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Joint time-state generalized semiconcavity
of the value function of a jump diffusion
optimal control problem

Ermal Feleqi

Abstract. We prove generalized semiconcavity results, jointly in time and
state variables, for the value function of a stochastic finite horizon optimal
control problem, where the evolution of the state variable is described by
a general stochastic differential equation (SDE) of jump type. Assuming
that terms comprising the SDE are C1-smooth, and that running and
terminal costs are semiconcave in generalized sense, we show that the
value function is also semiconcave in generalized sense, estimating the
semiconcavity modulus of the value function in terms of smoothness and
generalized semiconcavity moduli of data. Of course, these translate into
analogous regularity results for (viscosity) solutions of integro-differential
Hamilton–Jacobi–Bellman equations due to their controllistic interpreta-
tion. This paper may be seen as a sequel to Feleqi (Dyn Games Appl
3(4):523–536, 2013), where we dealt with the generalized semiconcavity
of the value function only in the state variable.
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1. Introduction

In this article we continue our work initiated in [26] on establishing generalized
semiconcavity results for the value function of a finite horizon jump diffusion
optimal control problem. While in [26] we dealt with the problem of obtaining
generalized semiconcavity estimates for the value function in the state variable,
uniformly in time, here we prove generalized semiconcavity results in time and
state variables jointly.

Under appropriate assumptions on the data—which follow from those
made in this paper—the value function can be interpreted as the unique vis-
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cosity solution with at most polynomial growth of a partial integro-differential
equation of Hamilton–Jacobi–Bellman (abbr. HJB) type

⎧
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∂u

∂t
+ inf

α∈A

{
L(t, x, α) + b(t, x, α) · ∇u +

1
2
tr

(
σ(t, x, α)σt(t, x, α)D2u

)

+
∫

E

(
u(·, · + H(t, x, z, α)) − u − ∇u · H(t, x, z, α)

)
ν(dz)

+
∫

Ec

(
u(·, · + K(t, x, z, α)) − u

)
ν(dz)

}
= 0 in [0, T ) × R

d,

u(T, ·) = ψ in R
d,

(1.1)

where T > 0, ν is a Lévy measure on R
d, d ∈ N, R

d\{0} = E ∪ Ec for
some set E such that E ∪ {0} is open and bounded in R

d, A is some metric
space—to be interpreted as the set of controls—and b, σ, H, K, L, ψ are given
maps as in (2.2) below. In addition, we assume that the Lévy measure ν is
finite, that is, ν(Rd\{0}) < ∞. We make this assumption for technical reasons
related to a affine change of the time variable in stochastic integrals with
respect to a Poisson measure, which requires a change of probability measure
called Kulik’s transformation [for precise definitions, see (3.8) and (3.9) below;
for the definition of the “new” probability measure we have to assume that
ν(Rd\{0}) < ∞]. We do not know whether our results extend to a general
Lévy measure or not. The case of classical semiconcavity (linear modulus) has
been treated in [33], where the author assumed ν(Rd\{0}) < ∞ as well. So
the extension of the results of [33] and of this paper to a general Lévy measure
remains an open problem.

Before stating results we recall the following

Definition 1.1. [21] Given an upper semicontinuous nondecreasing function
ω : R+ → R+ such that ω(0+) = limρ→0+ ω(ρ) = 0 (such a function is called
a semiconcavity modulus), we say that a function u : K → R, where K is some
subset of R

d, is an ω-semiconcave function if

λu(x1) + (1 − λ)u(x2) − u(λx1 + (1 − λ)x2)
≤ λ(1 − λ)|x1 − x2|ω(|x1 − x2|)

for all x1, x2 ∈ K such that the segment [x1, x2] ⊂ K and 0 ≤ λ ≤ 1. A
function u is called ω-semiconvex if −u is ω-semiconcave. We say that u is of
class C1,ω or C1,ω-regular if it is both ω-semiconcave and ω-semiconvex.1

A vector-valued function u : K → R
d is said to be of class C1,ω (or,

C1,ω-regular) if each of its components is of class C1,ω.

Our results go roughly as follows. Let b, σ, H, K be, in order, of class
C1,ω1 , C1,ω2 , C1,ω3 , C1,ω4 , respectively, and L, ψ be ω5- and ω6-semiconcave,
jointly in time and state variables, uniformly in control and jump variables,
where all the ωi’s are given semiconcavity moduli. Assume also that all these
maps are bounded, globally Lipschitz continuous in time and state variables,
uniformly in control and jump variables, and that the Lévy measure is finite.

1 This definition is justified, e.g., by [21, Theorem 3.3.7, p. 60].
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Then, for all δ ∈]0, T ], the unique viscosity solution u of (1.1) with polynomial
growth is ω-semicocave on [0, T − δ] × R

d for some modulus ω that can be
expressed in terms of the given moduli ωi for i = 1, . . . , 6 (for precise results
see Theorems 2.2 and 2.11). One cannot hope to prove ω-semiconcavity of u
on all of [0, T ]×R

d for it would imply the Lipschitz continuity of u on bounded
subsets of [0, T ] × R

d, which is known to be not true in general as shown by
the simple Example 3.1 in [11].

The results of the present paper are (to the best of our knowledge) new
for two reasons: firstly, because the semiconcavity moduli considered here are
quite general (in contrast to the usual linear moduli, corresponding to classical
semiconcavity); part of these regularity results may be new even for “pure”
diffusion processes (H = K = 0), if not also for the “deterministic” processes
(σ = H = K = 0); secondly, because the results are given for general possi-
bly degenerate jump SDEs (in the literature one usually considers continuous
diffusions or jump diffusion with some kind of ellipticity hypothesis).

The role of semiconcavity in first-order Hamilton–Jacobi–Bellman equa-
tions and optimal control was pointed out by Kružkov [37–39] (see also [8,35])
and in connections with viscosity solutions in [19,20,22–24,52]. For second-
order HJB equations the first one-sided estimates for second difference quo-
tients (or semiconcavity estimates with a linear modulus) were obtained in [40,
51]. For more results and extensive historical and bibliographical remarks, not
only on semiconcavity estimates, but, more generally, on optimal control and
HJB equations, the reader is referred to books [2,21,27,54,56]. Semiconcavity
estimates can also be proved via PDE techniques (comparison principles) as
in [29,31].

There has been considerable work recently regarding (classical) semi-
concavity in time-space for the value functions of optimal control problems
for diffusions with or without jumps, or, equivalently, viscosity solutions of
P(I)DEs of HJB type. The case of diffusions without jumps (H = K = 0),
that is, of second-order PDEs of HJB type, is treated in [11] and in [12]. The
case of general PIDEs of HJB type is treated in [33], but, as we said, under the
restrictive assumption that the Lévy measure ν should be finite; the case of a
general Lévy measure (for which

∫

Rd min{1, |z|2}ν(dz) < ∞), according to [33],
is still open. Moreover, Lipschitz and semiconcavity estimates were proved also
in [53] by PDE techniques for a wide class of PDIEs not necessarily arising
from optimal control problems.

Related to our discussion is also [9], which addresses convexity preser-
vation results (in space variable) for HJB PIDEs, and their significance to
financial applications.

Of course, we are not aware of any systematic treatment dedicated to
generalized semiconcavity in the sense of Definition 1.1 in both time and space
variables jointly. Our paper [26] was probably the first to deal systematically
with the issue of establishing generalized semiconcavity results for the value
function in the state variable, uniformly in time, and, the present paper should
be seen as a sequel to that one.
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The results of this paper are a (small) part of the vast regularity theory
of PIDEs. First results on this subject were obtained assuming nondegenerate
diffusions or elliptic second-order differential (local) terms as in [7,28,30] (just
to mention a very few references without any pretense of completeness) and
references therein. Recently, there has been a revival of interest on the theory
of PIDEs which is due to the work on one hand of Caffarelli et al. [13–18],
and Barles, Chasseigne, Ciomaga, Imbert on the other [4–6]. These authors,
differently from the earlier ones, prove regularity results, such as Hölder, Lips-
chitz, C1,α-estimates, under a kind of ellipticity assumption, which is not any
more due to the second-order local terms (or to the presence of nonsingular
diffusions), but comes either from the nonlocal terms or from the combined
effect of both local and nonlocal terms. Related results have been obtained by
other authors as well [10,25,32,34,36,44,45,49,50].

Our interest in the regularity theory of partial integro-differential equa-
tions of HJB type and related optimal control problems arose from the recent
theory of Mean Field Games (abbr. MFG) developed by Lasry and Lions [46–
48], which yields limiting models for symmetric, non-zero sum, non-cooperative
N -player games with the interaction between the players being of mean-field
type. It is of interest to study MFG models where the dynamic of an average
or representative agent is a jump diffusion because stochastic phenomena in
Economics and Finance applications exhibit jumps and other deviations from
pure diffusions. The MFG paradigm would lead in this case to PIDEs of HJB
for the optimal values of the average agents coupled with Fokker-Planck PI-
DEs for probability distributions of their optimal dynamics. To our knowledge
the study of such systems of PIDEs remains largely to be done. In particular,
we are interested in extending to these systems of PIDES our results in [3,26].

The proof is based on interpreting the said solution of (1.1) as the value
function of a stochastic optimal control problem for jump diffusion processes,
that is, processes which are solutions of appropriate stochastic differential
equations of jump type driven by Brownian motions and Poisson random
measures independent of each other (abbr. SDEs) see, e.g., [54] and refer-
ences therein. Furthermore, we rely on the method of affine time changes for
Brownian motions as in [11,12] and for Poisson random measures as in [33].
While the corresponding change of variable formula for Wiener integrals is
rather easy, for stochastic integrals with respect to Poisson random measures,
the formula is more involved and requires a change of probability on the under-
lying sample space via the so called Kulik’s transformation; see [33] for more
details and references. Other tools are Burkholder type inequalities as stated
for example in [43], and of course Gronwall’s inequality.

The paper is organized as follows. Main results (Theorems 2.2 and 2.11)
are stated in the next section. The proof of technical lemmas is postponed to
the “Appendix” (Sect. 3) in order to ensure a better readability of the paper.

Notation In accordance with common practice, we usually use the same letter
(here Cδ) to denote possibly different constants in a chain of estimates/inequa-
lities, which however depend only on the same data; see, e.g., the proofs of
Lemmas 2.5 and 2.7.
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2. The optimal control of jump diffusions

Let T > 0 be a fixed time horizon, A a metric space—to be interpreted as the
set of control values—, ν a finite Lévy measure on Z = R

d\{0} and Z = E∪Ec,
where E is a subset of R

d\{0} such that E ∪ {0} is a bounded open subset of
R

d. For all s ∈ [0, T ] we denote by Rs the collection of the following entities2

R =
(
Ω,F , F = (Ft)s≤t≤T , P,W (·), N = N(dtdz)

)
, (2.1)

that satisfy the following conditions:
•

(
Ω,F , F = (Ft)s≤t≤T , P

)

is a complete filtered probability space such that the filtration F satisfies
the usual hypotheses (that is, F is right continuous and every sub-σ-
algebra Ft, for 0 ≤ t ≤ T , is complete with respect to the probability
measure P;

• W = W (·) is a standard m-dimensional (m ∈ N) F-adapted Brownian
motion on (Ω,F , P);

• N = N(dtdz) is a F-adapted Poisson random measure on R
+ × Z and

on probability space (Ω,F , P) with intensity measure ν on Z, and with
associated compensator Ñ = Ñ(dtdz) = N(dtdz) − dtν(dz);

• W and N are independent of each-other and moreover have increments
that are independent of the filtration F, that is, W (t2) − W (t1), N(t2) −
N(t1) are independent of Ft1 for all s ≤ t1 ≤ t2 ≤ T .
Let
b : [0, T ] × R

d × A → R
d, σ : [0, T ] × R

d × A → R
d×m,

H : [0, T ] × R
d × E × A → R

d, K : [0, T ]×R
d×Ec×A→R

d,

L : [0, T ] × R
d × A → R, ψ : R

d → R

(2.2)

be (measurable) maps, p ≥ 2, Ci, Li ≥ 0 fixed constants and ωi regularity
moduli, for i = 1, . . . , 6.

Assume that the following hold true:
(B) (bounded data)

(i) (bounded dynamics)

|b(r, x, α)| ≤ C1, |σ(r, x, α)| ≤ C2,

|H(r, x, z, α)| ≤ C3, |K(r, x, zc, α)| ≤ C4,

(ii) (bounded costs)

|L(r, x, α)| ≤ C5, |ψ(x)| ≤ C6

(L) (Lipschitz continuous data)
(i) (Lipschitz continuous dynamics)

|b(r1, x1, α) − b(r2, x2, α)| ≤ L1(|r1 − r2| + |x1 − x2|),

2 Which we could call probability references if we were to adapt a terminology analogous to
the one adapted in [27].
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|σ(r1, x1, α) − σ(r2, x2, α)| ≤ L2(|r1 − r2| + |x1 − x2|),
∫

E

|H(r1, x1, z, α) − H(r2, x2, z, α)‖pν(dz) ≤ Lp
3(|r1 − r2| + |x1 − x2|)p,

∫

Ec

‖K(r1, x1, z, α) − K(r2, x2, z, α)‖pν(dz) ≤ Lp
4(|r1 − r2| + |x1 − x2|)p,

(ii) (Lipschitz continuous costs)

|L(r1, x1, α) − L(r2, x2, α)| ≤ L5 (|r1 − r2| + |x1 − x2|),
|ψ(x1) − ψ(x2)| ≤ L6 |x1 − x2|,

(S) (semiconcave data)
(i) (C1,ω-regular dynamics)

|λb(r1, x1, α) + (1 − λ)b(r2, x2, α) − b
(
rλ, xλ, α

)|
≤ λ(1 − λ)(|r1 − r2| + |x1 − x2|)ω1(|r1 − r2| + |x1 − x2|),

|λσ(r1, x1, α) + (1 − λ)σ(r2, x2, α) − σ
(
rλ, xλ, α

)|
≤ λ(1 − λ)(|r1 − r2| + |x1 − x2|)‖ω2(|r1 − r2| + ‖x1 − x2‖),

∫

E

|λH(r1, x1, z, α) + (1 − λ)H(r2, x1, z, α) − H
(
rλ, xλ, z, α

)|pν(dz)

≤ (λ(1 − λ)(|r1 − r2| + |x1 − x2|)ω3(|r1 − r2| + |x1 − x2|))p
,

∫

Ec

‖λK(r1, x1, z
c, α) + (1 − λ)K(r2, x1, z

c, α) − K
(
rλ, xλ, zc, α

)‖pν(dzc)

≤ (λ(1 − λ)(|r1 − r2| + ‖x1 − x2‖)ω4(|r1 − r2| + |x1 − x2|))p

(ii) (ω-semiconcave costs)

λL(r1, x1, α) + (1 − λ)L(r, x2, α) − L (rλ, xλ, α)

≤ λ(1 − λ)(|r1 − r2| + |x1 − x2|)ω5(|r1 − r2| + |x1 − x2|),
λψ(x1) + (1 − λ)ψ(x2) − ψ(xλ) ≤ λ(1 − λ)|x1 − x2|ω6(|x1 − x2|)

for all r, r1, r2 ∈ [0, T ], x, x1, x2 ∈ R
d, 0 ≤ λ ≤ 1, α ∈ A, z ∈ E, zc ∈ E, where

rλ = λr1 + (1 − λ)r2, xλ = λx1 + (1 − λ)x2. Since p ≥ 2 and ν(Z) < ∞, then
it follows that estimates for H and K hold also for p = 2.

We cannot handle arbitrary moduli, therefore we have to make assump-
tions on the moduli as well. However, these assumptions are not very restrictive
and are verified by the moduli appearing in most applications of interest. We
should notice that in many cases we can replace the regularity or semiconcav-
ity modulus of a map by a larger one so that it satisfy our assumptions. For
alternative assumptions on the moduli see Theorem 2.11 below.

To begin with we make either one of the following assumptions on the
moduli.
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(MP) (Power type moduli).
(i) (Moduli of the dynamics). We assume that

ωi(ρ) = kiρ
αi , ∀ρ ≥ 0, i = 1, . . . , 4,

for given 0 < αi(≤ 1), ki ≥ 0 and also that

p ≥ 2 (1 + max{α1, α2, α3, α4}) . (2.3)

(ii) (Moduli of the costs). Furthermore, we assume that

ωi(ρ) = kiρ
αi , ∀ρ ≥ 0, i = 5, 6,

for given 0 < αi(≤ 1), ki ≥ 0 and also that

p ≥ 1 + max{α5, α6} . (2.4)

Alternatively, we assume the following hold true.
(MC) (Moduli with concavity properties).

(i) (Moduli of the dynamics). The functions

γi(ρ) =
(
ρβiω2

i (ρ)
)qi

, ∀ρ ≥ 0, i = 1, . . . , 4 and given 0 ≤ βi ≤ 2 ,

1 ≤ qi ≤ ∞ ,

are concave and, if ri ≥ 1 are such that r−1
i + q−1

i = 1 for all 1 = 1, . . . 4, we
assume also that

1 ≤ (2 − βi)ri ≤ p for i = 1, . . . , 4 .

(ii) (Moduli of the costs). Furthermore, the functions

γi(ρ) =
(
ρβiωi(ρ)

)qi
, ∀ρ ≥ 0, i = 5, 6, and given 0 ≤ βi ≤ 1, 1 ≤ qi ≤ ∞ ,

are concave and, if ri ≥ 1 are such that r−1
i + q−1

i = 1 for all i = 5, 6, then we
assume also that

1 ≤ (1 − βi)ri ≤ p for i = 5, 6.

Remark 2.1. The larger the p is the more restrictive these assumptions be-
come, so we aim at proving results for p ≥ 2 as small as possible. In the case
of (MP), by (2.3), (2.4), it suffices to assume that the above estimates (L), (S)
hold true for p = 4. as it is done in [33], where the case of classical semiconcav-
ity estimates (that is, ω-semiconcavity estimates with linear ω-s) is treated.
Indeed, it is not reasonable to take αi > 1 (i = 1, . . . , 6), that is, a superlinear
modulus, otherwise, by [21, Theorem 2.1.9], an ω-semiconcave function would
just be concave and a C1,ω map would just be constant. In such a case one
may just take ωi = 0, that is, ki = 0 and αi = 0. Still we cannot assume
p = 2 unless our results trivialize for this would force us to take αi = 0 for all
i = 1, . . . , 4.

For any s ∈ [0, T ], R ∈ Rs as in (2.1), we consider the following optimal
control problem:

(admissible controls) we take as set of admissible controls AR(s, T ) the set of
R-predictable3 processes α(·) : [0, T ] → A;

3 That is, predictable with respect to the filtration F of R.
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(controlled system) for any x0 ∈ R
d, α(·) ∈ AR(s, T ) we consider the stochastic

differential equation of jump type: for all s ≤ t ≤ T

x(t) = x0 +
∫ t

s

b
(
r, x(r−), α(r)

)
dr +

∫ t

s

σ
(
r, x(r−), α(r)

)
dW (r)

+
∫ t

s

∫

E

H
(
r, x(r−), z, α(r)

)
Ñ(drdz)

+
∫ t

s

∫

Ec

K
(
r, x(r−), z, α(r)

)
N(drdz)

(2.5)

(cost functionals) for any x0 ∈ R
d, α(·) ∈ AR(s, T ), if x(·) is the solution4 to

(2.5), the cost is given by

JR

(
s, x0, α(·)) = E

[∫ T

s

L
(
t, x(t), α(t)

)
dt + ψ

(
x(T )

)
]

; (2.6)

(value function) the value function VR is given by

VR(s, x0) = inf
α(·)∈AR(s,T )

JR

(
s, x0, α(·)) , (2.7)

where, for each α(·) ∈ AR(s, T ), x(·) is the solution of Eq. (2.5); we consider
also

V (s, x0) = inf
R∈Rs

VR(s, x0). (2.8)

Under assumptions (B), (L), VR(s, ·) = V (s, ·) for all s ∈ [0, T ], R ∈
Rs, and V is actually the unique viscosity solutions of (1.1) with polynomial
growth [54,55]. Actually, in [33] it is proved that V is Lipschitz continuous on
[0, T − δ] × R

d for any δ ∈ ]0, T ].
As we pointed out in the introduction, V is not in general locally Lipschitz

continuous (and therefore not semiconcave in generalized sense) on [0, T ]×R
d

(indeed V (t, x) =
√

T − t for b = 0, σ = 1, H = K = 0, L = 1, ψ =
0). However, we prove that, for every 0 < δ ≤ T , V is ω-semiconcave on
[0, T − δ] × R

d for some modulus ω which can be expressed in terms of the
moduli of the data of the problem.

Thus we fix also a δ ∈ ]0, T ].
We prove the following generalized semiconcavity estimates in time-space.

Theorem 2.2. Assume (B), (L), (S) and either (MP) or (MC). Then the value
function V is ω-semiconcave on [0, T − δ] × R

d for some modulus ω of the
form

ω(ρ) =
6∑

i=1

c′
iωi(ciρ) + c7ρ ∀ρ ≥ 0 (2.9)

for constants ci, c
′
i ≥ 0 for i = 1, . . . , 6, c7 ≥ 0 that depend only on d,m, T, δ,

ν(Z), p, Ci, Li for i = 1, . . . , 6.

4 Under assumptions (B)-(i), (L)-(i), Eq. (2.5) is indeed uniquely solvable by a right con-
tinuous R

d-valued process x(·) with left limits defined on [s, T ]; in addition this process is
F-adapted; see [1, Theorems 6.2.3, p. 367 and 6.2.9, p. 374].
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In order to prove generalized semiconcavity estimates for V on [0, T −
δ] × R

d (and in particular, Theorem 2.2 above) we take s1, s2 ∈ [0, T − δ],
x0
1, x

0
2 ∈ R

d, λ ∈ [0, 1], and set sλ = λs1 + (1 − λ)s2, x0
λ = λx0

1 + (1 − λ)x0
2.

Let R ∈ Rsλ
, α(·) ∈ AR(sλ, T ), and denote by τ1, τ2 the affine “time changes”

that transform [s1, T ], respectively, [s2, T ], into [sλ, T ], that is,

τi : [si, T ] → [sλ, T ], τi(t) = sλ +
T − sλ

T − si
(t − si) ∀t ∈ [si, T ], i = 1, 2,

(2.10)

(which have derivatives τ̇i = (T − sλ)/(T − si)). We take

Ri = (Ω,Fi, Qi, Fi, τi(W ), τi(N)) (2.11)

where Fi is defined as in (3.6) and Qi as in (3.9). It is easy to see that Ri ∈ Rsi

and αi(·) = α(·) ◦ τi ∈ ARi
(s1, T ), i = 1, 2.

Denoting by xi(·) the solutions of Eq. (2.5) for R = Ri, α(·) = αi(·)
and initial conditions s = si, x0 = x0

i , for i = 1, 2, respectively; and by xλ(·)
the solution of (2.5) for the previously fixed R ∈ Rsλ

, α(·) ∈ AR(sλ, T ),
initial conditions s = sλ, x0 = x0

λ, setting x̃1(·) = x1(·) ◦ τ−1
1 , x̃2(·) = x2(·) ◦

τ−1
2 , x̃λ(·) = λx̃1(·) + (1 − λ)x̃2(·), we obtain, by Burkholder inequalities and

change of variable formulas for stochastic integrals with respect to affine time
changes—see the detailed proof in the “Appendix”—the following estimates:

Lemma 2.3. For some c ≥ 0, that depends only on d,m, T, p, ν(Z), and for
every t ∈ [sλ, T ],

E[|x̃1(t) − x̃2(t) − x0
1 + x0

2|p] ≤ c

∫ t

sλ

E

[∣
∣
∣
1
τ̇1

b (r, x̃1(r), α(r))

− 1
τ̇2

b (r, x̃2(r), α(r))
∣
∣
∣
p]

+ c

∫ t

sλ

E

[∣
∣
∣

1√
τ̇1

σ(r, x̃1(r), α(r)) − 1√
τ̇2

σ(r, x̃2(r), α(r))
∣
∣
∣
p]

dr

+ c

∫ t

sλ

E

[ ∫

E

∣
∣
∣

(
1 − 1

τ̇1

)
H (r, x̃1(r), z, α(r))

−
(
1 − 1

τ̇2

)
H (r, x̃2(r), z, α(r))

∣
∣
∣
p

ν(dz)
]
dr

+ c

∫ t

sλ

E

[ ∫

Ec

|K(r, x̃1(r), z, α(r)) − K(r, x̃2(r), z, α(r))|p ν(dz)
]
dr (2.12)

E
[|x̃λ(t) − xλ(t)|2]

≤ c

∫ t

sλ

E

[∣
∣
∣
λ

τ̇1
b
(
τ−1
1 (r), x̃1(r), α(r)

)
+

1 − λ

τ̇2
b
(
τ−1
2 (r), x̃2(r), α(r)

)

− b
(
r, xλ(r), α(r)

)∣∣
∣
2
]

dr

+ c

∫ t

sλ

E

[∣
∣
∣
λ

τ̇1
σ
(
τ−1
1 (r), x̃1(r), α(r)

)
+

1 − λ

τ̇2
σ
(
τ−1
2 (r), x̃2(r), α(r)

)
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−σ
(
r, xλ(r), α(r)

)∣∣
∣
2
]

dr

+ c

∫ t

sλ

E

[∫

E

∣
∣
∣λH

(
τ−1
1 (r), x̃1(r), α(r)

)
+ (1 − λ)H

(
τ−1
2 (r), x̃2(r), α(r)

)

−H
(
r, xλ(r), α(r)

)∣∣
∣
2

ν(dz)
]

dr

+ c

∫ t

sλ

E

[ ∫

Ec

∣
∣
∣λ

(

1 − 1
τ̇1

)

K
(
τ−1
1 (r), x̃1(r), α(r)

)

+ (1−λ)
(

1− 1
τ̇1

)

K
(
τ−1
2 (r), x̃2(r), α(r)

)−K(r, xλ(r), α(r))
∣
∣
∣
2

ν(dz)

]

dr.

(2.13)

For a better readability of the paper, the proof of this lemma and the
others stated in this section is postponed to the “Appendix”.

We need the following simple technical lemma which can be checked by
straightforward computation, hence its proof, which in any case can be found
in [11], is omitted.

Lemma 2.4. For any 0 < δ ≤ T there exists Cδ > 0 such that

|τ−1
1 (r) − τ−1

2 (r)| +
∣
∣
∣
∣
1
τ̇1

− 1
τ̇2

∣
∣
∣
∣ +

∣
∣
∣
∣

1√
τ̇1

− 1√
τ̇2

∣
∣
∣
∣ ≤ Cδ|s1 − s2|, (2.14)

λ

∣
∣
∣
∣1 − 1√

τ̇1

∣
∣
∣
∣ + (1 − λ)

∣
∣
∣
∣1 − 1√

τ̇2

∣
∣
∣
∣ ≤ 1

2δ
λ(1 − λ)|s1 − s2|, (2.15)

∣
∣
∣
∣λ

(

1 − 1√
τ̇1

)

+ (1 − λ)
(

1 − 1√
τ̇2

)∣
∣
∣
∣ ≤ 1

2δ2
λ(1 − λ)|s1 − s2| (2.16)

for all 0 ≤ si ≤ T − δ, i = 1, 2, 0 ≤ λ ≤ 1, s ≤ r ≤ T , where sλ =
λs1 + (1 − λ)s2. Moreover,

λτ−1
1 (r) + (1 − λ)τ−1

2 (r) = r, (2.17)

λ

(

1 − 1
τ̇1

)

= −(1 − λ)
(

1 − 1
τ̇2

)

= λ(1 − λ)(s1 − s2). (2.18)

Lemma 2.5. (Lipschitz estimates in terms of initial conditions) Assume (B)-
(i), (L)-(i). Then, for every t ∈ [sλ, T ],

E [|x̃1(t) − x̃2(t)|p] ≤ Lδ

(|s1 − s2|p + |x0
1 − x0

2|p
)
. (2.19)

for some constant Lδ ≥ 0 that depends only on d,m, p, T, δ, ν(Z), Ci, Li, for
i = 1, . . . , 4.

Lemma 2.6. (Moduli with a concavity property) Let ξ be a nonnegative random
variable on a probability space (Ω,F , P) and let ω be a semiconcavity modulus.
Then

E[ξ2ω2(ξ)] ≤
(
E[ξr(2−β)]

) 2
r(2−β)

ω2 (E [ξ]) (2.20)
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provided that γ, defined by setting γ(ρ) =
(
ρβω2(ρ)

)q for all ρ ≥ 0, where
0 ≤ β ≤ 2, 1 ≤ r, q ≤ ∞, r−1 + q−1 = 1, is concave.

Lemma 2.7. (C1,ω-estimates in terms of initial conditions) Assume (B)-(i),
(L)-(i), (S)-(i) and (MP)-(i) or (MC)-(i). Then, for x̃λ(·) = λx̃1(·) + (1 −
λ)x̃2(·), and for every t ∈ [sλ, T ],

(
E

[|x̃λ(t) − xλ(t)|2])1/2

≤ λ(1 − λ)(|s1 − s2| + |x0
1 − x0

2|)ωδ(|s1 − s2| + |x0
1 − x0

2|), (2.21)

where

ωδ(ρ) =
4∑

i=1

c′
iωi(ciρ) + c5ρ, ρ ≥ 0, (2.22)

with constants ci, c
′
i ≥ 0 for i = 1, 2, 3, 4, c5 ≥ 0 depending only on d,m, p, T,

δ, Ci, Li, for i = 1, . . . , 4.

Lemma 2.8. Let ξ be a nonnegative random variable on a probability space
(Ω,F , P) and ω a semiconcavity modulus. Then

E[ξω(ξ)] ≤
(
E[ξr(1−β)]

) 1
r(1−β)

ω (E [ξ]) (2.23)

provided that γ, defined by setting γ(ρ) =
(
ρβω(ρ)

)q for all ρ ≥ 0, where
0 ≤ β ≤ 1, 1 ≤ r, q ≤ ∞, q−1 + r−1 = 1, is concave.

Proof of Theorem 2.2. We have

λJR1

(
s1, x

0
1, α1(·)

)
+ (1 − λ)JR2

(
s2, x

0
2, α2(·)

) − JR

(
sλ, x0

λ, α(·))

= λE

[∫ T

s1

L
(
t, x1(t), α1(t)

)
dt

]

+ (1 − λ)E

[∫ T

s2

L
(
t, x2(t), α2(t)

)
dt

]

− E

[∫ T

sλ

L
(
t, xλ(t), α(t)

)
dt

]

+ λE
[
ψ

(
x1(T )

)]

+ (1 − λ)E
[
ψ

(
x2(T )

)] − E
[
ψ

(
xλ(T )

)]
.

In the first two integrals we apply the change of variables τ1, τ2, respectively
[defined as in (2.10)] and noticing that αi(·) ◦ τ−1

i = α(·) for i = 1, 2, we find

λJR1

(
s1, x

0
1, α1(·)

)
+ (1 − λ)JR2

(
s2, x

0
2, α2(·)

) − JR

(
sλ, x0

λ, α(·))

=
∫ T

sλ

(
λ

τ̇1
E

[
L

(
τ−1
1 (t), x̃1(t), α(t)

)]
+

1 − λ

τ̇2
E

[
L

(
τ−1
2 (t), x̃2(t), α(t)

)]

− E
[
L

(
t, xλ(t), α(t)

)]
)

dt + λE
[
ψ

(
x1(T )

)]

+ (1 − λ)E
[
ψ

(
x2(T )

)] − E
[
ψ

(
xλ(T )

)]

=
∫ T

sλ

E

[
λ

τ̇1
L

(
τ−1
1 (t), x̃1(t), α(t)

)
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+
1 − λ

τ̇2
L

(
τ−1
2 (t), x̃2(t), α(t)

) − L
(
t, x̃λ(t), α(t)

)
]

dt

+
∫ T

sλ

E
[
L

(
t, x̃λ(t), α(t)

) − L
(
t, xλ(t), α(t)

)]
dt

+ E
[
λψ

(
x1(T )

)
+ (1 − λ)ψ

(
x2(T )

) − ψ
(
x̃λ(T )

)]

+E
[
ψ

(
x̃λ(T )

) − ψ
(
xλ(T )

)]
,

[recall that x̃λ(·) = λx̃1(·) + (1 − λ)x̃2(·)]. Furthermore, noting that λ/τ̇1 +
(1 − λ)/τ̇2 = 1 as follows by differentiating (2.17), we get

λJR1

(
s1, x

0
1, α1(·)

)
+ (1 − λ)JR2

(
s2, x

0
2, α2(·)

) − JR

(
sλ, x0

λ, α(·))

=

∫ T

sλ

E
[
λL

(
τ−1
1 (t), x̃1(t), α(t)

)
+ (1 − λ)L

(
τ−1
2 (t), x̃2(t), α(t)

)

−L
(
t, x̃λ(t), α(t)

)]
dt

+

∫ T

sλ

(1 − λ)

(
1

τ̇2
− 1

)

E
[
L

(
τ−1
1 (t), x̃1(t), α(t)

) − L
(
τ−1
2 (t), x̃2(t), α(t)

)]
dt

+

∫ T

sλ

E
[
L

(
t, x̃λ(t), α(t)

) − L
(
t, xλ(t), α(t)

)]
dt

+E
[
λψ

(
x1(T )

)
+ (1 − λ)ψ

(
x2(T )

) − ψ
(
x̃λ(T )

)]

+E
[
ψ

(
x̃λ(T )

) − ψ
(
xλ(T )

)]
.

By (L)-(ii), (S)-(ii),

λJR1

(
s1, x

0
1, α1(·)

)
+ (1 − λ)JR2

(
s2, x

0
2, α2(·)

) − JR

(
sλ, x0

λ, α(·))

≤ λ(1 − λ)
∫ T

sλ

E
[ (|τ−1

1 (t) − τ−1
2 (t)| + |x̃1(t) − x̃2(t)|

)

×ω5

(|τ−1
1 (t) − τ−1

2 (t)| + |x̃1(t) − x̃2(t)|
) ]

dt

+L5(1 − λ)
(
1 − 1

τ̇2

) (|τ−1
1 (t) − τ−1

2 (t)| + E [|x̃1(t) − x̃2(t)|]
)

+L5

∫ T

sλ

E [|x̃λ(t) − xλ(t)|] dt

+λ(1 − λ)E [|x̃1(T ) − x̃2(T )|] ω6 (E [|x1(T ) − x2(T )|])
+L6E [|x̃λ(T ) − xλ(T )|] .

By Lemma 2.8 and Lemma 2.4, more specifically, (2.14), (2.18),

λJR1

(
s1, x

0
1, α1(·)

)
+ (1 − λ)JR2

(
s2, x

0
2, α2(·)

) − JR

(
sλ, x0

λ, α(·))

≤ Cδλ(1 − λ)
(∫ T

sλ

E
[
(|s1 − s2|

+ |x̃1(t) − x̃2(t)|) ω5 (Cd (|s1 − s2| + |x̃1(t) − x̃2(t)|))
]
dt

+ E [|x̃1(T ) − x̃2(T )|ω6 (|x̃1(T ) − x̃2(T )|)]

+
(|s1 − s2| + |x0

1 − x0
2|

)
)

+ L5

∫ T

sλ

E [|x̃λ(t) − xλ(t)|] dt (2.24)
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for some constant Cδ ≥ 0 that depends only on d,m, p, δ, T, ν(Z), Ci, Li, i =
1, . . . , 6.

Under our assumptions on the moduli (MP) or (MC) Lemma 2.7 holds
true, which, in case of assumptions (MC), we apply together with Lemma 2.8,
in order to deduce, by using also a final time Lemma 2.5, that

λJR1

(
s1, x

0
1, α1(·)

)
+ (1 − λ)JR2

(
s2, x

0
2, α2(·)

)

−JR

(
sλ, x0

λ, α(·))≤λ(1 − λ)ω
(|s1 − s2|+|x0

1 − x0
2|

)
+

(|s1−s2|+|x0
1 − x0

2|
)

for some ω as in (2.9). From this last estimate, since R ∈ Rsλ
and α(·) ∈

AR(sλ, T ) are arbitrary, it follows that V is ω-semiconcave. �

Remark 2.9. Up to estimate (2.2) in the proof above we do not use the as-
sumptions on the particular form of the moduli. This is important to notice for
the general estimate (2.24) may by used to obtain generalized semiconcavity
estimates for other types of moduli from those envisioned in Theorem 2.2.

It should be now rather straightforward to state results under the as-
sumption that some of the moduli ωi are of power type while the others satisfy
suitable concavity properties (as stated in Lemmas 2.6 and 2.8).

In many cases of interest it is possible to choose the moduli ωi concave,
and by growth assumptions contained in (B), (L), it is also possible to as-
sume these moduli ωi bounded as well. This remark can be used to derive
ω-semiconcavity results by means of the following lemma.

Lemma 2.10. (bounded concave moduli) Fix q, r ∈ [1,∞] such that 1/q+1/r =
1 and let ξ be as in Lemma 2.6 (or as in Lemma 2.8). Assume that ωq is concave
for some q > 0, and ω is bounded by some constant k ≥ 0. Then

E[ξ2ω2(ξ)] ≤ k1−q/(2q)
(
E[ξ2r]

)1/r
ωq/(2q) (E[ξ]) ,

and

E[ξω(ξ)] ≤ k1−q/(q) (E[ξr])1/r
ωq/(1q) (E[ξ]) .

Then this lemma can by used to prove the following theorem in the same
fashion as we did with Theorem 2.2.

Theorem 2.11. (bounded concave moduli) Assume (B), (L), (SC). Assume in
addition that, for suitable 1 < qi, ri < ∞, qi > 0 such that 1/qi + 1/ri = 1,
for i = 1, . . . , 6, 2ri ≤ p for i = 1, . . . , 4, r5, r6 ≤ p, maps ω

qi
i are concave

and bounded. Then, for all δ ∈]0, T ], the value function V is ω-semiconcave
on [0, T − δ] × R

d for some modulus ω of the form

ω(ρ) =
4∑

i=1

c′
iω

qi/(2qi)
i (ciρ) +

6∑

i=5

c′
iω

qi/(qi)
i (ciρ) + c7ρ ∀ρ ≥ 0

for constants ci, c
′
i ≥ 0 for i = 1, . . . , 6, c7 ≥ 0 that depend only on d, T, δ, ν(Z),

p, Ci, Li, qi, qi and upper bounds of ωi for i = 1, . . . , 6.

Relying on the lemmas and techniques given above, one can obtain addi-
tional results on the time-space semiconcavity of the value function, estimating,



4 Page 14 of 24 E. Feleqi NoDEA

if one so wishes, the semiconcavity modulus of the value function in terms of the
moduli of the data (that is, results of the type of Theorems 2.2 and 2.11) when
one assumes moduli of “mixed type”, that is, some moduli of power type and
the others having suitable concavity properties and/or being bounded. Since
the resulting statements and method of proof of these results should be clear
by now, we are not providing them here. We just emphasize that, in obtaining
such results, the starting point is estimate (2.24), which holds true for any
moduli ωi, i = 1, . . . , 6. Then one needs to apply Lemma 2.6 and/or the first
part of Lemma 2.10, firstly, to obtain a new version of Lemma 2.7 (based on
the assumptions on the type of the moduli oi, i = 1, . . . , 4), and finally, one
concludes by using this new version of Lemma 2.7, estimate (2.24) and/or
Lemma 2.8 and/or the second part of Lemma 2.10 (whether and which of the
said lemmas is to be used or not depends on the assumptions on ωi-s).

3. Appendix

Proof of Lemma 2.3. Fact 1. (Burkholder–Davis–Gundy inequalities [43]) For
any 2 ≤ p < ∞ there exist c′

p, cp > 0 such that

E

[∣
∣
∣
∣

∫ t

s

σ(r)dW (r)
∣
∣
∣
∣

p
]

≤ c′
pE

[(∫ t

s

|σ(r)|2dr

)p/2
]

, (3.1)

and

E

[∣
∣
∣
∣

∫ t

s

∫

F

H(r, z)Ñ(drdz)
∣
∣
∣
∣

p
]

≤ cpE

[∫ t

s

∫

F

|H(r, z)|pdrν(dz)
]

+ c′′
pE

[(∫ t

s

∫

F

|H(r, z)|2drν(dz)
)p/2

]

(3.2)

for all for all predictable processes σ ∈ Lp
(
[s, T ] × Ω, dt ⊗ P; Rd×m

)
, H ∈

Lp
(
[s, T ] × F × Ω, dt ⊗ ν ⊗ P; Rd

)
, where F is any measurable subset of Z;

see, e.g., [1, Theroem 4.4.22, p. 263 and Theorem 4.4.23, p. 265 ], or [43,
Section 2.5]. Actually, for p = 2, by the L2-isometry of stochastic integrals,
we can take cp = c′

p = 1 and c′′
p = 0 above, and these inequalities are in fact

equalities.
By first compensating, that is, using N = Ñ +dtν(dz), and then inequal-

ity (3.2) with F = Ec, and Hölder’s inequality, we obtain

E

[∣
∣
∣
∣

∫ t

s

∫

Ec

K(r, z)N(drdz)
∣
∣
∣
∣

p
]

≤ cE

[∫ t

s

∫

|z|>δ

|K(r, z)|pdrν(dz)

]

(3.3)

for come c > 0 that depends only p, T, ν(Ec); recall that ν(Ec) < ∞, a fact
which is used above. Clearly (3.1) implies

E

[∣
∣
∣
∣

∫ t

s

σ(r)dW (r)
∣
∣
∣
∣

p
]

≤ c E

[∫ t

s

|σ(r)|pdr

]

, (3.4)
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and since ν is a finite measure, (3.2) implies

E

[∣
∣
∣
∣

∫ t

s

∫

F

H(r, z)Ñ(drdz)
∣
∣
∣
∣

p
]

≤ c E

[∫ t

s

∫

F

|H(r, z)|pdrν(dz)
]

(3.5)

for some constant c ≥ 0 depending only on p, T , ν(Z), d.

Fact 2. If, for i = 1, 2, we define

Fi = F ◦ τ−1
i = {Fτ−1

i (t′)}sλ≤t′≤T

τi(W )(t) =
1√
τi

(
W (τi(t)) − W (sλ)

)
, si ≤ t ≤ T, (3.6)

then τi(W ) is a (Rm-valued) Brownian motion on
(
Ω,F , F ◦ τ−1

i , P
)
. Moreover,

we have
∫ τ−1

i (t)

si

σ(r)τi(W )(d r) =
∫ t

sλ

1√
τ̇i

σ(τ−1
i (r′))W (d r′) (3.7)

for all predictable processes σ ∈ L2
([

si, τ
−1
i (t)

] × Ω, dr ⊗ P; Rm×d
)
, t ∈ [si, T ].

Next, we use a transformation of a Poisson random measure with respect
to affine time changes which is called Kulik’s transformation. The reader inter-
ested for more information on this transformation is referred to papers [41,42],
or even [33] for a quick and very readable introduction. We define

τi(N)([si, t] × Δ) = N([sλ, τi(t)] × Δ), si ≤ t ≤ T, Δ ∈ Z. (3.8)

Fact 3. For each i = 1, 2, τi(N) is a Poisson random measure on the filtered
probability space (Ω,F , F◦τ−1

i , Qi), where Qi is another probability on (Ω,F)
which is absolutely continuous with respect to P and has Radon-Nikodym
density

dQi

dP
= exp

{

− ln
(

T − sλ

T − si

)

τi(N)([si, T ] × Z) + (si − sλ)ν(Z)
}

, (3.9)

while the time changed filtration F◦ τ−1
i is defined in (3.6). Moreover, we have

the following change of variables formulas:
∫ τ−1

i (t)

si

∫

E

H (r, z) τ̃i(N)(dr dz)Qi

=
∫ t

sλ

∫

E

H
(
τ−1
i (r′), z

)
Ñ(dr′ dz)P

+
(

1 − 1
τ̇i

) ∫ t

sλ

∫

E

H
(
τ−1
i (r′), z

)
dr′ ν(dz) ; (3.10)

∫ τ−1
i (t)

si

∫

Ec

K (r, z) τi(N)(dr dz)Qi

=
∫ t

sλ

∫

Ec

K
(
τ−1
i (r′), z

)
N(dr′ dz)P (3.11)
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for all predictable processes H ∈ L2
([

si, τ
−1
i (t)

] × E × Ω, dr ⊗ ν ⊗ Qi; Rd
)
,

and K ∈ L2
([

si, τ
−1
i (t)

] × Ec × Ω, dt ⊗ ν ⊗ P; Rd
)
, t ∈ [si, T ]. We have added

the symbols of probability measures Qi or P to the integrals above in order to
emphasize the probability space on which each integral is defined.

We have, by (3.7), (3.10), (3.11),

x̃i(t) − x0
i =

∫ t

sλ

1
τ̇i

b
(
τ−1
i (r′), x̃i(r′), α(r′)

)
dr′

+
∫ t

sλ

1√
τ̇i

σ
(
τ−1
i (r′), x̃i(r′), α(r′)

)
W (dr)P

+
∫ t

sλ

∫

E

H
(
τ−1
i (r′), x̃i(r′), z, α(r′)

)
τ̃i(N)(dr′ dz)P

+
(

1 − 1
τ̇i

) ∫ t

sλ

∫

E

H
(
τ−1
i (r′), x̃i(r′), z, α(r′)

)
dr′ ν(dz)

+
∫ t

sλ

∫

Ec

K
(
τ−1
i (r′), x̃i(r′), z, α(r′)

)
τi(N)(dr′ dz)P. (3.12)

We have also used the fact that τi(W ) is also a Brownian motion with respect
to probability Qi and

∫ τ−1
i (t)

si

σ
(
τ−1
i (r), x̃i(r)

)Qi
τi(W )(d r)

=
∫ τ−1

i (t)

si

σ
(
τ−1
i (r), x̃i(r)

)P
τi(W )(d r)

because Qi is absolutely continuous with respect to P and dQi/dP is bounded
almost surely with respect to P (and hence Qi) and simple change of variable
formula for ordinary (deterministic) integrals:

∫ τ−1
i (t)

si

b(r, x(r)) dr =
∫ t

sλ

1
τ̇i

b
(
τ−1
i (r′), x̃i(r′)

)
dr′.

Subtracting the two identities in (3.12) for i = 1, 2, taking the expected
value of the p-th moment of the resulting difference and using moment in-
equalities (3.4), (3.5), we obtain (2.12). The other estimate (2.13) is proved
similarly. �

Proof of Lemma 2.5. For notational brevity, let f1 = b, f2 = σ,

f3 : [0, T ] × R
d × A → Lp(E, ν; Rd),

[0, T ] × R
d × A � (t, x, α) �→ H(t, x, ·, α) ∈ Lp(E, ν; R)

and

f4 : [0, T ] × R
d × A → Lp(E, ν; Rd),

[0, T ] × R
d × A � (t, x, α) �→ K(t, x, ·, α) ∈ Lp(Ec, ν; Rd);
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let also φ1(τ̇) = 1/τ̇ , φ2(τ̇) = 1/
√

τ̇ , φ3(τ̇) = 1, φ4(τ̇) = 1 − 1/τ̇ for all τ̇ ∈ R,
i = 1, . . . , 4.

Since5

(
E

[∥
∥φi(τ̇1)fi(τ−1

1 (r), x̃1(r)) − φi(τ̇2)fi(τ−1
2 (r), x̃2(r))

∥
∥p

])1/p

≤ |φi(τ̇1) − φi(τ̇2)|
(
E

[∥
∥fi(τ−1

1 (r), x̃1(r))
∥
∥p

])1/p

+ φi(τ̇2)
(
E

[∥
∥fi(τ−1

1 (r), x̃1(r)) − fi(τ−1
2 (r), x̃1(r))

∥
∥p

])1/p

for i = 1, 2, 3, 4, then, by Lemma 2.4, inequalities (3.4), (3.5), (3.3) and as-
sumption (B)-(i), we deduce

(
E

[∥
∥φi(τ̇1)fi(τ−1

1 (r), x̃1(r)) − φi(τ̇2)fi(τ−1
1 (r), x̃1(r))

∥
∥p

])1/p

≤ Cδ

(

|s1 − s2| +
(
E

[∥
∥fi(τ−1

1 (r), x̃1(r)) − fi(τ−1
2 (r), x̃1(r))

∥
∥p

])1/p
)

for some constant Cδ ≥ 0 that depends on d,m, p, δ, T, ν(Z), Ci, i = 1, . . . , 4.
This in turn, by Lemma 2.3, more specifically, by (2.12), and assumption (L)-
(i) yields

E [|x̃1(t) − x̃2(t)|p] ≤ Cδ

(

|s1 − s2|p + |x0
1 − x0

2|p +
∫ t

sλ

E [|x̃1(t) − x̃2(t)|p] dr

)

for another constant Cδ ≥ 0 that depends on m, d, δ, p, T, ν(Z), Ci, Li, i =
1, . . . , 4. This last estimate yields the claimed estimate (2.19) via Gronwall’s
inequality. �

Proof of Lemma 2.6. By Hölder’s and Jensen’s inequalities we can estimate as
follows

E[ξ2ω(ξ)2] = E
[(

ξ2−β
)(

ξβω(ξ)2
)]

≤
(
E[ξr(2−β)]

) 1
r

(E [γ (ξ)])
1
q

≤
(
E[ξr(2−β)]

) 1
r

(γ (E [ξ]))
1
q

=
(
E[ξr(2−β)]

) 1
r

(E[ξ])β
ω2 (E [ξ])

from which, by a further application of Hölder’s inequality, follows (2.20). �

Lemmas 2.8 and 2.10 are proved similarly.

5 Here the norms ‖fi‖ stand for the Euclidean norm on R
d, for i = 1, 2, the standard norm

of Lp(E, ν;Rd) for i = 3 and the standard norm of Lp(Ec, ν;Rd) for for i = 4.
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Proof of Lemma 2.7. We can write
λφi(τ̇1)fi(τ−1

1 (r), x̃1(r)) + (1 − λ)φi(τ̇2)fi(τ−1
2 (r), x̃2(r)) − f(r, xλ(r))

= λfi(τ−1
1 (r), x̃1(r)) + (1 − λ)fi(τ−1

2 (r), x̃2(r)) − fi(r, x̃λ(r))

+ (λφi(τ̇1) + (1 − λ)φi(τ̇2) − 1) fi(τ−1
1 (r), x̃1(r))

+ (1 − λ) (1 − φi(τ̇2))
(
fi(τ−1

1 (r), x̃1(r)) − fi(τ−1
2 (r), x̃2(r))

)

+ fi(r, x̃λ(r)) − fi(r, xλ(r)),

(3.13)

i = 1, . . . , 4, where maps fi, φi are defined as in the proof of Lemma 2.3 above.
By Lemma 2.4 we deduce that

|λφi(τ̇1) + (1 − λ)φi(τ̇2) − 1| ≤ 1
δ2

λ(1 − λ)|s1 − s2|2 (3.14)

for i = 1, . . . , 4. Indeed, for i = 3 the left-hand side of (3.14) obviously vanishes;
by differentiating (2.17) one discovers that it also vanishes for i = 1; for i = 4
it vanishes too as follows from the case for i = 1, and the case i = 2 is covered
by (2.16).

Using identity (3.13), inequalities (3.1), (3.2), (3.3) and assumptions (B)-
(i), (L)-(i), (S)-(i), we obtain,

E

[∥
∥λφi(τ̇1)fi(τ−1

1 (r), x̃1(r)) + (1 − λ)φi(τ̇2)fi(τ−1
2 (r), x̃2(r)) − f(r, xλ(r))

∥
∥2]

≤ (λ(1 − λ))2E
[(

(|τ−1
1 (r) − τ−1

2 (r)|2 + |x̃1(r) − x̃2(r)|2
)

×
(
ωi

(|τ−1
1 (r) − τ−1

2 (r)| + |x̃1(r) − x̃2(r)
) )2]

+ Cδ|s1 − s2|2(|s1−s2|2+E
[|x̃1(r)−x̃2(r)|2

]
)
)
+CδE

[|x̃λ(r)−xλ(r)|2]

for some constant Cδ ≥ 0 that depend on δ, T, Ci, Li, i = 1, . . . , 4. Hence, by
Lemma 2.19,

E

[∥
∥λφi(τ̇1)fi(τ−1

1 (r), x̃1(r)) + (1 − λ)φi(τ̇2)fi(τ−1
2 (r), x̃2(r)) − f(r, xλ(r))

∥
∥2]

≤ Cδ(λ(1 − λ))2E
[(|s1 − s2| + |x̃1(r) − x̃2(r)|

)2

×
(
ωi

(
Cε(|s1 − s2| + |x̃1(r) − x̃2(r)|)

))2
]

+Cδ|s1 − s2|2
(|s1 − s2|2 + |x0

1 − x0
2|2

)
+ CδE

[|x̃λ(r) − xλ(r)|2] .

Thus, by Lemma 2.3, and specifically, estimate (2.13),

E
[|x̃λ(t) − xλ(t)|2] ≤ Cδ(λ(1 − λ))2

4∑

i=1

∫ t

sλ

E

[(|s1 − s2| + |x̃1(r) − x̃2(r)|
)2

×
(
ωi

(
Cε(|s1 − s2| + |x̃1(r) − x̃2(r)|)

))2
]

dr

+Cδ|s1 − s2|2
(|s1 − s2|2 + |x0

1 − x0
2|2

)

+Cδ

∫ t

sλ

E
[|x̃λ(r) − xλ(r)|2] dr, (3.15)

for some Cδ ≥ 0 depending only on d,m, T, δ, ν(Z), Ci, Li, i = 1, . . . , 4.
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Up to this point our estimates hold true for any moduli ωi-s; now we have
to distinguish the two cases. Let us first treat the case (MP)-(i). In this case
we have

E
[|x̃λ(t) − xλ(t)|2] ≤ Cδ(λ(1 − λ))2

4∑

i=1

∫ t

sλ

(
E

[
k2

i (|s1 − s2|

+ |x̃1(r) − x̃2(r)|)2+2αi

])
dr

+Cδ|s1 − s2|2
(|s1 − s2|2 + |x0

1 − x0
2|2

)

+Cδ

∫ t

sλ

E
[|x̃λ(r) − xλ(r)|2] dr

for some Cδ ≥ 0 depending only on d,m, T, δ, ν(Z), Ci, Li, i = 1, . . . , 4. Then,
by Lemma 2.5 again, taking into account that p ≥ 2 + 2αi for i = 1, . . . , 4, we
get

E
[|x̃λ(t) − xλ(t)|2] ≤ Cδ(λ(1 − λ))2

4∑

i=1

k2
i

(|s1 − s2| + |x0
1 − x0

2|
)2+2αi

+Cδ|s1 − s2|2
(|s1 − s2|2 + |x0

1 − x0
2|2

)

+Cδ

∫ t

sλ

E
[|x̃λ(r) − xλ(r)|2] dr

for some Cδ ≥ 0 depending only on d,m, T, δ, ν(Z), Ci, Li, i = 1, . . . , 4. By
Gronwall’s inequality and since p ≥ 2 + 2αi for i = 1, . . . , 4, we derive the
claimed estimate (2.21) with ωδ as in (2.22).

Next let us consider the case (MC)-(i). By (3.15) and Lemma 2.6, we
obtain

E
[|x̃λ(t) − xλ(t)|2] ≤ Cδ(λ(1 − λ))2

4∑

i=1

∫ t

sλ

(E [(|s1 − s2|

+ |x̃1(r) − x̃2(r)|)ri(2−βi)
]) 2

ri(2−βi)

×
(
ωi (E [Cδ (|s1 − s2| + |x̃1(r) − x̃2(r)|)])

)2

dr

+Cδ|s1 − s2|2
(|s1 − s2|2 + |x0

1 − x0
2|2

)
+ Cδ

∫ t

sλ

E
[|x̃λ(r) − xλ(r)|2] dr

for some Cδ ≥ 0 depending only on d,m, T, δ, ν(Z), Ci, Li, i = 1, . . . , 4. But by
assumption (MC), p ≥ ri(2 − βi), so that by Lemma 2.5 we obtain

E
[|x̃λ(t) − xλ(t)|2] ≤ Cδ(λ(1 − λ))2

4∑

i=1

( (|s1 − s2| + |x0
1 − x0

2|
)

×ωi

(
Cδ

(|s1 − s2| + |x0
1 − x0

2|
)) )2

+Cδ|s1 − s2|2
(|s1 − s2|2 + |x0

1 − x0
2|2

)
+ Cδ

∫ t

sλ

E
[|x̃λ(r) − xλ(r)|2] dr
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for some Cδ ≥ 0 depending only on p, d,m, T, δ, ν(Z), Ci, Li, i = 1, . . . , 4.
Finally, an application of Gronwall’s inequality yields the estimate (2.21) with
ωδ as in (2.22). �
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