-295). Springer: Berlin,
Heidelberg.

Baltagi, B. H., & Li, D. (2006). Prediction in the panel data model with spatial correla-
tion: the case of liquor. Spatial Economic Analysis, 1(2), 175-185.715

Baltagi, B. H., & Pirotte, A. (2011). Seemingly unrelated regressions with spatial error
components. Empirical Economics, 40(1), 5-49.

Bhattacharjee, A., & Jensen-Butler, C. (2006). Estimation of spatial weights matrix, with
an application to diffusion in housing demand. Centre for Research into Industry,
Enterprise, Finance, and the Firm Discussion Paper, 519.720

Breusch, T. S., & Pagan, A. R. (1980). The Lagrange multiplier test and its applications
to model specification in econometrics. The Review of Economic Studies, 47(1),
239-253.

Cameron, A. C., & Trivedi, P. K. (2005). Microeconometrics: methods and applications.
Cambridge University Press.725

Carrion-Flores, C., & Irwin, E. G. (2004). Determinants of residential land-use conversion
and sprawl at the rural-urban fringe. American Journal of Agricultural Economics,
86(4), 889-904.

Chambers, R. G., & Just, R. E. (1989). Estimating multioutput technologies. American
Journal of Agricultural Economics, 71(4), 980-995.730

Chakir, R., & Gallo, J.L. (2013). Predicting land use allocation in France: A spatial
panel data analysis. Ecological Economics, 92(0), 114-125.

Cliff, A. D. (1973). Spatial autocorrelation (No. 04; QA278. 2, C5.).

Cliff, A. D., & Ord, J. K. (1981). Spatial processes: models & applications. Taylor &
Francis.735

34



Committee on Climate Change (2018). Land use: Reducing emissions and preparing for
climate change. Retrieved from https://www.theccc.org.uk/publication/land-use-
reducing-emissions-and-preparing-for-climate-change.

Committee on Climate Change (2020). Land use: Policies for a Net Zero UK. Retrieved
from https://www.theccc.org.uk/publication/land-use-policies-for-a-net-zero-uk/.740

Dong, D., Gould, B. W., & Kaiser, H. M. (2004). Food demand in Mexico: an applica-
tion of the Amemiya-Tobin approach to the estimation of a censored food system.
American Journal of Agricultural Economics, 86(4), 1094-1107.

Fezzi, C., & Bateman, I. J. (2011). Structural agricultural land use modeling for spatial
agro-environmental policy analysis. American Journal of Agricultural Economics,745

93(4), 1168-1188.

Greene, W. H. (2008). The econometric approach to efficiency analysis. The measure-
ment of productive efficiency and productivity growth, 1(1), 92-250.

Kapoor, M., Kelejian, H. H., & Prucha, I. R. (2007). Panel data models with spatially
correlated error components. Journal of Econometrics, 140(1), 97-130.750

Li, M., JunJie, W., & Deng, X. (2013). Identifying drivers of land use change in China:
A spatial multinomial logit model analysis. Land Economics, 89(4), 632-654.

Liu, S. F., & Yang, Z. (2015). Asymptotic distribution and finite sample bias correction of
QML estimators for spatial error dependence model. Econometrics, 3(2), 376-411.

Kelejian, H. H., & Prucha, I. R. (1999). A generalized moments estimator for the755

autoregressive parameter in a spatial model. International Economic Review, 40(2),
509-533.

Marcos-Martinez, R., Bryan, B. A., Connor, J. D., & King, D. (2017). Agricultural land-
use dynamics: Assessing the relative importance of socioeconomic and biophysical
drivers for more targeted policy. Land Use Policy, 63, 53-66.760

Mattison, E. H., & Norris, K. (2005). Bridging the gaps between agricultural policy,
land-use and biodiversity. Trends in Ecology & Evolution. 20(11):610-6.

Meyerhoefer, C. D., Ranney, C. K. & Sahn, D. E. (2005). Consistent estimation of
censored demand systems using panel data. American Journal of Agricultural Eco-
nomics. 87(3), pp.660-672.765

Moscone, F., Knapp, M., & Tosetti E. (2007). Mental health expenditure in England: a
spatial panel approach. Journal of Health Economics. 26(4):842-64.

Nelson, G. C., & Hellerstein, D. (1997). Do roads cause deforestation? Using satel-
lite images in econometric analysis of land use. American Journal of Agricultural
Economics, 79(1), 80-88.770

Lacroix, A., & Thomas, A. (2011). Estimating the environmental impact of land and
production decisions with multivariate selection rules and panel data. American
Journal of Agricultural Economics, 93(3), 784-802.

Reidsma, P., Tekelenburg, T., Van den Berg M., & Alkemade R. (2006) Impacts of
land-use change on biodiversity: An assessment of agricultural biodiversity in the775

European Union. Agriculture, ecosystems & environment. 114(1):86-102.

Sterling, S. M., Ducharne, A., & Polcher, J. (2013). The impact of global land-cover
change on the terrestrial water cycle. Nature Climate Change, 3(4), 385-390.

35



Tsay, R. S. (2005). Analysis of financial time series (Vol. 543). John Wiley & Sons.

Wooldridge, J. M. (1995). Selection corrections for panel data models under conditional780

mean independence assumptions. Journal of Econometrics, 68(1), 115-132.

Wooldridge, J. M. (2010). Econometric analysis of cross section and panel data. MIT
press.

Yang, Z. (2013). Quasi-maximum likelihood estimation for spatial panel data regressions.

Yen, S. T., Lin, B. H., & Smallwood, D. M. (2003). Quasi-and simulated-likelihood ap-785

proaches to censored demand systems: food consumption by food stamp recipients
in the United States. American Journal of Agricultural Economics, 85(2), 458-478.

36



Table 1: Descriptive Statistics for Land-Uses (in ha)

1976 1979 1981 1988 2000 2004

Temp. grassland 35.929 30.133 ∗∗∗ 29.645 25.363 ∗∗∗ 23.428 ∗∗ 20.753 ∗∗∗

Perm. grassland 96.705 96.623 94.938 91.338 81.641 ∗∗∗ 88.755 ∗∗∗

Rough grazing 25.772 25.274 24.995 24.341 23.622 24.948

Arable 113.255 117.333 121.042 119.114 107.460 ∗∗∗ 99.035 ∗∗∗

Total arg. land† 272.910 271.415 274.330 269.853∗ 245.715∗∗∗ 248.451
† Total agricultural land is computed as the summation of temporary, permanent, rough
grassland and oilseed rape. ∗∗∗, ∗∗ and ∗ signify cases where p-values for Welch’s unequal
variances t-test (e.g. H0 : µk,1979 − µk,1976 = 0 or H0 : µk,1988 − µk,1981 = 0) are less than
0.01, 0.05 and 0.1, respectively.
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Table 2: Land-use Determinants†

Abbreviations Definitions

Group 1:

alt0 deb200 × elev, where deb200 = 1 if elev < 200 and 0 otherwise

alt200 dea200 × elev, where dea200 = 1 if elev > 200 and 0 otherwise

alt200d alt200d = 1 if elev > 200 and 0 otherwise

slope6 Share of each grid square with a slope higher than 6o

rain Accumulated rainfall for the growing season

temp Average temperature for the growing season

ratemp rain× temp (i.e., an interaction term)

dist300 Distance to the closet major market

speat Proportion of soil characteristic “Peat”

sgravel Proportion of soil characteristic “Gravel”

sstoney Proportion of soil characteristic “Stone”

sfragipan Proportion of soil characteristic “Fragipan Soil”

scoarse Proportion of soil texture “Coarse”

sfine Proportion of soil texture “Fine”

smedium Proportion of soil texture “Medium”

sud sud = 1, if the grid square is located in the Southern England

nor nor = 1, if the grid square is located in the Northern England

mid mid = 1, if the grid square is located in the Midlands

y` Yearly dummies, where ` = 1976, 1979, 1981, 1988, 2000, 2004

npark Share of each grid square designated as a National Park

esa Share of each grid square designated as an Environmentally Sensitive Area

greenbelt Share of each grid square designated as a Greenbelt

setaside

Group 2:

rain` rain` = (rain− `)dr` for ` = 300, 350, 400, 450, 500, 600

temp` temp` = (temp− `)dt` for ` = 9, 10, 11, 12, 13, 14
† Since sud, nor and mid are summed to one, mid is omitted in the estimation because
of multicollinearity. Similarly, scoarse, fine and smedium are summed to one and
therefore smedium is omitted.
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Table 3: Out-of-Sample Root Mean Squared Errors (RMSE) Land-Use Share Prediction:
Shares of Temporary Grassland for 2010

Partial Linear Linear

TL without RE-SED:

[a] RMSE 5.016 5.469

TL with RE-SED & WκNN
k (κ = 5)

[a] RMSE without added residual 4.140 4.344

[b] RMSE with added residual 3.791 3.795

[c] SAR parameter, ρk 0.452 0.480

[d] LMBP statistic 4.4660e+03 (0.000) 4.4666e+03 (0.000)

TL with RE-SED & WκNN
k (κ = 2)

[a] RMSE without added residual 4.225 4.470

[b] RMSE with added residual 3.910 3.948

[c] SAR parameter, ρk 0.215 0.224

[d] LMBP statistic 5.1330e+03 (0.000) 5.4210e+03 (0.000)

TL with RE-SED & WSOI
k

[a] RMSE without added residual 4.158 4.470

[b] RMSE with added residual 3.799 3.948

[c] SAR parameter, ρk 0.450 0.478

[d] LMBP statistic 4.4434e+03 (0.000) 4.4466e+03 (0.000)
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Table 4: Out-of-Sample RMSE Land-Use Share Prediction: Shares of Permanent Grass-
land for 2010

Partial Linear Linear

TL without RE-SED:

[a] RMSE 12.817 14.874

TL with RE-SED & WκNN
k (κ = 5)

[a] RMSE with added residual 7.141 7.278

[b] RMSE without added residual 11.452 12.994

[c] SAR parameter, ρk 0.498 0.534

[d] LMBP statistic 1.0844e+03 (0.000) 1.0649e+03 (0.000)

TL with RE-SED & WκNN
k (κ = 2)

[a] RMSE with added residual 7.034 7.097

[b] RMSE without added residual 10.948 12.595

[c] SAR parameter, ρk 0.274 0.292

[d] LMBP statistic 1.1956e+03 (0.000) 1.2041e+03 (0.000)

TL with RE-SED & WSOI
k

[a] RMSE with added residual 7.123 7.248

[b] RMSE without added residual 11.496 10.296

[c] SAR parameter, ρk 0.506 0.539

[d] LMBP statistic 1.0858e+03 (0.000) 1.0658e+03 (0.000)
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Table 5: Out-of-Sample RMSE Land-Use Share Prediction: Shares of Rough Grazing for
2010

Partial Linear Linear

TL without RE-SED:

[a] RMSE 11.874 12.009

TL with RE-SED & WκNN
k (κ = 5)

[a] RMSE with added residual 11.853 11.818

[b] RMSE without added residual 12.013 12.121

[c] SAR parameter, ρk 0.114 0.157

[d] LMBP statistic 4.4097e+03 (0.000) 4.7439e+03 (0.000)

TL with RE-SED & WκNN
k (κ = 2)

[a] RMSE with added residual 11.854 11.814

[b] RMSE without added residual 11.995 12.074

[c] SAR parameter, ρk 0.061 0.074

[d] LMBP statistic 4.4502e+03 (0.000) 4.4868e+03 (0.000)

TL with RE-SED & WSOI
k

[a] RMSE with added residual 11.844 11.841

[b] RMSE without added residual 12.043 12.074

[c] SAR parameter, ρk 0.113 0.158

[d] LMBP statistic 4.4159e+03 (0.000) 4.7639e+03 (0.000)
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Table 6: Out-of-Sample RMSE Land-Use Share Prediction: Shares of Arable for 2010

Partial Linear Linear

TL without RE-SED:

[a] RMSE 12.995 15.693

TL with RE-SED & WκNN
k (κ = 5)

[a] RMSE with added residual 7.936 8.025

[b] RMSE without added residual 13.596 16.156

[c] SAR parameter, ρk 0.555 0.602

[d] LMBP statistic 1.2320e+03 (0.000) 1.1872e+03 (0.000)

TL with RE-SED & WκNN
k (κ = 2)

[a] RMSE with added residual 8.132 8.147

[b] RMSE without added residual 13.072 15.378

[c] SAR parameter, ρk 0.323 0.360

[d] LMBP statistic 1.3265e+03 (0.000) 1.3071e+03 (0.000)

TL with RE-SED & WSOI
k

[a] RMSE with added residual 7.955 8.052

[b]RMSE without added residual 13.651 16.218

[c] SAR parameter, ρk 0.563 0.606

[d] LMBP statistic 1.2227e+03 (0.000) 1.3071e+03 (0.000)
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Table 7: Out-of-Sample RMSE Land-Use Share Prediction: Shares of Permanent Grass-
land for 2010

Partial Linear Linear

TL without RE-SED:

[a] RMSE 12.817 14.874

TL with RE-SED & WκNN
k (κ = 5)

[a] RMSE with added residual 7.141 7.278

[b] RMSE without added residual 11.452 12.994

[c] SAR parameter, ρk 0.498 0.534

[d] LMBP statistic 1.0844e+03 (0.000) 1.0649e+03 (0.000)

TL with RE-SED & WκNN
k (κ = 2)

[a] RMSE with added residual 7.034 7.097

[b] RMSE without added residual 10.948 12.595

[c] SAR parameter, ρk 0.274 0.292

[d] LMBP statistic 1.1956e+03 (0.000) 1.2041e+03 (0.000)

TL with RE-SED & WSOI
k

[a] RMSE with added residual 7.123 7.248

[b] RMSE without added residual 11.496 10.296

[c] SAR parameter, ρk 0.506 0.539

[d] LMBP statistic 1.0858e+03 (0.000) 1.0658e+03 (0.000)
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Table 8: Parameter Estimates for the Share of Temporary Grassland

W 5NN
k W 2NN

k WSOI
k Without RE-SED

alt0 0.003 0.006 0.001 0.010 ∗∗

alt200 0.000 -0.006 -0.006 -0.004

alt200d -0.488 1.178 0.442 1.168

slopef6 -1.796 ∗ -0.681 -1.541 -0.577

rain -0.081 -0.064 -0.076 -0.097

temp -14.370 ∗∗ -16.239 ∗∗∗ -17.942 ∗ -23.742 ∗∗

ratemp 0.014 ∗∗ 0.013 ∗∗ 0.014 ∗∗ 0.014 ∗∗

dist300 0.004 0.004 0.005 0.006 ∗∗

speat -2.064 ∗∗ -3.252 ∗∗∗ -2.002 ∗∗ -4.100 ∗∗∗

sgravel 1.605 ∗ 3.234 ∗∗∗ 1.858 ∗∗ 4.657 ∗∗∗

sstoney 1.322 ∗∗ 1.669 ∗∗∗ 1.227 ∗ 1.777 ∗∗∗

sfragipan 1.494 2.978 ∗∗ 1.672 3.808 ∗∗∗

scoarse -0.449 -0.763 ∗∗ -0.459 -1.203 ∗∗∗

sfine 0.767 ∗∗ 0.732 ∗∗ 0.797 ∗∗ 0.534 ∗

smedium · · · ·
sud 0.641 ∗∗ 0.636 ∗∗ 0.643 ∗∗ 1.080 ∗∗∗

north 0.449 0.509 0.468 0.958 ∗

mid · · · ·
y1976 4.013 ∗∗∗ 3.909 ∗∗∗ 4.004 ∗∗∗ 2.662 ∗∗∗

y1974 1.779 ∗∗∗ 1.661 ∗∗∗ 1.737 ∗∗∗ 0.370 ∗∗∗

y1981 1.584 ∗∗∗ 1.462 ∗∗∗ 1.557 ∗∗∗ 0.171 ∗∗∗

y1988 -0.024 -0.115 -0.043 -1.415 ∗∗∗

y2000 0.404 ∗∗ 0.312 ∗∗ 0.401 ∗∗ 0.480 ∗∗∗

y2004 · · · ·
npark -0.005 -0.003 -0.005 -0.008

esa -0.003 -0.004 -0.006 -0.005

greenbelt 0.004 0.006 0.005 0.008 ∗

setaside -0.084 ∗∗∗ -0.089 ∗∗∗ -0.086 ∗∗∗ -0.167 ∗∗∗

*** p-value < 0.01, ** p-value < 0.05, * p-value < 0.1, · signifies the reference variable
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Table 9: Parameter Estimates for the Share of Permanent Grassland

W 5NN
k W 2NN

k WSOI
k Without RE-SED

alt0 -0.025 ∗∗∗ -0.013 ∗∗ -0.023 ∗∗∗ 0.015

alt200 -0.146 -0.105 ∗∗ -0.155 -0.051

alt200d 26.142 20.136 28.443 16.042 ∗

slopef6 5.077 8.493 3.908 10.943 ∗∗∗

rain -0.008 0.077 -0.004 0.269

temp 26.754 ∗∗∗ 23.841 ∗∗∗ -11.095 ∗∗∗ 81.078

ratemp 0.030 ∗∗∗ 0.021 ∗∗∗ 0.029 ∗∗∗ 0.012

dist300 -0.041 -0.046 -0.036 -0.023 ∗∗

speat -0.960 -1.724 -1.152 1.339

sgravel 1.808 ∗∗∗ 6.354 ∗∗∗ 1.690 ∗∗∗ 10.069 ∗∗∗

sstoney 1.210 0.447 ∗∗∗ 0.601 -1.553

sfragipan 6.737 8.370 ∗∗ 5.946 13.665 ∗∗∗

scoarse -2.777 ∗∗∗ -4.092 ∗∗∗ -2.745 ∗∗∗ -5.256 ∗∗∗

sfine 5.762 6.277 5.894 7.463 ∗∗∗

smedium · · · ·
sud -0.822 -0.756 -1.027 -2.357 ∗∗

north -0.947 -1.042 -0.705 -2.190

mid · · · ·
y1976 0.901 2.351 ∗∗∗ 1.002 -5.554 ∗∗∗

y1979 0.681 2.107 ∗∗∗ 0.857 -5.864 ∗∗∗

y1981 -0.142 1.228 ∗∗ -0.073 -6.679 ∗∗∗

y1988 -1.668 ∗∗ -0.335 -1.597 ∗∗ -8.282 ∗∗∗

y2000 -2.300 ∗∗∗ -2.250 ∗∗∗ -2.223 ∗∗∗ -2.932 ∗∗∗

y2004 · · · ·
npark -0.025 -0.004 -0.029 -0.016

esa 0.068 0.059 0.068 0.015

greenbelt -0.008 ∗∗∗ -0.005 ∗∗∗ -0.007 ∗∗∗ 0.008

setaside -0.141 ∗∗∗ -0.061 ∗∗∗ -0.136 ∗∗∗ -0.463 ∗∗∗

*** p-value < 0.01, ** p-value < 0.05, * p-value < 0.1, · signifies the reference variable
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Table 10: Parameter Estimates for the Share of Rough Grazing

W 5NN
k W 2NN

k WSOI
k Without RE-SED

alt0 -0.001 -0.002 -0.001 -0.006 ∗∗

alt200 -0.008 -0.010 -0.005 -0.020

alt200d 2.237 2.523 1.765 4.695

slopef6 4.820 ∗∗∗ 4.973 ∗∗∗ 4.811 ∗∗∗ 4.328 ∗∗∗

rain 0.098 0.107 0.092 0.164

temp -16.808 -9.154 117.054 -1.396

ratemp -0.010 -0.011 -0.010 -0.009

dist300 0.002 0.002 0.002 0.003

speat 0.303 0.244 0.241 -0.484

sgravel 0.010 -0.066 0.005 -0.233

sstoney -1.618 ∗∗ -1.748 ∗∗∗ -1.636 ∗∗ -1.753 ∗∗∗

sfragipan 1.224 1.196 1.144 0.809

scoarse 0.557 ∗∗ 0.583 ∗∗ 0.551 ∗∗ 0.574 ∗∗

sfine -0.172 -0.165 -0.166 -0.120

smedium · · · ·
sud 0.396 ∗∗∗ 0.396 ∗∗∗ 0.384 ∗∗∗ 0.647 ∗∗∗

north 0.179 0.193 0.182 -0.039

mid · · · ·
y1976 -0.455 ∗∗ -0.459 ∗∗ -0.455 ∗∗ -1.901 ∗∗∗

y1979 -0.432 ∗∗ -0.437 ∗∗ -0.434 ∗∗ -1.713 ∗∗∗

y1981 -0.461 ∗∗ -0.465 ∗∗ -0.463 ∗∗ -1.816 ∗∗∗

y1988 -0.470 ∗∗ -0.473 ∗∗∗ -0.472 ∗∗ -1.687 ∗∗∗

y2000 0.151 ∗∗∗ 0.149 ∗∗∗ 0.149 ∗∗∗ 0.092 ∗∗

y2004 · · · ·
npark 0.021 0.017 0.020 0.028

esa 0.002 0.003 0.003 0.016 ∗∗

greenbelt 0.006 ∗∗ 0.005 ∗∗ 0.005 ∗∗ 0.005 ∗∗

setaside -0.016 ∗∗∗ -0.017 ∗∗∗ -0.016 ∗∗∗ -0.037 ∗∗∗

*** p-value < 0.01, ** p-value < 0.05, * p-value < 0.1, · signifies the reference variable
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Table 11: Parameter Estimates for the Share of Arable

W 5NN
k W 2NN

k WSOI
k Without RE-SED

alt0 -0.018 -0.018 -0.015 -0.038 ∗∗∗

alt200 0.006 0.002 0.001 -0.005

alt200d -4.846 -3.372 -3.249 -7.541 ∗∗

slopef6 -6.476 ∗∗∗ -9.074 ∗∗∗ -6.850 ∗∗∗ -8.837 ∗∗∗

rain -0.047 -0.061 -0.083 -0.253 ∗

temp 5.311 3.434 -0.372 17.177

ratemp -0.024 ∗∗ -0.028 ∗∗∗ -0.020 ∗∗ -0.021 ∗∗∗

dist300 0.002 0.013 -0.004 0.010

speat 3.214 6.791 ∗∗ 3.556 6.116

sgravel -0.227 -6.629 ∗∗∗ -0.856 -13.005 ∗∗∗

sstoney 0.769 1.190 0.974 1.410

sfragipan -8.500 ∗∗∗ -11.263 ∗∗∗ -6.957 ∗∗∗ -16.179 ∗∗∗

scoarse 1.383 3.399 ∗∗∗ 1.403 5.217 ∗∗∗

sfine -7.132 ∗∗∗ -7.966 ∗∗∗ -7.458 ∗∗∗ -8.731 ∗∗∗

smedium · · · ·
sud 2.277 ∗∗ 1.670 ∗∗ 2.404 ∗∗ 3.045 ∗∗∗

north -1.461 0.003 -1.851 ∗ 0.117

mid · · · ·
y1976 0.634 -0.375 0.456 4.808 ∗∗∗

y1979 2.219 ∗∗∗ 1.126 ∗∗∗ 2.060 ∗∗∗ 6.482 ∗∗∗

y1981 2.405 ∗∗∗ 1.308 ∗∗∗ 2.271 ∗∗∗ 6.754 ∗∗∗

y1988 3.028 ∗∗∗ 1.941 ∗∗∗ 2.912 ∗∗∗ 7.203 ∗∗∗

y2000 3.806 ∗∗∗ 4.005 ∗∗∗ 3.862 ∗∗∗ 3.932 ∗∗∗

y2004 · · · ·
npark 0.010 0.010 0.009 0.003

esa -0.013 -0.004 -0.008 0.041 ∗∗∗

greenbelt 0.020 0.021 0.013 -0.012

setaside -0.059 ∗∗∗ -0.146 ∗∗∗ -0.069 ∗∗∗ 0.240 ∗∗∗

*** p-value < 0.01, ** p-value < 0.05, * p-value < 0.1, · signifies the reference variable
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