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We report an implementation of the core-valence separation approach to the 4-component relativistic Hamil-
tonian based equation-of-motion coupled-cluster with singles and doubles theory (CVS-EOM-CCSD), for the 
calculation of relativistic core-ionization potentials and core-excitation energies. With this implementation, which 
is capable of exploiting double group symmetry, we investigate the effects of the different CVS-EOM-CCSD 
variants, and the use of different Hamiltonians based on the exact 2-component (X2C) framework, on the 

energies of different core ionized and excited states in halogen (CH3I, HX and X
−
, X = Cl-At) and xenon 

containing (Xe, XeF2) species. Our results show that the X2C molecular mean-field approach [Sikkema et al. J. 

Chem. Phys. 2009, 131, 124116], based on 4-component Dirac-Coulomb mean-field calculations (
2
DC

M
 ) is 

capable of providing core excitations and ionization energies that are nearly indistinguishable from the reference 
4-component energies for up to and including fifth-row elements. We observe that two-electron in-tegrals over 
the small-component basis sets yield non-negligible contributions to core binding energies for the K and L edges 
for atoms such as iodine or astatine, and that the approach based on Dirac-Coulomb-Gaunt mean-field 

calculations (
2
DCG

M
 ) are significantly more accurate than X2C calculations for which screened two-electron 

spin-orbit interactions are included via atomic mean-field integrals. 
 
 

 

 
 
I. INTRODUCTION 

 
X-ray spectroscopies, which typically probe core 

elec-trons through electronic excitation or ionization, 
are par-ticularly suitable techniques to study the local 
environ-ment of atoms, molecules and materials, as 
the localized nature of the core orbitals makes them 

very selective and sensitive.1,2 

Over the last few years, new X-ray free electron lasers 
(XFEL) and last generation synchrotrons have started 
operating. These advanced light sources have opened the 

door to a variety of new X-ray-based spectroscopies,
3–5

 
including those operating in time-resolved and non-linear 

regimes.
2–6

 As stated for instance by Milne, Penfold and 

Chergui in their review:
7
 “[...] The progress of experimen-

tal techniques for core level spectroscopies is unraveling 
subtle spectral features implying that high level theoretical 
approaches are required to interpret them [...]”. The ex-
perimental X-ray spectra need to be compared to highly 
accurate theoretical calculations to assign spectral fea-
tures and to relate experimental measurements to the 
structure and dynamic properties of the probed molecu-lar 
system.  

Among the methods one can use to calculate core bind-

ing energies ΔSCF8,9
 stands out due to the combination  
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of low computational cost and good results. By perform-
ing separate SCF calculations on the original (generally 
neutral, and closed-shell) and ionized (generally open-
shell) species, it introduces the important orbital relax-
ation that accompanies the creation of the core hole, 
though at the expense of requiring several calculations for 
the edges of interest, and with the potential complication 
that the required open-shell calculations may be difficult to 
converge. The same approach can be applied in a 

straightforward manner to DFT,
10

 with the additional 

complication that it will show a certain dependence on the 
chosen density functional. The same idea of perform-ing 
separate calculations for the initial and the target states 
can be used to devise approaches based on cor-related 

wavefunctions such as MP2
11

 or coupled-cluster 

(CC).
12,13

 Analogous methods for core excitations have 

also been formulated,
14–22

 though this has proven some-

what more cumbersome than for ionizations, since one 
has to select orbital pairs that should represent the tran-
sitions, and converge such excited configurations. In a 
number of these approaches the orbitals for the ground 
and excited/ionized states are not orthogonal, making for 
instance the calculation of transition moments more 
involved.  

The difficulties above are circumvented with ap-
proaches that diagonalize the same Hamiltonian for both 
the original and the ionized or excited states. As such, 
excited state approaches based on wavefunction the-ory, 
like, for instance, (multireference) configuration in-

teraction (MRCI),
23–26

 equation of motion CC (EOM-

CC)
27–35

 and multireference (EOM)CC,
26,36

 and linear 

response complete active space SCF (LR-CASSCF),
37

 
on Green’s functions such as the algebraic diagrammatic 



 

 

construction (ADC),38–41 or on time-dependent density 

functional theory (TDDFT),10,42,43 can all be used to 
target core excited or ionized states. One downside is, 
however, that now relaxation has to be accounted for 
by the correlated electronic structure approach. Among 
these, single-reference CC methods, and in particular 
those based on EOM and the closely related linear re-

sponse (LRCC) formalisms,44–50 are capable of 
treating electron correlation accurately and in a 
balanced way be-tween ground and excited states, 
including a good deal of relaxation effects, and have an 
appealing “black box” nature (though they are less 
adept than MRCI/MRCC at treating cases for which the 
ground state shows a strong multireference nature). 
 

Irrespective of the correlated method, a particular dif-ficulty 

for determining core states by diagonalizing a many-body 

Hamiltonian is that such states appear at high energies, 

where spectra are potentially very dense (see for example 

figure 2). Thus, a naive application of procedures which 

target exterior roots (such as the Davidson algorithm), would 

require solving for a very large number of roots. One way to 

overcome this issue is through the use of methods capable of 

solving for inte-rior roots without requiring that all of them are 

targeted, as those recently devised and applied to 

multiconfigura-tional,37 EOMCC32,51 and mean-field52,53 

wavefunctions. 

A more widespread strategy,23,28,29,31,34,35,37–40,54–57  
which we follow in this paper, is to employ physically 
motivated approximations to the original Hamiltonian, in 
particular within the core valence separation (CVS) 

approximation.
58

 The core-valence separation is justi-fied 

by the large spatial and energetic separation be-tween 
valence and core orbitals/electrons. On the one side, CVS 
allows to straightforwardly address the highly-energetic 
core states with minor modifications to preex-isting 
eigenvalue solvers. On the other side, the CVS helps 
alleviating convergence issues due to the large number of 
valence ionized states in the frequency re-gion of the core 
excitations, which is particularly afflict-ing methods that 
explicitly include double excitations in their 

parametrization.
59,60

 One can also regard the core states 

as metastable Feshbach resonances embedded in the 
(valence) ionization continuum, and application of CVS 
helps stabilizing them. Further details on the CVS 
approach will be given in section II C. 
 

A second issue to be addressed for core states is the 

importance of relativistic effects,61–63
 which significantly 

alter the energies of inner electrons, and consequently the 
core spectra of atoms and molecules: due to the high 
velocities of their electrons (a significant fraction of the 
speed of light), core s and p orbitals contract (with an 
associated lowering of their orbital energies) while, due to 
increased screening, d and f orbitals expand (with an 
associated increase in their orbital energies). At the same 
time, orbitals which are degenerate in a non-relativistic 
framework (p, d, f) are (strongly) split due to spin-orbit 
coupling, and particularly so for the innermost orbitals.  

Relativistic effects are so pronounced in the core re- 

2 

 

gion that, even for molecules containing only elements of 
the first and second rows, they are very important for the 
accurate determination of K and L edge spectra. While 
rather approximate treatments of relativistic ef-fect can 

yield accurate results for light elements,
12,64–67

 a more 

consistent way of treating these effects is through an 
electronic Hamiltonian based on the 4-component Dirac 
operator, as it is accurate all the way down to the heav-
iest elements (5d and 6d transition metals, lanthanides 
and actinides). As such, 4-component based methods are 
ideally suited to treat the core spectra across the pe-riodic 
table, and to probe K, L and M edges of heavy ele-

ments,
11,68,69

 which are much more complex to interpret 

than those of lighter elements. Though the availability of 

efficient implementations70–72
 has in recent years en-

abled mean-field 4-component calculation for large-scale 
applications, the additional basis sets required to repre-
sent the small component part of the molecular spinors 
still places a considerable burden on such calculations 
compared to the non-relativistic case. 
 

An important development to overcome such issues 
has been the introduction of the so-called eXact 2-

Component (X2C) methods73–79, in which a 
transforma-tion to decouple the positive and negative 
energy states of the Dirac Hamiltonian is available in 
matrix form and, unlike its more approximate 
counterparts, yields exactly the same positive energy 
spectrum as the original 4-component Hamiltonian. We 
refer the reader to a recent, comprehensive review on 

relativistic electronic structure for more details63.  
We note that among the different X2C variants, 

those that construct the transformation matrix on the 
basis of converged 4-component atomic or molecular 

mean-field calculations75,77,79 are particularly 

interesting to correlated calculations79–83, since they 
avoid the han-dling of two-electron integrals over small 
component ba-sis functions in the transformation to 
molecular spinors, while largely avoiding errors with 
respect to the origi-nal 4-component Hamiltonian on 
the description of two-electron spin-orbit coupling 
contributions, compared to approaches in which the 
decoupling is performed based on the one-electron 

Dirac Hamiltonian prior to the mean-field step76.  
In this study, we present an approach to study core 

ionization (and excitation) through the use of projectors, 

inspired by the work of Coriani and Koch,28,29 but ex-tended 

to the 4-component EOM-CCSD approach devel-oped by 

Shee et al.84 in the Dirac relativistic electronic structure 

package.85 Because of the availability of differ-ent 

Hamiltonians in Dirac, we will also investigate the 

performance of 2-component approaches79 with respect to 

the 4-component one. We refer to, e.g., Refs. 86– 101 for 
other examples of relativistic EOM-CC imple-mentations, and 
to Refs. 12,31,34,35,55,59,60,65,102,103 for other examples 
of CVS-EOM-CC implementations. We also wish to underline 
that the literature on the theoretical approaches for core 
spectroscopy is vast and rapidly increasing, and the works 
cited in the previous 



 

 
paragraphs cannot be considered exhaustive.  We refer  
the reader to a number of recent review papers for 

more thorough accounts.2,24,43,104 
 

The paper is organized as follows: In Section II, we give 

a brief outline of EOM-CCSD (II A) and of CVS (II B), as 
well as the details of the current implementation (II C). In 
Section III, we provide the computational details of the 

calculations. In Section IV, we present the results 
obtained with the newly implemented method, where we 

discuss the accuracy of the CVS approximation (IV A), the 
performance of the different CVS variants (IV B), the 

influence of the Hamiltonian (IV C) and the comparison to 
experiment for ionization (IV D) and excitation (IV E) 

energies. Finally, Section V summarizes our conclusions. 
 

 
II. METHODS AND IMPLEMENTATION 

 

In what follows, indices (i, j, k, l), (a, b, c, d) and (p, 
q, r, s) refer to occupied, virtual and general orbitals, 
respectively. 
 

 
A. EOM-CC 

 

In EOM-CC, the ground-state is treated at the 
coupled-cluster level. Its eigenfunction is hence given 
by the exponential ansatz: 
 

|ΨCCi = eTˆ|Φ0i;  T
ˆ
 = 

X
 tµτˆµ (1) 

3 

 

other, obtained solving two different eigenvalue equa-
tions: 
 

ˆ  
¯  

(6) H|Rµi = Eµ|Rµi 

ˆ  
¯  

(7) hLµ|H = EµhLµ|, 

for a given excited state µ with energy Eµ, where the 
eigenstates are chosen to satisfy the biorthogonality 
con-dition: 
 

hLµ|Rν i = δµν. (8) 
 
Right and left wavefunctions of the target states have 
been thus obtained from a linear parametrization of the 
 ˆ  ˆ   

reference state through the R or L operators  

 ˆ ˆ    

|Ψµi = e 

T   

(9)  Rµ|Φ0i 
and      

hΨ
¯

µ| = hΦ0|L
ˆ 

ˆ 

(10) µe−T 
. 

  ˆ  ˆ  

Therefore, the choice of the R and L operators defines 
which target states to study, yielding different EOM-CC 
models. In the present work we focus on the models 
for electronically excited (EE) states and ionization 
poten-tials (IP): 

µ 
 

where Φ0 is the reference (typically Hartree-Fock) deter- 
ˆ 

minant and the operator T is the cluster operator. Trun- 
ˆ  

cating T to single (S) and double (D) excitations yields the 
coupled-cluster singles-and-doubles (CCSD) model: 
 

ˆ   ˆ ˆ ˆ X  ˆ  
1 

X 
†  a  ab 

T =T1 +T2 ;  T1 = ti aa
†ai;  T2 =    tij aa

†abajai, 

   ia    
4

 ijab  

 
• EOM-CCSD-EE:  

R
ˆEE = r0 + 

X   X 

rij
ab{aa

†ab
†ajai } 

 

ri
a{aa

†ai } +  (11) 
  ia   i>j,a>b    

ˆEE 
 X 

† 
 X 

ij † † 
 

= l0 + 
i 

} + 
 

(12) L la{ai aa  
l
ab {ai ajabaa} 

  ia   i>j,a>b    

  (2) 
• EOM-CCSD-IP: 

      

The energy and the cluster amplitudes are found from       

the CC equations:   
RˆIP = ri{ai } + rij

a {aa
†ajai } 

 

hΦ0|H
¯  

|Φ0i = E (3) (13) 
 Xi   X    

ˆ       i>j,a    

ˆ           
¯  

|Φ0i = 0;  |Φµi = τˆµ|Φ0i, (4) 
        

hΦµ|H ˆIP i † 
 

ij 
 † † 

 
  

¯ˆ } + 
  

where the similarity-transformed Hamiltonian 
L  = l {ai 

l
a {

a
j
a

i 
a

a} (14) 
H has  i   i>j,a    

been defined as:    X   X    

H¯ˆ 

ˆ ˆ 

≡ e−T Heˆ T . 

 

(5) where curly brackets refer to normal ordering with re-
spect to the Fermi vacuum defined by the reference 
Φ0, and the sets {r}, {l} to the amplitudes of the 
correspond-ing operators. 

ˆ ˆ 

We have here truncated our R and L operators at the singles-
doubles level since the same truncation is used for  ̂
 

the T operators. 

In the equation-of-motion coupled-cluster (EOM-CC) 

method44,47 the target states are obtained by the diag-
onalization of the non-Hermitian similarity-transformed 
Hamiltonian. This non-Hermicity gives rise to right (R) 
and left (L) eigenvectors that are not adjoints of each 



4 

 

B. The core-valence separation approximation C. Implementation details 

 

The essence of the core-valence separation (CVS) 

approximation58 is to decouple valence and core electrons 
based on their difference in energy and spatial exten-sion. 
This allows to solve the regular, in this case, EOM-  
CC equations only in the space of the relevant orbitals. 
However, different flavours of CVS exist, which intro-duce 
different levels of approximation. Coriani and Koch first 
introduced the CVS approximation within coupled-cluster 

theory
28,29

 by applying a projector that zeroes out the 

amplitudes of all excitations that do not involve at least 
one core electron. Recently, the frozen-core (fc) CVS-
EOM-CCSD approach has been proposed that in-
troduces a further approximation, in this case at the 
ground-state level: the core orbitals are frozen when solv-
ing the CC equations for the ground-state whereas they 
are the only active ones when solving the EOM equations. 
Both schemes retain the contribution from excitations si-
multaneously involving two core orbitals. However, these 
excitations are located in a much higher range of energy 
in the spectrum and might therefore also be decoupled. 
This is the strategy adopted for instance by Dreuw and 
co-workers in their implementation of the CVS within the 

ADC family of methods.
39,40,105

  
In this work, the CVS implementation has been car-

ried out following the recipe proposed by Coriani and 

Koch:28 a projector P is applied at each iteration of the 
Davidson procedure during the resolution of the EOM-
CC equations. This projector P selectively zeroes out 
the unwanted contributions to the EOM trial/solution 
vec-tors according to the approximation used. In the 
CVS approach, unwanted contributions generally 
correspond to excited determinants involving only 
occupied valence (v) spinors. In the case of EOM-EE, 

the application of a projector P ≡ P CVS to a target 

electronic state |ΨEE
µi corresponds to 

 

P CVS|ΨEE
µi =⇒ µri

a = µrij
ab = 0 if i, j ∈ v , (15) 

 
though one can also devise variants in which additional 
contributions are zeroed out, see Section II C for details. 
With this definition, the eigenvalue equation to be solved 
in order to get the energy of the target states becomes:  

P CVS  HP¯ˆ CVS|Rµi = EµP CVS|Rµi (16) 
It should be noted that the projection scheme does not 

yield any savings, in terms of memory usage or op-

erations. Some of us
31

 have recently gone beyond the 

use of projection operators and introduced an analytical 
formulation of CVS, in which only the sub-blocks of the 
similarity-transformed Hamiltonian that are relevant to the 
calculation of a given core level are actually formed, thus 
resulting in a more efficient implementation. This 
formulation is naturally combined with the frozen-core 
approximation separating valence and core spaces. How-
ever, one may argue it introduces at the same time an 

additional error from neglecting core correlation.
31,103 

 

In this work we focus on exploring the definition of dif-
ferent CVS variants and on assessing their performance 
following the projection-based scheme, due to its ease of 
implementation, and with it in view of later implement-ing 

the analytical CVS
31

 formulation in Dirac.  
We have based our implementation on a flexible 

scheme to define projection operators. 
 

(a) A mapping is defined between the excited determi-
nants (and the virtual and occupied spinors’ ener-
gies associated with each) and the position of each 
excited determinant in the storage of the ground-
state CC amplitudes and EOM-CC coefficients (in 
the RELCC module of Dirac these are stored in 
triangular form, and blocked by symmetry, for de-
tails see Refs. 106–108); 

 
(b) Information is gathered on how the excited deter-

minant space {v} will be treated, i.e. whether re-

tained (P 
v
 = 1) or projected out (P 

v
 = 0). We have 

made two options available to the user, based on 
spinor energies : (i) restricted excitation win-dows 
(REWs) for the occupied and virtual, which are 

defined by setting respective lower ( L) and up-per ( 

H) bounds for the spinor’s energies ; and (ii) CVS, 

via a single energy that acts as the threshold ( CV) 
for the separation between core and valence; 

 
(c) Using the information from the previous steps, suit-

able one-particle (singly ionized or excited) unit trial 
vectors for the core states are then generated,  

¯   
using the values of the diagonal of H within the 
subspaces defined in (b). 

 
It is important to note that in our implementation, track-
ing the core excited or ionized states requires the use 
of a root homing procedure, in which new trial vectors 
are created by maximizing their overlap with the 
preceding ones.  

In addition to CVS and REW for the excited states, 
we also used the projection setup to implement the 
frozen-core approximation, such that we can project 
out the amplitudes corresponding to core (c) orbitals at 
each iter-ation during the resolution of the ground-state 
amplitude equations:  

P core|ΨCCi =⇒ tai = tab
ij = 0 if i, j ∈ c (17) 

 
As for the excited states, this projector is defined in terms 
of spinor energies, via a single threshold or upper and 
lower bounds defining a window. Finally, it should be 
noted that the thresholds defining the ground-state and 
excited state projectors are independent. 
 

 
III. COMPUTATIONAL DETAILS 

 

All coupled-cluster calculations were carried out with 

the Dirac electronic structure code85 (with the 



 

 

DIRAC19109 release and revisions dbbfa6a, 0757608, 
323ab67, 2628039, 1e798e5, b9f45bd). The Dyall  

basis sets
110–112

 of triple-zeta quality (dyall.acv3z) were 
employed for all species. For selected calculations, on 
heavy atoms only, we performed extrapolations to the 
complete basis set limit by also considering quadruple-  
zeta quality Dyall (dyall.acv4z) basis sets. In addition to 

the Dyall basis sets, the ANO-RCC basis113 were em-  
ployed for Xe and XeF2. The basis sets were kept 
uncon-tracted in all calculations.  

Unless otherwise noted, all occupied and virtual 
spinors were considered in the correlation treatment.  

Apart from the Dirac–Coulomb (
4
DC) Hamiltonian, for 

selected calculations we investigated: (a) the molec-ular 

mean-field
79

 approximation to DC (
2
DC

M
 ) and the Dirac–

Coulomb–Gaunt (
2
DCG

M
 ) Hamiltonians. For the latter, 

the Gaunt-type integrals are explicitly taken into account 
only during the 4-component SCF step, due to the fact 
that the transformation of these to MO basis is currently 
not implemented; (b) the DC Hamiltonian with projecting 
out all negative-energy so-lutions of the bare-nucleus 
one-electron Dirac Hamil-tonian from the molecular spinor 
space, which corre-  
sponds to the Furry basis for QED and no-pair Hamil-
tonians114 (4DCP F ); and (c) the eXact 2-component  

(X2C)76 Hamiltonian, in which we include two-electron 
spin-orbit contributions via to the untransformed two-
electron potential via atomic mean-field contributions 

calculated with the AMFI code115–117, namely spin-
same-orbit (X2C-AMFI) and spin-same-orbit and spin-
other-orbit (X2C-G-AMFI).  

Unless otherwise noted, we employed the usual ap-
proximation of the energy contribution from (SS|SS)-

type two-electron integrals by a point-charge model.118 
As it will be discussed below, this approximation in-
troduces negligible errors (< 0.01 eV) for lower-energy 
edges. However, for the higher-energy edges of the 
heav-ier systems, its error becomes important. 

The XeF2 structure was taken from Ref. 119.  
It corresponds to an optimised structure obtained at the 
SFX2C-1e/coupled-cluster single double triple 
(CCSD(T))/unc-atomic natural orbital (ANO)-RCC level 

(rXe-F = 1.9736 
˚
A). The coordinates of CH3I come 

from experimental data in Ref. 120. Finally, the coordi-
nates for HX were taken from Ref. 121.  

The dataset can be retrieved at the Zenodo reposi-

tory.122 

 

 
A. Approximations used in CVS 

 

Beside the original CC-CVS approach,28 we have in 
addition investigated other approximations: 
 

1. Further restricting the definition of the projectors to 
also drop excited configurations with two core 
indices (ND, for “No Doubly core hole determi-
nants”); this corresponds to the method suggested, 

 

 5

e.g., in Ref. 40, making  

µrij
ab = 0 if i, j ∈ c (18)

 
2. Freezing the core in the ground-state calculation, 

retaining thus only the valence orbitals, typically 
defined as the orbitals with the highest principal 
quantum number n (FC-V); this essentially cor-

responds to using eq. 17 while setting CV to a 
fairly high value (for example, in the atom of Xe,  
4d < CV < 5s). 

 
3. Freezing all core orbitals except those that are to 

be targeted in the EOM step (FC-V-except); for 
example, this means treating a core spinor k, that 
should make up the most important core-excited 
configurations for state µ, differently from other 
core spinors in the ground-state calculation. This 
corresponds to setting projectors for ground and 
excited states such that  

ti
a = tij

ab = 0 if ( 
i, j = k 

(19) i, j 6 c 

   ∈   

µri
a = µrij

ab = 0 if i, j ∈ v  (20)  
This approach is equivalent to the one of 

Sorensen et al.103 

 
4. The definition of the core/valence spaces follows 

that of the CVS definition/threshold, that is, only the 
core orbitals with same or lower energy than the 
ones belonging to the edge under investigation are 
frozen (FC-f). This is the same approach adopted in 
Ref. 31, and it corresponds to setting projectors 

for ground and excited states such that 
 

ta = tab 
= 0  

iij   

if
 
i, j

 
∈

 
v

 
(

µria = µrijab = 0 (21) 
5. Further restricting the number of frozen core 

spinors to only those below the ones of the edge 
of interest (FC-fpMO frozen core - follow previous 
MO). For example, in the atom of Xe, if we are 

interested in the M5 edge (3d5/2), this would cor-
respond to a frozen core in the ground-state 

calcu-lation including the 1s1/2 to 3d3/2 spinors, 

and the 4s1/2 and higher spinors make up the 
valence space in the EOM calculations. 

 
The variants ND and FC-V were also employed with 

REWs. Since the performance of REW variants was al-
ways found to be inferior to their CVS equivalents, they 
will not be discussed here. The results are however 
avail-able as supplemental information. 
 

 
IV. RESULTS 

 

As outlined above, apart from the different Hamiltoni-
ans at our disposal, the original CVS formulation itself 



 

 

can be modified through a number of different approxi-
mations. In order to draw a clearer picture of their in-
teractions, we proceed in a stepwise fashion: first, using 

the 
2
DC

M
 Hamiltonian and focusing on core ionizations, 

we compare (A) the performance of CVS-EOM-CCSD to 
the original EOM-CCSD; and (B) the impact of the 
different approximations that can be introduced in the 
CVS method itself (see Section III A). Then, having es-
tablished the relative accuracy of CVS, we investigate  
(C) the effect of the Hamiltonians on the core 
ionization energies, and finally (D) proceed to a 
comparison to ex-periment of the most accurate setup, 
focusing mostly on core ionization but also discussing 
selected core excita-tions (E). 
 

In what follows we will not discuss basis set effects. 
Nonetheless, in Figure 1, we show for I− a typical be-
havior: first, there is very little difference between triple 
and quadruple zeta results (with differences between 
0.05 and 0.2 eV), making the corrections due to basis 
set in-completeness so small that we consider these to 
be un-necessary. Second, if there are non-negligible 
differences between the convergence of s, p and d 
shells as the basis sets are improved, the double-zeta 
basis sets also yield results which are quite good, with 
differences in binding energies with respect to the triple 
zeta results no larger than around 0.4 eV, a behavior 
that may make these smaller basis sets interesting for 
calculations on larger molecules.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIG. 1: Basis set influence (Dyall basis sets) on the 

core binding energies of I− using the CVS approach. 

All cal-culations performed with the 2DCM Hamiltonian, 
and basis sets are kept uncontracted. 
 
 
 

 
These conclusions are in line with earlier basis set 

anal-yses on light elements.64,123 In the basis set 

convergence study by Sarangi et al.,123 in particular, it 
was shown that, for systems containing only light 
elements, uncon-tracted basis sets, even of relatively 
modest quality for the valence, can provide quite 
reliable core binding ener-gies. 
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A. A comparison of CVS-EOM-IP-CCSD and  
EOM-IP-CCSD 

 

As mentioned above, the CVS approach provides an 
efficient and robust way of targeting the low-lying core 
states. Quantifying the errors introduced by it is there-fore 
an important issue, and we note proposals for meth-ods 

to estimate it. Coriani and Koch
28

 evaluated the errors of 

their CVS variant by comparing to full-space Lanczos 
results, finding deviations of at most a few hun-dredths of 
eV. The authors also proposed a perturbative correction 
obtained using a L¨owdin partition of the Ja-cobian and 
the eigenvalue equation. A recent study by Herbst and 

Fransson
124

 shows that the CVS error is small and stable 

across multiple systems within the algebraic diagrammatic 
method (ADC). Thus, we expect to find the same trend for 
CC. This article also reports the im-plementation of a 
post-processing step which removes the error to assess 
its significance.  

Here, we can harness the ability of Dirac to ex-ploit 
linear symmetry, and directly compare, for selected 
species, the CVS-EOM-IP-CCSD states with those ob-
tained by the full diagonalization of the different symme-
try blocks of the similarity-transformed Hamiltonian.  

The difference between the two approaches is shown 
graphically for I

−
 in Figure 2. Due to the very dense  

¯   
spectra of H, in the top half of the figure we do not 
display individual states but rather the number of states 
per 10 eV intervals. We further discriminate between 
all states (black) and those containing contributions 
from singly ionized configurations contributing to at 
least 1% of the total wavefunction (red).  

Upon having a closer look at the singly ionized states at 
the bottom half of the figure, we can more clearly see how 
the singly ionized states obtained with the CVS approxi-
mation (labelled “CVS”) closely match a subset of those 
obtained by the full diagonalization (labelled “full”) of 

¯  

H.  
We note that the additional states presented for the 

“full” calculation correspond to states that contain sig-

nificant singly-ionized character but also small but non-
zero 2h1p contributions. The presence of such states hint 

at potential pitfalls when targeting only a subset of such 
highly excited states for some of the L and M edges– not 
so much in terms of convergence (we have not en-

countered particular difficulties in converging our calcu-
lations) but rather in terms of assignment and compari-

son to other theoretical or experimental results. 
 

 
B. Performance of the CVS-EOM-CCSD variants 

 

Next we turn our attention to the performance of the 
different approximations that can be employed on top 
of CVS (see Section III A for their description). Our 

results for the X− systems are shown in Figure 3. As 
we see similar trends for Xe, the corresponding figure 
is shown in the supplemental information (Figure S1), 
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− ¯  
FIG. 2: Core ionization energies of iodide (I ) from full diagonalization of H. Top: Representation of the 

eigenspectrum up to 35 keV, separated between all states (black) and those with non-negligible singly ionized 
contributions (red). Values in ordinate correspond to the number of states within a 10 eV interval, with the largest 

¯  

value re-scaled to one. Bottom: Singly ionized states obtained by full diagonalization of H and by the CVS 
approach. The labels ng/nu indicate the absolute value for the projection of the angular momentum 

(|mj| = n/2, n = 1, 3, 5), for the components of spinors of gerade (g) or ungerade (u) symmetry. All calculations 

performed with the 2DCM Hamiltonian. 
 
 

along with results for the REW approach for the Cl− to 

I− (Figures S2, S3 and S4) and HCl to HI (Figures S5, 
S6 and S7). 
 

 

1. Freezing core orbitals in the ground-state 

 

Freezing the core orbitals in the ground-state CCSD 
calculation results in a significant lowering of the core 
ionization energies. This lowering is considerable if the 
frozen core is taken to represent all subvalence spinors 
(FC-V), and it remains non-negligible even if the same 
threshold is used to define both the frozen orbitals and 
the core-valence separation region (FC-f). However, if 
one does not freeze the aimed edge (FC-fpMO), the 
ion-ization energy obtained is much closer to the 
correspond-ing CVS one.  

Freezing all subvalence spinors but the ones in the 
edge we are interested in (FC-V-ex), an approximation 
that could provide potentially lower computational cost 
for systems with large number of core electrons such 
as the elements in the fourth row and beyond, does not 
perform better than (FC-f)—in fact, the opposite 
appears to be the case for the inner core orbitals. 

 
 
2. Projecting out double-core ionized configurations 
 
 
 

 

Projecting out doubly-excited core excited determi-
nants (ND) tends to result in an increase of the core 
ion-ization energies, which can be significant though 
always smaller than the underestimation produced by 
freezing all the core spinors. 
 
 
 

As a result, the combination of these two approxi-
mations yields an approximate scheme that much bet-
ter reproduces the CVS energies, though still with non-
negligible discrepancies for the heavier elements. 
Partic-ularly good results are shown by the (FC-ND-f) 
combi-nation, for which error compensation yields 
results very similar to the regular CVS approximation. 
This can be rationalized because core correlation is not 
taken into ac-count when using (FC-f), whereas the 
inclusion of the double occupied core orbitals in the 
EOM step does. Therefore, the combination of both 
approximations is in fact more consistent. 
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FIG. 3: Effect of the CVS variants on the binding energies of X− and HX systems (X = Cl, Br, I and At). Values 

(in eV) are relative to the original CVS approach. All calculations performed with the 2DCM Hamiltonian. 
 
 
3. Efficiency considerations 
 

 

Since by using projection operators we do not save 
in memory or operation counts, the approximations dis- 

 

 

cussed above are not of strong interest by themselves, 
and will not be used further since, even in the best 
com-bination, they will invariably degrade the 
performance of the original CVS scheme. 



 

 

We can nevertheless use our findings to discuss the 
potential trade-offs between cost and accuracy, as a 
guide to efficient implementations such as those 
proposed in Ref. 31 for heavy elements. As discussed 
then, combining the elimination of doubly core excited 
determinants with the use of a frozen core (FC-ND-f, 
which is equivalent to the scheme in Ref. 31) seems to 
yield a computationally efficient approach with a good 
error cancellation balance, and this remains the case 
as one goes down the periodic table.  

In the case of heavy elements, it may also be inter-
esting to keep a large frozen core (CVS-FC-ND-V, or 
CVS-FC-V-Ex) since these introduce non-negligible, 
but seemingly systematic, errors, with the upside that a 
large core would translate in potentially large 
computational savings.  

This is illustrated in Table S1, where we provide, for the 

representative systems Cl
−
 and At

−
, the operation counts 

(without reductions due to point group symme-try) for the 
construction of EOM-EE and EOM-IP σ vec-tors (based 

on the expressions from Shee et al.
84

, see ex-pressions 

in the supplemental information), in the case of an 
analytical implementation of the major approxi-mations 
suggested in this work (FC-f and ND). As seen, the FC-f 
approximation yields the biggest reductions in operation 
counts, in particular for EOM-IP. It is also im-portant to 
note that for a given edge, the heavier the element, the 
bigger these reductions are. 
 

 

C. Influence of the Hamiltonian on the core ionizations 

 

We now turn our attention to the impact of the Hamil-
tonian on the ionization energies. Our results can be 

found in Figure 4, where take the 4DC Hamiltonian as 
reference and we plot the difference in binding ener-
gies betweeen it and the other Hamiltonians 

considered (see figure caption for details), as 4DC is 
the only 4-component Hamiltonian without 
approximations (apart from the treatment of the 
(SS|SS) integrals which we address below) we can 
employ in correlated calculations with Dirac.  

First, we observe a very good match between the 
4
DC 

and 
2
DC

M
 Hamiltonians across the halogen series—that 

is, differences in absolute values generally fall below 
0.001 eV for the M edges, between around 0.01 and 0.1 
eV for the L edges, and are of the order of 0.1 eV for the 
K edge of all species except astatine, for which the 
difference is 1.67 eV. This latter discrepancy is still small 
compared to the K edge binding energy of 96 keV.  

To better understand how these discrepancies arise we 

should recall that in the 
2
DC

M
 (

2
DCG

M
 ) approximation a 

calculation with the 
4
DC (

4
DCG) Hamiltonian is first is 

carried out for whatever system we are interested in–in 
general a molecule, hence the denomination “molecular 
mean-field”, though in Figure 4 we are in effect dealing 
with atoms. Upon convergence, the transformation to 2-
component is carried out on the Fock matrix itself (so 
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that the 2-component spinor energies correspond exactly 
to the 4-component ones), but the two-electron operator is 

left untransformed
79,85

 and thus introduces a picture-
change error in the electron-electron interaction. In va-
lence only calculations, where core-core and core-valence 
electron correlation is not accounted for, this yields neg-
ligible errors for excitation, ionization and electron at-

tachment processes
84

. Our results show that this is still 
the case for core states of light atoms such as chloride, 
and for the M and N edges down to the sixth row.  

We can numerically assess the effect of using un-
transformed two-electron operator by comparing how 

the correlation energy (Ec) differ between 2DCM and 
4DC (ΔEc), as shown in table I. The Ec for both MP2 
and CCSD yield the same trends, so we shall focus on 
the simpler MP2 model; as canonical orbitals are 

employed, and their energies the same for 2DCM and 
4DC, any dif-ferences between the two come from the 
picture change error in the two-electron integrals. We 

see that for chlo-ride Ec is still relatively small, then it 
increases five fold going from chloride to bromide, 
doubles from bromide to iodide, and then increases 
nearly fourfold from iodide to astatide. 
 

The effect of the two-electron picture change error can 

also be seen through a comparison of 
4
DC to a calcu-

lation in which negative-energy solutions of the bare-
nucleus one-electron Dirac Hamiltonian are projected out 

from the molecular spinor space (
4
DC

P F
 ), whereby ro-

tations between negative and positive energy states are 

effectively eliminated. With this, 4
DC

P F
 spinor ener-gies 

are slightly different than 4DC ones (see dataset
122

), but 
the picture change error in the two-electron integrals is 
eliminated, and we would thus expect rather similar 
correlation energies. This picture is consistent with our 

numerical results, as correlation energies for 
4
DC

P F
 are 

closer to the 
4
DC ones by at least three orders of magni-

tude than the 
2
DC

M
 ones.  

As it will be shown in the following, the sufficiently 
high accuracy of 2DCM clearly makes it an asset for 
ap-plications, due to its reduced computational cost in 
the index transformation step. However, our results 
indicate two-electron picture change errors are 
significant enough for deeper cores to require further 
attention for elements in the sixth row and beyond.  

While we do not have 
4
DCG reference values to which 

compare the approximate Hamiltonians that include the 

Gaunt interaction such as 
2
DCG

M
 , we expect two-

electron picture change errors to generally follow the 
same trends discussed above. We nevertheless compare 
2
DCG

M
 to 

4
DC in Figure 4 and Table I, as a way to 

underscore the importance of the Gaunt interaction for the 
inner edges. We clearly see that already starting with 
chloride, we have a non-negligible effect arising from the 
Gaunt interaction in 

2
DCG

M
 that lowers the core bind-ing 

energy, and can amount to nearly 2 eV for the K edge 

with respect to the 
2
DC

M
 or 

4
DC.  

We can also compare 2DCGM to the approaches in 
which the transformation to the 2-component picture 
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FIG. 4: Comparison of influence of the Hamiltonian to the core binding energies for different edges, for the halide 
ions (Cl− to At−). Instead of binding energies themselves, we present the difference between the binding energies 
obtained for each Hamiltonian X and 4DC (ΔEm(X) = Em(X) − Em(4DC), in eV, m a particular edge). The scales 

are logarithmic except for the areas in grey for which the scales are linear. 
 

 
TABLE I: MP2 and CCSD correlation energies as well 

as differences in correlation energy between 4DC (Ec 

and  Ec respectively, in eV), for different Hamiltonians. 
X2C(a) refers to X2C-AMFI and X2C(b) to X2C-G-

AMFI.  
 

4DCP F  2DCM 2DCGM X2C(a) X2C(b)  
Cl− Ec(MP2) −16.12 −16.16  −16.16 −16.16 −16.16  

Ec <2×10−6 −0.04 −0.04 −0.04 −0.04 Ec(CCSD) 
−16.43 −16.47 −16.47 −16.47 −16.47 

Ec <2×10−6 −0.04 −0.04  −0.04 −0.04 
 

Br− Ec(MP2) −41.44 −41.65  −41.64 −41.65 −41.65 

Ec <5×10−5 −0.21 −0.20 −0.21 −0.21 Ec(CCSD) 
−39.65 −39.86 −39.85 −39.86 −39.86 

Ec <5×10−5 −0.21 −0.20  −0.21 −0.21 
 

I− Ec(MP2) −48.54 −49.07  −49.05 −49.06 −49.06 

Ec <3×10−4 −0.53 −0.51 −0.52 −0.52 Ec(CCSD) 
−46.13 −46.65 −46.64 −46.65 −46.65 

Ec <3×10−4 −0.52 −0.51  −0.52 −0.52 
 

At− Ec(MP2) −90.95 −92.90  −92.83 −92.86 −92.87 

Ec <3×10−3 −1.95 −1.88 −1.91 −1.92 Ec(CCSD) 
−84.30 −86.24 −86.17 −86.20 −86.20 

Ec <3×10−3 −1.94 −1.87  −1.90 −1.91  

 

 

is done before the SCF step (X2C-AMFI and X2C-G-
AMFI), as opposed to using the full atomic or molecular 

potential obtained the SCF step as in the 2DCGM ap-
proach. We see that the latter qualitatively follow the 

the changes in binding energy seen for 2DCGM as we 
move across the rows, though with significant 
numerical differences for the K edge (with differences 
of over 40 eV for Iodine and Xenon, and over 200 eV 
for Astatine) as well as for the L and M edges. 
 

Finally, we assess the effect of including the (SS|SS) 

integrals in 
2
DC

M
 and 

2
DCG

M
 calculations. Since these 

contributions are generally very small for elements before 
the fourth row, and they increase significantly the cost of 
the SCF step, we have only investigated the fourth and 
fifth row atoms (I, Xe and At).  

For I− and Xe, these contributions are relatively mod-
est, with reductions of around 2.6 eV and 3 eV to their 
K edge binding energies, with other significant 

reductions for the L (0.4-0.7 eV) and M1,2 edges (0.1 
eV). We note that there is little variation from these 
atomic values for the molecular systems (see 

dataset122), in line with the much more localized 
nature of the small component den-sity compared to 
the large component one. Furthermore, we notice a 

very subtle difference (0.02 eV) between the 2DCM 

and 2DCGM Hamiltonians with (SS|SS) inte-grals.  

For At− the reductions in binding energies are much 



 

 

TABLE II: Contributions (in eV) to the core binding 

energies of I−, Xe and At− from: (a) the Gaunt 
interaction and (b) the (SS|SS) integral. These 

contributions are calculated as energy difference 
between CVS-EOM-CCSD calculations employing (a) 

the 2DCGM and 2DCM Hamiltonians; and (b) the  
2DCGM without and with inclusion of the (SS|SS) 

integrals at the SCF step. 
 

 I−   Xe   At−  
Edge E(a) E(b)  E(a) E(b)  E(a) E(b) 

K −81.57 −2.58  −86.75 −2.87  −396.04 −40.50 
L1 −7.59 −0.39  −8.15 −0.44  −46.24 −7.28 
L2 −13.64 −0.58  −14.62 −0.65  −78.99 −10.46 
L3 −9.70 −0.21  −10.39 −0.23  −51.77 −3.56 
M1 −1.05 −0.08  −1.14 −0.09  −8.72 −1.79 
M2 −2.08 −0.21  −2.25 −0.12  −15.19 −2.35 
M3 −1.34 −0.08  −1.46 −0.04  −9.51 −0.89 
M4 −0.59 −0.06  −0.66 −0.03  −6.62 −0.82 
M5 −0.26 −0.04  −0.31 0.01  −4.52 −0.09 
N1       −1.81 −0.44 
N2       −3.29 −0.55 
N3       −1.81 −0.19 
N4       −0.91 −0.10 
N5       −0.42 0.02 
N6      6.74 0.06 
N7      0.48 0.12 

 

 
more significant: around 40 eV for the K edge, 10 eV 

for the L2 edge, and well above 1 eV for the L3 to M2 
edges. Interestingly, these contributions remain around 
0.5 eV for the N edges relating to ionizations from s 
and p spinors, which are comparable to the energies of 

the M1 and M2 edges for I− and Xe, which fall between 
0.7 and 1 keV.  

These results underline the need for explicitly 
account-ing for these integrals (or correcting the 
energies for their contribution), as soon as we are 
interested in edges aris-ing from ionizations of s and p 
spinors for fifth-row ele-ments and beyond. 
 

 
D. Binding energies: comparison to experiment and prior 
theoretical works 

 

We now compare our results for the 
2
DC

M
 and 

2
DCG

M
 

Hamiltonians, including the (SS|SS) integrals, to 
experiment and other theoretical results for the K and L 

edges of Xe, XeF2 and CH3I, for which recent high en-
ergy, gas-phase XPS experiments have been performed 

(for Xe and XeF2, results are also available for less ener-
getic edges). Our results are found in Table III.  

As all our calculations lack contributions from QED 

effects, and that the 2
DCG

M
 does not include the gauge 

term that is necessary to recover the full (zero-frequency) 
Breit interaction, we correct our energies with the results 

from Koziol and Aucar,
125

 who provide the values for the 
Breit and leading QED contributions (self interac-tion and 
vacuum polarization) to the atomic spinors of 
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selected closed-shell atoms (among which Xe). The same 

procedure was followed by Southworth et al.
126

 to cor-  
rect their calculations, which are based on a 
combination of 1-component CVS-EOM-CCSD (and 
CCSDT) calcu-lations with energy estimates for the 
different effects (1-and 2-electron scalar relativity, spin-
orbit coupling, nu-clear size effects).  

Taking the Xe atom, the QED effects are most im-

portant for the K and L1 edges, lowering the associated 
binding energies by 42.7 and 5.5 eV, respectively. They 

are also non-negligible for the L3 and M1 edges, which 
are lowered respectively by 0.5 and 1.1 eV. The Breit in-
teraction also lowers the binding energies and, apart from 

the L1 edge (for which both are of the same magnitude) is 
in general much larger than the QED effects (80.7, 13.1 

and 8.8 eV for the K, L2 and L3 edges, respectively) and 

still important for the M3 edge (1.2 eV).  
Since Kozio l and Aucar only provide the full Breit term, 

we have estimated the magnitude of the gauge cor-

rection from the difference between our 2
DCG

M
 results 

and their Breit values. From that, we have that the gauge 
term increases the binding energies (6.04 eV for the K 

edge, 0.51 eV for the L1 edge, and around 1.57 and 1.58 

eV for the L2 and L3 edges, respectively).  
We observe our corrected 2-component results differ 

from experiment by around 2.1 eV, and if we employ 
the estimate for higher-order correlation contributions 

to EOM-CCSD from Southworth et al.,126 which 
decreases the binding energies by 3.8 eV, the 
difference to experi-ment is now of −1.71 eV.  

We have also investigated the use of uncontracted 

ANO-RCC basis, used by Southworth et al.127, which 
is slightly smaller for s and p primitive sets than the 
Dyall sets. We obtain differences with respect to 
experi-ment of -1.69 eV, which is consistent with our 
results us-ing the Dyall basis sets. We attribute most of 
the small differences between ours and prior results to 
the short-comings in the treatment of the two-electron 

interactions in 2DCM or 2DCGM discussed previously, 

as calculations with 4DC yield results in very good 
agreement with those of Southworth et al..  

Beyond the K edge, our corrected calculations compare  
rather well to the recent experimental results of Oura et 

al.128 (5452.7 eV, 5106.7 eV and 4786.7 eV; measure-  
ments carried out at BL29XU of SPring-8 in May 2016) 

with the exception of the L1 edge, for which a larger 
dis-crepancy to experiment (7.79 eV) is observed. For 

the M edges, Southworth et al.127 present 

experimental results for the M4,5 edges, and our 
corrected calculations differ from experiment by −0.94 

eV and −0.85 eV respectively. For the M4 edge these 
are quite comparable to the theo-retical calculations of 

Southworth and coworkers,127 now also corrected for 

QED effects (−0.92 eV to experiment), while for the M5 
edge both theoretical results differ by around 0.24 eV.  

Given the values for the higher-order correlation ef-

fects for the K and M4,5 edges, and from the break-
down of relativistic, correlation and QED effects from 



 

 

atomic many-body calculations on Xe at the K, L and M 

edges131–which indicate non-negligible differential 
corre-lation, relaxation and other effects (for example 
Auger shifts) for the different L edges, and to a lesser 
extent for the M edges–we consider future attempts to 
investi-gate higher-order electron correlation 
corrections for the L edges to be of significant interest.  

For XeF2, applying the same corrections as above to 

our 
2
DC

M
 and 

2
DCG

M
 calculations in the Dyall basis sets, 

we arrive at K and M4,5 edges edge binding energies 
differing by roughly −0.4 eV from experiment. These dif-
ferences are smaller but consistent with those obtained 
for Xe, underscoring the largely atomic nature of these 
deep core energies. As was the case for the atom, a com-

parison to 
4
DC results for the K edge indicate that part of 

the small differences between the results of Southworth et 
al. and our 2-component ones come from the short-
comings in the treatment of two-electron interactions. 
 

For CH3I, we have only performed 2DCGM calcula-
tions, first because, as illustrated above, there are no 

sig-nificant differences between 2DCGM and 2DCM 
based results once we account for QED and Breit or 

gauge contributions. Second, in the Cs point group 
used, the coupled-cluster wavefunctions are complex-
valued, mak-ing calculations computationally more 
expensive. We ob-tain 33213.79 eV and 5208.55 eV 

for the K and L1 edge binding energies, values that 
overestimate the experimen-tal values by 38.59 eV and 
11.08 eV. For the K edge, this difference is rather close 
to the one found for the Xe and XeF2 species. 
 

As QED and Breit corrections are not provided by 

Koziol and Aucar
125

 for iodine, we have used instead 

those of Boudjemia et al.,
130

 which amount, for the K 
edge, to −77.0 eV for Breit, +6.10 eV for the gauge term 
and −39.0 eV for QED, and to −7.20 eV, +0.50 eV and 

−5.10 eV for the L1 edge. With these corrections, we now 

overestimate the K and L1 binding energies by 5.69 eV 
and 1.95 eV. The missing effect would be that of higher-
order correlation corrections. While we cannot estimate 
this here, we speculate that if it follows roughly what is 
found for the Xe species, that would decrease the binding 
energies, and likely take the K edge to a few eV. 
 
 
 
 

 
E. Excitation energies: comparisons to experiment and 
prior theoretical works 
 

 
As anticipated, the current implementation allows 

cal-culation not only of ionization energies, but also of 
excita-tion energies, which will be briefly discussed 
hereafter. In this case, since (SS|SS) integrals do not 
significantly af-fect the energies, only results for the 
2DCGM and 2DCM Hamiltonian are presented, without 
explicit inclusion of the aforementioned integrals. 
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TABLE III: Comparison between calculated and experi-

mental gas-phase binding energies (in eV) for Xe, XeF2 

and CH3I. Calculations are broken down into values 
obtained with (a) Koopmans theorem, (b) CVS-EOM-
CCSD method; (c) CVS-EOM-CCSD with atomic cor-

rections for QED and Breit (in the case of 
2
DCG

M
 re-

sults, corrections for the gauge term) interactions; and  
(d) higher-order correlation corrections by Southworth 
and coworkers on (c). All of our results include contri-
butions from the (SS|SS) integrals. Basis sets A: ANO-
RCC, D: Dyall 
 

Edge model E(a) E(b) E(c) E(d) 

  Xe   

K D/4DC 34755.91 34690.82 34567.44 34563.64 

 D/2DCM 34755.91 34690.60 34567.22 34563.42 
 D/2DCGM 34669.08 34603.85 34567.22 34563.42 

 A/4DC 34755.89 34690.63 34567.48 34563.68 

 A/2DCM 34755.89 34690.63 34567.24 34563.44 
 A/ref. 127 34752.00 34690.90 34567.51 34563.71 

 exp.127    34565.13 

L1 D/2DCM 5509.35 5473.66 5460.49  
 D/2DCGM 5501.17 5465.51 5460.49  

 exp.128    5452.7 

L2 D/2DCM 5161.45 5122.38 5109.30  
 D/2DCGM 5146.77 5107.77 5109.30  

 exp.128    5106.7 

L3 D/2DCM 4835.59 4796.85 4787.51  

 D/2DCGM 4825.15 4786.46 4784.51  

 exp.128    4786.7 

M4 D/2DCM 708.13 689.63 689.01 688.31 

 D/2DCGM 707.46 688.98 689.01 688.31 
 A/ref. 127 707.5 689.6 688.98 688.28 

 exp.127    689.23 

M5 D/2DCM 694.90 676.71 676.32 675.62 

 D/2DCGM 694.58 676.30 676.32 675.62 
 A/ref. 127 694.6 676.7 676.08 675.38 

 exp.127    676.44 

  XeF2   

K D/4DC 34759.79 34694.48 34567.08 34566.18 
 D/2DCM 34759.79 34693.30 34569.90 34566.00 

 A/2DCM 34759.76 34694.28 34570.89 34566.99 
 A/ref. 127 34755.80 34694.50 34571.10 34567.20 

 exp.127    34567.4 

M4 D/2DCM 711.99 693.23 692.61 691.61 

 A/2DCM 711.74 693.32 692.70 691.70 
 A/ref. 127 711.9 693.9 693.28 692.28 

 exp.129    692.09 

M5 D/2DCM 698.49 680.22 679.93 678.93 

 A/2DCM 698.46 680.30 680.01 679.01 
 A/ref. 127 698.6 680.6 680.31 679.31 

 exp.129    679.31  
CH3I 

K D/2DCGM   33278.46 33213.79 33180.89  
exp.130 33175.20 

 

L1    D/2DCGM 5244.04  5208.55  5203.95 

exp.130 5197.47 



 

 

The results are shown in Table IV, which displays 
selected excitation energies from different edges to the 
LUMO. We chose these particular transitions since both 
experimental and computational data are available in the 

literature,
126,127

 which can be used as reference values. 

In particular, the experimental values are tabulated with 
the theoretical energies obtained in this study.  

As already observed for the ionization processes, inclu-
sion of the Gaunt interaction, accounting for the mag-netic 
interaction between the electrons, lowers the ex-citation 
energy. This was expected as, in general, the inclusion of 
this term shifts the orbital energies of the in-ner core 
orbitals up (or lowers them, in term of absolute energy) 
and, at the same time, it reduces the spin-orbit 

coupling,
62

 which is also reflected by the results reported 

herein. Indeed, the difference in the excitation energy 
from 3d3/2 and 3d5/2 to LUMO is slightly higher when the 
2
DC

M
 Hamiltonian is employed.  

Upon inclusion of the Gaunt term in the Hamiltonian, 
the excitation energies differ by at most 0.4% from the 
corresponding experimental value, specifically for 
1s(F). This mismatch is higher than the others, which 
can be due to the fact that the CVS space was reduced 
so that this was the highest orbital, necessary in order 
to get this excitation.  

Thus, this space excludes the 3d orbitals and in partic-

ular 3d3/2. The next higher disagreement between the-ory 
and experiment is found when exciting the 1s(Xe), 
although by only 0.1%. Finally, the best agreement is 
found for both 3d orbitals, with an error of only 0.04% 

(3d3/2) and 0.02% (3d5/2) from experiment. The com-
puted energies are thus within the experimental error. In 

order to obtain the excitation from the (3d3/2) or-bital, the 
same strategy of excluding all higher orbitals from the 

CVS space, hence excluding (3d5/2), might be the reason 
of the subtly larger disagreement.  

Nonetheless, these errors are actually quite small. 
Therefore, we can conclude that the CVS-EOM-CC 
method implemented in this work gives satisfactory 
core excitation energies. 
 

 

V. CONCLUSIONS 

 

We have presented an implementation of the core-
valence separation for the equation-of-motion coupled-
cluster method in the Dirac program. This implementa-
tion, which is based on a flexible framework for defining 
projection operators, enables the calculation ionization 
and excitation energies for all 4-component based Hamil-
tonians available in Dirac, and consequently for non-
relativistic Hamiltonians as well. We have applied our 
implementation to the calculation of core electron bind-ing 

energies for halogen (CH3I, X
−
, and HX, X = Cl–At) and 

Xe species (Xe, XeF2). For the latter, we also briefly 

explored the calculation of core excitations. With these 
systems, we have investigated the performance of differ-
ent approximations to the original CVS approach, the 
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TABLE IV: XeF2. Comparison between experimental gas-

phase excitation energies and calculations (in eV). The 
calculated excitation energies have been obtained at the 

CVS-EOM-CCSD level of theory using the 
2
DC

M
 and the 

2
DCG

M
 Hamiltonians without contributions from the 

(SS|SS) integrals and the Dyall (D) basis set 
 

Edge transition model     E 

K 1s (Xe) → LUMO D/ 
2 
DC 

M  
34686.70 2  M 

  D/ DCG  34599.95 

  exp.126   34557.4 
 

1s (F) → LUMO D/ 
2 
DC 

M  
685.91  2  M 

  D/ DCG  685.70 
   2  M  

682.8 
± 

0.3   exp. 127   

M4 3d3/2 → LUMO D/ 2 DC  M 683.71 
  D/ DCG  683.06 
   2  M  

682.8 
± 

0.3   exp. 127   

M5 3d5/2 → LUMO D/ 2 DC  M 670.34 
  D/ DCG  670.04 

  exp. 127  669.9 ± 0.3 

 

 

basis set effects, and the performance of different 
classes of 2-component approximations.  

For highly symmetric species such as the lighter 
halides, for which we are able to exactly diagonalize the 

original similarity-transformed Hamiltonian, we show that 
the CVS energies closely match those from exact di-

agonalization at all edges. For the overall test set, our 
assessment of the different approximations indicates the 

one which more closely matches the performance of the 
original CVS scheme employs both frozen core and the 

removal of doubly excited determinants containing only 
core occupied spinors. Taken individually, these approx-

imations yield sizeable overestimations and underestima-
tions to the core ionization energies, respectively.  

With respect to the Hamiltonians, we observe first that 
calculations in which the transformation to 2-component is 

performed after the SCF step (
2
DC

M
 ) are nearly in-

distinguishable from the equivalent 4-component ones 

(
4
DC), though non-negligible discrepancies appear at the 

K edge of fifth and sixth–row elements. We have traced 
these discrepancies to the use of the uncorrected 2-
electron operator in the 2-component molecular mean-

field scheme (
2
DC

M
 and 

2
DCG

M
 ). More approximate 

approaches in which the transformation to 2-component is 
carried out before the SCF step (X2C-AMFI and X2C-G-
AMFI), on the other hand, offer at best qualitative ac-
curacy. Second, our results underscore the importance of 
explicitly considering SSSS-type integrals, in particular 
from the fifth row onwards.  

A comparison to experimental results for Xe, XeF2 and 

CH3I underscores the importance of the QED, Breit and 
higher order correlation effects to approach experimen-tal 
results. While our calculations including the Gaunt 
interaction recover a significant fraction of the Breit in-
teraction, the gauge term remains quite significant for the 
K and L edges, and it must be accounted for.  

In view of these findings, we consider the 4-component 



 

 

based CVS-EOM-CCSD as a reliable approach for 
inves-tigating core properties throughout the periodic 
table. Apart from its intrinsic interest, it may serve as a 
basis for further investigations of the reliability of more 
ap-proximate schemes for atoms beyond the fifth row, 
as well as to verify whether such approximations result 
in significant changes for properties such as transition 
mo-ments, that require the determination of the 
excited-state wavefunctions. 
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FIG. S2: Effect of the REW variants on the different binding energies of Cl−. Values (in 

eV) are relative to the original REW approach. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

FIG. S1: Effect of the CVS variants on the different binding energies of Xe. Values (in 
eV) are relative to the original CVS approach. 
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FIG. S3: Effect of the REW variants on the different binding energies of Br−. Values (in 

eV) are relative to the original REW approach. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIG. S4: Effect of the REW variants on the different binding energies of I−. Values (in 

eV) are relative to the original REW approach. 
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FIG. S5: Effect of the REW variants on the different binding energies of HCl. Values 
(in eV) are relative to the original REW approach. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIG. S6: Effect of the REW variants on the different binding energies of HBr. Values 
(in eV) are relative to the original REW approach. 
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FIG. S7: Effect of the REW variants on the different binding energies of HI. Values (in 
eV) are relative to the original REW approach. 
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TABLE S1: Operation counts for the construction of a single σ vector for 

EOM-EE and EOM-IP wavefunctions for different variants (P: CVS-EOM 

using projectors; A: analytical CVS-EOM; A(FC-f) : analytical CVS-EOM with 

the frozen core approximation; A(ND): analytical CVS-EOM with the ND 

approximation; A(FC-f + ND): analytical CVS-EOM combining FC-f and ND; 

see manuscript for additional details). The operation counts are 
 

calculated employing the number of virtual (Cl−: 208; At−: 504 with dyall.acv3z basis 

sets) valence occupied and core spinors for each edge (with 2, 8, 18 and 60 core 

spinors for the K, L3, M5 and N7 edges, respectively) from the working equations from 

Shee et al. J. Chem. Phys. (2018) 149, 174113. For convenience these expressions 

are reproduced below, with different colors identifying the terms that relate to the A(FC-

f), A(ND) and A(FC-f + ND) variants. 
 
 

CVS variants  
 

System Edge P A A(FC-f)  A(ND)  A(FC-f + ND)  
 

EOM-EE  
 

Cl
− 

K 2.0E+14 1.4E+13 8.6E+12 1.1E+13 7.7E+12 

 L3 2.0E+14 1.1E+14 1.1E+13 3.2E+13 4.9E+12 

At
− 

K 3.6E+18 4.4E+16 3.9E+16 4.1E+16 3.8E+16 

 L3 3.6E+18 2.7E+17 1.6E+17 2.0E+17 1.4E+17 

 M5 3.6E+18 1.0E+18 2.6E+17 4.8E+17 1.8E+17 

 
N

7 3.6E+18 2.6E+18 1.1E+17 4.6E+17 3.4E+16 

  EOM-IP  
    

Cl
− 

K 5.2E+12 1.1E+10 3.3E+07 9.2E+09 2.7E+07 

 L3 5.2E+12 2.0E+11 1.9E+08 5.8E+10 6.8E+07 

At
− 

K 2.0E+16 3.7E+12 3.9E+09 3.6E+12 3.7E+09 
 L3 2.0E+16 8.9E+13 2.1E+10 7.4E+13 1.7E+10 

 M5 2.0E+16 6.2E+14 6.7E+10 3.4E+14 3.7E+10 

 N7 2.0E+16 2.2E+15 1.5E+11 3.1E+14 3.6E+10 
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Below are the equations for EOM-IP and EOM-EE right-hand side σ-vector 

equations (we employ I, J, . . . to denote occupied core orbitals and iv, jv, . . . occupied 

valence orbitals), color-coded as to indicate which terms would be present or absent for 

different approima-tions: 
 

• Black: always calculated 

 
• Blue: calculated if ND is not invoked 

 
• Green: calculated if FC-f is not invoked 

 
• Red: calculated if neither FC-f nor ND are invoked 
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The F , W and G intermediates are defined as follows: 
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Mnv         MN    

V
ef   

(t
jvnv 

−
 
t
jv 
t
nv 

)+ 
Nf 

V
ef   

(t
jvN − tjv tN ) 

                      

WeJ
Mb =VeJ

Mb+
X

f  Vef
MbtJ

f − 
X

nv VeJ
Mnv tn

b
v − 

X
N  VeJ

MN tN
b 

 
X

nvf      
fb 

 
f b 

  X       
fb f b 

+ 

Mnv       MN     

V
ef     

(t
Jnv − tJ tnv )+ Nf 

V
ef  (tJN − tJ tN ) 

                      

Wef
amv = Vef

amv − 
X

nv Vef
nvmv tn

a
v − 

X
N Vef

Nmv tN
a 

Wef
aM = Vef

aM − 
X

nv Vef
nvM tn

a
v − 

X
N Vef

NM tN
a 
 

 WIe
Mnv = VIe

Mnv + 
X

f tI
f Vfe

Mnv        

 WIe
MN = VIe

MN + 
X

f tI
f Vfe

MN 
        

 WIe
mvN = VIe

mvN + 
X

f tI
f Vfe

mvN 
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                          Wi
m

ve
vN = Vi

m
ve

vN + 
X

f ti
f
v Vfe

mvN 
        (S27) 

       
Xf 

              Wi
MN

ve = Vi
MN

ve + 
X

f ti
f
v Vfe

MN 

X 
   

Xf 
 (S28) 

                      Xv          X             

Ie 
 

Ie 
         

I 
  

ef 
   

− 

     

Iov 
 

e 
         

IO  e 
   

Ie fg 
 

 

 

Ie f 
 

                                    

W
Mnv 

=
 
V

Mnv 
+F 

f tMnv   
o 
 

W
Mnv 

t
ov 

− 
   

W
Mnv 

t
O
+V

fg τMnv +    W fnv tM 

   

X 
            X

ovf 
       X

ovf 
 O        f>g   

X 
     

   
Ie 

                          X        
  

− 

     

 
f 

   

+ 

        

Iov ef 
         

Iov 
 

ef 
    

IO ef 

− 

 

IO ef 
 

(S29) 
                                  

    
W

 fM 
t
nv       

V
Mf 

t
nvov 

− 
   

V
nvf 

t
Mov 

+ 
  

V
Mf 

t
nvO 

V
nvf 

t
MO  

     f      

Xv 

                 

X 

     Of   Of      

 
ef 

 
ef 

             
env 

  
gf 

         
eN 

 
gf 

  X 
ef g 

      
W =V  + P (ef)      V  τ    +P (ef)      V  τ   + W       

amv amv 
     

ag mvnv 
     

ag mvN 
 t       

                                      ag  mv       
   

Xv 
      n g                   Ng        g   

X 
  

               XN          
X

vv          
X

nvO      
  

+ 
 

nv tef 

       

+ 
    

 

 

N
 tef 

         

V nvov τef +V nvOτef 
+V NOτef   F            F   +       

        a  mvnv           a mvN          amv nvov    amv nvO    amv  NO 
    n                             n >o                N>O   

  

− P (ef) 
X

nv 

    

am
nvf

v tn
e

v −P (ef) 
X

N 

 

am
Nf

v tN
e 

               

   W W       

m
X

v v 

      (S30) 

   ef    ef              
X

mv  mvf  e         XM  Mf  e mvnv ef   
  

W
ab = Vab − P (ef)     

V
ab   tmv −P (ef)    

V
ab  tM +  

V
ab  

τ
mvnv   

        

m
X

vN 
                   

X 
                 >n        

             
mvN 

   
ef 

    
MN 

   
ef 

                 
     +     V  τ   +     V  τ                 (S31)          

ab 
 

mvN 
    

ab 
 

MN 
                

                                               

M>N 

X 

 

                 
mvb 

      
mvb 

− 

X
nvf   

mvnv bf 
     

mvN bf 
       

(S32) 

                                         

          
W

 ejv 

=
 
V

ejv    
V

ef      
t
nvjv 

− 
Nf   

V
ef 

t
Njv       

 

X
nvf 

  

                    
Mb 

      
Mb 

− 

  
Mnv 

 
bf 

   X  
MN bf 
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W

 ejv  
=

 
V

ejv    
V

ef     
t
nvjv 

− 
Nf 

V
ef 

t
Njv        

 

Xv 

  

                     
Mb 

      
Mb 

− 

 
Mnv 

 
bf 

  

− 

X   
MN bf 
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W

 eJ    = VeJ  n f  
V

ef     
t
nvJ 

Nf 

V
ef   

t
NJ        
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