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ABSTRACT10

The success of self-healing cementitious materials relies on their ability to repeatedly heal over11

the lifetime of the material. Vascular networks have a distinct advantage over other self-healing12

techniques whereby the healing agent in the network can be routinely replenished. The aim of this13

study was to develop a multi-use vascular network that can be re-used over the lifetime of a structure,14

to enable repeated self-healing events in cementitious materials. The feasibility and self-healing15

efficacy of novel 2D vascular networks in concrete beams were tested on laboratory-scale specimens16

before being trialled in-situ on larger, structural-scale elements. The vascular networks were formed17

via linear interconnecting hollow channels filled with a healing agent which is delivered to zones of18

damage under an externally supplied pressure. This technique was reproducible at large scale and19

channels were re-filled over a test period of 6 months. Of the two healing agents used in this study,20

sodium silicate (SS) proved easier to handle and supply into the vascular network, but cyanoacrylate21

(CA) offered greater strength recovery (up to 90%) in a relatively short timescale. The presence22

of flow networks in the cover concrete tended to act as a crack initiator and this was particularly23
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evident in the larger scale specimens. Nevertheless, the potential to enhance and enable multi-scale24

healing in cementitious materials has been demonstrated.25

INTRODUCTION26

Our society is very much dependent on the security and durability of our civil engineering27

infrastructure, much of which is constructed from concrete. Indeed, concrete remains one of the28

most widely used construction materials in the world today. However, concrete degradation and29

concrete cracking is still considered a major problem (Gardner et al. 2018), the causes of which30

result from thermal effects, early age shrinkage, mechanical loading, deleterious chemical reactions31

or a combination of these actions on structures (Concrete Society 2010). These issues affect the32

durability of concrete structures and lead to a service life far shorter than that desired. The concept33

of a material with a self-repairing or self-healing capability has been identified as a potential34

solution to this problem. A state-of-the-art paper produced by the Self-healing as prevention repair35

of concrete structures (SARCOS) COST Action group describes the breadth of this novel research36

area and explores the latest innovations in the field of self-healing cementitious materials (De Belie37

et al. 2018).38

The techniques used in self-healing concrete can be broadly classified into three groups (De Be-39

lie et al. 2018; Van Tittelboom and De Belie 2013); Autogenous and non-encapsulated autonomous40

self-healing (which include autogenous healing, stimulated autogenous healing with the use of min-41

eral additions, crystalline admixtures, superabsorbent polymers and non-SAP polymer additions),42

self-healing bio-concrete, and encapsulated autonomous self-healing. Encapsulation techniques43

include the use of polymer and mineral-based healing agents, which are delivered into the cracked44

areas in concrete through micro-encapsulation (diameter capsules < 1 mm), macro-encapsulation45

or vascular network technologies embedded in the concrete (Sidiq et al. 2019; Xue et al. 2019).46

The vascular network technique adopts a biomimetic approach to healing cracks by delivering47

healing agents to the damage location, in a similar manner to the human cardiovascular or plant48

vascular tissue systems. The vascular network has several advantages over closed systems, such as49

being able to supply different healing agents, over various time scales and at different rates to the50
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damage location (Blaiszik et al. 2010) in order to treat a variety of damage scenarios.51

The first use of capillary networks in cementitious materials was reported by Dry (1994).52

Originally, these networks comprised discrete capillary capsules embedded within the cementitious53

matrix (Van Tittelboom et al. 2011; Van Tittelboom and De Belie 2013), which were subsequently54

replaced by continuous glass capillaries extending throughout the specimen with external supply55

reservoirs (Mihashi et al. 2001; Joseph et al. 2010). Glass capillaries have been embedded into56

frame structures (Dry and McMillan 1996) and also cast into bridge decks for full-scale trials (Dry57

1999; Dry 2001). However, due to the challenges associated with the use of these systems for58

in-situ concrete structures, in particular the increased time required to place the capillary tubes59

prior to casting (Van Tittelboom et al. 2016) and the fragility of the capillary tubes during casting,60

these systems have been predominantly limited to laboratory testing and evaluation. Moreover,61

Van Tittelboom et al. (2016) note that the positive self-healing efficiencies achieved through the62

careful placement of the capillary tubes within a mould at small-scale, may be diminished at large-63

scale, if methods employed for the ready inclusion of capillary tubes in a mix results in their random64

orientation within the section.65

To overcome some of these challenges the glass capillaries have been replaced with channels66

formed through a variety of other methods: One early approach was the embedment of ethylene67

vinyl acetate polymer pipes containing conductive helical wire and healing agent in the cementitious68

matrix (Nishiwaki et al. 2010). Selective heating at the location of a crack released healing agent69

directly into the damage location. The second approach was the formation of hollow channels70

via the removal of smooth small diameter steel rods after 24 hours of concrete curing (Dry 1999;71

Pareek and Oohira 2011) and the third was the use of porous concrete cylinders surrounded by a72

standard concrete mix (Sangadji and Schlangen 2012). Nevertheless, the formation of these novel73

flow networks is not without difficulty since they rely on the timely and successful removal of74

channel forming elements in the former and require a two-stage construction process in the latter.75

Moreover, these techniques are currently limited to a two-dimensional format. Varying degrees of76

success have been reported on the performance of flow networks, such as an enhanced load carrying77
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capacity from beams healed with a 2-part epoxy (Dry et al. 2003) and greater post peak ductility78

for beams healed with cyanoacrylate (Joseph et al. 2010).79

Critical to the success of a vascular network is the correct selection of healing agent. The80

capillary flow of the healing agent is highly dependent on its flow properties, namely its viscosity,81

wettability and surface tension in a cementitious environment, whilst its healing ability will depend82

on its compatibility and reaction with the host matrix. The success or otherwise of a range of healing83

agents including sodium silicate (Formia et al. 2015; Kanellopoulos et al. 2015); polyurethane84

((Gilabert et al. 2017; Belleghem et al. 2018); cyanoacrylates (Gardner et al. 2012; Gardner et al.85

2014; Huang et al. 2014); and epoxies (Perez et al. 2015; Li et al. 2017) has been widely reported.86

The introduction of pressurised vascular networks, as trialled in self-healing polymer materials by87

Hamilton et al. (2011), greatly assists the extent of flow and infiltration of the healing agent into88

micro-cracked zones of damage and is worthy of further investigation in cementitious materials.89

This paper describes a novel method for the formation of a two-dimensional vascular network for90

cementitious materials, including its deployment in slabs and structural scale elements. The design91

of the network facilitates repeated healing events over the lifetime of a cementitious structure. In92

addition, the first full account of the use of vascular networks in a site trial is reported herein. The93

paper is structured as follows:94

• Section 2 provides an overview of a series of preliminary investigations concerning the man-95

ufacture of the vascular network, specifically the influence of channel diameter, joint/node96

design and network pressure.97

• Section 3 presents the experimental details concerning the application of vascular networks98

in a range of structural elements, namely small beams, large beams, a slab and a wall panel.99

It also presents the selection and justification of the healing agent used in the study.100

• Section 4 presents the experimental results and reports the healing efficiencies of structural101

elements with various network configurations.102

PRELIMINARY INVESTIGATIONS103
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Channel and Connection Design104

A series of preliminary investigations was conducted to establish a successful and repeatable105

method of forming vascular networks in cementitious materials. The criteria for their formation106

was: (i) to cause no damage to the cementitious matrix; (ii) to be capable of practical application to107

both laboratory and in-situ structural sized specimens and (iii) to allow the flow of liquid throughout108

the entire network in one and two dimensions. The most practical approach is to form a network109

during the concrete casting process, since this eliminates the potential for damage to the concrete110

in its hardened state. The novel method proposed in this paper employs the embedment of plastic111

tubing, which is extracted from hardened concrete to leave permanent one-dimensional and two-112

dimensional interconnecting channels. Both polyolefin (TE Connectivity CGPT clear heat shrink113

tubing) and polyurethane (SMC TU series) tubing proved successful candidates for this. In both114

instances, the tubes were placed through holes in the concrete specimen mould walls and held in115

place with small clamps on the outside of the moulds, as shown in Fig. 1a.116

The polyolefin tubing had an outer diameter of 3.2 mm and a shrinkage ratio of 2:1 at 80 ◦C.117

This tubing was flexible and compressible and to prevent compression during placement of concrete118

the network required pressurisation with water. After casting, curing and de-moulding of the prism119

specimen, the polyolefin tubes were flushed with water at a temperature of 85 ◦C, which triggered120

tube shrinkage and thereby allowed them to be easily removed from the specimen.121

The polyurethane tubing had an outer diameter of 4 mm and was selected for its smooth outer122

surface properties, relatively high stiffness and high tensile strength. The polyurethane tubes were123

robust enough to withstand the casting process without the need for pressurisation. After casting,124

curing and de-moulding, the polyurethane tubes were pulled out of the specimen. The radial125

contraction of the tube, when under tension, breaks the bond between the tube surface and the126

concrete, thus permitting the tubes to be removed with relative ease.127

Neither tubing material required the application of a special coating. Preliminary experiments128

showed that the tubing placed as loops in small prismatic concrete beams could also be easily re-129

moved, therefore only requiring one accessible surface during casting. This would be advantageous130
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for casting concrete foundations or other structural elements with limited accessible surfaces after131

casting. In subsequent studies with larger specimens, special coatings were applied to the tubes132

guarantee their removal.133

A plan 2-D network was created by taking advantage of the voids left by removal of the tubes134

and by the contact points between overlapping tubes, as illustrated by the schematic in Fig. 1b.135

The area of the contact points is maximised by using a weaving tube pattern shown in Fig. 1c.136

The voids left by the contact points are shown to be sufficiently large to allow the healing agent to137

flow. However, they depend on the tubes being tightly tensioned against each other and increase the138

complexity associated with the placement of the tubes in the mould. To overcome these challenges,139

a bespoke connection was designed and manufactured from Polylactic Acid (PLA) using a 3D140

printer (Ultimaker 2, Fused filament fabrication). This connection created a dedicated flow channel141

between the perpendicular voids, as shown in Fig. 1d, and had the added advantage of securing the142

tubing in position during the casting stage as evidenced in Fig. 1e. Fig. 1f shows the bespoke 2D143

PLA connection used for the larger panels, in which the angles between the tubes are set at 26.6◦.144

The void shown is used to tie the connection to the reinforcement and when the tubing is removed145

from the concrete after casting, the PLA connections remain in situ.146

Healing Agent Selection147

It is widely regarded that the choice of healing agent is primarily governed by the self-healing148

application, with particular importance placed on the temporal and spatial nature of the dam-149

age/healing event (Maes et al. 2014; Van Tittelboom and De Belie 2013; Mostavi Ehsan et al.150

2015). In this study, cyanoacrylate (CA) and sodium silicate (SS) were selected for use in the151

vascular networks.152

CA has been used in many self-healing applications (Li et al. 1998; Dry 2000; Joseph et al. 2010),153

and is employed here due to its low viscosity, rapid curing time and strong potential to achieve154

repeated healing events within a short timescale. The ethyl-2-cyanoacrylate resin polymerises155

rapidly in small crack widths (<0.5 mm) in the presence of hydroxide ions, which are available156

from moisture within the crack plane, or calcium hydroxide present in the cement matrix. CA157
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has been shown to offer advanced healing from its ability to infiltrate not only the macro-cracks158

but also the micro-cracked area of the fracture process zone (Joseph et al. 2010). Nevertheless,159

the use of CA also attracts a significant number of challenges namely: difficulty in handling due160

to its rapid bonding ability and high toxicity, its relatively short shelf-life (approx. 6 months)161

and uncertainty regarding its long-term compatibility with the cementitious matrix. Some of the162

difficulties encountered with the use of CA in these experiments are described in Section 4.163

Sodium silicate was chosen for its ability to react chemically with the cementitious matrix and164

its documented success as an encapsulated healing agent in previous studies (Huang and Ye 2011;165

Pelletier et al. 2011; Gilford III et al. 2013; Kanellopoulos et al. 2015). Its slower reaction rate166

and higher viscosity makes it more suitable for site application than the rapidly curing CA. In167

the presence of water, SS reacts with excess calcium hydroxide, a by-product of clinker hydration,168

available in the cement matrix to form additional calcium-silicate-hydrate (CSH) gel. The chemical169

reaction is shown in Eq. 1. It is this additional CSH gel which forms and fills in the crack and leads170

to the recovery in mechanical and durability-based material properties.171

Na2O · SiO2 + Ca(OH)2 → CaO · SiO2 · H2O + Na2O (1)172

Parametric study on capillary rise and surface coverage of healing agent173

Healing agents may be delivered by capillary flow alone, but it has been found that the supply174

of agents may be improved by pressurising the healing agent fluid (Hamilton et al. 2011). Even a175

small additional pressure of 0.01 bar allows the healing agent to flow more effectively along the176

supply channels and into the macro-cracks using the capillary rise mechanism (Gardner et al. 2012;177

Gardner et al. 2014). The degree of saturation of the crack faces has also been reported to influence178

the rate and degree of capillary rise of a healing agent (Gardner et al. 2012), whilst the crack width179

is one of the primary governing factors affecting the final healing agent capillary rise height.180

In order to examine the above parameters, a series of tests were performed on 75 mm x 75181

mm x 255 mm concrete beams cast with two 4 mm flow channels, formed using the polyurethane182

tubing detailed in Section 2. The details of the test series are summarised in Table 1. All of the183
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beams were cured in water (apart from beams in series 3). The beams were tested in a 3-point184

bending arrangement, as shown in Fig. 2, using a controlled crack mouth opening displacement185

(CMOD) rate of 0.0001 m/s. The healing agent employed was a SS solution of molar ratio 1:1.5186

(water : sodium silicate). The SS solution was supplied from an open reservoir on one side, the187

height of which was adjustable, whilst the other side was left open to atmospheric pressure. Once188

the CMOD had reached the desired value, SS was released into each of the network channels from189

the required pressure head. The beams were then unloaded and left in-situ for between 60 and 300190

seconds, after which time the healing agent was flushed out of the channels using pressurised air191

and the beams broken in half with a hammer. The extent of the spread of the SS on the crack face192

was then recorded.193

The effect of a change in healing agent exposure time (as per series 2) can be seen in Fig. 3.194

The black marker outline shows the extent of the healing agent spread on the crack face, which is195

termed the crack coverage. This healing agent crack coverage is expressed as a percentage of the196

crack plane cross-section.197

Fig. 4 shows the effect of the various parameters on the healing agent crack coverage. In198

particular, Fig. 4a shows how increasing the pressure of the healing agent increases its coverage199

on the crack face (Series 1). Fig. 4b and Fig. 4c consider the effect of the curing regime and age200

of the specimen on crack coverage respectively. The drier beams (i.e. those cured under ambient201

room conditions) have lower crack coverages, which may result from a concrete matrix with higher202

porosity and hence greater absorption of the healing agent into the crack faces, effectively reducing203

the capillary driving force. The older specimens also show a lower healing agent coverage than the204

younger specimen. The authors have previously demonstrated that the capillary rise response in205

older specimens is slower than that in younger specimens (Gardner et al. 2012), and this is thought206

to be related to the effect of the time dependent development of the mortar microstructure on the207

dynamic resistive forces acting during capillary flow. The results from the present study suggest208

that the crack coverage associated with older specimens has yet to reach its optimum level given209

the chosen exposure times. As shown in Fig. 4d, the crack coverage reduces as the cover to the210
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flow channels increases. This reduction may be due to a smaller crack area above the flow channel,211

since the residual crack opening at the height of the network is smaller.212

This short parametric study has shown that there are a number of factors that can affect the213

initial delivery of the healing agent to the crack surface. A relatively small pressure of 0.001214

N/mm2 can provide 80% coverage at a 0.2 mm crack width. The cover to the flow network ranges215

between 20 mm and 44 mm from the underside of the beam, which is consistent with placing the216

flow networks in a typical concrete cover zone. The curing regime and age of specimen do have an217

impact on the extent of coverage of the healing agent on the crack surface but are not considered218

critical to the performance of the system.219

MAIN EXPERIMENTAL PROGRAMME220

Programme of Study and Experimental Procedure221

The main experimental programme of study presented in this paper comprises 6 sets of experi-222

ments, summarised in Table 2 and the different forms are showing in Fig. 5. Sets 1 to 3 demonstrate223

the performance of vascular networks in a range of prismatic beam specimens, whilst sets 4, 5224

and 6 explore the application of the flow network in different structural elements (a 0.6 m x 0.6225

m slab, a 1 m x 1 m wall panel and 1.8 m x 1 m site trial panel). The purpose of the second226

group of tests (sets 4 to 6) is to prove the scalability of the technique for industrial applications.227

The experimental programme also included a set of self-healing site trials on the A465 Heads of228

the Valleys (HoV), Section 2, highway project near Abergavenny in South Wales. These site trials229

considered a number of healing systems, including the vascular networks being considered in the230

present paper. All of the moulds/shutters for the concrete specimens were made from timber. These231

wooden moulds were prepared by drilling 5 mm diameter holes in the desired position and then232

threading through the 4 mm (external) diameter polyurethane tubes (see Fig. 1a, 1c, 1e). These233

tubes were straightened by hand tensioning and fixed in position with small clamps on the outside234

of the mould. Sets 4 to 6 employed the connectors described in Section 2. The channels typically235

had 20 mm concrete cover. Release oil (and petroleum jelly for Sets 5 and 6) were applied to the236

tubes before casting the concrete to guarantee their easy removal from the specimens. A standard237
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concrete mix (see Table 3) was used for all lab specimens, with a slight amendment made to the238

mix for the site trial. The standard C40/50 concrete was designed to achieve consistency class S3239

(BS EN 12350-2 2019) with an average compressive strength of 53 MPa.240

All concrete samples were demoulded after 24 hours and the polyurethane tubes removed im-241

mediately after demoulding leaving behind hollow channels and the bespoke 3D printed connectors.242

The chosen concrete curing regime was dependent on the selected self-healing agent. CA poly-243

merises rapidly with water and as such, the specimens were cured at ambient conditions and dried244

thoroughly before the healing agent was introduced into the flow network. For SS, the specimens245

were cured in water at 20 ◦C and surface dried before testing.246

Testing Procedure Sets 1-3247

The three-point flexural bending test set-up, shown in Fig. 6, was used for Sets 1 to 3. In248

these specimens, the healing agent was supplied to the channels using polyurethane supply tubes249

of external diameter 6 mm and internal diameter 4 mm (See Fig. 6). The supply channel was250

glued in place using CA. This provided a vascular network of constant diameter from the supply251

tube throughout the specimen. The healing agent was introduced into the vascular network using252

a syringe. For Sets 1 to 4 the healing agent was supplied into the vascular network before testing253

began, whilst in the other sets it was introduced at a later stage. The system was pressurised with254

air via this supply tube, see Fig. 7a. The pressure in the flow network was controlled and monitored255

using a regulator and inline digital gauges respectively, as can be seen in Fig. 7b. The pressurised256

system was closed, in order to maintain a constant pressure in the network before load was applied257

to the specimen. The pressurised system was also used to flush out the remaining healing agent258

from the main channels by leaving one outlet open to the atmosphere. This flushing allows repeated259

healing to take place with a re-supply of healing agent. The loading was controlled via a crack260

mouth opening displacement (CMOD) feedback loop at a rate of 0.0001 mm/s using an Avery261

Denison 7152 hydraulic loading machine. For Set 1, the beams were loaded until a CMOD of 0.3262

mm was recorded, at which point the beams were unloaded and the healing agents (CA and SS)263

were flushed out of the networks using pressurised air. The beams with CA were reloaded after264
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10 minutes, to allow sufficient time for the CA in the crack plane to cure, whilst the left SS beams265

were placed in a water tank for 7 days before being reloaded.266

For Sets 2 and 3, the specimens were loaded until a CMOD of 0.5 mm was recorded. At this267

point the networks in the Set 2 beams were flushed out and the beams left in-situ for 24 hours to268

allow further curing of the CA before being retested. Similarly the networks in the Set 3 beams269

were also flushed out, but the beams were then placed in a water tank for 28 days to promote the270

reaction of SS, after which time the beams were reloaded.271

Testing Procedure Set 4272

Fig. 8 shows two configurations of flow networks in a 600 mm square slab mould before casting.273

In the first configuration (Fig. 8a, specimen 1) the channels were placed at an angle of 45◦ to the274

line of the supports (and to the steel reinforcement) whilst in the second configuration (Fig. 8b,275

specimen 2) the channels were placed perpendicular to the supports. In both cases, the channels276

were located below the reinforcement and had a cover of 20 mm to the base of the slab. One control277

slab was also cast which included reinforcement only. Eight 8 mm diameter bars were used in each278

slab, four in each direction at equal spacing.279

A loading frame, fabricated from 50 mm square hollow steel sections, provided simple supports280

on all 4 sides of the slab. The central patch load was applied at a controlled displacement rate of281

0.005 mm/s through a 100 mm square 25 mm thick steel plate and 8 mm thick fibreboard. The282

displacement was monitored at the centre on the underside of the slab and at the mid-span of one283

support. The loading setup can be seen in Fig. 8c. The slab was supplied with healing agent and284

then loaded to 100 kN, unloaded and cured under moist hessian sacks for 28 days before re-loading285

for a second time.286

The set-up used to supply healing agent to the specimens was the same as that employed for287

sets 1 to 3 (Section 3.2). Initially, all supply channels were clamped at their ends. One by one,288

each supply channel was opened to the atmosphere and the healing agent introduced via a syringe,289

ensuring that the whole network was filled in a controlled manner. In lieu of a closed pressure290

system, the network was filled to give 50 mm of head (0.005 bar) above the network level (Fig. 8c).291
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Testing Procedure Set 5292

The configuration of the flow channels for the 1 m x 1 m x 0.15 m demonstration panel in the293

laboratory is shown in Fig. 9a. This reinforcement arrangement was chosen to replicate the starter294

bar reinforcement in the trial wall panels (which are discussed in Section 3). Five 10 mm diameter295

500 mm long reinforcement bars at 200 mm spacing were fixed vertically in the bottom of the296

mould, in addition, an A252 mesh (i.e. 8 mm bars @ 200 mm c/c) was placed adjacent to the front297

and rear faces of the wall over the entire area. A cover of 30 mm was provided to the outermost298

reinforcement. The flow network was formed by ten sets of 4 mm diameter polyurethane tubes299

which were placed within the wall panels at an angle of 26.6◦ to the horizontal, with a vertical300

spacing of 100 mm and a cover of 20 mm. Ten injection points, as shown in Fig. 9b, were fitted each301

side of the panel on the vascular network outlets. The 100 mm long packers, of 10 mm external302

and 2.7 mm internal diameter, were fitted with a locking tap which allowed each channel to be303

independently opened and closed as required.304

The demonstration panel was loaded in the laboratory to induce cracking in the panel. During305

loading, the wall panel was supported along on two parallel edges (i.e. the top and bottom edges306

in Fig. 9a) and a horizontal crack was induced via the application of load through a partial width307

spreader beam at a distance of 500 mm from the base of the wall panel (Fig. 9c). The panel was308

loaded to 100 kN, at which point a crack was visible on the surface, although the crack opening309

was not measured during testing. Once the panel had been loaded and a crack became visible, the310

panel was unloaded and returned to the upright position. Water was pumped into the flow network311

through the lowest injection valve at the base of the wall, using a pedal controlled reciprocating312

pump (DESOI PED-3D). Once the water was seen to flow out of a valve, the valve was closed,313

forcing the network to fill vertically upwards and expel air through the open valves towards the top314

of the wall. Once the water reached the topmost valve, the valve was closed. The channels in the315

flow network had the ability to be emptied and refilled, which supports the potential for repeated316

damage and healing events.317
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Testing Procedure Set 6318

The full site trial programme (See Davies et al. 2018) examined the performance of a range319

of self-healing systems and included five separate wall panels. The present paper considers the320

behaviour of one of these panels that contained a vascular network, which was denoted Panel E.321

The arrangement of Panel E (1.8 m x 1.0 m x 0.15 m) is shown in Fig. 10a, in which the five pairs322

of evenly spaced 16 mm starter bars (which projected 500 mm from the base of the wall), A393323

(10 mm bars @ 200 mm c/c) front and A142 (6 mm bars @200 mm c/c) rear steel reinforcing324

mesh and timber shutters can be seen. The tubes that formed the flow network were placed in325

an identical manner to that of Set 5 (i.e. the tubes were at angle of 26.6◦ to the horizontal and326

spaced at 100 mm), as illustrated in Fig. 10a. These tubes were placed with a cover of 20 mm. The327

bespoke 3D-printed PLA connections, shown in Fig. 1f, were used at every intersection of the flow328

network and tied to the steel reinforcement. After casting, the 4 mm diameter polyurethane tubes329

were removed by hand with relative ease.330

The 1800 mm tall panel was loaded 300 mm below its upper edge, which meant the panel acted331

as a vertical cantilever that as illustrated in Fig. 10c. The load was applied through a 100 mm332

square 10 mm thick section steel wailing spreader beam using a hollow jack ram system that was333

anchored to the rear of the reaction wall. When the load reached a certain level (20 kN) a horizontal334

crack became visible on front surface of the panel, approximately 500 mm above the base of the335

wall, denoted on figures as crack on section (CoS). As with the laboratory trial panel (Section 3)336

injection point valves were fitted to each location where the network exited the wall panel. The337

final as-built wall panel is shown in Fig. 10c, in which the painted speckle pattern for the digital338

image correlation monitoring system can be seen on the surface of the concrete.339

RESULTS AND DISCUSSION340

The results of each test set are discussed in this section. The degree of mechanical healing is341

expressed in terms of two parameters: (i) a strength recovery index (HP), calculated according to342

Eq. 2 (Homma et al. 2009; Davies and Jefferson 2017) and (ii) a stiffness recovery index (HK)343

shown in Eq. 3, both recovery indexes are illustrated in Fig. 11:344
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HP =
P2 − P0
P1 − P0

· 100 (2)345

in which P1represents the initial peak load (kN); P0 the load at unloading at a predetermined346

CMOD (kN); and P2 the peak load upon reloading (kN). Similarly, for the stiffness recovery index347

HK :348

HK =
K2 − K0
K1 − K0

· 100. (3)349

K1 represents the initial stiffness of the beam (N/mm2); K0 the stiffness during unloading350

(N/mm2); and K2 the stiffness upon reloading (N/mm2). The terms in Eq. 2 and 3 are clearly351

defined when cracking and healing are separated in time, as in Fig. 11, but the indices are less352

distinct when these processes overlap. In the latter case, it is necessary to use the results of the353

control specimen to compute the unhealed response values that appear in the indices. However,354

due to the natural variation of response in these materials the response of the control specimen of a355

test series may deviate from the response that the healed specimen would have undergone without356

healing. The indices for such cases are therefore given with a degree of caution and this degree of357

uncertainty is marked by adding a ∗ superscript to the indices (i.e. H∗
P and H∗

K).358

Sets 1 to 3 - Twin 1D Channel Beam Specimens359

A typical load versus CMOD response for one CA, one SS and one control beam from Set 1 is360

given in Fig. 12. The control beam was loaded until a CMOD of 0.3 mm was reached, at which361

point the beam was unloaded and then immediately reloaded until failure.362

The beam containing CA was pressurised to 0.2 bar before the load was applied. The first363

loading cycle resulted in the formation of a central discrete crack. A drop in pressure in the system364

was recorded at the time this crack first became visible, which is assumed to coincide with the time at365

which the CA first entered the crack. This resulted in two primary healing responses, characterised366

by an increase in the load between a CMOD of 0.1 mm and 0.15 mm and also between 0.25 mm367

and 0.3 mm. These primary healing responses can be attributed to the short-term curing of the CA.368
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It is interesting to note that two healing peaks occurred in the first loading cycle, which points to369

multiple damage-healing events. Similar primary healing responses have been observed by Joseph370

et al. (2010) using comparable healing agents and experimental arrangements. For the CA beams,371

the unloading response, which is considerably stiffer than that of the control beams, confirms that372

significant healing has taken place in the first loading cycle. During the second loading cycle an373

increase in load over and above that recorded upon unloading can be seen.374

In a similar manner, the SS beams were also pressurised to 0.2 bar and showed evidence of a375

pressure drop upon crack formation. However, due to the longer chemical reaction time of the SS,376

there was no indication of primary healing. The beam was unloaded at a CMOD of 0.3 mm and a377

similar unloading response to the control beam was observed. The peak load upon reloading was378

higher than the load at unloading and the response showed a recovery in stiffness greater than that379

of the control beam and comparable to the CA beam.380

Table 4 shows the strength recovery (HP) and stiffness recovery indices (HK) for set 1 for a381

typical beam for each healing agent, as presented in Fig. 12. It is clear from Table 4 that CA results382

in much greater healing in terms of strength recovery (79%) compared to SS (17%). The CA results383

show more variability with a coefficient of variation (CoV) of 15.5% for the HP compared with384

3.5% for the SS. This increased variability for CA is almost certainly influenced by the complexity385

of the damage-healing process in the first loading cycle, which means that there would not have been386

an even distribution of CA available to cure during the fixed crack healing period. There is clear387

evidence of two primary healing events in the first loading cycle for cyanoacrylate, a phenomenon388

observed by other researchers working with similar self-healing systems (Joseph et al. 2010).389

A typical healing response for Set 2 is presented in Fig. 13. As with set 1, a softening curve390

is observed following the initial peak load, and at a CMOD of 0.2 mm there is a distinctive rise391

in load carrying capacity (a primary healing response), which coincided with a drop in network392

pressure. The average strength recovery (HP*) index for set 2 was 39% with a CoV of 6.7% and393

the average stiffness recovery index (HK*) was 1.3% with a CoV of 35.9%. In load cycle 2, there394

is evidence of healing, characterised by a regain in stiffness upon reloading and partial recovery of395

15 Davies, July 29, 2020



the initial peak load (P1). The average strength recovery (HP) of the specimens in set 2 was 59.7%396

with a coefficient of variation of 33.7% and the average stiffness recovery (HK) of 81.6% with a397

coefficient of variation of 20.9%. The relatively high CoV for the results are linked to the significant398

difficulties in setting up the experimental arrangement (system pressurisation and premature curing399

of the CA prior to testing), this level of variability confirms the challenges associated with the use400

of CA as a healing agent.401

The results from a typical load versus CMOD response for Set 3 beams is presented in Fig. 14,402

with particular attention to the unload/reload portion of the response given in Fig. 15. The same403

trends, as observed in Sets 1 and 2, are also seen in Set 3 with the exception that the drop in pressure404

at crack formation is less pronounced in this case, which almost certainly is due to the fact that405

SS has a higher viscosity than the CA. For comparison purposes, Fig. 14 and 15 include a control406

beam response which was subjected to the same conditions. The average strength recovery (HP)407

of the set was 5.3% with a coefficient of variation of 34%. The stiffness of the SS beam upon408

reloading is much greater than the control beam as shown by the stiffness healing index of the SS409

beam being 4.9% with a coefficient of variation of 60%. The significant difference between the410

recovery index of SS and CA can be attributed to the crack opening, and the ability of the different411

healing agents to bridge the crack opening during the healing period. The primary healing action412

of SS is assumed to be its reaction with surplus calcium hydroxide in the cementitious matrix413

to form further calcium-silicate-hydrate gel. Natural autogenic healing processes yield the most414

promising results at crack widths of 0.15 mm or less and at larger crack widths, the potential for415

autogenic healing diminishes. This suggests that SS would work best in systems that employ other416

mechanisms to limit crack widths. Moreover, the mechanical healing recovery may be low due to417

the limited availability of calcium hydroxide in the crack plane, especially since hardened cement418

paste comprises only 15% calcium hydroxide by volume. Nevertheless, SS remains one of the419

preferred healing agents due to its long-term compatibility with the host matrix.420
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Set 4 - 2D Channels in Slab421

Fig. 16 shows the load versus CMOD response of the control and vascular network slabs.422

Cracking became visible when the central displacement reached approximately 1.5 mm, after423

which cracks continued to develop and propagate until the central displacement reached 6 mm424

(point 2 on the graph), at which point the slab was unloaded. The crack pattern at point (2) is425

shown in Fig. 17a and, as may be seen in the photograph, significant leakage of the healing agent426

from the underside of the slab could be observed at this displacement level. Fig. 17b shows the427

condition of the underside of the slab after unloading (i.e. at point (3)) and this shows the extent of428

the healing agent migration from the network to the underside of the slabs radial cracks. During the429

re-loading phase, the effect of healing on the stiffness is evident, in that the initial gradient of the430

re-load curve in the healed slab is significantly steeper than the control slab. The stiffness healing431

index (HK) for the control slab is 46.3% whereas the SS healed slab is 100.2%. The peak load432

in the second cycle of the self-healing slab is only 2% above that of the control specimen but the433

response is noticeably more ductile. This limited increase in peak load is strongly influenced by the434

presence of reinforcement, which tends to mask the healing response, and affected by the fact that435

the residual crack openings were relatively large during healing (See Fig. 17b), even though the slab436

was unloaded during healing period. No additional leakage of healing agent was seen (Fig. 17c)437

indicating that the initial supply of healing agent was exhausted over the month long healing period.438

Nevertheless, it is proposed that replenishment of the healing between loading cycles may have439

allowed further cycles of healing to take place.440

The crack pattern for a flow network arrangement aligned with the steel reinforcement, as shown441

in Fig. 17b, was very similar to the crack pattern exhibited by the control slab. This can be seen in442

Fig. 17a, b and c. However, in the slab in which the vascular network was aligned at 45◦ to steel443

to the steel reinforcement, shown in Fig. 8a, the crack patterns replicated the channel configuration444

(see Fig. 17d), suggesting that the channels act as crack inducers.445
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Set 5 - 2D Channels in a Demonstration Panel446

Following the testing of the set 4 slabs, and with insight thereby gained of the influence of the447

network configuration on the resulting crack pattern, a 1 m x 1 m demonstration panel was cast448

as a preparatory stage to the full site-trial tests. This demonstration panel employed water rather449

than a healing agent. The results presented in this section are descriptive and qualitative in nature450

and serve to highlight the changes required in the channel filling techniques and testing procedures451

in readiness for site-trial applications. Following the loading of the panel and the introduction of452

the water into the network, a small amount of pressure remained in the system (less than 0.5 bar)453

and this resulted in water leaking out of the crack, as seen in Fig 18b and 18c. Fig 18d shows454

the concrete panel after testing and partial drying, where the horizontal and diagonal cracking on455

the face are visible. The diagonal cracks are concurrent with the flow network, again showing456

the crack initiation action of the flow channels. There is evidence that the supply mechanism was457

effective, with the filling technique clearly allowing water to fill the entire vascular network, despite458

the presence of cracks during the filling stage. The injection valves were capable of not only sealing459

the network but also retaining a small level of pressure (0.5 bar) within it for time enough to allow460

sufficient water to pass through the cracks onto the surface of the panel. The network supplied461

water to the full crack network and this is a positive indication of its ability to deliver healing agents462

of similar flow characteristics as water, to zones of damage.463

Set 6 - Vascular Networks in a Site Trial Wall Panel464

The panel was first loaded and unloaded at 36 days after casting. The SS was pumped through465

the network after a further 111 days which showed that the system was still intact and operable. The466

healing agent was pumped into the panel using the procedure presented in section 4, as depicted in467

Fig. 19a, The healing agent flowed out of the cracks, assisted by a pressure of 0.2 bar, as evidenced468

in Fig. 19b. As soon as the SS became visible on the surface of the panel, the system was drained469

and each channel flushed with water under gravity. The water flushing technique did not result in470

additional leakage from the panels front face. Furthermore, it is believed that the flushing process471

did not remover the SS from the cracks. This is because sodium silicate solution has a high viscosity,472
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when compared to water, and a low water flushing pressure was employed to empty the channels.473

A digital image correlation (DIC) technique was used to monitor the strains on the front face474

of the panel. The results, shown in Fig. 19c, give the strain plot for Panel E. The crack pattern475

observed on Panel E at a load of 20 kN supports previous observations that the network channels476

act as crack inducers, with the diagonal crack pattern reflecting the form of the vascular network477

(Fig. 19a and 19b).478

The panel was reloaded to the original load at 231 days after casting and the load versus479

displacement results compared pre-and post-healing (see Fig. 20). The presence of substantial steel480

reinforcement in the panel, masks the influence of healing on the load-displacement response, which481

made it difficult to quantify the mechanical strength recovery which could be directly attributed482

to the vascular network. Despite the clear site-trial evidence of healing agent flow into the cracks483

(surface leakage), there was only minimal evidence of healing using visual assessment techniques.484

It is suggested that a range of non-destructive techniques such as in-situ permeability testing,485

ultrasonic techniques and microscopy be employed in future tests to help identify the recovery of486

mechanical and durability-based properties.487

The work reported earlier suggested that SS is most effective when healing cracks that are 0.3488

mm wide or less but in the present case the cracks were wider than this, which may have reduced489

the healing potential of the system. It is concluded that it would be better to use either a healing490

agent with a higher viscosity or a different reaction mechanism when a vascular network is required491

to heal larger cracks (i.e. cracks >0.3 mm in width).492

The site trials showed that vascular networks can be used at large scale and it has been shown that493

and the presence of the vascular networks cause the cracks to form in a similar pattern to the vascular494

network beneath the surface, giving direct access to the healing agent supply. The construction of495

the vascular networks on site undoubtedly demands additional labour but despite this shortcoming,496

it is concluded that vascular networks have the potential to heal repeated occurrences of damage.497

CONCLUSIONS498

A novel technique for creating a vascular network characterised by a series of 2D interconnected499

19 Davies, July 29, 2020



hollow channels has been presented. The deployment of this network in both small laboratory and500

larger structural sized elements has proved successful and has highlighted the potential for its in-situ501

application to provide a healing mechanism for repeated damage events.502

A series of preliminary investigations demonstrated the development and refinement of the503

design of the connectors, whilst the influence of specimen age, flow network location, healing time504

and curing condition were examined. The preliminary results showed that a small pressure head of505

0.02 bar was sufficient to ensure that healing agent reached the majority of a crack surface (>90%)506

within 3 minutes. The greatest coverage of the healing agent on the crack face was achieved when507

specimens were 14 days old, cured in water, and tested at a CMOD of 0.3 mm.508

With regards to the healing agents tested it was apparent that although SS was easier to handle509

and supply into the vascular network, CA offered greater strength recovery (up to 90%) in a510

significantly shorter time than the SS. This may suggest that CA is the preferred healing agent in511

applications where rapid healing of damage is required. On the other hand, SS may offer slower512

healing times and lower levels of healing which may be more suited to low levels of damage in513

early age structures where there is an abundance of calcium hydroxide in the matrix to facilitate514

healing. Nevertheless, as with the majority of the tests conducted using autonomic healing agents,515

there remains considerable uncertainty over the agents suitability for long term encapsulation and516

its compatibility with the cementitious matrix.517

Not only do vascular networks provide multiple opportunities to supply a wide range of healing518

agents but such agents can also be replenished over the lifetime of a structure provided that the519

channels are emptied at the end of each healing event. With further research, into more efficient520

methods of forming these networks on site and the identification of compatible healing agents for521

a range of physical and chemical damage events, vascular networks could provide a viable and522

efficient healing system in structural elements formed from cementitious materials.523
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TABLE 1. Parametric study on capillary rise and surface coverage of healing agent

Test Specimen) Crack No. ofs Pressure Exposure of Cover to flow
Series Age (days) width (mm) channels (bar) healing agent(s) network (mm)⋆

Series 1 14w 0.2 2 0, 0.005, 0.01, 0.02 180 20
Series 2 14w , 140w 0.1, 0.2, 0.3, 0.4 2 0.01 60, 180, 300 20
Series 3 14† 0.2 1 0.01 60, 180, 300 20
Series 4 7w 0.1, 0.2, 0.3, 0.4 1 0.01 180 28, 44
Note. ⋆ above the underside of the beam, † cured in ambient room conditions, w cured in water
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TABLE 2. Summary of vascular network experimental programme.

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6
No. of specimens 8 6 6 3 1 2
Specimen dimensions 255x75 500x100 500x100 600x600 1000x1000 1800x1000
(l x b x d) (mm3) x75 x100 x100 x100 x150 x150
Age at 1st test (days) 100 7 7 28 28 36
Age at 2nd test (days) 100 8 35 56 - 231
Healing agent CA and SS CA SS SS Water SS
Notch depth (mm) 5 5 5 None None None
Presure (bar) 0.2 0.2 0.2 0.005 up to 0.5 up to 0.05
Reinforcement (mm) None None None 8 8 10
Curing regime Ambient Ambient Water (20 ◦C) Hessian sack Ambient Outdoors
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TABLE 3. Composition of concrete

Material Concrete composition (kg/m3)
Sets 1-5 Set 6 Site Trial

Cement 400 (CEM II/B-V 32.5R) 415 (CEMI)
Coarse aggregate (4 10 mm crushed limestone) 990 944
Limestone fines (0 - 2 mm) 162 396
Sand (0 4 mm marine sand) 648 393
Water 200 179
w/c ratio 0.5 0.43
VS100 (SIKA) plasticiser l/100 kg cement 0.3 0.35
SIKATARD R retarder l/100 kg cement - 0.10
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TABLE 4. Strength recovery (HP) and stiffness recovery (HK) for twin 1D channel beams (Set 1)

Set 1 test stage (Extracted from typical beam Strength Recovery Stiffness Recovery
example shown in Fig. 12) HP (%) HK (%)

CA Load Cycle 2 Healing 78.6 69.7
SS Load Cycle 2 Healing 17.2 60.5
CA Load Cycle 1 Primary Healing 1 23.4∗ 1.9∗

CA Load Cycle 1 Primary Healing 2 45.1∗ 14.5∗

Note. ∗ uncertainty due to variations in control response.
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Contact area

Void for tying
 reinforcement

Fig. 1. Flow networks setup and connections ready for casting (a) 1D twin network in concrete
prism mould (b) Schematic of initial connection design (c) 2D network configuration in concrete
prism mould (d) 2D bespoke 3D PLA connection for beam (e) 2D network configuration with 3D
PLA connections in concrete prism mould (f) 2D bespoke 3D PLA connection for wall panels

33 Davies, July 29, 2020



Tray to catch 
healing agentCMOD clip gauge

100 mm height

Healing agent

Concrete beam

5 mm notch

Single 
macro-crack

Timer

Load cell

Fig. 2. Test setup for three-point bending characterisation of pattern on fracture surface test
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(a) (b)

Fig. 3. Typical fracture surface showing spread of healing agent, a) Series 2: Time 60 s, (b) Series
2: Time 300 s

35 Davies, July 29, 2020



60 180 360
Exposure (s)

0

20

40

60

80

100

C
ra

ck
 c

o
v
er

ag
e 

(%
)

Specimen age 14 days

Specimen age 140 days

0 0.005 0.01 0.02
Pressure (bar)

0

20

40

60

80

100

C
ra

ck
 c

o
v
er

ag
e 

(%
)

60 180 360

Exposure (s)

0

20

40

60

80

100

C
ra

ck
 c

o
v
er

ag
e 

(%
)

Ambient curing

Water curing

0.1 0.2 0.3 0.4

CMOD (mm)

0

20

40

60

80

100

C
ra

ck
 c

o
v
er

ag
e 

(%
)

28 mm cover

44 mm cover

(a) (b)

(c) (d)

Fig. 4. Crack coverage as influenced by (a) healing agent pressure; (b) specimen age and healing
agent exposure time; (c) specimen curing and healing agent exposure time; and (d) CMOD and
cover to network

36 Davies, July 29, 2020



Set 1 - Cross-section Set 2 - Cross-section Set 3 - Cross-section

Set 4 - Plan view Set 5 - Plan view Set 6 - Elevation

Fig. 5. Flow network from Sets 1-6 (not drawn to scale)
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Fig. 6. General arrangement of three-point flexural testing
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Fig. 7. Generic three-point flexural test setup with pressure (a) Supply channels for air and healing
agent (b) Pressure supply system
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(a) (b) (c)

Fig. 8. Concrete slab mould flow network set-up (a) specimen 1 (b) specimen 2 (c) general support
and loading arrangement
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HA injection

Fig. 9. Wall panel testing arrangements (a) Wall panel part assembled prior to casting (b) Schematic
of healing agent (HA) injection point (c) Wall panel loading arrangement
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Fig. 10. Wall panel testing arrangements (a) Wall panel prior to casting (b) Network arrangement
and 2D connection detail (c) Vertical cantilever schematic (d) Wall panel prior to testing
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Fig. 11. Load against CMOD plots for idealised healing in cementitious materials showing the
strength and stiffness recovery index terms
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Fig. 12. Typical repeated healing responses comparing CA, SS and Control in Set 1
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Fig. 13. Load against CMOD for twin channel cyanoacrylate in Set 2
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Fig. 14. Load and pressure versus CMOD response for twin channel SS and control beams in Set 3

46 Davies, July 29, 2020



0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
CMOD (mm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L
oa

d 
(k

N
)

SS Load Cycle 1
SS Load Cycle 2
Control Load Cycle 1
Control Load Cycle 1

Fig. 15. Load versus CMOD for SS and control beams during re-loading phase in Set 3
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Fig. 16. Load versus centre displacement of slab for SS vascular network and control slab
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(a) (b)

(c) (d)

Fig. 17. 2D channels in slab testing a) 1st stage peak load b) 1st stage after unloading c) 2nd stage
loading to failure d) Post-test panel condition for channels at 45◦ to the reinforcing bars
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(a) (b)

(c) (d)

Fig. 18. Demonstration panel with healing agent supplied (a) Flow network exterior channel
arrangement (b) Filling of flow network and evidence of leakage through crack (c) Indication of
main horizontal crack location and healing agent leakage (d) Post-test panel condition
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(a) (b) (c)

Fig. 19. Site trial (a) Panel E containing vascular networks with healing agent pump arrangement
(b) Closeup of crack with healing agent leaching (c) DIC strain plot panel E Control with vascular
networks at a load of 20 kN
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Fig. 20. Load versus CMOD for initial and final loading of site trial panel E
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