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Abstract

The mixing and transport properties of bubble plumes make them an interest-

ing and unique component of environmental and engineering applications, such as

destratification and aeration of lakes or reservoirs, prediction of gas release from ac-

cidental well blow-outs or from natural vents, chemical and/or nuclear reactors. Un-

derstanding the hydrodynamics of the interaction between the gas and liquid phases

is essential to predict more accurately their movement and therefore to achieve more

efficient results in the aforementioned applications. The description of multi-phase

flows has been a challenging task for both Computational Fluid Dynamics modellers

and experimentalists, due to the different treatment of the carrier and dispersed

phases.

Experimental studies have provided valuable information mainly about the bub-

bles’ characteristics, whilst numerical methods arise as a tool to be used for more

detailed study not only of the dispersed phase, but also for the surrounding con-

tinuous phase. In this thesis, a high-fidelity large-eddy simulation computational

approach is adopted, including a Eulerian-Lagrangian method for the description

of the dispersed phase. The combination of these numerical methods offers balance

between computational resources and accuracy. The numerical approach is applied

and validated with simulations of multi-phase plumes in crossflow and stratified am-

bient flow. A detailed investigation of the flow mechanisms and the interaction of

liquid-gas phases are visualized through 2D and 3D streamlines, isosurfaces of and

velocity contours. The numerical results have been thoroughly validated against

experimental studies.

This study is among the first to attempt the case of bubble plume in crossflow

numerically with a 3D code. And most likely the first one to employ an E-L ar-

rangement, which is, given the limitations of interface tracking methods, among the

most accurate applicable to this case. The results are reliable (given by the vali-

dation) and the insights provided (such as the Reynold stresses and the turbulent

structures) cannot be predicted by other models.
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Chapter 1

Introduction

1.1 Motivation

Multi-phase plumes are buoyancy driven flows where the buoyancy is provided by

a continuous release of an immiscible dispersed phase, such as gas bubbles, liquid

droplets or solid particles (Socolofsky and Adams, 2002). This study is mainly

focused on gas bubble plumes, i.e. air bubble plumes. Gas bubble plumes are widely

present in natural environments and engineering applications, such as aeration of

reservoirs (Fig. 1.1(c) and Fig. 1.1(d)), nuclear reactors (Fig. 1.1(b)), gas leakage

from natural vents or/and deep sea blowouts (Fig. 1.1(a)).

Destratification (mixing) or aeration of lakes and/or reservoirs can be achieved

by addition of oxygen in order to maintain or improve the water quality for ma-

rine/freshwater life and aesthetic reasons (Imberger and Patterson (1989); McGinnis

et al. (2004); Schladow (1992)). Thermal stratification during summer may result

in lowered dissolved-oxygen levels below the thermocline of lakes and reservoirs. To

avoid further deterioration of water quality, artificial destratification has been prac-

ticed (Beutel and Horne, 1999). Similarly, bubble plumes can be applied to prevent

ice from river surface during winter (Ashton, 1982).

Under this scope, Cardiff Bay Barrage aeration system (Fig. 1.1(d)) has been an

example of successful application of bubble plumes (arup.com 2018). Cardiff Bay

Barrage was built due to the urban regeneration scheme of an area covering 11km2

of South Cardiff and the former docklands. The barrage allows the formation of

a freshwater lake, preventing the area from flooding, whilst investments were also
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attracted into the area. It was completed in April 2001, creating an impoundment

of some 1.87km2 and containing 16m3 of water. The Cardiff Bay Barrage Act 1993

requires that the dissolved oxygen content throughout the bay is maintained at

5mg/l or greater. However, model studies and actual measurements showed that this

body of water has a tendency to display low oxygen conditions towards its bed during

the summer months (xylemanaltics.co.uk 2000). The installation of the aeration

system was decided because it was the most affordable and most effective solution,

as it increases dissolved oxygen by circulating the water within the impoundment

for surface reaeration of the water body. Other benefits include destratification and

the oxidation of benthic sediments. The work, conducted by Arup CO, included the

supply and installation of 28.8km of reinforced self-sinking airlines at the bottom of

the lake and in-flowing rivers.

Gas leakage, such as methane, from natural vents or accidental deep sea blowouts

of gas and/or oil (Socolofsky et al. (2015); Yapa et al. (1999)) could be caused by

deepwater oil and gas exploration, which results the release of multiphase plumes

of oil and/or gas in the ocean. A recent example is the Deepwater Horizon oil

spill in the gulf of Mexico in April 2010, which is considered to be the largest

marine oil spill in the history of the petroleum industry. A key feature of the

multiphase plumes in these examples is their ability to mix and transport with the

surrounding water. Thus, the efficiency and performance of design would benefit

from better understanding of bubble plume behavior depending on the ambient flow

characteristics. For oil-well blowouts, mixing and transport determine the locations

and toxicity of the impact; hence, mitigation and risk assessment benefit from better

understanding of mixing processes in multiphase plumes.

Many processes in chemical, pharmaceutical and nuclear industry involve turbulent

gas-liquid flows. The phenomena encountered in these processes are highly complex,

such as those in bubble column reactors (Joshi, 2001). In a bubble column reactor,

the flow patterns are generated not only by the interactions between the phases on a

macroscopic scale, but also relate to small scale flows such as the wakes behind indi-

vidual rising gas bubbles. The various scales interact and create complex, turbulent

flow that is characterized by unsteady (time-dependent), three-dimensional wide

range of time and length scales of turbulence, from small vortices shed by bubbles
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(a) Methane bubbles. Source: Watts, 2018 (b) Bubble swarms oscillating on sparger plate. Source:
Rampure et al., 2009.

(c) Lake aeration (d) Cardiff bay aeration. Source: arup.com 2018.

Figure 1.1: Bubble plumes applications
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to macroscopic circulation patterns with the size of the reactor. These flow patterns

relate to the operating and design variables. Therefore, a descriptive engineering

model which provides thorough understanding of the hydrodynamics in gas–liquid

bubbly flows is essential for analyzing, optimizing, designing and scaling-up of these

processes.

Environmental conditions, such as ambient currents and stratification, are very in-

fluential in determining the behaviour of multiphase plumes in their applications. In

the presence of ambient current, a multiphase plume will be deflected downstream.

As the current becomes stronger, it starts to strip the entrained continuous phase

fluid away from the dispersed bubbles, drops, or particles, reducing upward flux of

entrained water. Eventually, when the crossflow becomes strong enough, the plume

may reach an equilibrium condition where inflow through the plume leading edge is

matched to outflow in the downstream wake. In this condition, the upward velocity

of entrained fluid is minimized.

In spite of the important influence that crossflow and/or stratification can have on

the behaviour of multiphase plumes, there are comparatively few numerical studies,

using integral models, for multiphase plumes in the presence of currents (e.g. Dis-

sanayake et al., 2018; Johansen, 2000; Yapa et al., 1999; Lima Neto et al., 2007),

and a few quantitative data for velocity fields of multiphase plumes in crossflow (i.e.

Zhang and Zhu, 2013; Davidson and Pun, 1999; Socolofsky et al., 2015). To opti-

mize the application of multiphase plumes in environments where currents and/or

stratification are present, it is important to improve the knowledge of the behaviour

and performance of the multiphase plumes in the aforementioned ambients. For this

purpose, this dissertation applies a Large-Eddy simulation method to study bubble

plumes, a particular case of a multiphase plume, in crossflow and stratified ambi-

ent. This study particularly focuses on the understanding of physical mixing and

transport processes in air bubble plumes and the influence of bubble plume on the

surrounding environment.
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1.2 Numerical methods of two-phase flows/ Cur-

rent challenges

The understanding of the underlying physics of the interaction between the gas and

liquid phases has been a challenging task for both Computational Fluid Dynamics

modellers and experimentalists. Numerous numerical 2D and 3D simulations have

been performed in order to describe and capture the structures of multi-phase plumes

(and single-phase plumes) in stagnant ambient fluid.

Multi-phase flows problems require that the carrier and the dispersed phase are

treated with different approaches. Three main approaches have been developed in

order to simulate the continuous phase and they can be categorized from low to high

computational cost into: 1) Reynolds-Averaged Navier Stokes simulations (RANS)

with different closures, mostly k-ε model, that models the entire turbulent spectrum

through a turbulence model, solving for the time-averaged flow only; 2) Large-eddy

simulation (LES) models that resolve the large-scale and most energetic turbulent

motions directly and model only the unresolved subgrid-scale (SGS) effects; and 3)

direct numerical simulation (DNS) models that directly resolve the entire turbulent

spectra. Even though RANS methods were largerly used until the last decade due

to their low computational cost, they rely on empirical closure models in order to

simulate the turbulence in the flow. Multi-phase problems though are characterized

by significant anisotropic turbulence triggered by the precence of the bubbles in the

continuous flow, contrasting the main assumption of RANS models. DNS meth-

ods are considered currently as the most accurate approach for the description of

turbulent flows, and hence multi-phase flows. However, the high computational re-

quirements of DNS limits the application of the method to fundamental research on

the liquid-particles interaction, preventing its employment for problems with large

number (thousands or even millions) of particles. LES sits between RANS and DNS,

and hence it is a compromise of accuracy and computational cost.

Regarding the dispersed phase simulation and the coupling with the continuous

phase, three main approaches have been adopted: 1) Eulerian-Eulerian (EE) ap-

proach, i.e. both the carrier phase and the gas phase are computed in the same

static Eulerian framework, 2) Eulerian-Lagrangian (EL), i.e. the carried liquid is
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calculated as in (1) and the gas phase is treated as Lagrangian markers, and (3)

Interface Tracking (IT), i.e. the carried liquid is calculated as in (1) and some fea-

tures of the interface between liquid and gas phases are resolved by the numerical

method. Eulerian-Lagrangian based Large-Eddy Simulation (EL-LES) employs La-

grangian Particle Tracking (LPT) to simulate the dispersed phase. Each bubble is

represented by a Lagrangian marker which describes a trajectory across the Eulerian

mesh according to its own motion equations. EL gives detailed information about

every bubble’s position, force and velocity. It is more expensive than EE because

each particle requires the calculation of a set of equations and a mapping procedure

between the Lagrangian and Eulerian coordinates (Sokolichin et al., 1997).

Eulerian-Lagrangian based Large-Eddy Simulation (EL-LES) sits somewhere be-

tween EE-LES and IT-LES and it employs Lagrangian Particle Tracking (LPT) to

simulate the dispersed phase (Dhotre et al., 2013). Each bubble is represented by a

Lagrangian point which moves freely inside the Eulerian fluid mesh according to the

Newton’s second law of motion and interacts with the carrier fluid. Interface Track-

ing (IT) methods are the most accurate approach to a bubbly flow but also the most

expensive, IT methods are extremely useful for the understanding of the underly-

ing physical mechanisms of the fluid-bubble interactions but should be considered

complementary to other, more practical approaches. Bubble-resolved simulations

have the ability to predict the generation of bubble-wake-induced turbulence which

usually adds to the carrier liquid turbulence and which is reflected in the energy

spectrum. Different IT techniques have been developed such as Level Set, Volume

of Fluid, Front Tracking or Constrained Interpolation Profile.

1.3 Objectives and accomplishments

The main aim of this thesis is the development, refinement and application of a

computational methodology in order to simulate the hydrodynamics of gas bubble

plumes in crossflow and vertically stratified ambients, with emphasis on the physics

and the turbulent structures created by the interaction of bubble plumes with the

ambient flow and vice versa. The former has been achieved with the validation of the

proposed numerical approach with bubble plume experimental results in crossflow
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and stratified flows. The latter is accomplished with the study of the effect of

ambient currents and stratification in the bubble plumes. The accomplishment of

these objectives aim at a better understanding of the underlying physics of the

bubble plumes, so that the performance of air bubble plumes will be improved and

they can be used as an effective tool for numerous environmental applications.

This study has built on previous studies conducted in the Hydraulic Research Cen-

tre (HRC) of Cardiff University with the aid of the in-house-built 3D LES finite-

difference Fortran code, named Hydro3D. An EL approach will be applied within a

LES turbulence framework. The main challenge was the refinement of the ambient

current and stratified ambient conditions in the Hydro3D code and the refinement

of the Lagrangian tracker. The applied methodology is presented in Chapter 4. The

validation and application are presented in Chapter 5 and 6.

The structure of the thesis is as follows:

• Chapter 2: Literature review of continuous (liquid) turbulent phase using LES. De-

tails about numerical models to describe turbulence, discretization methods, bound-

ary and initial conditions commonly used in LES problems are reviewed.

• Chapter 3: Literature review of dispersed (air) phase, with a review for the forces

present between the dispersed and continuous phase and a review of previous dis-

persed bubbly flows in stagnant ambient.

• Chapter 4: The governing Navier-Stokes equations and the energy equation used in

the in-house code Hydro3D are shown together with the description of the fractional-

step method adopted. The Eulerian-Lagrangian Particle tracking algorithm for the

description of the dispersed phase is presented. The Synthetic Eddy Method (SEM),

which is used to generate the velocity inlet boundary for crossflow cases, and the

Immersed boundary method, employed to represent the diffuser, are presented.

• Chapter 5: The computational approach is applied to the simulation of bubble

plumes in crossflow. An initial validation is performed by analysing and comparing

the numerical results with experiments conducted in Texas A&M University. Dif-

ferent crossflows have been applied to study the accuracy of the EL-LES method to

represent moving bubbles in crossflow. The LES-computed velocities and Reynolds

stresses are plotted against the experimental data. The hydrodynamics and wakes

have been studied and visualised, too. The gas-liquid interaction is also highlighted
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for different gas flow rates.

• Chapter 6: The computational approach is applied for the simulation of bubble

plumes in a stratified tank. An initial validation is performed with comparing the

numerical results with experiments conducted by Socolofsky, 2001. The hydrody-

namics in the tank are visualized by means of streamwise velocity contours, 2D and

3D streamlines and isosurfaces.

• Chapter 7: Conclusions of the thesis and outlook of this research are included in

this chapter.
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Chapter 2

Literature Review - Turbulent

Continuous Phase

2.1 Role and Characteristics of Turbulence

Advanced numerical methods have been employed to study and solve complex

and/or practical problems using numerical computational methods, taking advan-

tage of increasing computational power. Almost all hydraulic flows (geophysical

and/or man-made) are turbulent, with the exception of groundwater flows. Turbu-

lence consists of unsteady and irregular eddies changing with time and this causes

an additional difficulty in obtaining reliable predictions. Because of the important

role of turbulence in hydraulic engineering problems, it is crucial that a realistic

description of turbulence and its effects is introduced in computational problems.

Eddies associated with turbulence increase the momentum, heat and mass transfer

and hence have significant influence on all aspects of the flow and associated phe-

nomena such as temperature, concentration, distributions, sediment transport, etc.

Therefore, a realistic simulation of the effect of turbulence is of major importance

for an accurate prediction of the flow and associated phenomena.

The increase in momentum transfer caused by the fluctuating turbulent motion in-

creases the friction on solid boundaries of the flow and as a consequence causes losses

in flows through conduits and around structures. It thereby determines the flow rate
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and pressure drop in conduits and the water level in open channels, and it also de-

termines the rate of energy dissipation. Turbulence has also a governing influence on

the details of the flow development, such as the velocity distribution, the pressure

distribution in the flow and along its boundaries and hence, the forces on structures,

including unsteady forces. For example, turbulence causes the velocity distribution

in pipe flow to be much more uniform than in laminar pipe flow (parabolic distri-

bution) and it is turbulence that causes secondary motions in non-circular conduits

and open channels.

The mixing due to the fluctuating turbulent motion is responsible for the spreading

of jets and the entrainment of ambient fluid and also the dilatation of discharged

pollutants; and this mixing is also responsible for the washing out of substances such

as pollutants from semi-enclosed regions like bays, harbours and groyne fields, and

the turbulence also governs the conditions in tanks and basins of all kinds, whether

there is flow through or stirring.

Turbulence is responsible for the suspension of sediment particles, counteracting

their settling by gravity, and it is also turbulence that erodes particles from a river

bed. Hence, both bed-load and suspended-load sediment transport are governed by

the turbulence motion.

Finally, turbulence also controls aeration by controlling the gas exchange and the

free surface between water bodies and the atmosphere. It also has a great influence

on the water quality by controlling flocculation and biological reactions within the

water body.

Turbulent motions carry vorticity with rotation energy axes in all directions. There-

fore, turbulent flows can be fairly irregular, unsteady and three dimensional, in con-

trast to laminar flows which are regular and can be steady as well as two-dimensional

or one-dimensional. Turbulence consists of a spectrum of eddy sizes, interacting with

each other. The eddy sizes may range from large eddies of the size of the flow domain,

e.g. the pipe diameter or jet width, corresponding to low frequency fluctuations, to

small eddies at which viscous forces act and dissipation takes place, corresponding

to high frequency fluctuations. Flow quantities such as velocity, temperature or

concentration undergo complex variations with space and time, manifested by tur-

bulent fluctuations. These turbulent fluctuations cause strong momentum, heat and
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mass transfer and greatly increase the molecular transfer. The increased transfer

and strong mixing are of the most characteristic features of turbulence. Therefore,

simulating turbulence and its effects can be challenging for the modeller.

2.2 Numerical Approaches for Turbulent Flows

In this section, the three main approaches for simulating turbulent motions and their

effects are briefly introduced. The complex details of turbulence are governed by the

same basic equations as laminar flows, namely the unsteady 3-dimensional Navier-

Stokes equations together with the continuity equation. In case of heat and/or mass

transfer, the corresponding scalar transport equation has to be added.

Direct Numerical Simulation (DNS) is the method developed to solve these equations

numerically, without introducing any model. In such an approach all scales must be

resolved. Hence, the size of the numerical mesh must be smaller than the size of the

small-scale motions where dissipation takes place. As the relation of the size of the

smallest eddies to the size of the large-scale motion and hence the flow domain varies

inversely with the Reynolds number (Reynolds, 1990) and the calculations always

have to be 3D, the number of grid points and the computing cost required increase

roughly with Re3. As a consequence, for Reynolds numbers of practical relevance

the number of grid points required becomes so large that the computational effort

required usually exceeds the available computational capabilities. Even at medium

Reynolds numbers and for simple flows, the computing effort is enormous. Hoyas

and Jimenez (2006) developed a DNS model for plane channel flow at Re=87000

(based on channel height and bulk velocity) performed on 1.8x10(10) grid points using

2048 supercomputing processors in parallel for half year. Hence, at present DNS is

not a method for practical calculations. However, it is a very useful tool for studying

the details of turbulence at lower Reynolds numbers as the complete information on

all details of the turbulent motion can be extracted from such simulations.

Computationally cheap numerical methods, without the direct solving of Navier-

Stokes equations for turbulent flow, are the Reynolds-Averaged Navier-Stokes (RANS)

methods. RANS methods are statistical methods in which the turbulent fluctua-

tions are averaged out and only equations governing mean-flow quantities are solved.
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Splitting up the instantaneous flow quantities into mean and fluctuating values and

then averaging the non-linear original Navier-Stokes equation leads to the appear-

ance of correlations between velocity fluctuations, which act like stresses on the

mean flow and are called turbulent or Reynolds stresses. They represent transport

of mean momentum by the turbulent fluctuations. Similarly, averaged scalar trans-

port equations contain correlations representing the transport of heat or mass by the

turbulent fluctuations. Hence, the correlations appearing in the averaged equations

express the effect of turbulence on the mean quantities. These terms are unknown

and must be described by a model before the mean-flow equations can be solved.

The computing effort for solving the RANS equations yielding the mean quantities is

much less than that required by DNS solving the fluctuating turbulent motion at all

scales. Hence, RANS calculations can be performed for realistic problems, even for

complex geometries and for larger flow regimes. A wide variety of RANS turbulence

models has been proposed and developed and an extensive literature exists on the

subject on such models (e.g. Rodi, 1993). Turbulence models of various complexity

are in use ranging from the simple mixing-length model to Reynolds-stress models

employing differential transport equations for the individual Reynolds stresses. Most

models used in practice employ the eddy-viscosity/diffusivity concept and estimate

the eddy viscosity by relating it to the mean-flow quantities via simple algebraic

relations (mixing-length model) or model transport equations for the characteristic

velocity and length or time scales of turbulence (e.g. k-ε model).

RANS methods are economical, but with limited generality and have difficulties

in coping adequately with many of the complex flow phenomena often found in

hydraulics and environmental flow problems, especially when large-scale structures

play a dominant role for the transport of momentum, heat and mass or when details

of the flow are important and need to be resolved, such as unsteady processes like

vortex shedding or bimodal flow behaviour and unsteady forces on structures or

bed elements. RANS methods can be used in unsteady calculations (URANS), but

basically they can only cope with the unsteadiness of the mean flow, e.g. when

the boundary conditions are time-dependent such as in tidal channel flow. They

are suitable only when there is a clear scale separation, i.e. when the time-scale

of the mean-flow unsteadiness is clearly larger than the time-scale of the turbulent

fluctuations. The latter cannot be resolved in such calculations.
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A method more suited and more powerful for solving problems involving the afore-

mentioned complex phenomena is the Large-Eddy Simulation (LES) technique. This

method is between DNS and RANS. Like DNS it also solves the 3D time-dependent

flow equations, but only for the larger-scale motions in the spectrum that can be re-

solved on a given numerical grid. The motions with scales smaller than the grid size

are filtered or locally averaged out and their effect must be accounted for by a Sub-

Grid-Scale (SGS) model. In contrast to a RANS model, which must account for the

effect of the entire spectrum of the turbulent motions, a SGS model must account

only for the high wave-number part of the spectrum with small-scale motions. The

effect of these is mainly dissipative and in some methods (implicit LES) is achieved

alternatively by using a numerical scheme which introduces some numerical dissipa-

tion. As LES solves the 3D time-dependent Navier-Stokes and continuity equations,

they are still computationally rather expensive, often because long running times

are necessary to obtain reliable statistics. Away from walls, the larger turbulent

eddies containing most of the energy and contributing most to the momentum, heat

and mass transfer are virtually independent of Reynolds number, so that here LES

does not have a Reynolds number problem as does DNS. However, near walls the

length scale of turbulence decreases with increasing Re so that the number of grid

points required to resolve adequately the near-wall zone increases approximately

with Re2. So, again such wall-resolving LES require so much computing effort that

their application is not possible at the high Reynolds numbers often occurring in

practice.

2.3 Navier-Stokes Equations and Reynolds Aver-

aging (RANS) Methodology

The Navier-Stokes equations, together with a corresponding equation for scalar

quantities such as temperature or species concentration, are the fundamental equa-

tions of all simulation methods for fluid mechanics, and hence turbulent flows. For

incompressible flows these equations expressing the conservation laws for mass, mo-

mentum, thermal energy/species concentration read in tensor notation:
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- Mass conservation: continuity equation

∂ui
∂xi

= 0 (2.1)

- Momentum conservation: Navier-Stokes equations

∂ui
∂t

+
∂uiuj
∂xj

=
1

ρr

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

+ g
ρ− ρr
ρr

(2.2)

- Thermal energy / species concentration conservation:

∂φ

∂t
+
∂uiφ

∂xi
= Γ

∂2φ

∂xixi
+ Sφ (2.3)

where ui is the instantaneous velocity component in the direction xi; p is the

instantaneous static pressure; and φ is a scalar quantity which may stand for either

temperature T or species concentration C. Sφ is a volumetric source/sink term

expressing, for example, heat generation due to chemical or biological reactions or

the settling of suspended sediment; ν is the kinematic (molecular) viscosity and Γ

is the diffusivity.

The Boussinesq approximation has been used in the above equations (2.1)-(2.3) so

that the influence of variable density appears only in the buoyancy term, which is the

last term of the right hand side (r.h.s) of Equation 2.2 involving the reference density

ρr and the gravitational acceleration gi in direction xi. Together with an equation

of state relating the local density ρ to the local values of T and C, Equations (2.1)-

(2.3) form a closed set and are exact equations describing all details of the turbulent

motion, including all fluctuations. The DNS method solves these equations with a

suitable numerical technique, introducing no model.

In RANS method, the turbulent fluctuations are averaged out by a time filter applied

to the fluctuating motion. In order to make clear the difference to the spatial filtering

used in LES, the basics of Reynolds averaging are briefly introduced first, restricting

the discussion to the velocity field. Time-averaged/filtered mean-flow quantities are
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introduced and defined as follows:

< ui >= uRANSi =
1

T

∫ T

0

uidt , < p >= pRANS =
1

T

∫ T

0

pdt (2.4)

The integration/averaging time T should be much larger than the time scale of

the turbulent fluctuations but smaller than the time scale of the mean motion if

this is unsteady. The instantaneous quantities are split up into mean values and

fluctuations around the mean, e.g. for ui:

ui(xi, t) = uRANSi (xi, t) + u
′

iRANS(xi, t) (2.5)

Introducing 2.5 into the continuity and the Navier-Stokes Equations (2.1) and (2.2)

and averaging according to the procedure in Equation (2.4) yields the Reynolds Av-

eraged Navier-Stokes (RANS) equations governing the mean-flow quantities uRANSi

and pRANS calculated by the RANS method. These equations are formally iden-

tical to Equations (2.10)-(2.12) given later. When performed on the non-linear

term ∂uiuj/∂xj in the Navier-Stokes equations, the splitting and averaging pro-

cedure leads to the introduction of correlations between fluctuating velocities <

u
′
iRANSu

′
jRANS >. These act like stresses and represent the Reynolds stresses τRANSij =

− < u
′
iRANSu

′
jRANS > expressing the entire effect of turbulence on the mean motion

and require modelling, i.e. a RANS model. Such a model accounts for all scales,

including the effect of the large, energy containing ones that depend strongly on the

boundary conditions and hence the flow situation considered. For this reason, it has

been found impossible to develop a general model which can cope with all situations

of practical interest.

2.4 The Idea of LES

Turbulence is a multi-scale phenomenon with a wide spectrum of scales of the fluid

motion. Large and small scale motions have quite different features. The idea of

LES is to calculate explicitly the motion of large scales (or eddies) by solving the

governing 3D time-dependent equations and to model the motion of small scales.

This avoids the problem of RANS method of having to model also the large-scale,
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energetic and boundary-condition dependent motion and at the same time the prob-

lem of DNS of having to resolve the small-scale dissipative motion. The latter, which

represents only a small part of the spectrum, is more universal and hence easier to

model than the large-scale motion, and it has been found that quite simple mod-

els are often sufficient. The fact that the small-scale motion does not have to be

resolved removes the restriction of the method to low Reynolds number situation,

which is inherent in DNS.

Figure (2.1a) illustrates the concept of LES in relation to energy flux and energy

spectrum. The large scales extract energy from the mean flow (production zone)

and transfer it to smaller scales in the energy cascade, and at the small eddies, which

are modelled in an LES. The kinematic energy is withdrawn by the mechanism of

dissipation (Rodi et al., 2013). An example of turbulent spectrum is given in Figure

(2.1(b)), showing the distribution of the kinetic energy of the fluctuations with the

wave number k of the turbulence which is proportional to the frequency but is the

inverse of the eddy sizes. The kcut−off vertical dashed line (Fig. 2.1(b)) which

defines the separation between large eddies and small scale turbulence is achieved

via spatial filtering introduced by (Leonard, 1975). This filtering is based on the

assumption that the small scales are isotropic and thus easier to model than the large

scales which are more energetic and anisotropic. In a well-resolved LES, the cut-off

separating the resolved and modelled length scales is usually found in the inertial

subrange prior to the dissipation range, as depicted from Figure 2.1. Hence, the

most important interaction to be accomplished by the SGS model is that between

the large-scale energy-containing unresolved scales and the smallest resolved scales.

The large eddies are generally the most energetic ones and extract energy from the

mean motion; they break up into smaller eddies and transfer their fluctuating en-

ergy to the smaller eddies with higher frequency fluctuations, a process called energy

cascade. This breaking-up and transfer to smaller and smaller eddies continues un-

til viscous forces become active and the fluctuations are damped. The small-scale

turbulent motions, where viscous forces act, and also those in the inertial sub-range

behave fairly randomly, so that the fluctuations can be described by a Gaussian

probability density function. The larger eddies interact with the mean flow and de-
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(a) Conceptual model of the LES model. Source: Stoesser et al.,
2015

(b) Conceptual model of the LES model, adapted from Breuer,
2002

Figure 2.1: Concept of LES in relation to energy flux and energy spectrum
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pend on the boundary conditions and are generally not entirely random, but often

have some order and some correlated behaviour and are hence labelled as coherent.

These coherent structures have a life-cycle, including birth, development and con-

vection by the mean motion during which they retain their character, interaction

between themselves and finally breakdown.

The first step in understanding the LES is to separate the turbulent motion into large

scales or eddies to be resolved and small scales to be modelled. Several approaches

for this separation will be introduced in the following. Ideally the separation should

occur in a spectral region where only energy transfer takes place (i.e. no energy

input from the mean motion, no dissipation), that is in the inertial subrange (see

spectrum in Figure 2.1) so that clearly the energetic, boundary-condition dependent

eddies are resolved and only the dissipative motion needs to be modelled. This is not

always feasible, but at least the resolved eddies should contain most of the energy

(i.e. 80% − 90%). The scale separation is in practice often dictated by the grid

fineness that can be afforded. Hence, LES can also be considered as a method that

resolves as much of the motion as possible on a given /affordable grid.

2.4.1 Spatial Filtering / Averaging and Resulting Equations

As opposed to the RANS approach involving time averaging or filtering, in LES the

small-scale motion is removed by spatial averaging or filtering. Local quantities f

are then split into resolved quantities f and deviations f
′
.

f = f + f
′

(2.6)

In practice, on a given grid, it is only the motions with scales larger than the mesh

size that can be resolved, and hence the removal of the small-scale motion, and

hence the averaging, is performed mostly by the numerical grid. Schumann (1975)

introduced a method that resolves directly the discretized volume-balance equations

related to the numerical solution. Motions with scales smaller than the mesh size

fall through the mesh, and the quantity that is calculated is an average over the

control volume formed by the grid.

A more general method independent of the numerical solution is filtering, first pro-
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posed by Leonard (1975). The resolved quantity f is in the filter method defined

by:

f(r, t) =

∫
D

G(r, r
′
,∆)f(r

′
, t)dV

′
(2.7)

Here r is the location where f is to be determined and r
′

is the location where f

is considered in the spatial integration; the integration is performed over the entire

flow domain D, and G is a compactly supported (i.e. f assumes large values when

r
′ → r filter function with filter width ∆, normalized so that∫

D

G(r, r
′
,∆)dV

′
= 1 (2.8)

For one spatial direction equation (2.7) reads:

f(xi, t) =

∫
Di

G(xi, x
′

i, t)f(x
′

i, t)dx
′

i (2.9)

The most commonly used filter functions are the top-hat filter (Fig. 2.2(a)), the

cut-off filter (Fig. 2.2(b)), and the gauss filter (Fig. 2.2(c)). For the top-hat filter

G = 1
∆

for |x − xi| ≤ ∆/2 corresponding to averaging in this region, otherwise

G = 0. The cut-off filter corresponds to cutting off all fluctuations beyond a certain

wave number kcut−off in the spectrum while top-hat and Gaussian filters lead to

a spectral distribution as shown in Figure 2.1(b) by the line designated LES. The

larger the filter width ∆, the larger is the part of the small-scale fluctuations filtered

out and the smoother the variation of f . It should be noted that, as opposed to

Schumann’s volume-balance approach, filtering leads to a continuous f -function.

Also, in general, applying the filter twice smooths further the f-distribution (i.e.

f 6= f and also f ′ 6= 0) (i.e. Pope, 2000; Sagaut, 2006; Lesieur et al., 2005).

Applying the filter operation to Equations (2.1)-(2.3) leads to the following filtered

equations governing the resolved quantities in LES:

- Continuity equation:
∂ui
∂xi

= 0 (2.10)
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(a) Top-hat (b) Cut-off (c) Gauss

Figure 2.2: Filter functions G commonly used in LES

- Navier-Stokes equations:

∂ui
∂t

+
∂ui uj
∂xj

=
1

ρr

∂p

∂xi
+

∂

∂xj

(
ν
∂ui
∂xj

)
−
∂τSGSij

∂xj
+ gi

ρ− ρr
ρr

(2.11)

- Scalar transport equation:

∂φ

∂t
+
∂ui φ

∂xi
=

∂

∂xi

(
Γ
∂φ

∂xi

)
− ∂qSGSi

∂xi
+ Sφ (2.12)

The non-linear term uiuj in the Navier-Stokes equations (2.2) leads originally to the

filter quantity uiuj in the convection term. When this is expressed as convection of

the resolved quantities ui uj, the difference

τSGSij = uiuj − ui uj (2.13)

represents the effect of the unresolved fluctuations on the resolved motion, acting

like stresses which are therefore called subgrid-scale stresses. These stresses need to

be modelled by a subgrid-scale model (see Section 2.5). They are analogous to the

Reynolds stresses τRANSij in the RANS approach, but while the latter represent the

effect of the entire turbulent fluctuations on the mean motion, τSGSij only accounts

for the effect of the small-scale motion. Similarly, in the filtered scalar transport

equation (2.12) a term

qSGSi = uiφ− ui φ (2.14)

appears which is the subgrid-scale turbulent flux and represents the effect of the

20



CHAPTER 2. LITERATURE REVIEW - TURBULENT CONTINUOUS
PHASE

unresolved small-scale motion on the resolved scalar field.

When writing according to Equation (2.6) the unfiltered velocities ui and uj ap-

pearing in the terms on the r.h.s of (2.13) as sum of the resolvable velocities (ui and

unresolved fluctuations (u
′
i), τ

SGS
ij can be split up to 3 terms, namely the Leonard

stresses describing the interaction of fluctuations of the larger-scale resolvable field,

cross terms standing for the interaction of resolvable and unresolvable fluctuations,

and a fine-scale term representing the interaction of unresolvable fluctuations, u
′
iu
′
j.

In Section 2.5, models for the stress term τSGSij that appears in the filtered equation

(2.11) are presented.

2.4.2 Relation of LES to DNS and RANS

When the filter width or grid size is small enough so that the fluctuations of all

scales are resolved, the subgrid-stresses τSGSij go to zero and the original Navier-

Stokes equations (2.1)-(2.2) are solved so that the simulation is a DNS. This oc-

curs automatically because subgrid-scale models yield τSGSij → 0 when the filter

width/grid size approaches zero. In the other extreme, i.e. the RANS method,

all fluctuations are (time-)filtered/averaged out and only mean-flow quantities are

solved for. When the mean flow is unsteady, the method is called URANS (Un-

steady Reynolds-Averaged Navier-Stokes) and the time-filtering/averaging removes

only the turbulent fluctuations, but not the lower-frequency unsteadiness of the

mean flow. In any case, the effect of the entire turbulence, i.e. its fluctuations at all

scales, is represented by the Reynolds stresses, τRANSij , and needs to be accounted

for by a model. In URANS, the equations for solving the mean-flow quantities are

the same as the LES equations (2.10)-(2.12) for solving the resolved quantities, and

both contain a turbulent stress term τij that needs to be modelled. The difference

lies in the model for this stress; while τSGSij requires only a model for the effect of

the unresolved small-scale motion, τRANSij requires a model for the entire spectrum

of the fluctuations. A RANS model involves velocity and length scales of the turbu-

lence that are characteristic of the energetic, larger-scale motion contributing most

to the Reynolds stresses, and the results of a RANS/URANS calculation should be

independent of the numerical solution of the equations, including the spatial and

temporal discretization. On the other hand, in LES the SGS model depends on the
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scale separation, i.e. the filter width and in practice generally the grid size, which

determines the length scale of the small-scale motion to be modelled by the SGS

model; and when the grid size determines the scale separation, the solution is grid

dependent and as the discretization is refined approaches the DNS solution.

2.5 Subgrid-Scale (SGS) models

Spatial filtering/averaging introduces the Subgrid-Scale (SGS) stresses τSGSij and

scalar fluxes qSGSi for the resolved quantities in the equations used in LES, repre-

senting the effects of the unresolved, small-scale turbulence on the resolved/filtered

motion. The most common method to account for this effect is through an ex-

plicit SGS model for τSGSij . An other approach is to account for the SGS stresses

through numerical dissipation introduced by the solution procedure (Implicit Large-

Eddy Simulation (ILES) methods). However, in hydraulic flows, the most common

method is still the use of an explicit SGS model, and in this section some of the

most widely used SGS models are introduced.

The primary goal of an SGS-model is to dissipate the correct amount of energy

from the directly calculated large-scale flow and to allow for a physically realistic

exchange of energy between the resolved scales. A successful SGS model should then

yield accurate statistics of the energy-containing scales of motion that are resolved

by the simulation. The most important interactions to be modelled by the SGS

model are those between the largest unresolved (subgrid) scales and the smallest

resolved scales. In a well-resolved LES, the boundary between the resolved (larger)

and unresolved (smaller) scales is situated within the inertial subrange (indicated

by the thin dashed line in the spectrum in Figure 2.1). The effect of the SGS model

on the spectral distribution of energy is visible in the vicinity of the cut-off wave

number. Beyond this wave number, i.e. at smaller scales, the SGS model in a LES

causes much faster energy dissipation than in the DNS. Figure 2.3 demonstrates the

effect of the filter width and hence cut-off wave number on the resulting spectrum

in a flow. In the left spectrum a fairly large filter width is used and hence a small

cut-off wave number. Thus, the amount of unresolved scales is relatively large so

that more SGS modelling effort is required, especially when the unresolved scales
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(a) LES spectrum with a large filter width (b) LES spectrum with a small filter width

Figure 2.3: Effect of filter width on the energy spectra of LES vs. DNS spectrum

represent energy-containing, anisotropic eddies. This approach is commonly referred

to as Very-Large-Eddy Simulation (VLES). On the other hand, when a considerably

smaller filter width is chosen so that the cut-off wave number is at the other end of

the inertial subrange (Fig. 2.3(b)), more of the motion is resolved and less modelling

effort is required so that quite simple SGS models can be employed.

A well-resolved Large-Eddy Simulation consists of energy conservation, hence one

important requirement of a SGS-model is to provide physically correct dissipation,

which is the only way the turbulent kinetic energy is removed from the resolved

scales. A too large dissipation will artificially increase the diffusive fluxes leading to

excessive damping of the resolved scales, decreasing the accuracy of the simulation.

A too small SGS-model dissipation will result in a pile up of energy around the

cut-off wave number. This results in inaccurate flow statistics or unstable numerical

solution. Generally, the subgrid-scale stress tensor τSGSij is split into an isotropic

and an anisotropic components as:

τSGSij = τij︸︷︷︸
anisotropic

+
1

3
τSGSkk δij︸ ︷︷ ︸
isotropic

(2.15)

The isotropic part of the SGS stress tensor contains the summation of the SGS

normal stress τSGSkk which is twice the kinetic energy kSGS of the SGS fluctuations
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and acts like a pressure. This component is therefore usually added to the filtered

pressure term, which leads to a new pressure variable:

P = p+
1

3
τSGSkk (2.16)

This separation of the isotropic stress from the anisotropic part is convenient when

employing SGS models relating τij to the gradients of the resolved velocity via an

eddy viscosity. This is in direct analogy to the use of such a relation in RANS

models. The main modelling effort is then shifted to the determination of the eddy

viscosity νt.

In the following, the most commonly used eddy viscosity models are introduced

in some detail, such as the purely algebraic Smagorinsky model and its dynamic

variant, the WALE model, and a model employing a transport equation for the

subgrid-scale fluctuating kinetic energy kSGS. Only a brief overview is given of

further models not based on the eddy-viscosity concept, as these are not so widely

used.

2.5.1 Smagorinsky Model

The most popular eddy-viscosity SGS model is the Smagorinsky model (Smagorin-

sky, 1963). In analogy to the viscous stress in laminar flows, the anisotropic stress

tensor τij is approximated by relating it to the resolved rate of strain, Sij, which

involves velocity gradients, via an artificial eddy (or turbulent) viscosity νt as:

τij = −2νtSij in which Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.17)

It must be emphasized that the eddy viscosity is not a fluid property but character-

izes the unresolved sub-grid-scale fluctuations and depends on the resolved velocity

field, ui. Due to the decomposition of the SGS stress into an isotropic part and an

anisotropic part in Equation (2.15), the latter can combined with the viscous stress

term in Equation (2.11) and can be treated together in a numerical procedure.
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From dimensional analysis follows that

νt ∝ lq (2.18)

where l and q are respectively characteristic length and velocity scales of the subgrid-

scale motion.

The selection of the characteristic length-scale l in LES is much simpler and more

straightforward than in RANS modelling. In LES, the largest scales of unresolved

turbulence, which interact most actively with the resolved motion, are of the size of

the filter width ∆. Hence, the characteristic length-scale in the Smagorinsky model

is chosen as:

l = Cs∆ (2.19)

in which Cs is the Smagorinsky constant, an empirical parameter whose value can

be obtained from theoretical considerations or a-priori and a-posteriori tests. The

determination of the characteristic velocity scale can be done in analogy to Prandtl’s

mixing length theory, with the advantage that in LES the length scale is known

already.

This leads to:

q = l ·
∣∣Sij∣∣ = Cs∆ ·

∣∣Sij∣∣ (2.20)

which yields the eddy viscosity as:

νt = l · q = l2
∣∣Sij∣∣ = (Cs∆)2 ·

∣∣Sij∣∣ (2.21)

The model has one adjustable parameter, the Smagorinsky constant Cs, which is

assumed constant in the original formulation of the model. For isotropic turbulence,

Lilly (1992) predicted Cs = 0.165 based on assuming local equilibrium in the inertial

subrange. For shear flows (e.g. channel flows) optimum values were found to be

Cs = 0.065− 0.1 (Nezu and Nakagawa, 1993), which can yield a six times difference

in the values of νt predicted by the Smagorinsky model. An important shortcoming

of the Smagorinsky model is that νt as predicted by Equation (2.21) does not reduce

to zero in the viscous sublayer, in which turbulent fluctuations should be damped
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as impermeable surfaces (i.e. walls) are approached. This is due to the fact that

large velocity gradients prevail in the boundary layer and result in high values of

the rate of strain |S|. Hence, the turbulent eddy viscosity νt needs to be damped

near impermeable surfaces by a damping function. The most popular of such f(z+)

was proposed by Van Driest (1956) in the mixing length RANS model. It is used in

the Smagorinsky model to reduce the length scale l:

l = Cs∆ · f
(
z+
)

with f
(
z+
)

= 1− e−z+/A+

(2.22)

where z+ = zu∗/ν is the normal distance to the wall z in wall units and A+ is an

empirical constant (A+ = 25).

The Van Driest damping function is easy to implement but does not always produce

accurate results. This is partly due to the fact that with the original van Driest

damping (Eq. 2.22) all modelled SGS stresses scale linearly with the distance from

the wall, i.e. τij ∝ (z+), while the SGS components of the SGS stress tensor should

scale with the cubed distance from the wall, (i.e. τij ∝ (z+)3 according to Hinze,

1975). Hence, Piomelli et al. (1989) proposed a slightly modified version of the Van

Driest (1956) damping function:

f
(
z+
)

=

√
(1− e−z+/A+)

3
(2.23)

which provides the correct behavior for the most relevant components of the SGS

stress tensor and is currently more in use than Equation (2.21).

A second shortcoming of the Smagorinsky model is that it cannot be used to calculate

laminar-turbulent transition since the eddy viscosity is only zero if velocity gradients

are absent, so that νt ≥ 0 while in laminar flow νt should be zero. The fact that in

turbulent flows νt ≥ 0 implies that the kinetic energy is transferred only from large

resolved scales to small scales, i.e. the Smagorinsky model is strictly dissipative

and does not allow for a backscatter of energy from small unresolved scales to large

scales.

Furthermore, in complex highly three-dimensional flows (e.g. flow around bluff bod-

ies) the optimum value of CS varies locally within the flow domain and is basically

impossible to determine a priori. The Smagorinsky constant needs to be further
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modified to account for rotation and stratification effects.

Despite the above mentioned shortcomings of the Smagorinsky model, it has been

widely applied to many turbulent flow studies in hydraulic engineering. This is due

to its simplicity in terms of calculating the SGS stresses via an algebraic relation

and in terms of implementation into a code, for which the total viscosity term can

be introduced as:

νtotal = ν + νt (2.24)

Furthermore, the Smagorinsky model has only one adjustable parameter, the effect

of which on the statistics of the flow vanishes when decreasing the filter width.

Several modified eddy viscosity models were proposed to alleviate the deficiencies of

the classical Smagorinsky model. They include the use of a modified velocity scale

for the largest unresolved scales which also results in a model that does not need

wall damping (WALE model), the use of a dynamic procedure to calculate the model

coefficient (dynamic Smagorinsky model) and solving a transport equation for the

SGS kinetic energy kSGS which provides the velocity scale of the largest unresolved

scales (one equation SGS models). These three approaches will be discussed in the

following subsections.

2.5.2 Dynamic Procedure

The main idea of the dynamic procedure is to calculate the model parameters of a

base model (e.g. the constant CS when applied to the Smagorinsky model) by using

the information available from the smallest resolved scales (Germano et al., 1991).

To achieve this, Germano et al. (1991) suggested to introduce a second filter, i.e. a

test filter, with width ∆̃ larger than the original filter ∆, and to employ the same

model for calculating the sub-grid-scale stresses τij and the stresses Tij resulting

from the sub-test-filter motions. In analogy to Equation (2.13) defining τij, the

stresses Tij read:

Tij = ũiuj − ũiũj (2.25)

where the tilde represents the second (test) filter operation. When the correlation

uiuj in Eq. (2.25) is decomposed into the contribution uiuj resolved on the grid ∆

and the stresses τij and the second filter is applied, there follows the relation known

27



CHAPTER 2. LITERATURE REVIEW - TURBULENT CONTINUOUS
PHASE

as Germano’s identity:

Tij = −Lij + τ̃ij (2.26)

where

Lij = −ũiuj + ũiũj (2.27)

representing the part of the sub-test-scale stresses that are resolved between ∆̃ and

∆, i.e. the smallest resolved scales. This term can be calculated explicitly from the

resolved velocities.

For determining the value of the constant CS in the Smagorinsky model from the

smallest resolved velocities, this model (Equations 2.17 and 2.21) is now applied to

represent the anisotropic part of both Tij and τij in Equation (2.26):

τij = −2 (CS∆)2
∣∣Sij∣∣Sij (2.28)

Tij = −2
(
CS∆̃

)2 ∣∣∣S̃ij∣∣∣ S̃ij (2.29)

in which the double-filtered strain rate tensor is defined as:

S̃ij =
1

2

(
∂ũj
∂xj

+
∂ũj
∂xi

)
and

∣∣∣S̃ij∣∣∣ =

√
2S̃ijS̃ij (2.30)

Inserting Tij from Equation (2.29) and τij from Equation (2.28) with second filter

applied into Equation (2.26) yields:

Lij = 2(CS∆)2

[
∆̃2

∆2

∣∣∣S̃ij∣∣∣ S̃ij − ˜∣∣Sij∣∣Sij] = 2(CS∆)2Mij (2.31)

in which

Mij =
∆̃2

∆2

∣∣∣S̃ij∣∣∣ S̃ij − ˜∣∣Sij∣∣Sij (2.32)

From the filtered velocity field, i.e. ui, a test-filtered velocity field can be calculated

explicitly by applying a filter procedure with a larger filter width. Filtered and

test-filtered stress tensors, i.e. Sij and S̃ij, as well as the test-filtered products of

the stress tensors or velocities, i.e. ˜|Sij|Sij and ũiuj, can then also be calculated

explicitly. Hence Lij (using Equation 2.25) and Mij (using Equation 2.32) can be
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computed to obtain the constant CS. However, since Equation (2.31) is a tensor

equation, it contains six independent equations to determine the parameter CS and

can only be satisfied approximately or in some average sense. It should also be

mentioned here that the ratio of the filter width ∆̃/∆ appearing in Equation (2.32)

is usually chosen as 2.

For closed-channel flow Germano et al. (1991) suggested to average over horizontal

planes parallel to the upper and lower wall. Lilly (1992) improved the original av-

eraging procedure by suggesting a least-square procedure to be applied to minimize

the error eij = Lij − 2(CS∆)2Mij in Equation (2.30). This allows obtaining the

value of CS that best satisfies the over-determined system of Equation (2.31). For

this particular case, the norm of the error is:

E2 = eijeij = L2
ij − 2 (CS∆)2 LijMij + 4 (CS∆)4MijMij (2.33)

The norm of the error is minimum when dE2/dC = 0, in which C = C2
S. This allows

estimating C from Eq. (2.34):

C∆2 =
1

2

LijMij

MijMij

(2.34)

Calculating the parameter C∆2 at each time step based on the resolved flow field

is called the dynamic procedure. An advantage of the dynamic-procedure version

of the Smagorinsky model (DSM) is that it predicts the behavior of νt near solid

surfaces correctly without the need of empirical damping functions. Furthermore,

the DSM predicts zero values of νt in laminar flow, and does not require special

corrections to account for rotational and stratification effects.

As Equation (2.34) predicts C∆2 rather than C, the DSM is independent of the

definition of the turbulence length scale (e.g. ∆ = (∆1∆2∆3)(1/3) or ∆ = (∆2
1 +

∆2
2 + ∆2

3), where ∆i are the mesh sizes in the individual coordinate directions xi).

This is advantageous if mesh cells are strongly anisotropic.

Local and instantaneous negative values for C (or C∆2) and hence eddy viscosi-

ties are possible, which, in theory, corresponds to the backscatter effect, i.e. an

energy transfer from small unresolved scales to large scales. However, negative

eddy viscosities tend to destabilize the numerical procedure and should be avoided.
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Furthermore, strong variations of C in space and time can also lead to numerical

instabilities. One partial remedy is a procedure called clipping, which limits the

computed eddy viscosity to values greater than zero i.e. νt > 0, or the total viscos-

ity to be greater than zero, i.e. ν + νt > 0. Far more common than the clipping

procedure is the application of some sort of averaging procedure, either in space or

in time, depending on the flow problem. One possibility is to average the numerator

and denominator in Equation (2.34) over one or more homogeneous directions in the

flow (if any exist). By applying the spatial averaging operator {}, Equation (2.34)

can be rewritten as:

C∆2 =
1

2

{LijMij}
{MijMij}

(2.35)

In complex three-dimensional flow, i.e. flows in which there is no homogeneous

direction, the spatial distribution of C as predicted by the dynamic procedure can

be vastly heterogeneous across small regions. This high spatial variability can also

generate numerical instabilities, so that instead of averaging over homogeneous flow

directions, a local averaging and/or filtering of the predicted field of C is applied.

As a (negative) consequence, the result depends on the volume chosen for averaging

or on the stencil of the filtering operator. Alternatively, Akselvoll and Moin (1993)

applied an averaging procedure in time for fully inhomogeneous flows. They have

chosen a special form of time averaging which acts like a low pass filter:

Cn+1
filtered = (1− fi)Cn + fiC

n+1 (2.36)

here Cn is the value of C from the previous time step. Breuer and Rodi (1994)

applied this methodology to the channel flow in a bend. They chose values of fi of

the order 10−3 so that all high frequency oscillations could be damped out and only

the low frequency variations remained.

An alternative averaging approach for applying the dynamic procedure in flows

with complex configurations was proposed by Meneveau et al. (1996). These authors

suggested using Lagrangian averaging, i.e. the averages in Equation (2.34) are taken

over a fluid particle path line (backwards in time).

By using Langrangian averaging in the estimation of the model coefficient, the num-

ber of points at which a model predicts negative values and the spatial variability in
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the values of the dynamic coefficient is reduced. As a result, the robustness of the

numerical simulation is improved. The Lagrangian Dynamic Model can also be com-

bined with other models such as the scaled dependent dynamic model (Porte-Agel

et al., 2000) and dynamic mixed models (Zang et al., 1993). Sarghini et al. (1999)

provide a detailed comparison of the performance of the dynamic mixed model with

and without Lagrangian averaging with the dynamic Smagorinsky model and with

the constant coefficient Smagorinsky model for 2D channel flows and 3D bound-

ary layers. The use of Lagrangian averaging was found to improve the accuracy

of the results compared to implementations in which local or plane averaging was

used to estimate the nominator and denominators in the expressions of the model

coefficients.

Further methods exist for improving robustness of the dynamic procedure for the

Smagorinsky model, especially for inhomogeneous flows. One such approach is the

dynamic localization model of Ghosal et al. (1995) in which the integral equation

is solved to determine the model coefficient. Several simpler alternatives of the

dynamic localization model exist that reduce the computational overhead related to

solving exactly the integral equation (e.g. Piomelli and Liu, 1995).

2.5.3 WALE model

The Wall-Adapting Local Eddy-viscosity (WALE) model (Nicoud and Ducros, 1999)

had found increasing interest recently as it is a relatively simple eddy-viscosity model

that can account for wall effects without employing wall-damping functions. Nicoud

and Ducros (1999) proposed to use information from the resolved velocity-gradient

tensor gij = ∂ui/∂xj to calculate the eddy viscosity. The WALE model uses the

traceless symmetric part of the square of gij to calculate the eddy viscosity as:

νt = (Cw∆)2

∣∣Ga
ij

∣∣6/2(
SijSij

)5/2
+
∣∣(Ga

ij

)∣∣5/2 (2.37)

where Ga
ij is the traceless part of Gij = 1/2(gikgkj + gjkgki). Cw is a model constant

for which values in the range of 0.45-0.5 were recommended based on information ex-

tracted from simulations of isotropic homogeneous turbulence (Nicoud and Ducros,
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1999).

One of the advantages of the model is that it predicts correctly the behaviour of

the eddy viscosity near solid surfaces i.e. νt = O(z3). Another advantage is that

the WALE model can be applied to complex geometries with either structured or

unstructured grids because no explicit filtering associated with the introduction

of a test filter as in the dynamic procedure is needed. Moreover, despite using a

constant coefficient, the model predicts a zero value of νt in laminar shear flow (eg.,

in particular in the case of wall bounded laminar flow) and can be used to correctly

simulate flows with regions in which relaminarization or transition to turbulence

occur.

2.5.4 Transport-equation SGS models

The above introduced SGS models relate the SGS stress tensor locally to the resolved

velocity field, ignoring thereby non-local and history effects on the SGS stresses. The

simplest way to account for such effects is to use instead of the SGS velocity scale

according to Equation (2.20) the turbulent kinetic energy k = 1
2
τkk of the SGS

motions as the (square of the) SGS velocity scale and to solve a transport equation

for k. Hence

q = k1/2 (2.38)

and there follows from Equation (2.18) for the eddy viscosity (Schumann, 1975):

νt = Cν∆k
1/2 (2.39)

and hence for the SGS stresses

τij = −2Cν∆k
1/2Sij (2.40)

here Cν is a model constant. In the original model of Yoshizawa (1982), the SGS

kinetic energy k is determined from the following model transport equation

∂k

∂t
+

∂

∂xj
(ujk) =

∂

∂xj

[(
ν + Ck∆k

1/2
) ∂k
∂xj

]
+ 2Cν∆k

1/2SijSij − Cε
k3/2

∆
(2.41)
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where Cε and Ck are additional constants. In Yoshizawa and Horiuti (1985), the

model constants were estimated as Cν = 0.05, Ck = 0.1 and Cε = 1.0.

The above transport-equation SGS model is analogous to eddy-viscosity based transport-

equation RANS models. However, in the latter the turbulent length scale appearing

in the eddy-viscosity relation and in the dissipation term of the k-equation has to

be estimated empirically or determined from an additional equation (ε-equation or

ω-equation in k − ε or k − ω models, respectively), while in the SGS model the

relevant length scale is the specified filter width ∆.

As was mentioned already, neglecting the history and transport terms (terms on the

left hand side and 1st term on the right hand side) and equilibrating the remaining

production and dissipation terms yields directly the Smagorinsky model according

to Equation (2.21). This is again in analogy to RANS models where the assumption

of local equilibrium between production of turbulent kinetic energy leads to the

zero-equation mixing-length model.

In order to allow a variation and adjustment of the model coefficient, the dynamic

procedure can be employed to estimate Cν (Menon et al., 1996; Davidson, 1998) as:

Cν =
1

2

LijM
′
ij

M
′
ijM

′
ij

(2.42)

with Lij being the Leonard stress (Eq. 2.25) and M
′
ij defined as:

M
′

ij = −∆̃K1/2S̃ij + ∆k̃1/2Sij (2.43)

where K is the kinetic energy calculated using the test filtered velocities.

In most one-equation SGS models the eddy viscosity in the momentum equations

and in the k-equation are identical so that Cν = Ck. In analogy to the dynamic

Smagorinsky model, the constant Cν can attain negative values. While negative

values of Cν are not critical in the k-equation, the value of Cν in the momentum

equations needs extra treatment to ensure numerical stability. Krajnovic and David-

son (2002) suggest a regularization procedure, similar to the procedure used for the

dynamic Smagorinsky model.

In principal, one-equation SGS models have several advantages over the standard
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Smagorinsky model or the dynamic Smagorinsky model, respectively. An important

advantage is the fact that the one-equation model allows for backscatter without

destabilization of the numerical solution procedure, because the k-equation requires

an SGS energy balance. Ghosal et al. (1995) show that this approach is stable

and provides always positive values for the SGS energy. One-equation models fur-

thermore provide the correct asymptotic behaviour near solid walls and allow for

simulation of transitional flows (Ghosal et al., 1995). Another advantage is that,

in theory, no averaging procedure is required when employing a dynamic procedure

to determine Cν and Cε. On the other hand, in one-equation models it is neces-

sary to solve one extra transport equation, which makes the model computationally

more expensive than the dynamic Smagorinsky SGS model. Thus far, one-equation

models have been employed primarily in the meteorological community, e.g. Moeng

(1984), and to predict flows with combustion (Kim and Menon, 1995), which is be-

cause other effects (e.g. buoyancy, large-scale SGS roughness, chemical reactions)

play a role for which solving a transport equation offer advantages.

2.5.5 SGS Models not Based on the eddy viscosity concept

Scale-Similarity Model

The Scale-Similarity Model (SSM) of Bardina et al. (1980) does not use the eddy-

viscosity concept. Rather, the idea is to assume that the smallest resolved scales are

similar to the largest unresolved scales and to use that information to obtain an ex-

pression for the SGS stresses τij. This is justified as the most important interactions

are those between the largest unresolved (subgrid) scales and the smallest resolved

scales. To obtain an expression for τij one has first to define these scales. By defi-

nition, the unresolved velocity u
′
i (at length scale smaller than ∆) can be written as

u
′
i = ui − ui, where ui is the (unfiltered) velocity component and ui is the filtered

velocity. The velocity of the largest unresolved scales is defined as u
′
i, yielding with

the above decomposition u
′
i = ui − ui. Bardina et al. (1980) suggested to also filter

the resolved field ui yielding ui in order to obtain the smallest resolved scales ûi by

subtracting ui from the resolved velocity, i.e. ûi = ui − ui. This shows that u
′
i = ûi

which is justified by assuming that the corresponding scales have similar structures
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near the cutoff wavenumber. The SGS stresses can now be assumed to be the same

as the ones due to the resolved field ui, i.e.

τij = uiuj − uiuj ≈ CB
(
uiuj − uiuj

)
(2.44)

where CB is the Bardina constant, for which usually a value of CB = 1.0 is assumed.

Compared to predictions obtained with the Smagorinsky eddy-viscosity model, the

SSM model showed an improvement in predicting SGS stresses as it can account for

backscatter in a physical way. However, the SSM model does not dissipate enough

energy from the large scales and is, in most applications, combined with a dissipative

model such as the Smagorinsky model, yielding a mixed model.

Dynamic Mixed Model

Two versions of the Dynamic Mixed Model (DMM) are mentioning in the following.

In both models, the SSM model is combined with the Smagorinsky model. The

DMM as proposed by Zang et al. (1993), assumes the Bardina constant to be unity

and combines the SSM model with the original Smagorinsky model in the following

way:

τij = uiuj − uiuj − 2C2
S∆2

∣∣Sij∣∣Sij (2.45)

In the DDM proposed by Salvetti and Banerjee (1995), both coefficients i.e. the

Bardina coefficient CB and the Smagorinsky constant CS are determined dynami-

cally. In complex turbulent flows, the use of this variant of the DDM has shown

that the spatial and temporal variations of CS are reduced substantially compared

to those predicted by the dynamic Smagorinsky model. Even without averaging,

the numerical model is much more stable. However, numerical instabilities can still

develop if at some locations the backscatter is large and occurs over large periods

of time.
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Approximate Deconvolution Models (ADM) and Sub-Filter Scale Models

(SFS)

The idea of Approximate Deconvolution Models (ADM) or Sub-Filter Scale (SFS)

models, respectively, is to use the information from the filtered (resolved) velocity

field to reconstruct, the subgrid (unresolved) and unfiltered quantities. This can, in

theory, be done by an inverse filtering, also called deconvolution. However, inverse

filtering requires information from the unresolved scales so that the reconstruction

can only be approximated. In the Approximate Deconvolution Model (ADM), Stolz

and Adams (1999) use a truncated series expansion of the inverse filter to approxi-

mate the unfiltered velocity field. This approximation of the unfiltered variables is

then used to compute the nonlinear terms in the filtered Navier-Stokes equations,

which avoids the need to compute additional subgrid scale terms. Chow et al. (2005)

argue that for accurate simulation of high Reynolds number boundary layer flows

the resolvable Subfilter-Scale (SFS) stresses should not be neglected. They proposed

to use explicit filtering and reconstruction of the velocity field using Taylor series

expansion to calculate the resolvable SFS-stresses. For the SGS stresses a dynamic

eddy-viscosity model is employed. By combining reconstruction and eddy-viscosity

models (eg. the Smagorinsky model) higher order versions of Bardina’s mixed model

are obtained.

The advantage of the ADM or SFS models is that they contain no parameters

and can account for backscatter in a physical way. In a-priori and a-posteriori

tests, e.g. turbulent channel flow (Stolz et al., 2001; Gullbrand and Chow, 2003)

comparisons between filtered DNS stresses and the ADM or SFS model showed

that the stresses predicted by the two models gave improved agreement with DNS

over a standard Smagorinsky SGS-model predictions. Another interesting approach

is the one of Stolz et al. (2005) who proposed a high-pass filtered eddy-viscosity

(Smagorinsky) model in which the variable model coefficients are determined by

high-pass filtering of the resolved variables. The model does not need wall-damping

functions to correctly predict the viscous sublayer of wall bounded turbulent flows

nor a dynamic estimation of the model coefficient. Its performance is similar to that

of the dynamic Smagorinsky model (Stolz et al., 2007).
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2.5.6 SGS Models for the Scalar Transport Equation

In calculations with scalar transport using the LES method, a model for the subgrid

scalar fluxes is needed for the solution of the filtered scalar equation. The sub-grid-

scale scalar fluxes qSGSi appearing in the filtered transport equations (2.12) for a

conserved or non-conserved scalar φ (e.g. contaminant, concentration of suspended

sediment, temperature) can be modelled in direct analogy to eddy-viscosity models

through a gradient-diffusion SGS model:

qSGSi = uiφ− uiφ = Γt
∂φ

∂xi
(2.46)

where Γ is the SGS eddy difusivity. The simplest approach for calculating Γt is

to assume proportionality between eddy diffusivity and eddy viscosity through the

turbulent Schmidt number, Sct (or in case of temperature the turbulent Prandtl

number, Prt so that:

Γt =
νt
Sct

or Γt =
νt
Prt

(2.47)

Typical values for Prt, or Sct are in the range 0.3 − 0.7 (Deardorff, 1974; Moeng,

1984; Andren et al., 1994).

The use of constant and prescribed turbulent Schmidt or Prandtl numbers can be

avoided by employing a dynamic procedure for calculating the SGS turbulent scalar

fluxes in analogy to the one for calculating the SGS-eddy viscosity (Moin et al.,

1991). The eddy diffusivity Γt can be calculated with the same algebraic formulation

as the one used for the eddy viscosity (Equation 2.21) as:

Γt = CΓ∆2 ·
∣∣Sij∣∣ (2.48)

The coefficient CΓ, the analogue of the dynamic Smagorinsky constant in the dy-

namic procedure, is calculated using the resolved velocity and scalar fields:

CΓ∆2 =
1

2

L”
iM

”
i

M”
iM

”
i

(2.49)

in which

L”
i = ũiφ− ũiφ̃ (2.50)
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is the analogue to the Leonard stress (Eq. 2.27) and

M”
i =

∆̃2

∆2

∣∣∣S̃ij∣∣∣ ∂φ̃
∂xi
−

˜∣∣Sij∣∣ ∂φ
∂xi

(2.51)

is the scalar analogue to Mij (given by Equation 2.32). As in the dynamic Smagorin-

sky model, the test-filtered scalar field can be computed from the resolved (filtered)

scalar field. Again an averaging procedure is required to calculate the coefficient CΓ.

Recent simulations of flow and mass transfer processes over cavities in which both

eddy viscosity and eddy diffusivity were computed using the dynamic procedure

provided accurate predictions (Chang et al., 2006; Constantinescu et al., 2009).

2.6 Numerical Methods

The governing partial differential equations for LES that were introduced in the

previous section need to be solved with an adequate numerical method, which is

comprised of various components. These components are (a) approximation of the

derivatives through algebraic operators, (b) discretization of the physical domain

with a computational grid that consists of a finite number of cells, points or elements

at which the continuous functions of the variables are represented and (c) solution of

the resulting system of algebraic equations for discrete instants in time. In this sec-

tion, some fundamentals of numerical methods are introduced and only the aspects

of special relevance to LES are discussed in more detail. In-depth treatment of the

diverse discretization schemes, grid generation techniques and solution procedures

of the algebraic equations can be found in standard Computational Fluid Dynamics

(CFD) textbooks (e.g. Ferziger and Peric, 2002; Versteeg and Malalasekera, 2007;

Hirsch, 2007).

The goal of LES is to simulate three-dimensional, unsteady, turbulent flues and hence

methods that were developed for laminar flows or that have been successful in the

context of RANS may not be adequate for LES. Moreover, in LES the unsteadiness

of the flow that is comprised of eddies of different size, frequency, energy content and

longevity, respectively needs to be reproduced correctly. This puts a high demand

on the numerical method, which needs to meet certain requirements in terms of its
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accuracy however, as will be discussed below, a high order of the method alone does

not guarantee a correct reproduction of the flow physics.

In general, the accuracy of a large-eddy simulation depends on:

i. the selected discretization scheme to approximate the derivatives in space and

time and to some extent its formal order of accuracy;

ii. grid spacing and time step; that is how closely the discrete system approximates

the continuum;

iii. the capabilities of the subgrid-scale model used;

iv. the adequacy of the boundary conditions

v. the solution method for solving the incompressible flow equations.

The order of accuracy of the discretization scheme in space and time (i) and the

grid spacing and time step (ii) are closely related because the truncation error of the

numerical approximation of the derivatives (see section 2.6.1) is generally smaller

the finer the grid and the smaller the time step. It should be pointed out already

here and will be shown later in the chapter that high-order numerical schemes, in

spite of their high formal accuracy, may not be suitable in LES because they may

not provide an accurate description of the large-scale eddies and their transport and

decay into smaller ones. Furthermore, in most LES the filter width and hence the

size of the smallest resolved eddies is specified by the mesh size, and it is therefore

the motion of these eddies that is most negatively affected by the truncation error of

the numerical scheme. On the other hand, exactly these scales provide information

that is used in the subgrid-scale model. Hence, in LES there is a strong interaction

between the subgrid-scale model employed and the numerical scheme as well as

the grid resolution. This is particularly evident in the method of Implicit Large

Eddy Simulation (ILES). The basis of ILES is that, for instance, upwind (biased)

schemes produce a certain amount of numerical dissipation, which results in removal

of energy mainly from the smaller resolved scales, thereby substituting and avoiding

the use of an explicit subgrid-scale model.

In general, the finer the grid, the smaller is the portion of the spectrum that requires

modelling and hence the impact of both the subgrid-scale model and the numerical

scheme on the solution process. Therefore, the capabilities of the subgrid-scale
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model (iii) become particularly important when the LES is carried out on coarser

grids. This is of relevance in LES of hydraulic interest as in practice the number of

grid points and hence the grid spacing that can be achieved is often determined by

the available computer hardware.

An important aspect of numerical methods for LES is stability because in LES the

computed variable distributions are non-smooth and progressively more heteroge-

neous as the Reynolds number increases. Hence, certain stability conditions need

to be obeyed, which generally results in an upper limit of the time step. Due to the

strong interconnection between temporal and spatial scales in LES, the time step

should, however, not only be set to achieve numerical stability but should also be

compatible to the grid spacing from a physical point of view, as will be explained

below in Section 2.6.1

In most LES, and in particular those of practical hydraulic interest, the flow is

physically bounded (e.g. free surface, rough walls, inflow boundary), for which ade-

quate boundary conditions are needed (iv). These are often referred to as supergrid

models, as they introduce approximations, and inadequate or unphysical boundary

conditions can introduce errors to the solution that can easily exceed the errors due

to truncation or due to subgrid-scale modelling by several orders of magnitude.

The incompressibility of the working fluid implies that the flow must be divergence

free at every instant in time. As a consequence, momentum and continuity equa-

tions need to be coupled, resulting in a solution method of the system of governing

equations that is prone to inaccuracies (v). In LES, the solution method chosen

requires careful consideration with respect to maintaining the conservation proper-

ties. In most LES, the above mentioned coupling is achieved through a Poisson-type

equation for the pressure, which is solved implicitly using a suitable matrix solution

procedure.

In Section 2.6.1, the most often used methods in LES for discretizing the governing

equations in space and time are introduced. Section 2.6.2 points out sources of errors

in numerical methods and how they influence the numerical solution. Section 2.6.3

introduces basic concepts of the solution of the governing equations for incompress-

ible flows and how LES is affected. Finally, in Section 2.6.4 a number of possibilities

on how to discetize complex LES domains are presented. Obviously, this chapter
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does not (and is not meant to) cover all details of numerical methods in CFD, but

is rather tailored to LES in order to safeguard high quality simulations.

2.6.1 Discretization Methods

The main numerical methods used in LES are the following:

i. Finite Difference Method (FDM)

ii. Finite Volume Method (FVM)

iii. Finite Element Method (FEM)

iv. Spectral Method (SM)

By far the most two common methods used in LES are finite-difference and finite-

volume methods. A few LES have been carried out with the finite element method

(e.g. LES of flow around tube bundles by Rollet-Miet et al., 1999), but finite-

difference and finite-volume methods are computationally more efficient so that the

FEM has not found much attention for LES. Spectral methods are the most accurate

ones and offer the fastest solvers, however their numerical properties require the

solution of the Navier-Stokes equations in a domain with at least one homogeneous

direction, cyclic boundary conditions in this direction and equidistant grids. Spectral

methods are very popular for DNS and LES of decaying isotropic turbulence (e.g.

Menon et al., 1996) in which the SM is used in all three spatial directions, and for

channel flow (e.g. Moser et al., 1999) in which the SM is used in two directions

(streamwise, spanwise) and another method, e.g. FD, in the wall-normal direction.

The spectral method is very attractive for fundamental studies of turbulent flows

but is not very common in the context of LES in hydraulics due to its limitation

to very simple geometries. In the following, FDM and FVM are introduced and

discussed in more detail.

Finite Difference Method (FDM)

The basic idea behind the FDM is to replace the partial derivatives of first and

second order that appear in the governing equations of LES with algebraic difference

quotients using values at a finite number of discrete points in the flow domain. This
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(a) Finite difference (b) Finite volume

Figure 2.4: Finite difference (a) and Finite volume (b) computational stencils for
1D problems

then leads to a system of algebraic equations for each of the flow variables, which can

be solved numerically. The finite-difference method uses Taylor series expansions

or polynomial fitting to derive difference quotient expressions for the derivatives at

discrete grid points, expressing them through variable values at neighbouring grid

points. This is explained here by reference to a one-dimensional variable distribution

as shown in Figure 2.4(a).

This figure provides an example of a continuous function f(x), being represented as

a series of discrete values fi at discrete points (i). The value fi+1 at point (i + 1)

can be expressed in terms of a Taylor series expanded about point (i) as:

fi+1 = fi +
∂f

∂x

∣∣∣∣
i

(∆x)1 +
∂2f

∂x2

∣∣∣∣
i

(∆x)2

2
+
∂3f

∂x3

∣∣∣∣
i

(∆x)3

6
+ ... (2.52)

Similar expansions can be made for other points (i+ 2, i− 1, i− 2, etc). Expression

(2.52) is exact if an infinite number of terms on the right hand side is retained and/

or if ∆x→ 0. In a numerical method, Equation (2.51) is truncated and the accuracy

of the solution depends on which terms are neglected. The more terms are neglected,

the lower is generally the accuracy of the solution. This can be demonstrated by

investigating the Finite Difference (FD) approximation of the first derivative of a

function f(x), ∂f/∂x. With (2.52) and similar Taylor series expansions for other

neighbouring points, the following approximations can be derived:
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1st Order
∂f

∂x

∣∣∣∣
i

=
fi+1 − fi

∆x
+ τ1 (2.53a)

2nd Order
∂f

∂x

∣∣∣∣
i

=
fi+1 − fi−1

2∆x
+ τ2 (2.53b)

3rd Order
∂f

∂x

∣∣∣∣
i

=
−fi+2 + 6fi+1 − 3fi + 2fi−1

6∆x
+ τ3 (2.53c)

4th Order
∂f

∂x

∣∣∣∣
i

=
−fi+2 + 8fi+1 − 8fi−1 + fi−2

12∆x
+ τ4 (2.53d)

The above represent the first order forward (or upwind) difference (2.53a), the third

order forward-biased difference (2.53c), and the second (2.53b) and fourth (2.53d)

order central-difference approximations. The truncation term, τm, represents the

higher order terms not accounted for the difference approximations and us the dif-

ference between the exact (Taylor) solution of the derivative and its discrete approx-

imation. For instance, the truncation terms of the 1st order forward difference and

the 2nd order central difference are:

τ1 = −(∆x)1

2

∂2f

∂x2

∣∣∣∣
i

− (∆x)2

6

∂3f

∂x3

∣∣∣∣
i

− ... = O
(
∆x1

)
(2.54a)

τ2 = −(∆x)2

6

∂3f

∂x3

∣∣∣∣
i

− (∆x)4

120

∂5f

∂x5

∣∣∣∣
i

− ... = O
(
∆x2

)
(2.54b)

The neglect of the truncation terms introduces an error into the finite-difference

approximation, and the rate at which this decreases as ∆x decreases determines the

accuracy of the approximation, respectively the order of the scheme (m). Comparing

the dominant term in (2.54a) with the one in (2.54b) it is seen that, as ∆x goes

to zero, the second order truncation error, τ2, approaches zero much faster than τ1.

Hence, using the same grid, the 2nd order finite-difference approximations of the

first derivative are more accurate than 1st order finite-difference approximations.

The 2nd order finite-difference approximation of the second derivative, ∂2f/∂x2,

is obtained by substituting Equation (2.53b) for the first derivative in Equation

(2.52), neglecting terms with third and higher derivatives, and solve for the second
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derivative:

2nd Order
∂2f

∂x2

∣∣∣∣
i

=
fi−1 − 2fi + fi+1

∆x2
+ τ2 (2.55)

This most commonly used central-difference approximation for the second deriva-

tive is second-order accurate, because, on a uniform grid, the leading term in the

truncation error involved (∆x)2. This approximation is second-order accurate also

on non-uniform grids (Ferziger and Peric, 2002). Higher-order approximations (e.g.

4th order) for the second derivative can be obtained by including more neighbouring

points however, a fourth order scheme for the second derivatives is only reasonable

when convective terms are discretized using fourth order or higher approximations.

Furthermore, in convection-dominated flows (as in hydraulic engineering) the gain in

accuracy when using higher order approximations for the diffusion terms is minimal

and does not warrant the extra computational effort.

In finite-difference schemes (as well as in any other numerical scheme) the accuracy

of a simulation depends on both the grid spacing and the chosen difference quotient

approximations of the first and second derivative. An important property of finite-

difference approximations is that, as the grid spacing approaches zero, all terms in

the truncation error approach zero as well. Finite-difference approximations that

exhibit such asymptotic behaviour are called consistent, which is an important asset

of any numerical solution. However, the choice of consistent and accurate approx-

imations of the spatial derivatives is only one aspect to consider when performing

LES.

In general, finite-difference methods are easy to implement into a Navier-Stokes

solver, but the finite-difference methods necessitates the computational grid to be

structured, which is quite a restrictive requirement when dealing with complex,

three-dimensional geometries as are common in hydraulics. The restriction can be

relieved by multi-block grids, by using the FDM or curvilinear coordinates, by mak-

ing use of immersed-boundary method, or by a combination of the three techniques.

Finite Volume Method (FVM)

In the FV method the governing differential equations are integrated over a finite

number of Control Volumes (CVs) that comprise the flow domain (an example of
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a 2D finite-volume discretization is given in Figure 4.5). This results in a balance

equation for each CV that expresses the rate of change of a quantity in the CV

as the sum of its flux through the CV faces, and in the case of momentum also

of pressure forces acting on the CV faces and of volume forces (such as gravity).

Here, the balance equation is, for the sake of simplicity, derived for the general 1D

unsteady convection-diffusion equation (without source terms), which reads:

∂f

∂t
+ u

∂f

∂x
= Γ

∂2f

∂x2
(2.56)

in which u is the convective velocity and Γ is the diffusion coefficient and, again

for the sake of simplicity, u and Γ are assumed constant. The most common finite-

volume approach is to represent the computational domain by a suitable numerical

grid and then locate the computational node at the centroid of the CV (Ferziger

and Peric, 2002). This is sketched in Figure 2.4(b) for a Cartesian 1-D finite-volume

domain with the CV around node P , for which integration of (2.56) between w(est)

and e(ast) yields: ∫ e

w

∂f

∂t
+

∫ e

w

u
∂f

∂x
dx =

∫ e

w

Γ
∂2f

∂x2
dx (2.57)

resulting in

∂

∂t

(
1

∆x

∫ e

w

fdx

)
︸ ︷︷ ︸

f

∆x+ ufe − ufw︸ ︷︷ ︸
C=net convective flux

= Γ

[
df

dx

∣∣∣∣
e

− df

dx

∣∣∣∣
w

]
︸ ︷︷ ︸

D=net diffusive flux

(2.58)

In Equation (2.58) the transient term represents the rate of change of the average

quantity f in the CV, the treatment of which will be discussed below. Convection

and diffusion are expressed as surface fluxes (C and D) through the two CV faces

devoted e (for east) and w (for west). This flux-balance equation leads to automatic

conservation of the quantity considered, one of the advantages of the finite-volume

method. As can be seen from equation (2.58), in the FVM the variable values and

their gradients at the cell faces appear and have to be obtained by interpolation.

The simplest interpolation is a linear one using nodal values of neighboring CVs (W
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and E in Fig. 2.4b). For a uniform grid, the net convective flux then yields:

C = u [fe − fw] = u

[(
fE + fP

2

)
−
(
fP + fW

2

)]
= u∆x

(
fE − fW

2∆x

)
(2.59)

The term in parenthesis on the r.h.s of Equation 2.59 is exactly the same as derived

by the FDM (i.e Equation 2.53b), which is why the linear interpolation between

nodes to approximate values at the cell faces in a finite-volume method is referred

to as Central Differencing Scheme (CDS). For the net diffusive flux there follows for

uniform grid spacing:

D = Γ

[
df

dx

∣∣∣∣
e

− df

dx

∣∣∣∣
w

]
= Γ

[(
fE − fP

∆x

)
−
(
fP − fW

∆x

)]
= Γ∆x

[(
fW − 2fP + fE

∆x2

)]
(2.60)

in which the gradients at the cell faces are estimated using the nodal values on

either side of the face. Hence this is referred to as CDS scheme for the diffusive

fluxes and corresponds to the FD analogue given in Equation (2.55).

Another popular interpolation assumes that the flow is convection-dominated so

that, in the case of u being negative, fw = fP and fe = fE. The resulting upwind-

differencing scheme reads:

C = u [fe − fw] = u [fE − fP ] = u∆x

(
fE − fP

∆x

)
(2.61)

The term in parenthesis on the r.h.s of Equation (2.61) is equivalent to the first-order

differencing expression derived in the context of the FDM (i.e Equation 2.53a).

The challenge in FV methods is the interpolation from nodal values to CV surface

values for which many different schemes of varying order are available. A number of

FVM-interpolation schemes have been derived from the finite-difference analogues

and can be found in standard CFD text books (e.g. Versteeg and Malalasekera,

2007; Hirsch, 2007). In general, the advantage of the finite-volume method over

other methods is that conservation is enforced formally in each CV volume and

hence for the entire solution domain. The FV method can be used for complex

geometries as it can be implemented for all types of grids. The main disadvantage,

e.g. when compared to the FD method, is that FV schemes of accuracy higher than
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two are more difficult to develop in two or three dimensions.

Time Discretization

The discretization of the time derivative in the filtered Navier-Stokes equations using

finite differences is very similar to the discretization in space, and an approximation

analogous to the first-order expression (2.52a) can, for instance, be derived from a

Taylor series as:
∂f

∂t
=
fn+1 − fn

∆t
+ τ1 (2.62)

in which fn is the value of f at time tn, fn+1 is the yet unknown value of f at time

tn+1 and τ1 is the truncation error. For the sake of deriving the fundamental prin-

ciples of time discretization, the convection-diffusion equation (2.56) is considered

and is written as:
∂f

∂t
= −u∂f

∂x
+ Γ

∂2f

∂x2
= F (2.63)

where F is the sum of the spatial derivative terms for convection and diffusion.

Neglecting the truncation term τ1 and combining Equations (2.62) and (2.63) yields:

fn+1 − fn

∆t
= F (2.64)

in which the spatial derivatives in F are to be replaced by discrete approximations.

Time-discretization schemes in which F is calculated using values at tn are called

explicit, because F can be calculated explicitly using known values only. If F is es-

timated using values at tn+1, an implicit time-discretization scheme results because

the right hand side of Equations 2.63 and 2.64 involve yet unknown values of f . In

general, explicit time-discretization schemes are easier to program and are compu-

tationally more efficient than implicit schemes because the latter lead to algebraic

difference equations involving several unknowns and require matrix solver. On the

other hand, explicit schemes face more restrictions on the time step for numerical

stability. However, in LES the stability-restricted time step is also demanded by the

physics of the flow, and hence many LES codes employ explicit time discretization

schemes.

The simplest time-discretization schemes are explicit and implicit Euler methods,
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in which the variable fn+1 is calculated from:

fn+1 − fn

∆t
= F n (2.65a)

fn+1 − fn

∆t
= F n+1 (2.65b)

where superscripts n and n + 1 refer to the instant in time at which the spatial

derivatives of the term F are calculated. Euler methods can be considered as the

analogues of forward and backward differencing in space and are first-order accurate

in time. Euler methods are called two-point methods, because values of f at two

instances in time are involved. A second-order accurate two-point method can be

constructed by applying the trapezoidal rule to approximate F , which yields the

(semi)-implicit Crank-Nicholson method:

fn+1 − fn

∆t
=

1

2

[
F n + F n+1

]
(2.66)

It is relatively easy to construct methods of higher order by considering additional

values of f in time, known as multi-point methods, or by using values between tn

and tn+1, known as predictor-corrector methods. A second order explicit three-point

method that is popular in LES (e.g. Thomas and Williams, 1995) is the second order

Adams-Bashforth scheme, which reads:

fn+1 − fn

∆t
=

1

2

[
3F n − F n−1

]
(2.67)

Generally, multi-point methods may produce non-physical solutions or tend to be

unstable if the time step is large, even when chosen within a given stability limit

(Ferziger and Peric, 2002). One way of overcoming numerical instabilities is to

use a safety factor on the chosen time step (see discussion of Equation 2.71) or

by computing intermediate solutions of f between tn and tn+1, which is known as

predictor-corrector or multi-stage method. Runge-Kutta (RK) methods are of this
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type; for instance, a second order RK method consists of the following two steps:

f ∗,n+1/2 − fn

∆t
=

1

2
F n (2.68a)

fn+1 − fn

∆t
= F ∗,n+1/2 (2.68b)

where f ∗,n+1/2 is a predicted value at tn+1/2 that is being corrected in the second step

to provide fn+1 using the predicted value f ∗,n+1/2. The method is explicit and does

only require values of previous time steps or the initial condition at the first time

step, respectively. Since RK methods compute intermediate values between tn and

tn+1, they are more stable than multi-point methods such as the Adams Bashforth

method and hence are quite popular for LES. Higher-order Runge-Kutta methods

are easy to develop however, the higher the order the more intermediate data need

to be stored. Hence in LES either the basic second order RK method or ”low storage

variants” are common (Breuer, 1998; Hinterberger et al., 2008).

The representation of the time derivative in the FVM according to Equation (2.58)

is straightforward. For the 1D case described by Figure (2.4b) it is determined as:∫ e

w

∂f

∂t
dx =

∂f

∂t
∆x ≈ ∂f

∂t
∆x with f =

1

∆x

∫ e

w

fdx (2.69)

in which the volume integral is approximated as the product of the mean integrand

and the volume. In the FV method it is assumed that the value at the node is an

accurate estimate of the volume-averaged value f . The time derivative in Equation

(2.69) is then treated in exactly the same way as in finite-difference methods and

any explicit or implicit method can be employed.

In contrast to RANS, in LES the unsteadiness of the motion is of great impor-

tance and hence higher-order time-discretization schemes and small timesteps ∆t

are desirable. In theory, all time discretization methods produce stable solutions if

∆t is sufficiently small. However, explicit time-discretization methods are subject

to rigorous stability conditions, which are generally known as the CFL-condition

(Courant-Friedrichs-Levy condition, Courant et al., 1928), and the Diffusion-number

49



CHAPTER 2. LITERATURE REVIEW - TURBULENT CONTINUOUS
PHASE

(DIF) condition:

CFL =
|u|∆t
∆x

< 1 (2.70a)

DIF =
Γ∆t

∆x2
< 0.5 (2.70b)

While Equation (2.70a) is important when diffusion is small, Equation (2.70b)

is important for diffusion-dominated flows. In LES (and DNS) Equation (2.70a)

includes also an important physical constraint on the simulation, i.e. that on a

given mesh the time variation (turbulent fluctuations) of the flow corresponding to

the variation in space is resolved properly. What follows is that in LES also implicit

time-discretization methods should obey the CFL condition and hence most LES

use explicit time-discretization schemes, because there is then no need to solve large

matrix systems through a matrix solver, which is time consuming. While the CFL

condition applies in most regions of flow, the DIF condition becomes important near

solid boundaries, which is where viscous forces dominate. This leads to a combined

stability criterion commonly used in LES (Miller, 1971):

∆t <
fac

|ui|
∆xi

+ 2(ν+νt)

∆x2i

(2.71)

where the sum of the molecular and SGS-viscosity (ν+νt), replaces the diffusion co-

efficient Γ in Equation (2.70b), and fac is an additional safety factor (in LES usually

0.2 < fac < 0.8) accounting for the non-linearity of the governing equations. Breuer

(2002) suggests fac = 0.2 for Adams-Bashforth schemes and fac = 0.6 for Runge-

Kutta based time-discretization schemes, which confirms the above mentioned sta-

bility issue of Adams-Bashforth schemes when applied to solving the Navier-Stokes

equations. Condition (2.71) can be quite restricitve in wall-resolving LES, where

the grid spacing near the wall (especially in the direction normal to the wall) is

very small. As a result, the DIF-required time steps (i.e. due to the second part

of the denominator in Equation (2.71) where ν remains finite) can be much smaller

than what is needed in terms of reproducing an accurate time dependence of the

fluctuations. To avoid the time step to be dominated by the diffusion-number con-

dition, sometimes LES is carried out using an implicit time-advancement such as
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the Crank-Nicholson scheme (e.g. Krajnovic and Davidson, 2002). An alternative

to using an implicit scheme is to do time splitting, that is using an explicit scheme

for convective terms and an implicit scheme for diffusive terms. This removes the

necessity for very small time steps near the walls and hence makes it a very popular

method in LES (e.g. Zang et al., 1993; Salvetti et al., 1997; Armenio et al., 1999;

Omidyeganeh and Piomelli, 2011). For instance, for the LES of channel flow over

ripples, Zedler (2001) employs the second-order explicit Adams-Bashforth method

for the convective terms and the implicit Crank-Nicholson method for the diffusive

terms.

Finally, it should be mentioned that in LES the selection of both the time-discretization

scheme and the time step should match the selected discretization schemes in space.

If as a minimum a second order scheme is used to discretize the derivatives in space,

due to the strong interconnection of temporal and spatial scales, a minimum second

order time discretization is obligatory. This is particularly relevant in (almost all)

LES approaches in which the grid spacing is equal (or proportional) to the filter

width and hence the spatial discretization determines the frequency up to which the

turbulent fluctuations are resolved and vice versa.

2.6.2 Numerical Errors

As discussed above, the numerical scheme can have great influence on the accuracy

and quality of LES of turbulent flows and discretization errors influence negatively

the simulation results. This aspect will be discussed further by considering the 1D

pure advection equation with a constant convective velocity u > 0:

∂f

∂t
+ u

∂f

∂x
= 0 (2.72)

If the convection term is discretized using the first-order backward scheme (which

is the backward analogue of Equation 2.53a) and the time derivative is discretized

using the explicit Euler scheme (Equation 2.65a), the following discrete equation is

obtained:
fn+1
i − fni

∆t
+ u

fni − fni−1

∆x
= 0 (2.73)
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The truncation error is O(∆t,∆x) and the scheme is stable for CFL = u∆t/∆x < 1.

Hirt (1968) proposed to replace fn+1
i and fni−1 in Equation (2.73) by their Taylor

series expansions around fni in time and space to obtain the following so-called

modified equation (also given in Hirsch, 2007):

∂f

∂t
+u

∂f

∂x
=
u∆x1

2
(1− CFL)

∂2f

∂x2
− u∆x2

6

(
2CFL2 − 3CFL+ 1

) ∂3f

∂x3
+H (2.74)

where H represents higher order terms. The r.h.s of the modified equation expresses

the difference of the exact solution of Equation (2.72) to the solution obtained

from the discrete equation (i.e. Equation 2.73) and hence represents the numerical

(truncation) error when using this approximation. The individual terms of the

r.h.s of Equation (2.74) can be analysed in terms of their physical meaning. For

stability purposes CFL<1, hence the first term on the r.h.s of Equation (2.74) is

a positive, diffusion-like term that is proportional to the grid spacing ∆x1, and

hence the term u∆x1

2
(1 − CFL) is the numerical (or artificial) viscosity. The effect

of this term on the numerical solution is that wave amplitudes are reduced, or in

other words, large gradients in the solution are smoothed. The subsequent error

is referred to as numerical diffusion. In the context of LES, the artificial diffusion

leads to an increase in dissipation of kinetic energy, amplifying the subgrid scale

model. If the convective term of Equation (2.72) is discretized using a second-order

central-differencing scheme, the term involving the second derivative on the r.h.s of

Equation (2.74) disappears and the leading error term involves the third derivative.

This impacts the numerical solution by a phase shift of the propagating waves but

without altering the amplitude. This term introduces a dispersion error, which does

not extract energy from the flow, but it produces numerical wiggles, which can lead

to a destabilization of the entire numerical scheme.

The effect of the dissipation and dispersion errors on the numerical solution can be

studied by looking at the propagation of a wave of a given amplitude (e.g., assume

unit amplitude) and fixed wavenumber k. The exact solution of Equation (2.72)

governing the transport of a solitary wave is given as:

f(x, t) = eik(x−ut) (2.75)
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which describes the propagation of a wave of an arbitrary wavenumber with no

damping or amplification of its amplitude in time. Ideally, the numerical discretiza-

tion scheme should preserve the shape of the wave in the discrete solution, i.e. it

should not artificially damp the amplitude of the wave or alter its propagation speed.

However, due to the fact that the numerical solution is only an approximation this is

not the case, and as discussed in the context of Equation (2.74), first-order approx-

imations of derivatives add a diffusion-like term of the form α · ∂2f/∂x2 with α > 0

to the pure advection equation, which then takes the form of an advection-diffusion

equation:
∂f

∂t
+ u

∂f

∂x
= α

∂2f

∂x2
(2.76)

for which the exact solution reads:

f(x, t) = e−αk
2teik(x−ut) (2.77)

The result is that the amplitude of the wave will decay with time but the speed of the

wave, u, remains the same. The expression of the amplification factor in Equation

(2.77) shows that the decay is faster for large wavenumbers, k, which corresponds to

small wavelengths. Hence, the presence of diffusive terms in the modified equation/

truncation error damps the wave amplitude especially at high wavenumbers.

If the spatial derivative of Equation (2.72) is approximated with a second-order

central-differencing scheme, a dispersion-like term of the form β · ∂3f/∂x3 with

β > 0, is added so that it becomes:

∂f

∂t
+ u

∂f

∂x
= −β∂

3f

∂x3
(2.78)

for which the exact solution is:

u(x, t) = eιk(x−ut)e−ιk
3βt (2.79)

The second term on the r.h.s of Equation (2.79) is a complex number with modulus

of one. This means that the amplitude of the wave remains equal to one (no dissipa-

tion), but the speed of the wave changes from u to u−βk2. The wave celerity is now

a function of the wavenumber and the error in the wave speed is larger for large k
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(small wavelengths). Hence, the presence of odd-derivative terms in the truncation

error makes the waves propagate at different speeds in the numerical solution, which

results in numerical wiggles in the solution especially in regions where the gradients

are high.

2.6.3 Solution Methods for Incompressible Flow Equations

The solution of the governing LES equations for incompressible flows is complicated

by the fact that the pressure does not have its own governing equation. The con-

tinuity equation is rather a constraint enforcing a divergence-free velocity field and

is mainly used to derive a Poisson equation for determining the pressure. In most

numerical methods used in LES, velocity and pressure are solved for sequentially,

i.e. the momentum equations are solved first for the three (projected) velocities,

and the pressure is solved subsequently from the Poisson equation; its gradients are

then used to enforce a divergence-free flow field, i.e. correcting the velocities to

satisfy the continuity equation. The procedure is known as the projection method

and different prominent variants exist. An alternative is the method of artificial

compressibility, but this is hardly used for LES. In the following the two main vari-

ants of the projection method are presented and discussed. The first variant is the

fractional-step method (Chorin, 1968) which follows the above described three-step

procedure, i.e (step 1) solve momentum equations to obtain a projected (not neces-

sarily divergence-free) flow field, (step 2) solve the Poisson equation for the pressure

(gradients) using a matrix solver and (step 3) use the obtained pressure gradients to

correct the velocity field from step 1. The solution of the momentum equations can

be either with an explicit or implicit time-discretization method, but since the Pois-

son equation is of elliptic nature its solution requires a matrix solver. The second

variant of the projection method is the SIMPLE (Semi Implicit Method for Pressure

Linked Equation) method. Its main difference to the fractional-step method is that

the projected velocity obtained in step 1 is corrected in a multi-step or iterative

procedure, which is why it is called semi-implicit. Basically, the SIMPLE procedure

is as follows: (step 1) advance the velocity field in time with a guessed pressure

field to obtain a projected velocity field, (step 2) solve the Poisson equation for a

pressure correction variable, (step 3) correct the pressure using the pressure correc-
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(a) Collated grid (b) Staggered grid

Figure 2.5: Collated (a) and Staggered (b) variable arrangements in Cartesian grid.

tion variable and the velocities using the gradient of the corrected pressure, (step 4)

check the updated velocity for continuity and if not fulfilled return to step 2. The

SIMPLE method was originally developed for steady flows and its relatively poor

convergence rates (mainly due the slow convergence of the Poisson equation) led to

several, but only slightly improved schemes, e.g. SIMPLEC, SIMPLER or PISO

(Ferziger and Peric, 2002) for such flows. In LES, SIMPLE-type methods have been

quite successful as the turbulent flow develops over an initial phase in which the

Poisson equation does have to be solved to machine accuracy but only to a certain

degree. Once the flow is fully developed, the small timesteps of LES imply that

the velocity and the pressure fields do not change much from one instant in time to

the next. Hence the projected velocity field is already a very good estimate of the

divergence-free velocity field.

The selection of the variant of the projection method depends on the chosen grid. As

will be discussed below, grids with a staggered variable arrangement (called simply

staggered grids) are advantageous. A staggered finite-volume grid, in which each

variable is stored at a different location and has its own Control Volume (CV) is

sketched in Figure (2.5b) In this 2D situation, the pressure is stored in the cell center

and the velocities are stored at the faces of the pressure cell. This arrangement is

more complicated than the collocated grid in which all variables are stored at one
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location (Fig. 2.5a). However, solving the momentum and Poisson equations on

staggered grids removed the necessity of one additional interpolation of the pressure

to determine the gradients required in the momentum equations. Hence, this ”strong

coupling”, which also ensures the conservation of kinetic energy allows the use of

fractional-step method in contrast to the iterative procedure of the SIMPLE-type

methods. However, a staggered arrangement is more difficult to implement, espe-

cially for complex geometries using body-fitted curvilinear grids (Fig. 2.6). Grid

generation and coding the Navier-Stokes equations for a grid with collocated vari-

able arrangement is much easier. However, solving the momentum equations on a

collocated arrangement requires pressure values at the CV faces, which are (linearly)

interpolated from the nodal values. This additional interpolation leads to a ”decou-

pling” of velocities and pressure and requires extra treatment, e.g. momentum inter-

polation (e.g. Rhie and Chow, 1983; Miller and Schmidt, 1988) to avoid unphysical

oscillations in the numerical solution. The momentum interpolation adds an addi-

tional term to the Poisson equation, which destroys the energy conservation property

of the solution process and requires an iterative procedure within the time step to

make the flow field divergence free. The order of the space-discretization scheme is

not influenced negatively by using a momentum interpolation (e.g. Melaaen, 1992)

because the additional momentum interpolation term involves ∆x2, and hence a

4th order truncation error (Fröhlich, 2006). Direct comparisons of methods using

staggered and collocated grids were, however, mainly carried out for steady RANS

calculations and not for high-resolution unsteady LES.

Finally, matrix solvers are needed in LES of incompressible flows, either for the

velocity variables when an implicit time-discretization scheme is used, but in any

case for the solution of the Poisson equation for the pressure. The most efficient

matrix solvers are of iterative nature and the set of algebraic equations is solved only

to a certain convergence criterion. This criterion is set by the user, but mass and

momentum balances need to be fulfilled to a certain degree of accuracy. What follows

is that inaccuracies due to non-convergent matrix solutions can become larger than

for instance due to the discretization error. However, in general the speed of the

solver is more critical than its accuracy and different approaches and acceleration

techniques exist (Hirsch, 2007; Ferziger and Peric, 2002; Versteeg and Malalasekera,

2007)
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2.6.4 LES Grids

The grid provides the discrete representation of the physical domain in which the

governing equations are solved. The variables are generally defined at the grid nodes

in FDM, or, in case of a collocated grid, in the center of the control volumes in FVM.

In the following, the four main types of grids sketched in Figures (2.6)-(2.9) for the

flow around a circular cylinder are discussed, as well as their suitability for use in

LES.

Structured grids

Figure (2.6) depicts a structured, curvilinear 2D grid for the flow around a circular

cylinder which consists of grid lines in 2 different directions. The grid nodes are

identified using indices for each direction (e.g. i for the x-direction, j for the y-

direction for the 2D grid in Figure 2.6). Grid lines in one direction cross only once

any grid line in the other direction so that each grid node is uniquely defined as

(i, j) in a 2D grid and (i, j, k) in a 3D grid. In the FVM, the finite volume is

described by the gridlines connecting the grid vertices (e.g. shaded area Figure 2.5)

and has its node in the center of the CV. This results in a simple connectivity matrix

and allows the utilization of efficient techniques (sparse matrix solvers) for solving

the discretized governing equations. This feature is particularly important in LES

and DNS because the solution of the Poisson equation is generally the most time-

consuming part of the solution procedure (can take up to 80% of the total CPU time),

especially for grids with a large number of points in the three directions. Depending

on the shapes of the grid lines, structured grids are classified as H, O or C type

(Thompson et al., 1985). The discretization of the governing equations is simpler

on Cartesian grids, but for complex geometries curvilinear, boundary-fitted grids

are often used in flows of hydraulic interest. The main disadvantage of structured

grids is the difficulty to control the distribution of the grid points in domains of

complex geometry. Highly skewed and/or high-aspect-ratio grid cells are known to

reduce the accuracy of the numerical solution and create convergence problems. The

use of structured grids in complex domains often results in clustering of grid points

in regions where this is not really needed, hereby increasing unnecessarily the CPU
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Figure 2.6: A structured, body-fitted, curvilinear grid for channel flow around a
circular cylinder.

time. In some cases (e.g. domains with multiple bodies) it is topologically impossible

to generate a structured mesh for the whole domain. Some of the problems/ concerns

are illustrated in Figure (2.6) for the case of circular cylinder. The grid is refined

near the cylinder to account for the large gradients there, but unfavorable grid aspect

ratios and grid skewness present in the stagnation regions may lead to inaccuracies

and problems with the convergence. The grid is stretched away from the cylinder,

and hence a greater discretization error is expected for the wake region. However,

if only the near field around the cylinder is of interest, this is accepted deliberately

in order to save computating time. Altogether the use of a structured grid is not

ideal for this geometry. Alternatives are block-structured grids, or Cartesian grids

with Immersed Boundary Method- both are introduced below, On the other hand,

structured grids have been applied successfully in many LES of open channel flow

in which the channel width and depth does not vary strongly.

Block-structured grids with matching or non-matching interfaces

For computational domains of complex shape or for domains in which the genera-

tion of a single structured grid for the whole domain results in highly skewed grid

cells, block-structured grids are the best alternative to structured grids. Figure (2.7)

depicts a block-structured grid for the channel flow around a circular cylinder. The

original physical domain is divided into two sub-domains, for which in each a struc-

tured grid is generated. Here, an O-grid wraps around the cylinder allowing small,

orthogonal cells in the vicinity of the cylinder and coarser, slightly skewed cells away

from it. In the example depicted here, the O-grid is connected to a stretched H-grid

at the downstream side of the cylinder, using the same number of grid points at the
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Figure 2.7: A block-structured grid for channel flow around a circular cylinder with
an O-grid around the cylinder and an H-grid for the downstream part of the flow.

interface between two neighboring blocks. This is referred to as matching interface.

Block-structured grids in LES require an overlap region, and the higher the order

of the scheme the larger should be this region. If the number of cells of the grid on

either side of the interface is different, the block-structured grid has a non-matching

interface and variables have to be interpolated at the boundaries between the blocks.

The use of block-structured grid with non-matching interfaces can greatly simplify

the grid generation process for complex domains, allowing much more flexibility

compared to the case of matching interfaces. This is of interest in LES, because it

allows using local refinement strategies with very fine meshes in regions with very

high velocity gradients. For the situation depicted in Figure (2.7), a very fine mesh

can be used around the cylinder, resolving the boundary layer there, thus allowing

for accurate predictions of drag and lift forces. A coarser grid can be then be used

in the downstream section of the flow, in which eddies are convected in the direc-

tion of one set of grid lines away from the region of interest. The major drawback

of non-matching interfaces of block-structured grids is the need to interpolate the

variables between blocks, which violates the conservation properties. They are of

particular importance in LES, as their violation tends to introduce errors of dissi-

pative nature, and hence the quality of LES diminishes. Finally, block-structured

grids with completely overlapping blocks should be mentioned, which are known as

Chimera grids. To date, such grids are used mainly in RANS simulations of flows

with moving bodies.
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Figure 2.8: An unstructured grid for channel flow around a circular cylinder allowing
for clustering a large number of elements near the cylinder.

Unstructured grids

An alternative to block-structured grids are unstructured grids in which the CVs

can have a variable number of neighbors (Fig. 2.8). Unstructured grids have the

highest degree of flexibility in terms of the capability to generate grids for very com-

plex domains, thereby clustering the grid nodes in regions where this is required as

well as relatively rapid, but gradual, transition in cell size when moving away from

the region of interest. Unstructured grids have become very popular in commercial

CFD solvers due to their ability to represent any geometry. Subsequently, a num-

ber of commercial grid-generation software packages became available, with which

grids can be generated rapidly and automatically, even under a certain number of

constraints (e.g. minimum/maximum volume of the CV, total number of CVs in

the sub-domain, maximum skewness allowed for the CVs, etc). The irregularity in

the data structure is the main reason why the solvers used to invert the system of

discretized equations are much slower than those for structured grids. Of particular

importance for LES is the use of Finite Volume (FV) method with unstructured

grids. Even for very complex domains, the discrete conservation of mass and mo-

mentum can be exactly satisfied. The use of unstructured grids with hexahedral

elements is recommended for LES, especially in regions with large velocity gradi-

ents. Based on experience with LES on unstructured grids, tetrahedral or mixed

tetrahedral and hexahedral elements can introduce unphysical oscillations in the

solution.
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Structured Grids Together with the Immersed Boundary Method (IBM)

The IBM method (eg. see Mittal and Jaccarino, 2005; Iaccarino and Verzicco,

2003; Fadlun et al., 2000) is another alternative of increasing popularity that allows

simulations in very complex domains. Though originally proposed as a method to

be used in conjunction with Cartesian or cylindrical grids, it can, in theory, also be

used in any grid environment. In the IBM, the grid does not need to conform to

the shape of the physical domain boundaries, and modifications are needed in the

solution of the Navier-Stokes equations to properly account for physical boundaries

not represented explicitly by the grid. Figure (2.9) depicts the simplest and most

efficient grid, i.e. a structured Cartesian grid, to be employed together with the IBM

for the simulation of channel flow around a circular cylinder. The physical domain

boundaries of the cylinder are immersed or embedded within the grid and the no-

slip boundary condition of the cylinder requires extra treatment. The general idea

is to account for the presence of the boundaries of an object in a flow domain by

adding forcing terms in the governing flow equations in the vicinity of the immersed

boundary.

Figure 2.9: A structured, Cartesian grid for channel flow around a circular cylinder
using the immersed boundary method.

An example of a typical immersed boundary treatment is illustrated in Figure (2.10).

The body is immersed in the Cartesian grid and the velocity of the fluid in the bound-

ary is known, i.e. through the no-slip condition. The no-slip condition is imposed on

the surrounding fluid by adding a force term to the momentum equations, in Figure

(2.10) at the first grid node inside the immersed boundary. The magnitude of the

force is such that enforces a pre-determined target velocity for that node, and the

target velocity is determined through a reconstructed velocity field using the values
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Figure 2.10: Illustration of the immersed boundary method.

from the neighboring (fluid) grid nodes and the no-slip velocity on the immersed

boundary. Several interpolation schemes are available and detailed reviews of the

different approaches are provided by Iaccarino and Verzicco (2003) and Mittal and

Jaccarino (2005).

The IBM method is particularly powerful for simulations with moving boundaries

due to its simplicity and accuracy, which makes it very attractive for LES of such

flows. In such simulations, the underlying (Cartesian/cylindrical) grid is stationary,

which ensures the observation of conservation principles, and at the same time allows

the use of fast and efficient sparse matrix solvers. The IBM has been successfully

used in a number of simulations of hydraulic interest, for instance for the flow

around artificial submerged vegetation (Stoesser et al., 2009), the flow of meandering

channel with large bedforms (Kang et al., 2011) or the flow through a porous bed.

2.7 Boundary and Initial Conditions

Large Eddy Simulations are carried out in finite-size computational domains chosen

by the user. Boundary conditions must be specified at all boundaries of this domain,

as well as initial conditions for the dependent variables within the entire domain at

the start of the simulation in order to solve the governing differential equations. The
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computational domain depends strongly on the geometry and flow conditions of the

problem considered. The boundaries of the computational domain can be of various

types, for example the physical boundaries (the bed consisting of a solid or perme-

able wall and the free surface). The wall boundary at the bed may be horizontal or

inclined. Vertical man-made walls or/and idealized vegetation elements may also be

present as physical boundaries. In addition, artificial boundaries are usually intro-

duced in order to limit the size of the calculation domain. An inflow and an outflow

boundary needs to be chosen by the user limiting the domain in the streamwise

direction. However, the domain can be limited in other directions when the flow is

considered statistically homogeneous by introducing artificial periodic boundaries.

Often the conditions at the boundaries cannot be formulated to represent exactly

the real physical conditions prevailing at the boundaries, e.g. when details of a rough

wall are unknown or velocity fluctuations at the inflow or at a free surface need to

be approximated. Hence models are necessary for these approximations and these

are named super-grid models. The uncertainties and possible errors introduced due

to such super-grid modelling can be orders of magnitude larger than those due to

subgrid-scale modelling and hence the quality of a LES is generally greatly affected

by the treatment of each boundary in the numerical simulation.

The specification of boundary conditions depends on the numerical procedure em-

ployed. In finite-volume methods, conditions must be provided that allow the evalu-

ation of the convective and diffusive fluxes at the faces of the numerical control vol-

umes coinciding with boundaries in the discretized filtered Navier-Stokes equations.

This requires the specification of either the fluxes or the values of the dependent

variables at the boundaries, or a means to express these as a function of interior

data. This amounts to either specifying values at the boundaries, e.g. all three

velocity components at the inflow plane, called Dirichlet condition, or the specifi-

cation of fluxes generally involving gradients, such as at the outflow or at walls,

in a Neumann condition. A third possibility is to apply periodic conditions when

periodicity of the statistical quantities in certain directions can be assumed. This

approach is popular and often employed as a physically more realistic alternative

to inlet/outlet conditions, especially when details of the flow at the inlet/outlet are

needed to ensure accuracy of the calculations in a domain but are not known, and

in cases with homogeneity of the flow in certain directions to keep the size of the
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computation domain in these directions relatively small.

2.7.1 Periodic Boundary Conditions

Periodic conditions can be used at artificial boundaries when the flow is statistically

homogeneous in a certain direction or the geometry is periodic in one or two direc-

tions. Examples where periodic boundary conditions in natural flows can be applied

are given in the following.

A developed open channel flow where periodicity in the streamwise direction prevails

as the distribution of statistical quantities over the cross section is the same at each

cross section. In wide open channels, i.e. without the influence of side walls and in

the absence of secondary motions, the flow is homogeneous in the spanwise direction

and hence periodicity can be assumed also in this direction. Further, for instance in

cases with dense emergent vegetation, bottom friction is negligible and the numerical

simulation resolving the flow around the individual vegetation elements is to good

approximation homogeneous in the vertical direction. Hence not the entire depth

needs to be covered in the calculation but only a slice assuming vertical periodicity

which allows to reduce considerably the number if grid points required.

The flow over a cube matrix exhibits geometric periodicity in stream- and spanwise

direction. When the vertical planes bounding the computational domain are cho-

sen such that they lie in the middle between consecutive cubes in either direction,

then the statistical quantities are the same on opposite planes and hence periodic

conditions can be applied. The flow between the planes is in this case of course not

homogeneous and the instantaneous flow is not periodic; it is characterizes by turbu-

lent structures, the largest of which carry the biggest amount of kinetic energy and

hence these large structures are the greatest contributors to the flow statistics. This

implies that the extent of the computational domain at whose boundaries periodic-

ity is enforced has to be selected with great care. If the distance between streamwise

periodic boundaries is considerably smaller than the size of the largest turbulence

structures occurring in the flow, such structures will be artificially confined within

the domain, which leads to a non-physical flow behaviour and hence to erroneous

statistics. Therefore the proper choice of distance between periodic boundaries is
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essential in a LES that uses periodic boundary conditions. For an open-channel flow

over a smooth bed the minimum distance between streamwise periodic boundaries,

lx, can be estimated to be six times the water depth, h, assuming that the longi-

tudinal extent of the largest turbulence structures is typically less than three times

the water depth. The spanwise distance between periodic boundaries in the cross-

streamwise direction is not as critical as that in the streamwise direction; however

structure lock-in in the spanwise direction should be avoided by proper choice of the

spanwise distance, ly, which can be estimated to be at least twice the water depth.

Using periodicity in the vertical direction in emergent vegetation flow, the vertical

extent of the domain should be of the order of the distance between vegetation

elements in order to resolve all relevant turbulent structures.

The numerical treatment of periodic boundaries is such that on both ends of the

simulation domain so-called ghost cells are added to the domain and the variables at

one side of the domain are copied after every computed time step into the ghost cells

of the other side and vice versa. In spanwise and vertical directions, all variables

i.e. the three velocity components and the pressure are exchanged, which requires

no further treatment. In the streamwise direction a pressure gradient is required

between upstream and downstream end that balances the shear stresses acting on

the walls. Usually, pressure values are also exchanged and an external force that

drives the flow is added to the filtered momentum equations as a source term. The

magnitude of the force is chosen to ensure a constant mass flux.

2.7.2 Outflow Boundary Conditions

The outflow boundary in a LES is artificial boundary and has to be placed as far

downstream of the region of interest as possible. However, the distance between the

region of interest and the outflow boundary is constrained by the relatively high

resolution requirements of LES so that the most important condition to be satisfied

is that the region of interest is not affected by the artificial conditions imposed at

this boundary. Due to the elliptic nature of Navier-Stokes equations, the outlet

boundary conditions affect the flow in the upstream direction, but as most flows in

hydraulic engineering are convection dominated, in effect the values at the boundary

have only minor influence on the solution inside the domain. For such flows, the
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easiest way to approximate the values at the outlet boundary is to assume zero

gradients along streamwise gridlines, which is an extrapolation of 0th order. For the

convective terms this treatment yields:

∂ui
∂xi

= 0 (2.80)

Diffusive fluxes are approximated with one-sided differences. In situations where

obstructions cause larger and persistent eddies, the outflow boundary cannot be

placed sufficiently far downstream and hence the condition (2.80) is not applicable.

In this case eddies are convected to the outlet and may result in negative velocities

there, so that instantaneously fluid enters the domain. This scenario would lead to a

negative pressure gradient near the outlet and hence to numerical oscillations which

can travel upstream and destabilize the flow in the interior of the domain. Damping

of such pressure oscillations can be achieved by grid stretching or by artificially

increasing the viscosity in the vicinity of the outlet. With that, eddies are artificially

stretched and/or weakened and possible pressure oscillations are decreased.

A more physically reasonable and now mostly used alternative to damping the tur-

bulence near the outlet is to employ a convective boundary condition. This condition

requires solving an unsteady 1D convection equation along streamwise gridlines, i.e.

∂ui
∂t

+ Uconv
∂ui
∂x

= 0 (2.81)

This equation is solved for the velocity components on the boundary using a first

order backward difference scheme to compute the spatial derivative and an explicit

discretization scheme for the time derivative. The convective velocity Uconv can be

set in such a way that global mass conservation is achieved. The convective boundary

condition is today the standard and preferred outlet condition for LES and has been

found to work well in many applications including flow around a circular cylinder

(Breuer, 1998), flow over a backward facing step (Le et al., 1997), or the flow over

a hill (Garcia-Villalba et al., 2009).

66



CHAPTER 2. LITERATURE REVIEW - TURBULENT CONTINUOUS
PHASE

2.7.3 Inflow Boundary Conditions

In LES the inflow boundary is usually an artificial boundary at which values of

the quantities to be computed, i.e. ui and p, have to be specified. As mentioned

above, flows in hydraulics are convection dominated, hence the values specified at

the inflow boundary influence greatly the values inside the calculation domain. As

a consequence, in open-channel flow simulations physically realistic velocity and

pressure values are needed at the upstream end of the domain. The easiest and by

far the most common treatment of the inlet boundary is to prescribe the velocity

contribution over the inlet as a Dirichlet boundary condition and to extrapolate

the pressure from the inside to the inlet plane. However, in contrast to RANS

calculations not only the time-averaged velocity distribution is required but also

the specification of physically realistic velocity fluctuations is needed. This poses a

significant challenge in LES, since high resolution (spatially and temporally) velocity

data at the inlet plane of the flow domain, for instance from experiments, is rarely

available.

In some situations, where the approach flow is uniform and virtually free of tur-

bulence, or when the turbulence and large-scale flow structures are a result of flow

separation inside the calculation domain, prescription of a time-averaged velocity

profile at the inflow boundary may be sufficient. Examples for this are the flow

over a backward facing step (Fureby, 1999; Le et al., 1997) or the flow around long

square and circular cylinders (Rodi et al., 1997; Breuer, 2000). In the first two cases

the location of flow separation is predefined through the geometry (sharp corners)

and hence does not depend on the upstream flow conditions. However, in cases in

which the approach flow carries turbulence and its conditions influence the down-

stream flow, neglecting the turbulence at the inflow could lead to significant errors

or to extremely long and hence resources-consuming development lengths. For in-

stance, the location of flow separation on curved surfaces is known to be influenced

by the upstream turbulence, Garcia-Villalba et al. (2009) calculated the flow over

a three-dimensional mildly sloped hill and stressed the importance of matching the

turbulent inflow conditions to the experimental ones in order to accurately predict

the location of flow separation on the hill.

Recently, considerable research has been dedicated to generating adequate inflow
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boundary conditions for LES. This issues is also important in Hybrid LES/RANS

methods at the transition from RANS to LES zones/regions.

The most common and practical methods for generating inflow conditions for LES

will be discussed in the following.

Precursor simulations

For channel-type flows, realistic inlet conditions can be obtained from pre-cursor

simulations of an upstream placed sub-channel, the geometry and wall boundary

conditions of which match those at the inlet of the actual calculation domain. The

sub-channel flow is assumed to be developed so that the boundary conditions are

chosen to be periodic in the streamwise direction. Once the flow field has developed

into a fully turbulent and statistically steady state, the time-varying velocity data

at one cross-section are copied to the inlet plane of the main simulation. Ideally,

not only the geometry, but also the grid and temporal resolution match exactly the

conditions at the inlet plane. If not, interpolation of velocity data in space and/or

in time is required, which, especially if performed in time, could lead to unphysical

turbulence spectra. One possibility is to perform the pre-cursor simulations before

the actual simulation and write the results for one plane into a file from which the

main simulation then reads the data as inlet boundary condition, This can be a

challenge in terms of storage due to the high resolution requirements in space and

time of the pre-cursor simulation which should cover the same physical time as the

actual simulation. If less physical time is stored, the precursor results need to be

fed-in repeatedly. A further possibility is to run the pre-cursor simulation calcu-

lations parallel to the main simulation and to feed-in the results of the periodic

sub-domain directly as inlet boundary condition of the main simulation. This treat-

ment inevitably leads to an increase in the required computational resources of the

entire simulation. In cases in which the straight-channel pre-cursor simulation does

not match the desired or (statistically) known inlet conditions of the main simula-

tion, the use of forcing terms and rescaling of turbulent fluctuations are adequate

measures to better approximate the inlet conditions. Forcing and rescaling has been

done successfully by Garcia-Villalba et al. (2009) who rescaled velocities and turbu-

lent fluctuations of a closed smooth channel to match closely the profiles of mean
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velocity and turbulent kinetic energy of thick boundary layer that was artificially

created at the upstream end of a wind tunnel experiment.

Time-averaged Velocity Profile Superimposed with Synthetic Turbulence

The easiest but least successful method of generating a turbulent inlet velocity field is

superimposing synthetic turbulence on the mean velocity field. Though the random

numbers can be scaled to match experimental rms values, the resulting velocity

signal is not physically realistic as the spectrum of the prescribed fluctuations does

not exhibit a decay towards higher frequencies as is the case in real turbulence. More

importantly, almost immediately downstream of such an artificially created velocity

signal, the high frequency fluctuations are damped quickly by the numerical method

demanding a divergence free flow field. This influences negatively the low frequency

more energetic fluctuations. As a result, the flow requires a certain approach flow

length over which the velocity signals adjust themselves towards physically realistic

turbulence. This length is hard to estimate a-priori and depends on the geometry

and Reynolds number. In LES, every grid point that can be saved by avoiding a

long ”adjustment length” is important so that in simulations in which the proper

upstream conditions are important, alternative, more advanced methods should be

favoured.

Several studies have addressed the poor performance of the use of random noise

superimposed on a velocity profile by generating more realistic turbulence for the

inlet plane. The idea of generating synthetic turbulent fluctuations to be superim-

posed onto a time-averaged velocity profile makes use of Taylor’s frozen turbulence

hypothesis, in order to relate spatial and temporal turbulence. By using an ap-

proximate convective velocity it can be assumed that turbulence statistics such as

turbulence intensities and Reynolds stresses from spatial simulations are similar to

those from temporal simulations.

Method of Lee et al. Based on this assumption, Lee et al. (1992) suggested gen-

erating stochastic turbulent fluctuations with a prescribed energy spectrum from in-

verse Fourier transformations. This can be accomplished by providing two transver-

sal wave numbers, the frequency of the spectrum and random phase angles in the
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streamwise direction. The use of Lee et al. (1992) procedure ensures that the result-

ing signals do not contain excessive small-scale motions which would have resulted if

simply random numbers were used to generate the velocity fluctuations. For the flow

over a backward facing step, Le et al. (1997) superimpose a mean velocity profile

with fluctuations with a prescribed energy spectrum following the method suggested

by Lee et al. (1992). Because of the inhomogeneity in the wall-normal direction,

calculated fluctuations are rescaled to conform to the three normal Reynolds stress

components and the wall-normal shear stress associated with a turbulent bound-

ary layer profile. As mentioned above, the incompressibility condition must also be

considered, which implies that the generated inflow fluctuations must be zero when

summed over the inflow plane. Though fairly realistic velocity signals were achieved,

a certain approach length is still required for the flow to develop into physically cor-

rect turbulence; this approach length however is considerably shorter than the one

needed if white noise was superimposed at the inlet.

In an effort to improve the velocity signals at the inlet plane the fluctuations at each

point can be manipulated, for instance through the phase angle to compute the

Fourier coefficient, to attain specific spatial correlations expressing the coherence of

a turbulent flow (Kondo et al., 2002).

Digital Filter Method Klein et al. (2003) proposed a general and efficient method

for generating artificial turbulent inflow conditions for spatially inhomogeneous flows

based on a digital filtering approach. The digital filtering approach does not assume

flow similarity or equilibrium.

In the first step of this approach, a provisional velocity field um is generated for

each velocity component from a random data series rm(m = 1...k), which possesses

prescribed two-point statistic and zero mean (um = 0), using a digital filter defined

by:

um =
N∑

n=−N

bnrm+n (2.82)

where bn’s are the filter coefficients that have to be determined and N is the extent

of the filter support (filter size). The random data series rm has to satisfy zero-

mean (rm = 0) and unit variance (rmrm) = 1. With this, one can show that the
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following relation holds between the two-point correlation function of um and the

filter coefficients bj (in 1D for x-direction):

Ruu (k∆x) =
umum+k

umum
=

N∑
j=−N+k

bjbj−k

N∑
j=−N

b2
j

(2.83)

where k∆x is the distance from the reference point considered and ∆x is the grid

spacing in x. For a given two-point correlation Ruu the filter coefficients bj can be

determined by inverting relation (2.83). Klein et al. (2003) prescribe the two-point

correlation by assuming a Gaussian shape and by specifying the integral length scale

Lx. This is consistent with homogeneous turbulence, but other correlation shapes

can be used. The filter size N is chosen to be twice the ratio of length scale to grid

spacing (N = 2Lx/∆x).

In the second step, the time series from the first step having zero mean, unity

variance and zero cross-correlations are modified using a linear transformation (Lund

et al., 1998), such that one obtains new velocity time series with desired first (mean

values) and second order point statistics (correlations between the different velocity

components). The single point statistics are generally obtainable from experiment

or from RANS in a hybrid method.

The aforementioned procedure allows obtaining instantaneous velocity data in the

inflow plane with appropriate spatial correlations from an initial set of 3D random

data. The method was validated by Klein et al. (2003) for two cases (DNS of plane

turbulent jet, 2D DNS of primary break up of liquid jet) in which the turbulence

scales were spatially uniform over the entire inlet plane.

Veloudis et al. (2007) proposed a new version of the digital filtering approach devel-

oped by Klein et al. (2003) that allows for spatial variation of the input turbulence

length scales, instead of assuming a single prescribed spectrum at all inflow points,

at a reasonable computational cost. The increased accuracy of the modified method

using spatially varying turbulence length scales was demonstrated for the case of

channel flow with a periodically repeating constriction. In particular, the prediction

of the turbulence profiles was found to be more accurate compared to the case when
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a constant turbulence length scale was assumed. The use of Fast Fourier Transform

for the 3D filtering process resulted in significantly higher computational speed.

A computationally very efficient digital-filter-based approach for generation of tur-

bulent inflow conditions for spatially developing flows was proposed by Xie and

Castro (2008). The method allows prescribing the integral length scales and the

Reynolds stress tensor. It also allows for the use of spatially varying turbulence

scales. The increase in efficiency with respect to the method of Klein et al. (2003)

is mainly due to the fact that only one set of 2D random data, rather than a set of

3D data, is filtered to generate a set of 2D data with the prescribed spatial correla-

tions at each time step. An exponential function with two weight factors is used to

correlate the data at the current time step with the one at the previous time step.

The other methods use a full 3D digital filter, which is computationally much more

expensive. The main validation test cases were channel flow and flow over an array

of staggered cubes.

A useful description of the digital filter method can also be found in the Appendix

A of Touber and Sandham (2009).

2D Vortex Method The random 2D vortex method of Mathey et al. (2006)

deserves attention too because of its simplicity and success in some recent hybrid

RANS-LES simulations and because it is already implemented in some commercial

CFD codes. This method is mainly suited for generating inflow turbulence at the

transition face from RANS to LES zones in hybrid calculations. With this method,

velocity fluctuations are generated from a fluctuating two-dimensional vorticity field

in the inflow plane perpendicular to the streamwise direction with unit vector −→ex in

this direction. For this, N individual vortices are placed randomly over the inflow

plane (with positions−→xi = (x, yi, zi)) and the vorticity of those is determined by their

circulation Γi and a spatial decay function η(−→x ) involving the size of the vortices

σ. By superposition of the N individual vortices the fluctuation velocity
−→
u
′

at a

point −→x in the inflow plane is then calculated from the vorticity distribution of the

vortices via the Bio-Savart law as:

−→u (−→x ) =
1

2π

N∑
i=1

Γi
(−→xi −−→x )×−→ex
|−→x −−→xi |

2

(
1− e

|−→x−−→xi|2
2σ2

)
e
|−→x−−→xi|2

2σ2 (2.84)
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The fluctuating velocity components v
′
and w

′
can be obtained as components of the

fluctuating velocity vector
−→
u
′
. The circulation Γi and the vortex size σ appearing

in (2.84) are determined from the mean turbulent kinetic energy k and dissipation

rate ε via:

Γi ∝
√
k (−→xi ) (2.85)

with the distribution of k and ε over the inflow plane known from the upstream

RANS calculation (or by estimation). To ensure that the vortices always belong to

resolved scales, the minimum value of σ is bounded by the local grid size so that

σ ≥ ∆. The individual vortices are moved randomly to another position at each

time step. Further, after a characteristic time scale τ , which is the time the vortices

would take to be convected a certain distance in the streamwise direction, the sign

of the circulation Γi of each vortex is changed randomly.

This vortex method described so far generates only velocity fluctuations v
′
and w

′
in

the inflow plane normal to the streamwise direction. For generating the streamwise

fluctuations u
′
Mathey et al. (2006) suggest a Linear Kinematic Model (LKM) which

mimics the effect of the 2D vortices on the streamwise velocity field.

The 2D vortex method was validated successfully for channel and pipe flow and

separated flow over periodic hills (Mathey et al., 2006) and the flow over the Ahmed

car body (Mathey and Cokljat, 2005).

2.7.4 Free Surface Boundary Conditions

The water surface in hydraulic engineering flows represent the boundary between

water and the air above it. The water surface can distort into various shapes and

will adjust itself according to the flow, turbulence and bathymetric or geometric

conditions in a channel. Generally the distortion by turbulence is fairly small and in

most cases much smaller than mean surface variations in non-uniform channels, flood

waves, tidal channel, ocean waves of flows over hydraulic structures. Mathematically,

at a free surface a kinematic as well as a dynamic boundary condition applies.

The kinematic boundary condition states that there is no convective mass transfer

through the free surface; hence the fluid velocity component normal to the free

surface is equal to the free surface velocity (Fig. 2.11). The kinematic condition in
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Figure 2.11: Illustration of the free surface as an interface between air and water.

Eulerian form reads:
∂h

∂t
− u3 = −u1

∂h

∂x
− u2

∂h

∂y
(2.86)

in which h is the filtered water depth, and ui represents the filtered velocity compo-

nents at the surface. The presence of non-linear terms in the unfiltered kinematic

boundary condition leads to subgrid scale terms after filtering, which are additional

unknown quantities that would need to be modelled but are usually neglected (e.g.

Hodges and Street, 1999). The dynamic boundary condition requires that all forces

acting at a sharp interface are in equilibrium. In other words, the forces exerted

by water on air are equal and opposite to the forces exerted by air on water. Force

intensities per unit area that are found at the free surface of an open channel are

pressure, acting normal to the surface, viscous stresses, acting both normal and tan-

gential to the surface, and surface-tension, acting both normal and tangential to the

free surface.

The implementation of kinematic boundary condition into the solution algorithm of

the filtered Navier-Stokes equations is not straightforward because neither shape nor

position of the free surface are known. There are two principal numerical methods for

calculating the location of the free surface (Ferziger and Peric, 2002), i.e. Interface-
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Tracking Methods (ITM) and Interface-Capturing Methods (ICM), also known as

moving-mesh and fixed-mesh methods. In an interface-tracking, or moving-mesh

method for open channel flow, the governing equations are only solved for the water

phase and the computational mesh is moved after every time step so that the bound-

ary of the computational domain coincides with the free surface geometry. An ITM

requires a boundary-fitted, moving grid together with an appropriate algorithm that

readjusts the grid in the entire domain each time the surface has moved. So far,

ITMs have been used mainly in the context of RANS modelling, following different

strategies to compute the free-surface elevation. An ITM in the context of LES has

been presented by Hodges and Street (1999) who simulated the interaction of waves

with a turbulent channel flow. These authors used an explicit time-discretization

scheme to advance the free surface by solving the kinematic boundary condition and

solved a Poison-type equation after every time step to compute a new boundary-

orthogonal grid. The Reynolds number in this case is rather low (Reτ=171) so that

the turbulent eddies and the surface deformations caused by them have rather large

length and time scales. At Reynolds numbers of practical interest with much smaller

turbulent length and time scales the recalculation of a new mesh would be extremely

expensive. In fact, Hodges and Street state that in such cases of small surface defor-

mations their method is not suitable. To avoid the creation of a new mesh after every

time step Fulgosi et al. (2003) used a mapping scheme that transfers the curvilinear

physical space into an orthogonal coordinate system. Fulgosi et al. (2003) employed

this technique for a DNS of wind-sheared free-surface deformations.

In interface capturing methods the boundary between the two phases is not defined

sharply through the numerical mesh, hence the mesh includes both phases. Probably

the earliest ICM was proposed by Harlow and Welch (1965). Their Marker-and-Cell

(MAC) method introduces meshless particles into the water near the free surface,

which are moved according to the velocity components in their vicinity. Though

the MAC scheme can handle complex interfaces such as breaking waves, a large

number of particles are needed, which makes the method computationally expen-

sive. Alternatively the free surface position can be determined by the contour of

a scalar function which does not need to coincide with grid lines. The Volume of

Fluid method (VOF) is such an approach, where the fraction of the liquid phase is

determined by the solution of a transport equation for the void fraction F (Hirt and
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Nichols, 1981). Per definition F is unity in any cell/point that is occupied by water

and zero otherwise. One important procedure in VOF method is that the surface has

to be reconstructed in terms of the volume fraction for which different techniques

exist (e.g. SLIC, Simple Line Interface Calculation method by Noh and Woodward

(1976) or PLIC, Piecewise Linear Interface Calculation by Youngs, 1982). Thomas

et al. (1995) combined the kinematic boundary condition based on the water depth h

(Eq. 2.84) with the VOF method, which is applied to a LES of straight open channel

flow by Shi et al. (2000). Recently, the Level-Set Method (LSM), which originated

in computer graphics has become a popular interface-capturing method for multi-

phase flows. The LSM was originally proposed by Osher and Sethian (1988) and

was developed for computing and analyzing the motion of an interface between two

phases in two or three dimensions. In the LSM the conservation equations are solved

for both liquid and gas phase and the interface moves at the local velocity which can

be expressed in a Lagrangian way. The LSM has been recently employed in an LES

of the flow over fixed dunes by Yue et al. (2005a). Not only were Yue et al. (2005b)

able to accurately and realistically calculate the unsteady free surface motion but

they also provided evidence of boils, upwelling and downdraft.

By far the most large-eddy simulations in hydraulics were performed with the so-

called rigid-lid approximation as boundary condition for the free surface. In this,

instead of the actual free surface as adjusting boundary in an interface-tracking

method, a fixed boundary, generally a flat surface, is used which is treated as a

frictionless wall. Hence, the calculations are in fact carried out for a closed conduit

with an artificially introduced fixed upper boundary where the shear stress is zero

(in the absence of wind shear) and the velocity normal to the boundary is also zero,

but where the pressure can vary as it does along a wall. In fact, the boundary

conditions for the pressure and the normal velocity are as described earlier for a

wall, while the shear stress at the boundary is simply set to zero which altogether

amounts to using symmetry conditions at the boundary. The problem of having

to determine the surface elevation while knowing the pressure at the surface has

been shifted to knowing the location of the boundary but having to determine the

variation of the pressure there. The surface-elevation-gradient terms g∂h/∂x and

g∂h/∂y in the momentum equations for free surface flows are thereby replaced by the

pressure gradients ∂p/∂x and ∂p/∂y so that the dynamic effects of surface-elevation

76



CHAPTER 2. LITERATURE REVIEW - TURBULENT CONTINUOUS
PHASE

variations are properly accounted for by the rigid lid approximation method. In fact,

the surface elevation that would evolve can be retrieved from the pressure variations

through the following relation:

∆hk = zk − zref =
pk − pref

ρg
(2.87)

where pk and zk are local pressure value and surface elevation and pref and zref are

the corresponding quantities at the reference location. However, by suppressing the

actual surface deformation a certain error is introduced in the continuity equation,

but this is small when the surface deviation is small compared with the local water

depth, say below 10% of the depth. This is virtually always the case for surface

disturbances due to turbulence and hence the rigid-lid approximation is the preferred

free-surface boundary condition in DNS and LES calculations. For example, Lam

and Banerjee (1992) and Pan and Banerjee (1995) studied the turbulent structures

in DNS of open channel flow using the rigid-lid approximation. Komori et al. (1993)

included the surface variations in their computation by solving Equation 2.86 for

the water depth and compared the results with the ones from Lam and Banerjee

(1992). They found that the free-surface deformations there did not differ from

the simulations using a flat rigid lid. The rigid-lid approximation was also used

in many RANS calculations and in LES for situations with relatively small mean

surface variations, However, large errors must be expected for the mean variations

when these are not small compared to the local water depth as can be the case in

coastal and ocean engineering problems where the variation of the mean free surface

is usually much more pronounced.

2.7.5 Smooth-Wall Boundary Conditions

The no-slip condition at walls is also valid for turbulent flow and its fluctuating

velocities, and hence the natural boundary condition there is for impermeable walls

to set all components of the resolved velocity to zero. Because of steep gradients

and strongly reduced size of the dominant eddies very near walls, high numerical

resolution is necessary, which means that several grid points must be placed within

the viscous sublayer. When a finite-volume method is used, it is not the velocity
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at the wall that must be specified but the momentum flux at the lower boundary

of the wall-adjacent cell, which is the wall shear stress (Fig. 2.12). The wall shear

stress is equal to the molecular viscosity times the velocity gradient at the wall, i.e.

τw = µ

(
∂ut
∂z

)
w

(2.88)

in which ut is the resolved velocity parallel to the wall. In the viscous sublayer

the velocity increases linearly with distance from the wall, and since this sublayer

has to be resolved properly in this approach, the gradient in Equation 2.88 can

be replaced by ut1/z1 where z1 is the distance of the first grid point from the wall

which is located in the middle of the wall-adjacent cell (Fig. 2.12). This allows

calculating the instantaneous wall shear stress from the resolved tangential velocity

at the first grid point. Concerning the boundary condition for the pressure, there

are several possibilities which depend on the flow problem considered and also on

the numerical procedure used. In fully-developed straight channel flow without

obstacles, the exact pressure condition is a zero wall-normal gradient von Newmann

condition, i.e. ∂p
∂z

∣∣
w

= 0. In the more general case with curved walls, e.g. the

flow around an obstacle or in the a bend, this condition does not hold because

wall-normal pressure gradients occur. In this case the pressure at the boundary is

approximated through a linear extrapolation from the known values inside the flow

domain.

In the region very close to the wall (viscous sublayer, buffer region) the major part

of the turbulence production occurs and small-scale structures such as high- and

low- speed streaks must be resolved. An approach achieving this is called a wall-

resolving LES. For this, a good resolution is necessary not only normal to the wall

but also in the wall-parallel directions, and in fact the resolution must be similar

to that in a DNS. Hence this approach is called a Quasi-Direct Numerical Solution

(QDNS, Spalart et al., 1997). Chapman (1979) was the first to analyze the resolution

requirements of flow over a flat plate and found that z+
1 ≈ 1, ∆x+ ≈ 100, ∆y+ ≈ 20

is necessary as minimum resolution. This was later confirmed by other authors,

e.g. Piomelli, 2008. Chapman (1979) also estimated that the number of grid points

required for such an LES is proportional to Re1.8
L . For channel flow Baggett et al.

(1997) estimate the required grid points to be proportional to Re2
τ , where Reτ is the
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(a) (b)

Figure 2.12: Near-wall numerical mesh cells for finite-volume LES (a) for wall re-
solving LES and (b) for LES with wall function.

friction Reynolds number.

It is clear that at high Reynolds numbers of practical interest, calculations with such

fine resolution are not feasible. Such LES are cheaper than a complete DNS but are

still too expensive. A way out is to avoid resolving the details of the structures in the

near-wall region by LES through the use of special near-wall models. One approach

is to place the first grid point outside the region where resolution is particularly

expensive, generally in the log-law region (Fig. 2.12b), and to bridge the near-wall

region by wall functions. Another approach is to calculate the near-wall region by a

RANS model, which also requires quite fine resolution in the wall-normal direction

but not in the wall-parallel directions so that considerable saving is achieved. In

both cases, the near-wall models must provide the wall shear stress but also proper

information on the fluctuations for the resolved region further away from the wall.

Hence such models can be considered as a kind of special subgrid-scale model.

In the following, the most commonly used wall functions are introduced; these ba-

sically relate the instantaneous wall shear stress to the resolved velocity at the grid

point placed in the middle of the wall-adjacent cell in a finite-volume procedure

(Fig. 2.12).
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Schumann’s model The most popular wall-function model is due to Schumann

(1975) who proposed the following relation

τw =
< τw >

< τ 1 >
u1 (2.89)

between the instantaneous wall shear stress τw and the instantaneous velocity u1 at

the first grid point, assuming that these are in phase and that the proportionality

factor is the ratio of the time-averaged shear stress and velocity at the first grid

point, < τw > / < τ 1 >. Schumann (1975) further assumed that this ratio is

determined by the following logarithmic law of the wall

< u+ >=
< u >

u∗
=

1

κ
ln z+ +B (2.90)

i.e. that the first grid point lies in a region where this law prevails. In Equation

(2.90) z+ = zu∗/ν is the normal distance from the wall in wall units, u∗ is the

friction velocity u∗ =
√
< τw/ > ρ, κ is the von Karman constant (=0.4) and B

another constant depending on the roughness of the wall (≈ 5.0 for smooth walls).

The log law (Eq. 2.90) is valid in the z+-range 30 ≤ z+ ≤ 500.

The time-averaged values < u1 > and < τw > have to be determined by time-

averaging during the time-marching solution; for flows with homogeneous directions

this can be supported by averaging in these directions. Further, an iterative solution

of Equation (2.90) is necessary to determine the friction velocity u∗ and hence the

wall shear stress < τw > from the velocity < u1 >. In the special case of developed

channel flow, the time-averaged wall-shear < τw > is known from the imposed

pressure gradient.

For practical applications it is important that the wall-function relation (2.89) can

be applied also when the first grid point comes to lie in the viscous or buffer layer.

This can be achieved by replacing Equation (2.90) with the following three-layer

formulation for the velocity distribution (layer I: viscous sublayer, layer II: buffer

layer, layer III: logarithmic layer):

< u+ >= z+ , I: for 0 ≤ z+ < 5 (2.91a)
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< u+ >= α1 ln
(
z+
)

+ b1 , II: for 5 ≤ z+ < 30 (2.91b)

< u+ >= α2 ln
(
z+
)

+ b2 , III: for 30 ≤ z+ < 300 (2.91c)

with constants α1 = 5.0, α2 = 2.0 or 1/κ, β1 = −3.05, β2 = 5.2

In complex flows, the direction of the wall shear stress is not known a priori and

the two components τw,x and τw,y have to be determined from the two wall-parallel

components of the velocity at the first grid point, u1 and v1. This is achieved with

the following relations:

τw,x =
< τw >√

< u1 >2 + < v1 >2
u1, τw,y =

< τw >√
< u1 >2 + < v1 >2

v1 (2.92)

Werner-Wengle model The Schumann model is based on relations derived from

flat-wall situations and requires the determination of mean values and an iterative

procedure for obtaining the mean wall shear stress from the logarithmic velocity

law. In order to avoid the latter possibly elaborate procedures and aiming at an

application to more complex situations, Werner and Wengle (1993) proposed a wall-

function model that does not involve a law for the time-averaged values but directly a

distribution from the instantaneous velocity, assuming again that the instantaneous

wall shear stress is in phase with this. A two-layer distribution is assumed, with

a linear profile for the inner, mainly viscous layer and a power law for the outer

turbulent layer:

< u+ >= z+ I: for 0 ≤ z+ < 11.82 (2.93a)

u+ = α2

(
z+
)m

II: for 11.82 ≤ z+ < 1000 (2.93b)

with parameters α2 = 8.3 and m = 1/7. The change-over from the inner to the

outer layer is at z+
m = 11.8. Integration of these velocity distributions over the wall-

adjacent cell in a finite-volume procedure then yields directly the wall shear stress:

τw = ρ
2ν

∆z1

u1, u1 =
ν

2∆z1

(
z+
m

)2
(2.94a)

τw = ρ

[
1−m

2
C

1+m
1−m
m

(
ν

∆z1

)1+m

+
1 +m

Cm

(
ν

∆z1

)m
u1

] 2
1+m

u1 >
ν

2∆z1

(
z+
m

)2

(2.94b)
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where ∆z1 = 2z1 is the height of the wall-adjacent cell (Fig. 2.12) and Cm = 8.3.

In complex flows, the wall-shear stress components can then be determined from

τw,x =
τw√
u2

1 + v2
1

u1, τw,y =
τw√
u2

1 + v2
1

v1 (2.95)

The Werner-Wengle model is applicable to situations with flow separation and has

been used with some success for such flows, even though the assumed velocity dis-

tributions are questionable in these regions.

Piomelli et al’s model Piomelli et al. (1989) extended Schumann’s model based

on the experimental observation that the correlation between wall shear stress and

velocity at a near wall point increases when there is a time delay between velocity

and shear stress. This is due to the also experimentally observed fact that the near-

wall structures mainly responsible for the velocity and shear-stress fluctuations are

inclined. Piomelli et al. (1989) accounted for this in their model by relating the

wall shear stress in point A to the velocity at a point B along an inclined near-

wall structure. Hence they proposed to replace (2.89) by the ”shifted boundary

condition”:

τw =
< τw >

< τ 1 >
u1 (x+ ∆s) (2.96)

in which ∆s is the streamwise displacement of point B with respect to point A and

is defined via the angle of inclination of the structures, Θ, and the wall distance of

point B, y1. From experiments and DNS the optimal inclination angle was deter-

mined to lie in the range Θ = 8o − 13o. For 30 < y+
1 < 50 the smaller value applies

so that ∆s = z1 cot 80 while for larger wall distances ∆s = z1 cot 130 yields better

results. For plane channel flow, the inclusion of the displacement ∆s improved the

results over Schumann’s formulation, and for this flow Balaras et al. (1995) obtained

excellent agreement with experimental and DNS data for a range of Reynolds num-

bers. For more complex flows, where the mean-flow direction is not known a priori,

the direction of the displacement must also be determined, which complicates the

application of the model.
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2.7.6 Rough-Wall Boundary Conditions

The above wall boundary conditions/models are applicable to geometrically simple

flows over smooth walls for which the near-wall flow can be resolved or approximated

with some model. However, in flows of hydraulic-engineering interest walls, e.g. the

bed of a river, are often rough so that one of the challenges of LES of such flows is the

accurate inclusion of wall roughness. Similar to flow over smooth walls, specification

of the wall shear stress or some a-priori knowledge of the velocity profile over the

rough wall is needed. This by itself is not an easy task as the law of the wall for rough

boundaries is still subject of ongoing research and several different formulations

exist. In his overview, Patel, 1998 therefore calls the implementation of rough wall

boundary conditions the ”Achilles Heel of CFD”, even though Patel’s article aimed

at the RANS modelling community. There are several different concepts of dealing

with rough walls in LES. The most common ones are introduced in the following.

Explicit resolution of roughness elements One basic possibility to account

for wall roughness is to resolve the flow around the individual roughness elements,

specifying as boundary condition the no-slip condition (zero velocity) at the walls

of these elements.

The success of Direct Numerical Simulations (DNS) and Large-eddy Simulations

(LES) in revealing details of the turbulent channel flow over smooth walls has ini-

tiated DNS and LES studies of flow over walls with roughness elements. Such

fundamental studies resolved the individual elements through the numerical grid,

the numerical effort thereby being extremely high. Successful LES of that kind are

reported for flows over relatively simple and exactly defined roughness elements like

square bars (Leonardi et al., 2003; Ikeda and Durbin, 2007; Stoesser and Nikora,

2008), wavy walls (Calhoun and Street, 2001; Calhoun et al., 2001), spheres (Singh

et al., 2007) or typical open-channel bedforms such as sand dunes or ripples (Yue

et al., 2005a; Yue et al., 2005b, Yue et al., 2006; Stoesser et al., 2008; Zedler, 2001.

An alternative to using body-fitted grids to explicitly resolve individual roughness

elements is the Immersed Boundary Method (IBM) as employed for instance by Cui

et al., 2003; and Bhaganagar et al., 2004. In high-Re flows of hydraulic interest, e.g.

open-channel flow over rough beds, explicit resolution of the flow around roughness
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elements has had limited success mainly for two reasons: (1) the detailed topology of

the rough surface is unknown and (2) the requirements in terms of grid resolutions

to represent individual roughness elements (using ten or more points per roughness

element) are exceeding current computing resources. For instance, a LES (employ-

ing the IBM) of the flow over a rough surface that is composed of small sandgrains

(e.g. H/k = 30) in a 6Hx3HxH domain requires approximately 0.2x109 gridpoints,

with each sandgrain being resolved by only 103 points. Moreover, in open-channel

flow over an alluvial bed the rough surface comprises sediments of widely different

size which can range from micro-meters to decimeters with relative submergences

ranging from one to several hundred, making the specification of accurate boundary

conditions an almost insurmountable challenge. Hence, for calculating flows of prac-

tical interest, alternative methods must be used in which the individual roughness

elements are not resolved.

Rough-wall law based boundary conditions To date most numerical simu-

lations of flow over rough walls have been based on the Reynolds-Averaged Navier

Stokes (RANS) equations, where the effect of roughness has been accounted for

by wall functions involving roughness functions determined empirically from ex-

periments. This RANS-type treatment is quite common in LES of atmospheric-

boundary layer flow. The first grid point is placed outside the roughness layer (Fig.

2.13), which is the (rough) equivalent of the buffer layer in smooth walls, and an in-

stantaneous shear stress is imposed at the boundary, in effect at the lower boundary

of the first grid cell. Following the approach of Schumann (1975) discussed above,

this stress can be determined for Equation 2.88, with the ratio of time-averaged

shear stress and velocity at the first grid point, < τw > / < u1 > now obtained from

a logarithmic law of the wall for rough walls:

< u >

u∗
=

1

k
ln
(
z+
)

+ 5.5−∆B (2.97)

The last term on the r.h.s of Equation (2.97), ∆B, expresses the downshift of the

velocity profile (from the one over a smooth wall) when plotted on a semi-logarithmic

Clause plot. The magnitude of the downshift ∆B depends on the equivalent grain

roughness, ks, which is a common length scale used to quantify the roughness. The
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roughness Reynolds number, k+
s = u∗ks/ν is used to distinguish between the three

roughness regimes, hydraulically smooth, transitional roughness, and fully rough for

which ∆B is calculated as (Cebeci and Bradshaw, 1977):

∆B =



0, for k+
s < 2.5

[
5.5− 8.5 + 1

k
ln (k+

s )
]

sin [0.426 (ln k+
s − 0.81)], for 2.5 ≤ k+

s < 90

5.5− 8.5 + 1
k

ln (k+
s ), for k+

s ≥ 90

(2.98)

In hydraulics there are different types of bed roughness (Rijn, 2007), the two most

relevant are grain roughness and bed-form roughness. For smooth beds ks ≈ 0, and

the smooth bed log law applies. For laboratory channels in which a smooth bed

is technically roughened with individual sand grains the equivalent grain roughness

is approximately the main grain diameter, i.e. ks ≈ d50. In natural beds, or in

laboratory channels with a gravelly or sandy bed, higher sandgrain roughness values

are recommended because larger grains will dominate the surface as a result of bed

armoring or washing out of finer grains. Therefore, van Rijn (1984) recommended

ks = 3d90, however other approximations are available depending on the bed ma-

terial, e.g. Einstein (1942) recommended ks = d65 for sand; Hey (1978) suggested

ks = 3.5d84 for coarse gravel.

For bed forms such as ripples or dunes, both grain roughness and form roughness

have to be accounted for. A common approximation is given by van Rijn (1984) as

ks = 3d90 + 1.1∆(1− e−25∆/λ), in which ∆ is the bed-form height and λ is the bed

form length.

Once the equivalent grain roughness has been determined, the shear stress at the

lower boundary of the first grid cell above the virtual origin (i.e. z = 0), τw, can

be calculated as a function of the filtered horizontal velocity (ui) at the first grid

point, which is located some vertical distance, z
′
, above the rough boundary (Fig.

2.13). The components of this shear stress can be expressed through the following
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Figure 2.13: Near-wall numerical mesh cells for finite-volume LES over a rough
boundary.

quadratic relation as:

τw1 = − < τw >
ui

< u (z′) >
= cD[< u

(
z
′
)
>]2

ui
< u (z′) >

(2.99)

where ui are the filtered, tangential velocity components at the first grid point off

the virtual rough wall and < u(z
′
) > is the time-averaged streamwise velocity at

this location. cD is a drag coefficient, which, in case of a fully rough boundary (i.e.

for k+
s ≥ 90 in Eq. 2.98), is determined by:

cD = κ2 [ln (30z/ks)]
−2 (2.100)

Equation 2.100 can be considered the hydraulic-engineering analogue to what has

been used widely in the atmospheric boundary layer community. There, the for-

mulation of the drag coefficient is as follows (Moeng, 1984; Porte-Agel et al., 2000,

Chow et al., 2005):

cD = κ2 [ln (z/z0)]−2 (2.101)

where z0 is a roughness length that has to be determined from experiments. When
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comparing Eq. 2.101 with Eq. 2.100 it is obvious that ks = 30z0.

Instead of obtaining the instantaneous wall stress through the time-averaged veloc-

ity, Saito et al. (2012) derived a dynamic ordinary differential equation, which allows

calculating the instantaneous friction velocity, u∗, at the virtual origin. Once u∗ is

obtained, an instantaneous version of equation 2.97 can be solved explicitly for an

instantaneous local slip velocity at the virtual origin.

The validity and accuracy of a log-law based boundary condition in LES of channel

flow over rough beds is currently a topic of ongoing research. There are several

uncertainties and assumptions involve in this treatment. For instance, a relatively

coarse grid near the roughness may lead to inaccuracies of the velocity gradient or

for flows with low water-depth-to-roughness-height the grid is too coarse over the

entire water depth to resolve the dominating turbulent structures. Another uncer-

tainty includes the virtual origin of the rough bed, which can result in inaccuracies

regarding the shear stress or for large roughness in a continuity defect. However,

one of the greatest uncertainties of using wall functions is the fact that due to the

absence of local variations in bathymetry, the effects of local pressure gradients and

streamline curvature on the flow are neglected. In particular, if the bed is comprised

of exposed roughness elements, local flow separation and recirculation can be sub-

stantial contributors to turbulence production and are likely to affect the flow over

a substantial portion of the water depth. However, for flows at high relative sub-

mergence the log-law based semi-slip condition can provide reasonable results if (1)

the effect of the roughness on the velocity profile can be estimated a-priori (e.g. by

knowledge of the equivalent sand-grain roughness and zero-plane displacement) (2)

the interaction of the flow in the roughness layer with the outer layer is very weak

or absent, which is true if the roughness height is small. For this to hold Jimenez

(2004) proposes water-depth-to-roughness-height � 40.

Momentum forcing A more natural way to account for the turbulence produc-

ing roughness but also avoiding the expensive explicit resolution of roughness is to

consider the rough bed in a spatially averaged sense. In the momentum forcing

approach the effect of the roughness on the flow and turbulence above the rough

bed over a predefined volume is simulated. Such an approach was presented by
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Nakayama and Sakio (2002) who suggested adding extra dispersive stress terms to

the momentum equations and using a slip boundary condition at a suitably chosen

boundary to mimic the roughness. The dispersive stresses are a result of spatially

averaging the Navier-Stokes equations over a control volume in which the velocity

profiles are heterogeneous in space due to the rough bed (Nikora et al., 2007). The

method of Nakayama and Sakio (2002) reproduces the flow statistics fairly well but

requires a priori knowledge of the magnitude of the dispersive stresses, which they

obtained from a DNS simulation. With increasing computational power, advanced

numerical methods have been employed to study and solve complex and/or practical

problems using numerical computational methods. In hydraulics, almost all flows

(geophysical and/or man-made) are turbulent, with the exception of groundwater

flows. Turbulence adds additional difficulty in obtaining reliable predictions and this

is due to its unsteady and irregular motion of eddies. Eddies associated with tur-

bulence increase the momentum, heat and mass transfer and hence have significant

influence on all aspects of the flow and associated phenomena such as temperature,

concentration, distributions, sediment transport. Therefore, a realistic simulation

of the effect of turbulence is of major importance for an accurate prediction of the

flow and associated phenomena.

Also for vegetation roughness; to avoid the computationally very expensive reso-

lution of vegetation elements, less costly approaches were developed in the meteo-

rological community using a vegetative momentum force The idea is to compute a

drag force and add it to the right hand side of the momentum equations such as

the following time-dependent drag force for vegetation (Shaw and Schumann, 1992;

Kanda and Hino, 1994):

F = CDαV
2 ui
|V |

(2.102)

in which CD is a drag coefficient, α is the leaf density in [m2/m3], and |V | is the

magnitude of the velocity vector (
√
uiui). The drag force acts as a momentum sink

and causes energy losses by stem and leaf drag, However, this treatment alone does

not produce realistically the turbulence resulting from the flow around the plants

and the wake flow downstream of the plants. Hence, a modification of the SGS

stresses is also needed.
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2.7.7 Initial Conditions

The specification of initial conditions for large-eddy simulations requires values for

each variable (velocity, pressure, scalar) in the entire computational domain. The

correctness of these initial values is only important if the calculated results are

needed from the start of the simulation. In large-eddy simulations of hydraulic

problems this is hardly the case; rather flow and turbulence of a fully developed state

are of interest. In analogy to laboratory experiments in hydraulics, LES requires a

certain approach length (in the laboratory it is the channel entrance section while

in most LES it is the initial simulation period) for the flow to develop and to reach

a state that is independent of the previously specified initial conditions. In order to

estimate the length of the initial simulation period the flow-through time unit Tft

defined as

Tft = u(bulk)/(length of domain) (2.103)

or the eddy turn-over time unit Tto defined as:

Ttot = u∗/(water depth) (2.104)

where u∗ is the friction velocity, can be employed. The period in terms of these two

time units however depends on the flow situation and the Reynolds number, but as

a rough guideline, at least six time units of either one are needed for the flow to be

considered fully developed. It is recommended to monitor the velocity or pressure

signal at various points in the flow to check the validity of the estimates made and

make modifications to the initially chosen development period if necessary.

89



Chapter 3

Literature Review - Dispersed

Phase

3.1 Introduction

Multi-phase flows are often encountered in engineering applications and industries,

such as chemical process industry; petroleum; pharmaceutical; agricultural; bio-

chemical; electronic; and power-generation industries. The modelling of gas-liquid

flows and their dynamics has become increasingly important in these areas, in or-

der to predict flow behaviour with greater accuracy and reliability. There are two

main flow regimes in gas-liquid flows: separated (e.g. annular flow in vertical pipes,

stratified flow in horizontal pipes) and dispersed flow (e.g. droplets or bubbles in

liquid). In this section, the numerical methods and techniques commonly used to

describe dispersed bubbly flows will be reviewed.

The description of bubbly flows involves modelling of a deformable (gas-liquid) in-

terface separating the phases; discontinuities of properties across the phase interface;

the exchange between the phase; and turbulence modelling. Most of the dispersed

flow models are based on the concept of a domain in the static (Eulerian) reference

frame for description of the continuous phase, with addition of a reference frame for

the description of the dispersed phase. The dispersed phase may be described in the

same static reference frame as the continuous, leading to the Eulerian-Eulerian (EE)
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approach or in a dynamic (Lagrangian) reference frame, leading to the Eulerian-

Lagrangian (EL) approach.

In the EL approach, the continuous liquid phase is modelled using an Eulerian ap-

proach and the dispersed gas phase is treated in a Lagrangian way; that is, the

individual bubbles in the system are tracked by solving Newton’s second law, while

accounting for the forces acting on the bubbles. An advantage of the EL approach

is the possibility to model each individual bubble and also incorporating bubble co-

alescence and breakup directly. Since each bubble path can be calculated accurately

within the control volume, no numerical diffusion is introduced into the dispersed

phase computation. However, a disadvantage is that the larger the system gets the

more equations need to be solved, i.e. one for every bubble.

The EE approach describes both phases as two continuous fluids, each occupying

the entire domain, and inter-penetrating each other. The conservation equations

are solved for each phase together with interphase exchange terms. The EE ap-

proach can suffer from numerical diffusion. However, with the aid of higher order

discretization schemes, the numerical diffusion can be reduced sufficiently and can

offer the same order of accuracy as with EL approach (Sokolichin et al., 1997). The

advantage here is that the computational demands are far lower compared to the

EL approach, particularly for systems with higher dispersed void fractions.

The major difficulty in modelling multiphase turbulence is the wide range of length

and time scales on which turbulent mixing occurs. The largest eddies are typically

comparable in size to the characteristic length of the mean flow. The smallest scales

are responsible for the dissipation of turbulence kinetic energy. The Direct Numer-

ical Simulation (DNS) approach, with no modelling, resolves all the scales present

in turbulence. However, it is not feasible for practical engineering problems involv-

ing high Reynolds number flows. The Reynolds-Averaged Navier–Stokes (RANS)

approach is more feasible; it models the time-averaged velocity field either by using

turbulent viscosity or by modelling the Reynolds stresses directly.

The large eddy simulation (LES) falls between DNS and RANS in terms of the

fraction of the resolved scales. In LES, large eddies are resolved directly on a nu-

merical grid, while small, unresolved eddies are modelled. The principle behind

LES is justified by the fact that the larger eddies, because of their size and strength,

91



CHAPTER 3. LITERATURE REVIEW - DISPERSED PHASE

carry most of the flow energy (typically 90%) while being responsible for most of

the transport, and therefore they should be simulated precisely (resolved). On the

other hand, the small eddies have relatively little influence on the mean flow and

thus can be approximated (modelled). This approach to turbulence modelling also

allows a significant decrease in the computational cost over direct simulation and

captures more dynamics than a simple RANS model.

In RANS models the assumption of isotropic turbulence is often made for the core of

the flow, which is not valid in dispersed bubbly flows. In dispersed bubbly flows the

velocity fluctuations in the gravity direction are typically twice those in the other

directions. This assumption is not made in LES for large structures of the flow,

giving LES an advantage over RANS for the core regions of the flow. However, the

situation is different close to the walls, where LES assumption of isotropic turbulence

is heavily violated, due to the absence of large eddies close to the walls.

3.2 LES for Dispersed Bubbly Flows

In dispersed bubbly flows, the large-scale turbulent structures interact with bubbles

and are responsible for the macroscopic bubble motion, whereas small-scale turbu-

lent structures only affect small-scale bubble oscillations. Since large scales (carrying

most of the energy) are explicitly captured in LES and the less energetic small scales

are modelled using a subgrid-scale (SGS) model, LES can reasonably reproduce the

statistics of the bubble-induced velocity fluctuations in the liquid. There are three

important considerations for modelling of dispersed bubbly flows:

(1) Filtering operation. Depending on the magnitude of the turbulence and the size

of the bubbles, a separation of length scales of the interface should be applied. The

separation of these scales forms the basis for “filtering” the Navier–Stokes equations

and applying proper model equations for multi-phase flows. For the dispersed flow, it

is important to identify the scales at which the governing equations are to be applied;

microscales, i.e. scales which are small enough to describe individual bubble shapes;

mesoscales, i.e. scales which are comparable to bubble sizes; and macroscales, i.e.

scales which entail enough bubbles for statistical representation.

(2) The grid-scale equations. Depending on the ratio of the length scales introduced
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above, with an affordable grid resolution, a proper form of the governing equations

must be chosen. For instance, if the mesh size is in the microscale order, single-fluid

interface tracking techniques are more appropriate to solve the problem. If, on the

other hand, the grid size is large enough for statistical description of bubbles, the

EE approach can be used. Should the grid size be comparable to the meso-scales,

we are in a limiting area for both approaches, and special care must be taken in

order to solve equations which describe the underlying physics consistently.

(3) The physical models. Depending on the selected gridscale equations, physical

models of various complexities should be employed. The options here are numer-

ous, whether they concern turbulence modelling or interphase modelling, but these

models are generally simpler in case more of the microscales are resolved.

In the following sections, we describe each of these three elements to model turbulent

dispersed bubbly flow.

3.2.1 Filtering Operation

The aim of filtering the Navier-Stokes equations is to separate the resolved scales

from the SGS (non-resolved).The interface between the phases, and the level of

detail required in its resolution/modelling, defines the filter in a multiphase flow.

When LES is applied at a micro-scale, filtering of turbulent fluctuations needs to be

combined with interface tracking methods. These methods have been developed and

used in both dispersed flow and free surface flow (Toutant et al., 2009a; Toutant et

al., 2009b; Bois et al., 2010; Magdeleine et al., 2010; Lakehal et al., 2008). Interface

tracking methods require that all phenomena having an influence on space and time

position of the interface are also simulated. For the amount of details required

and the large size of practical problems of interest, these types of models should

merely be seen as a support for the modelling and validation of more macroscopic

approaches and cannot address a real industrial-scale problem (Bestion, 2012).

When LES is applied at a macro-scale, the interface resolution is not considered.

However, in practical simulations, these would require too coarse grids, leading to

poor resolution of turbulence quantities. Much more often we are in the meso-scale

region, in which the mesh size is comparable to bubble sizes. This pushes the main
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Figure 3.1: Illustration of Milelli condition

assumptions of the EE approach to its limit of validity, and the grid is not fine

enough for full interface tracking. In other words, the mesh requirement for EE

multiphase modelling conflicts with the requirements of LES approaches (Niceno

et al., 2008).

The issue of the requirement of the mesh size was first addressed by Milelli et al.

(2001) who carried out a systematic analysis and performed a parametric study

with different mesh sizes and bubble diameters. He showed that for case of a

shear layer laden with bubbles it was possible to provide an optimum filter width

1.2 < ∆/db < 1.5, where ∆ is the filter width and db is the bubble diameter (shown

in Figure 3.1). This means that the grid space should be at least 50% larger than

the bubble diameter.The constraint imposed on the ratio ∆/db implies that the in-

teraction of bubbles with the smallest resolved scales is captured without additional

approximation.

3.2.2 Grid-Scale Equations

The principle of the LES formulation is to decompose the instantaneous flow field

into large-scale and small-scale components via a filtering operation. If φf denotes

the filtered or grid-scale component of the variable φf that represents the large-scale
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motion then:

φf = φf + φ
′

f (3.1)

where φ is the variable of interest, subscript f refers either to the liquid or the gas

phase. In the remainder of this chapter, the bars of all resolved variables will be

omitted for the sake of simplicity. The following filtered equations are obtained:

∂/∂t (αfρfuf ) + ∆ · (αfρfuf ) = 0 (3.2)

∂/∂t (αfρfuf ) + ∆ · (αfρfufuf ) = −5 · (αfτf )− αf 5 p+ αfρfg +Mf (3.3)

where the r.h.s of Equation (3.3) is, respectively, the stress, the pressure gradient,

the gravity, and the momentum exchange between the phases due to interface forces.

The SGS stress tensor which reflects the effect of the unresolved scales on the resolved

scales is modelled as:

τf = −µeff,f
(
5uf + (5uf )T −

2

3
I (5 · uf )

)
(3.4)

where µeff,f is the effective viscosity.

In the EE approach, separate equations are required for each phase (e.g. in Eq. (3.3),

f = l, g, together with the interphase exchange terms (Drew, 1971). In most studies,

turbulence is taken into consideration for the continuous phase by SGS models. The

dispersed gas phase is modelled as laminar, but influence of the turbulence in the

continuous phase is considered by a Bubble-Induced Turbulence (BIT) model.

In the EL approach, there are two coupled parts: a part dealing with the liquid

phase motion and a part describing the bubbles motion. The dynamics of the liquid

are described in a similar way as in the EE approach, whereas the bubble motion is

modelled through the Newton’s second law.

Since the governing equations for the liquid and gas phase are expressed in the

Eulerian and Lagrangian reference frames, respectively; a mapping technique is used

to exchange interphase coupling quantities. Depending upon the volume fraction of
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the dispersed phase, one-way (e.g. αg < 10−6) or two-way coupling between gas

phase to liquid phase (10−6 < αg < 10−3) prevails. In both cases, bubble-bubble

interactions (i.e., collisions) can be neglected, but the effect of the bubbles on the

turbulence structure in the continuous phase has to be considered for higher volume

fraction and does not play any role in lower volume fraction of gas phase (Elgobashi,

1991).

Two-way Coupling

Two way coupling consists of Forward Coupling (Liquid to Bubble) and Backward

or Reversed Coupling (Bubble to Liquid).

In the forward coupling, calculated liquid velocities, velocity gradients, and pressure

gradients on an Eulerian grid are interpolated to discrete bubble locations for solving

the Lagrangian bubble equation motion.

The forces available at each bubble’s centroid need to be mapped back to the Eule-

rian grid nodes in order to evaluate the reaction force F . The two-way interaction

(forward and backward) is accomplished with a mapping method, for example, PSI-

cell method (Crowe et al., 1977), modified PSI-wall-method (Hu, 2005), or mapping

functions discussed by Deen et al. (2004).

3.2.3 Interfacial Forces

The motion of a single bubble with constant mass can be written according to

Newton’s second law:

mb
dv

dt
=
∑

F (3.5)

The bubble dynamics are described by incorporating the most significant forces

acting on a bubble rising in a liquid. It is assumed that the total force,
∑
F , is

composed of separate and uncoupled contributions originating from lift, drag, added

mass, gravity, virtual mass force and turbulent dispersion force:∑
F = FL + FD + FG + FA + FVM + FTD (3.6)
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For each force the analytical expression or a semi-empirical model is used, based on

bubble behaviour observed in experiment or in DNS. The influence/contribution of

these forces are as follows.

Lift Force

The lift force is still poorly understood, and thus experimental and numerical efforts

have been conducted for its determination. The value of the lift coefficient may

differ in bibliography, and this is due to different handling of factors responsible for

bubble dispersion, for example the interaction between the bubbles and the influence

of turbulent eddies in the liquid phase. Modeling of the lift force for capturing an

accurate bubble plume dispersion is important. However, there is an uncertainty

regarding the appropriate value and correlation representing lift coefficient. There

is also recommendation that bubble size-dependent lift coefficient should be chosen

(Tabib et al., 2008).

The major parameters affecting the lift force acting on a spherical particle in a simple

unbounded shear flow are (i) relative velocity between a particle and an ambient

fluid, (ii) shear rate of an ambient fluid, (iii) particle rotational speed, and (iv)

surface boundary condition (non-slip or slip at particle surface). The deformation

of a particle causes the associated wake modification and the modified interaction

with surrounding flow structures resulting in lift force modification.

In RANS approach, a constant value of the lift coefficient (CL = 0.5) is commonly

used, while the value of the turbulent dispersion coefficient is varied (0.1 to 1.0) to

get good agreement with the experimental data. However, in LES, bubble dispersion

caused by liquid phase turbulent eddies is implicitly calculated, and a more realistic

contribution of the lift force can be used.

The lift force model and lift coefficient (CL) correlations have been described by a

number of researchers using three approaches, namely (1) analytical approach; (2)

numerical approach; and (3) experimental approach.

In the analytical approach, some assumptions are made to derive the analytical form

of the lift force. Saffman (1965) described the lift force acting on a sphere moving
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through a very viscous liquid with velocity ur∞ relative to a uniform simple shear:

FL∞ = 6.46ρfν
1/2
f ur∞r

2
pω

1/2 (3.7)

where ρf is the fluid density, νf is the fluid kinematic viscosity, rp is the particle

radius, ur∞ is the relative velocity of particle and fluid measured on the streamline

through the center and ω is the magnitude of velocity gradient.

Auton (1987) defined the lift force on a spherical body in a rotational flow of an

inviscid fluid as:

FL∞ = CL∞
4

3
πρfr

3
pur∞x (∇xuf ) (3.8)

where CL∞ = 0.5 (constant value).

Magnaudet et al. (2003) derived an analytical expression for the lift force acting on

deformable bubble of arbitrary viscosity moving in a viscous fluid in a linear shear

flow near a wall:

F d
L∞ ≈

(
4

5
πωvr∞

(
1 +

3

8
l̃ +

9

64
l̃

)
+

169

70
ω2l̃2

)
ex (3.9)

where ex is the unit vector perpendicular to the wall and directed away from it.

In the numerical approach, numerical solutions obtained under some assumptions are

utilized to obtain an empirical correlation. A numerical simulation of single bubbles

in a Poiseuille flow (Tomiyama et al., 1993; Tomiyama et al., 1995) suggested that

the bubble migration towards the pipe center was related closely to a slanted wake

behind a deformed bubble. Thus, it has been indicated that the bubble size and

complex interaction between a bubble wake and a shear field around the bubble play

an important role in the lateral bubble migration (Serizawa and Kataoka, 1994).

McLaughlin (1991) described the force on a small rigid sphere in a linear shear flow

as following:

FL∞ = 6.46ρfν
1/2
f ur∞r

2
p

(
J

2.255

)
ω1/2 (3.10)

Legendre and Magnaudet (1998) studied numerically the three-dimensional flow

around a spherical bubble moving steadily in a viscous linear shear flow by solving

the full Navier–Stokes equations. They assumed that the bubble surface was clean
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so that the outer flow obeyed a zero-shear–stress condition and did not induce any

rotation of the bubble. They developed an empirical correlation for the lift force on

a spherical bubble in a viscous linear shear flow at finite Reynolds number by means

of a numerical simulation

FL∞ey = ρf
4

3
πr3

bCL∞νr∞xωV for 0.1 ≤ NRe∞ ≤ 500 , 0.01 ≤ GS∞ ≤ 0.25

(3.11)

where FL∞ is the lift force perpendicular to the flow direction, rb is the sphere radius,

ρf is the density of the fluid phase and ωV the relative velocity with respect to the

fluid velocity and vorticity, which must be evaluated at the centre of the bubble.

Single bubble Reynolds number and dimensionless velocity gradient are, respectively,

defined as:

NRe∞ ≡
|ur∞| db
vf

and Gs∞ ≡
rpω

ur∞
(3.12)

where db is the sphere diameter, vf is the kinematic viscosity of the fluid phase and

ω the magnitude of the velocity gradient. The lift coefficient CL∞ of a spherical

bubble is given by:

CL∞ =

√
C lowNRe∞
L∞ (NRe∞, GS∞)

2
ChighNRe∞
L∞ (NRe∞)

2
(3.13)

where


C lowNRe∞
L∞ (NRe∞, GS∞) =

6

π2 (2NRe∞GS∞)1/2

2.255

(1 + 0.1NRe∞/GS∞)3/2

ChighNRe∞
L∞ (NRe∞) =

1

2

(
1 + 16N−1

Re∞

1 + 29N−1
Re∞

) (3.14)

Legendre et al. (2003) investigated hydrodynamic interactions between two spherical

clean bubbles rising side by side in a viscous liquid by solving the Navier-Stokes

equations in the range of 0.02 ≤ NRe∞ ≤ 500 and 2.25 ≤ L∗S ≤ 20

C
′

L ≡ FL/
(
πr2

bρfv
2
r∞/2

)
≈

−6L∗−4
S ×

[{
1− 40

NRe∞
+O

(
N
−3/2
Re∞

)}
+ L∗−3

S +O
(
N−1
Re∞L

∗−2
S , L∗−5

S

)] (3.15)
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where L∗S is the distance between bubble centers normalised by bubble radius.

In experimental approaches, experimental data are utilized to obtain an empirical

correlation. In the 1980s and 1990s, extensive experiments were performed to iden-

tify important parameters to determine the lateral bubble migration characteristics.

The experiments showed that relatively small and large bubbles tend to migrate to-

ward a channel wall and center (for example Liu, 1993; Hibiki and Ishii, 1999; Hibiki

et al., 2001; Hibiki et al., 2003). Kariyasaki (1987) studied the lift force acting on

air bubble in a uniform shear flow and defined lift force as follows:

FL∞ = 1.26πρf |vr∞|2 d2
p

(
ρfv

2
f

dpσ

)1.2
NReω∞

N
′
Re∞

, N
′

Re∞ =
|vr∞| dp
νf

(3.16)

Sridhar and Katz (1995) defined lift force for microscopic bubbles entrained by a

vortex:

FL∞ = 0.295πρfr
2
pu

2
r∞G

1/4
S∞ , for 20 < NRe∞ < 80 and 250µm < rp < 400µm

(3.17)

Tomiyama et al. (2002) measured bubble trajectories of single air bubbles in simple

shear flows of glycerol–water solutions to evaluate transverse lift force acting on

single bubbles. Based on the experimental result, they assumed the lift force caused

by the slanted wake had the same functional form as that of the shear-induced lift

force, and proposed an empirical correlation of the lift coefficient:

FL∞ = FSL∞ + FWL∞ =

− (CSL∞ + CWL∞) ρf
πd3

p

6
(vg∞ − vf )× vf =

−CL∞ρf
πd3

p

6
(vg∞ − vf )× vf

(3.18)

where FSL∞ is the shear-induced lift force and FWL∞ is the lift force due to a slanted

wake.

Experiments by Tomiyama (2004) imply that a slight bubble deformation might

change the direction of the lift force acting on a bubble and this results agree with

the numerical simulation results by Takagi and Matsumoto (1995).
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Takemura and Magnaudet (2003) studied experimentally the wall-induced migration

of bubbles rising near a vertical wall in a quiescent liquid in the range of a ≤ NRe∞ ≤
100. Fully contaminated bubbles were repelled by the wall due to the interaction

of the wall with the far-field of the particle wake. The repulsive force decreased

with increasing NRe∞ and the distance between the bubble center and the wall. For

contaminated bubble:

C
′

L∞ ≡ FL∞/
(
πr2

bρfv
2
r∞/2

)
= C

′

L∞0α
2

(
lSW
brp

)c
(3.19)

α = 1 + 0.6N0.5
Re∞ − 0.55N0.08

Re∞ , b = 3.0 (3.20)

c = −2.0 tanh (0.01NRe∞) (3.21)

C
′

L∞0 =


(

9/8 + 5.78× 10−6l̃4.58
)
β2e−0.292l̃ for 0 < l̃ < 10

8.49β2l̃−2.09 for 10 ≤ l̃ < 300
(3.22)

For NRe∞ < 35 clean bubbles were repelled by the wall due to the interaction of

the wall with the far-field of the particle wake, whereas for 35 ≤ NRe∞ ≤ 100

the attractive force to the wall acted on clean bubbles due to the lateral pressure

gradient predicted by irrotational flow theory. For clean bubble:

C
′

L∞ = C
′

L∞0α
′2
(
lSW
brp

)c
+ α”C

′

L∞∞

α′ ≈ 1 + 2.0 tanh
(
0.17N0.4

Re∞ − 0.12N0.05
Re∞

)
α” = 1− exp

(
−0.22N0.45

Re∞
)
C
′

L∞∞ = −3

8
l̃4
(

1 +
1

8
l̃3 +

1

6
l̃5
)

+O
(
l̃10
)

Drag Force

In a single particle system, transitions between bubble shape regimes occur when

drag law governing fluid-particle system changes. Since the drag and lift force are

the components of pressure and viscous stress to the directions parallel and per-

pendicular to the flow direction, these forces are closely related. The drag force is

defined as:

FD =
1

2
CD∞ρfur∞ |ur∞|πr2

b (3.23)
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The drag laws developed by Ishii and Chawla (1979) are as follows:

For viscous regime, the drag coefficient is given by an empirical correlation as:

CD∞ ≡ −
16

NRe∞
(
1 + 0.1N0.75

Re∞
)

(3.24)

For distorted-particle regime:

CD∞ =
4

3
rd

√
g∆ρ

σ
=

√
2

3
NµNRe∞ (3.25)

For spherical-cap bubble regime, the drag coefficient reaches a constant value of:

CD∞ =
8

3
(3.26)

The transition criterion between viscous and distorted-particle regimes is determined

by Equations (3.24) and (3.25) as:

Nµ =
24
√

2 (1 + 0.1N0.75
Re∞)

N2
Re∞

(3.27)

Added Mass Force

The concept of added mass, one of the classic achievements of theoretical fluid

dynamics, contrasts the acceleration, caused by a given force F , of a particle of

mass mp in a fluid. In a vacuum Newton’s law states that mpα0 = F , while in a

fluid it holds that mpα1 < F where α1 < α0. The part of the force corresponding

to (α0 − α1) is spent on the acceleration of the surrounding fluid, which in effect, is

equivalent to increasing particle mass by the specific amount mα of fluid mass being

accelerated together with the particle, (mp + mα)α1 = F . The problem is in the

determination of mα.

The product (mαα1) is an unsteady inertial force that opposes the motion of a

particle whenever its velocity changes. When a particle moves in a stagnant fluid,

this force is usually written as:

Fα = −mα(dv/dt) (3.28)
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If the fluid itself has a non-zero velocity u, the force is expressed as:

Fα = mα(du/dt− dv/dt) (3.29)

The added mass mα is the part C of the fluid mass displaced by the particle of

volume V ,

mα = CρV (3.30)

where C is the added mass coefficient. The problem here is to determine C.

Thus far the simplest case has been considered, in which the particle is of a simple

shape (sphere) and moves without rotation in an unbounded inviscid fluid. In this

case, the quantity C is a scalar and takes the value of 0.5. When the particle has

a lower degree of symmetry and is allowed to rotate, we have a second-order tensor

C with 6 components (6x6 matrix). Matrix C acts on the vector α of (linear and

angular) acceleration to produce vector F of (force + torque), Fα = −(ρV )Ca. Con-

sequently, α and F are generally misaligned. The components Cij termed inertia

coefficients (analogous to the concept of inertia tensor used in rigid body motion)

correspond to the inertia effects acting in different direction of particle forces and

rotation (torques). They are determined by the geometry of the problem: parti-

cle shape, particle configuration and presence of boundaries. Since they are not

dependent on the physical nature of the particles, these coefficients apply, without

discrimination, to bubbles, drops and solids. Tensor C may be simplified by the

presence of symmetry and by the choice of a suitable coordinate system.

The theoretical approach to added mass has been described in a number of ad-

vanced texts on fluid mechanics (e.g. Batchelor, 1967; Birkhoff, 1960; Lamb, 1932;

Milne-Thomson, 1968; Robertson and Sibulkin, 1965; Yih, 1988), as well as in those

focusing on fluid inertia forces (Newman, 1977). In addition, analytical and exper-

imental results for the added mass coefficients of various bodies (e.g. rectangular

shapes, rotating ellipsoids etc) can be found in Brennen (1982).

Much has also been written about the practical applications of added mass. As

added mass is an important issue when particles move in fluids with unsteady mo-

tion, one are of naval research focuses on the strong forces of inertia experienced by

floating and underwater objects.
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Multiphase fluid dynamics is another area of research in which dispersed particles

are also exposed to these forces (Clift, 1978; Michaelides, 2006; Wallis, 1990). Here,

the simplest case is a single dispersed particle translating in an unbounded domain.

Two factors complicate the situation; the presence of domain boundaries and the

presence of other particles. We need added mass coefficient C for the following

typical situations: particles approaching a wall, two or more particles in certain

configurations (doublets, triplets, arrays etc), expanding/collapsing particles, oscil-

lating particles, rotating particles, etc. Some of these simpler situations have already

been solved, most of them having been approached analytically from the perspective

of potential flow theory. In addition, experiments have been performed on the forces

acting on oscillating bodies, where the period depends on added mass coefficient C.

Added mass force may be relevant in cases where the density of the dispersed (par-

ticulate) phase ρp is comparable to, or even lower than, that of the continuous

(carrying) phase ρ. This applies to liquid-liquid (drops in liquids) and solid-liquid

(solids in liquids) systems and, in particular, to gas-liquid systems (bubbles in liq-

uids) where, because the interphase density ratio ρ/ρp is ∼ 103, almost all the inertia

is concentrated in the carrying liquid phase.

Added mass force also plays an important role in the hydrodynamics of bubble

columns. Few experimental and analytical studies have been conducted, and most of

the data in this area have been obtained using multiphase CFD simulations (Jakob-

sen, 2005; Joshi, 2001; Ranade, 2002; Prosperetti and Tryggvason, 2007). Delnoij

et al. (1997) carried out an EL simulation of a partially aerated bubble column and

concluded that added mass plays an important role in the vicinity of the gas dis-

tributor. While performing linear stability analysis of a 1D EE model of a bubble

column, Leon-Becerril and Line (2001) found that added mass has a significant effect

on homogeneous-heterogeneous flow regime transition. Subsequently, Leon-Becerril

et al. (2002), carrying out 3D EE simulations of a partially aerated rectangular

bubble column, found it necessary to include added mass in the model in order to

reproduce bubble plume oscillations (Becker et al., 1994). Leon-Becerril et al. (2002)

simulated mixing in a fully aerated rectangular column, again reporting the impor-

tance of added mass force. Monahan et al. (2005) observed that added mass force

is important in stabilizing homogeneous regimes, and cannot be neglected in large
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columns. In the model for homogeneous-heterogeneous regime transition in bubble

columns developed by Bhole and Joshi (2005) the added mass coefficient was a rel-

evant control parameter. Added mass force can also affect the values of the terms

describing the production of turbulent kinetic energy due to the presence of gas-

liquid interfaces (e.g. Mudde and Simonin, 1999; Joshi, 2001). Chahed et al. (2003)

introduced turbulence correlations related to added mass into their expression for

interphase force, and found them to be of great importance in the computation of

the void fraction in non-homogeneous bubbly flows. Various experimental studies

have also been conducted (e.g. Cai and Wallis, 1993; Kendoush et al., 2007; Odar

and Hamilton, 1964; Takahashi et al., 1992).

Other results have also shown the ambiguity of the problem of added mass force.

Mudde and Simonin (1999) concluded that it is necessary to use added mass force

in EE simulations of bubble plume. However, different codes showed less need

for added mass (Oey et al., 2003) oscillatory plume being reproducible without

factoring in added mass force. Deen et al. (2001) and Zhang et al. (2006) reported

that added mass forces had negligible effect on their EE simulation results for a

centrally aerated rectangular bubble column (except at the very top and bottom

of the column). Likewise, Tabib et al. (2008) reported that added mass had no

significant influence on the results they obtained using a 3D transient simulation of

a cylindrical bubble column.

It is clear that added mass force is an important parameter in the description of

multiphase systems, and can even play the dominant role in certain specific flow

situations. Added mass force particularly applies in those situations where the

density ratio ρ/ρp is large, the motion unsteady, the particle shape and configuration

liable to change and the presence of boundaries influential (Simcik et al., 2008).

Virtual Mass Force

The virtual mass force is proportional to the relative acceleration between the phases

and is negligible once a pseudosteady state is reached. It has little influence on the

simulation results for bubble plumes (e.g. Deen et al., 2001; Dhotre et al., 2008). It

is mainly because of the acceleration and deceleration effects are restricted to small

end regions of the column. A constant coefficient is used in almost all investigations.
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Turbulent Dispersion Force

In the RANS approach, the drag and lift forces depend on the actual relative velocity

between the phases, but the ensemble equations of motion for the liquid only provide

information regarding the mean flow field. The random influence of the turbulent

eddies is considered by modelling a turbulent dispersion force. By analogy with

molecular movement, the force is set proportional to the local bubble concentration

gradient (or void fraction), with a diffusion coefficient derived from the turbulent

kinetic energy. The value of the turbulent dispersion coefficient is chosen to get an

agreement with the measurement data and is not known a priori.

In LES, the resolved part of the turbulent dispersion is implicitly computed, and

hence the information from LES can be used for calculating the magnitude of the

force. The methodology depends on scales at which LES is to be applied. For

instance, at the mesoscale, in the EL approach, bubbles dispersed by drag and lift

through turbulent eddies can be computed. At micro-scale LES, bubble coalescence

and breakup phenomena should be considered along with a reasonable number of

bubbles.

3.2.4 Effect of Bubble-Induced Turbulence (BIT)

In the EE approach, the turbulent stress in the liquid phase is considered to have

two contributions, one due to the inherent, that is, shear-induced turbulence that is

assumed to be independent of the relative motion of bubbles and liquid and the other

due to the additional bubble-induced turbulence (Sato and Sekoguchi, 1975). There

are two modelling approaches to account for the effect of BIT. The first approach is

proposed by Sato and Sekoguchi (1975) and Sato et al. (1981):

µBI,l = ρfCµ,BIαgdb |ug − ul| (3.31)

with Cµ,BI as a model constant which is equal to 0.6 and db as the bubble diameter.

Milelli et al. (2001) found that the modelling of the bubble-induced turbulence did

not improve the results. They tried two different formulations: the Tran model and

the Sato model and found that they have negligible effect. This was attributed to the
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fact that the bubble-induced viscosity (and turbulence) is not crucial, the turbulence

being mainly driven by the liquid shear, and a low void fraction (≈ 2% leading to

µBI,l ≈ 10−2kg/(ms)) did not significantly modify the situation. It was thought that

in a case in which the bubbles actually drive the turbulence (via buoyancy and/or

added mass forces), the situation would be different. However, in subsequent studies,

similar observations were made in bubble plumes (Deen et al., 2001; Dhotre et al.,

2008; Niceno et al., 2008).

The second approach for the modelling of BIT allows for the advective and diffusive

transport of turbulent kinetic energy. This model incorporates the influence of

the gas bubbles in the turbulence by means of additional source terms in the kSGS

equation and is taken to be proportional to the product of the drag force and the slip

velocity between the two phases. This approach was used in the study of Niceno et

al. (2009) through the use of a one-equation model. They found significant influence

of the additional source terms as used by Pfleger et al. (1999).

3.3 LES Prediction of the Flow Pattern for Dis-

persed Bubbly Flows

This section is a review of different LES studies that were performed using the EE

and EL approaches for simulating flow patterns in gas-liquid bubbly flows.

3.3.1 Eulerian-Eulerian (EE) Studies

Milelli et al. (2001) reported for the first time a two-phase LES study with EE

approach. A statistical investigation of a 2D flow configuration was conducted. One

of the main findings of the studies is the definition of the optimum ratio of the cut-off

filter width (i.e. grid) to the bubble diameter (db/∆) at 1.5. This means that the

mesh size should be at least 50% larger than the bubble diameter so that (a) bubble

size determines the largest scale modelled and (b) its interaction with the smallest

calculated scale above the cut-off is captured. Milelli’s finding is also supported by

the scale-similarity principle of Bardina et al. (1980).

Milelli (2002) investigated a free bubble plume using a LES-EE approach and com-
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pared their predictions with the experiment of Anagbo and Brimacombe (1990).

Different SGS models were tested and it was found that the mean quantities of the

flow were not strongly affected by the different SGS models. Moreover, it was found

that the dispersed phase had little impact on the turbulence of the continuous phase.

The turbulent energy spectrum taken in the bubbly flow region revealed a power-

law distribution oscillating between −5/3 and −8/3 in the inertial subrange. Hence,

there was no influence of modifying the SGS model to account for bubble-induced

dissipation. Further, it was observed that the lift coefficient value plays a major

role in capturing the plume spreading and that the lift coefficient may differ for an

LES compared to the one in a RANS approach. This was due to different handling

of interaction between the bubbles and influence of turbulent eddies in the liquid

phase, which are two factors responsible for the bubble dispersion.

Deen et al. (2001) reported LES for gas-liquid flow in a square cross-sectional bubble

column for the first time. They investigated the performance of RANS and LES ap-

proaches, the influence of the inter-phase forces, and the bubble-induced turbulence.

It was found that the RANS approach (k − ε model) overestimated the turbulent

viscosity and could only predict low frequency unsteady flow. On other hand, LES

reproduced high frequency experimental data and predicted a strong transient bub-

ble plume movement in accordance the experimental results. Furthermore, the lift

force was identified as being the force responsible for the transient spreading of the

bubble plume and in absence of it, i.e. only with drag force, the bubble plume

showed no transverse spreading. Deen et al. (2001) identified three contributors to

the effective viscosity of the continuous phase: i.e. the molecular, the shear-induced

turbulent (modelled using Smagorinsky model), and the bubble-induced turbulent

viscosities (Sato and Sekoguchi, 1975). The effects of the virtual mass force and

the BIT on the simulated results were found to be negligible, confirming Milelli’s

findings.

Bove et al. (2004) reported LES with EE approach for the same square cross-sectional

bubble column as used by Deen et al. (2001). The influence of numerical modelling

of the advection terms and the inlet conditions on LES performance was studied.

The upwind first-order and higher-order Flux Corrected Transport (FCT) schemes

for both the phase fraction equations and the momentum equations were employed.
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The simulations using a second-order FCT scheme showed relatively good agreement

with the measurement data of Deen et al. (2001). It was also showed that the proper

discretization of the momentum and volume fraction equations is essential for correct

prediction of the flow field. Further, the LES results were found to be very sensitive

to the inlet boundary conditions. Three different inlet configurations showed that

the inlet modelling influences the predicted fluid flow velocity and the turbulent

viscosity. In this work, the sparger (a perforated plate) was not modelled due to the

difficulty in adapting the mesh grid to the geometry. It was also suggested that near

wall region description in the SGS models is important, and the lack of the near

wall modelling can lead to erroneous prediction of frictional stresses at the wall. A

drag model for the contaminated water was used, which gave a better prediction

of the slip velocity. However, the velocity profile was underestimated for both the

gas and liquid phase. The reason for the under-prediction was not clear; whether it

was due to the drag force model or the value of the lift coefficient or the near wall

modelling. Need for further work in this direction was suggested.

Zhang et al. (2006) reported LES in a square cross-sectional bubble column using

an EE approach. The work of Deen et al. (2001) was extended with the addition of

BIT in the k − ε turbulence model for the prediction of the dynamic behaviour of

the square bubble column. A sensitivity analysis on the Smagorinsky constant was

carried out. It was found that higher CS values led to higher effective viscosity which

dampens the bubble plume dynamics. A good agreement with the measurements

was obtained with CS in the range of 0.08–0.10. In Zhang et al. (2006) study was

also confirmed that the lift force plays a critical role for capturing the dynamic

behaviour of the bubble plume.

Zhang et al. (2009) followed a procedure similar to that used by Darmana et al.

(2005), with an EE approach to simulate flow, mass transfer, and chemical reactions

in square cross-sectional bubble column (Deen et al., 2001). Zhang et al. (2009)

studied physical and chemical absorption of CO2 bubbles in water and in an aqueous

sodium hydroxide (NaOH) solution. They used a bubble number density equation

for coupling of flow, mass transfer, and chemical reaction. The authors demonstrated

the influence of the mass transfer and chemical reaction on the hydrodynamics,

bubble size distribution, and gas holdup.
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Dhotre et al. (2008) reported LES with an EE approach for a gas-liquid flow in a

square cross-sectional bubble column. The influence of two SGS models was studied,

namely Smagorinky and Dynamic model of Germano et al. (1991). It was found that

both the Smagorinsky model (CS = 0.12) and the Germano model predictions were

in agreement with the measurements. An investigation of the CS value obtained

from the Germano model was conducted and it was found that the reason of the

similar performance of the two SGS models was the probability density function of

CS (from Germano model) over the entire column. The value of CS has the highest

probability in the range of 0.12–0.13. Like Zhang et al. (2006), the authors confirmed

that with a proper BIT model, RANS also performed well for mean quantities of

flow variables. It was further concluded that the Germano model can give correct

CS estimations for the configuration under consideration and, in general, can be

used for other systems where CS is not known as “a priori” from previous analysis.

Dhotre et al. (2009) extended the work of Dhotre et al. (2008) and reported LES

with EE approach for a gas-liquid flow in a large-scale bubble plume. The numer-

ical results were compared with the experimental data from Simiano (2005) and

a RANS model at three different elevations of the bubble plume. The LES-EE

approach captured well the transient behaviour of the plume and predicted the

second-order statistics of the liquid phase accurately. In the RANS approach the

turbulent dispersion force was required to reproduce the bubble dispersion; how-

ever, in LES, bubble dispersion is implicitly calculated by resolving the large-scale

turbulent motion responsible for bubble dispersion. Dhotre et al. (2009) found good

agreement with the experimental data at higher elevations, while discrepancies were

observed at lower elevation, near the injector. The reason for the discrepancies was

attributed to the absence of modelling bubble coalescence and breakup. This was

also found in the work of Hengel et al. (2005), where it was shown that most of the

coalescence occurs in the lower part of the column and recommended to consider

bubble size distribution and coalescence and breakup models for reproducing the

bubble behaviour near the sparger.

Niceno et al. (2008) investigated LES with EE approach for a gas-liquid flow in a

square cross-sectional bubble column. The applicability of a one-equation model for

the SGS kinetic energy (kSGS) was investigated. The influence of two approaches for
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bubble-induced turbulence was studied: (1) an algebraic model (Sato and Sekoguchi,

1975) and (2) extra source terms (as used in Pfleger et al., 1999) in the transport

equation for SGS kinetic energy approach. It was found that the latter approach

improved the quantitative prediction of the turbulent kinetic energy. The modelled

SGS kinetic energy for the Pfleger model found to be much higher than for the Sato

model, indicating the Pfleger model needs a more appropriate constant for LES. It

was also suggested that the modelled SGS information can be used to access the

SGS inter-facial forces, in particular the turbulent dispersion force. In their work,

the effect of SGS turbulent dispersion force could not be determined as the bubble

size was almost equivalent to the mesh size.

Extending the work of Niceno et al. (2008), Niceno et al. (2009) compared two dif-

ferent codes (Neptune and CFX-4) and two subgrid-scale models for the simulation

of gas-liquid flow in a square cross-sectional bubble column using LES-EE. The pre-

diction from the Neptune CFD code (applying the Smagorinsky model) and from

the CFX-4 CFD code (one-equation model) was compared with the measurement

data of Deen et al. (2001). Agreement between the predictions from the two SGS

models was found to be good, and it was concluded that the influence of the SGS

model was small. This is in contradiction with earlier work of Hengel et al. (2005),

where they showed significant contribution of the SGS model. It remains to be

seen if this was due to the fine mesh used by the authors (∆/db = 1.2). Niceno

et al. (2009) argued that with the known flow pattern in a bubble column, that

is, a dominant bubble plume meandering between the confining walls, the biggest

eddy having most energy is of the size of the domain cross section. Thus, the grid

used in their work was a compromise between sufficiently fine to capture the most

energetic eddies, and sufficiently coarse to stay close to the Milelli criterion (Milelli

et al., 2001). Furthermore, the limitations of LES with EL or EE approach without

resolving interface were pointed out; the most influential inter-facial forces (drag

and lift) are modelled for the large-scale field and their effect from the small scale

remains a question.

Tabib et al. (2008) reported LES using EE approach in a cylindrical column for

a wide range of gas velocity. In their study it was confirmed the importance of a

suitable lift coefficient and drag force model, in accordance with previous studies.
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The influence of different spargers (perforated plate, sintered plate, and single hole)

and turbulence models (k−ε, RSM, and LES) was studied, comparing the numerical

results with experimental data from Bhole et al. (2006). The main findings from

the study were that the RSM performs better than the k − ε model; the LES was

successful in predicting the averaged flow behaviour and was able to simulate the

instantaneous vortical-spiral flow regime in the case of a sieve plate column, as well

as the bubble plume dynamics in case of single-hole sparger.

Tabib and Schwarz (2011) extended the work of Niceno et al. (2008) and attempted

to quantify the effect of SGS turbulent dispersion force for different particle systems,

where the particle sizes would be smaller than the filter size. The formulation of de

Bertodano (1992) was applied to approximate the turbulent diffusion of the bubbles

by the SGS liquid eddies for a gas-liquid bubble column system (Tabib et al., 2008).

The bubble size was in range of 3–5 mm. The mesh used in simulations was coarser

than the bubble diameter. They found a high contribution from the SGS turbulent

dispersion force, when compared with the magnitude of the other interfacial forces

(like drag force, lift force, resolved turbulent dispersion force, and force due to

momentum advection and pressure). Tabib and Schwarz (2011) concluded that for

LES with EE approach, when the mesh size is bigger than bubble size, the SGS

turbulent dispersion force should be used, and that a one-equation SGS-TKE model

overcomes a conceptual drawback of EE LES model.

3.3.2 Eulerian-Lagrangian (EL) Studies

Hengel et al. (2005) reported LES with EL approach for a gas-liquid flow in a square

cross-sectional bubble column. The liquid phase was computed using LES, and a

Lagrangian approach was used for the dispersed phase. A discrete bubble model

(DBM) originally developed by Delnoij et al. (1997) and Delnoij et al. (1999) was

used and extended to incorporate models describing bubble breakup and coalescence.

The mean and fluctuating velocities predicted in the simulations showed a good

agreement with the experimental data of Deen et al. (2001). The influence of the

SGS model on the predictions was studied. It was found that without SGS model,

the average liquid velocity and liquid velocity fluctuations are much lower compared

to the case with a SGS model. This was due to the lower effective viscosity, which
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led to less dampening of the bubble plume dynamics. In this work also, the authors

confirmed the important role of the lift coefficient in capturing the plume dynamics.

They considered two lift coefficients (CL = 0.5 and 0.3) and found that a smaller

value of the lift coefficient led to higher average velocity and velocity fluctuations

and less spreading of the plume, which resulted in overprediction of the average

velocity in the centre of the column.

Hu and Celik (2008) reported LES with an EL approach for the gas-liquid flow in

a flat bubble column. The mapping technique called particle-source-in-ball (PSI-

ball) for coupling the Eulerian and Lagrangian reference frames were developed

in this study, which is a generalization of the conventional particle-source-in-cell

(PSI-cell) method. Second-order statistics of the pseudoturbulent fluctuations were

presented. The predicted mean quantities (such as mean liquid velocity) were in

good agreement with the experimental data of Sokolichin and Eigenberger (1999).

An accurate prediction of the instantaneous flow features was given, including liquid

velocity fluctuations and unsteady bubble dispersion pattern. The influence of the

Smagorinsky constant was also studied and found that the constant for multiphase

systems falls in a relatively smaller range than for single-phase flows. Higher values

of the CS showed an excessive damping effect to the liquid field, which led to a

steady-state solution. This observation is in accordance with studies from Zhang

et al. (2006) and Hengel et al. (2005). Furthermore, authors proposed to use CS as

a modeling parameter rather than a physical constant, as the interphase coupling

terms used as well as the high frequency turbulent fluctuations contribute to the

turbulent kinetic energy dissipation.

Lain (2009) reported an LES with EL approach for a gas-liquid flow in a cylindrical

bubble column. The interaction terms between liquid and gas phases was calculated

using the particle-source-incell (PSI-cell) approximation of Crowe et al. (1977). The

bubbles were considered as a local source of momentum, and a source term was

added. A simple model for the subgrid liquid fluctuating velocity to account for the

BIT considered in this work was found to have no influence on the predictions. As

in previous works, it was confirmed a strong dependency of the bubble dispersion

in the column on the value of transverse lift force coefficient used. The lift coeffi-

cient depends on the bubble-liquid relative velocity and was the main mechanism

113



CHAPTER 3. LITERATURE REVIEW - DISPERSED PHASE

responsible for the spreading of bubbles across the column crosssection. The nu-

merical results were compared with particle image velocimetry (PIV) measurements

(Bröder and Sommerfeld, 2002) and k − ε calculations.

Darmana et al. (2009) used the LES with EL approach for simulating the gas-liquid

flow in a bubble column and validated the model with experimental data of Harteveld

et al., 2004. Seven sparger designs and their influence on the flow structure were

investigated. It was found that the model captures the influence of different gas

sparging very well. However, in all cases simulated, a systematic overprediction of

dispersed phase distribution (25%) was found, which was attributed to an inaccuracy

of the drag force and the turbulence model at high gas void fractions.

Darmana et al. (2005) used LES with EL approach to simulate flow, mass transfer,

and chemical reaction in a bubble column. They considered mass transfer, rate in

liquid-phase momentum equation and reaction interfacial forces in the bubble mo-

tion equation. Also, the presence of various chemical species was accounted through

a transport equation for each species. Darmana et al. (2005) estimated the mass

transfer rate from the information of the individual bubbles directly. They used

the model to simulate the reversible two-step reactions found in the chemisorption

process of CO2 in an aqueous NaOH solution in a lab-scale pseudo-2D bubble col-

umn reactor. They found good agreement between simulation and measurement for

the case without mass transfer. In absence of an accurate mass transfer closure,

the authors found that the overall mass transfer rate was lower compared to the

measurement. However, the influence of the mass transfer on the flow agreed well

with experimental data.

Sunkorn et al. (2011) reported LES with the EL approach for a gas-liquid flow in

a square cross-sectional bubble column. They modelled the continuous liquid phase

using a Lattice-Boltzmann (LB) scheme, and a Lagrangian approach was used for the

dispersed phase. For the bubble phase, the Langevin equation model (Sommerfeld et

al., 1993) was used for estimating the effect of turbulence. The bubble collisions were

described by a stochastic interparticle collision model based on the kinetic theory

developed by Sommerfeld (2001). The predictions showed a very good agreement

with the experimental data for the mean and fluctuating velocity components. It

was also found that their collision model leads to two benefits: the computing time
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is dramatically reduced compared to the direct collision method and secondly it also

provides an excellent computational efficiency on parallel platforms. Sunkorn et al.

(2011) claim that the methodology can be applied to a wide range of problems.The

investigations are valid for lower global void fraction, and further work is required

to consider it for higher void fraction systems.

Bai et al. (2012) used LES with EL approach to investigate the effect of the gas

sparger and gas phase mixing in a square cross-sectional bubble column. The liquid

phase was computed using LES, and a Lagrangian approach was used for the dis-

persed phase. They used the DBM and investigated the effect of two SGS models:

Smagorinsky (1963) and Vreman (2004). They compared the vertical liquid veloc-

ity and turbulent kinetic energy of the liquid phase at three different heights with

PIV data and found that the model proposed by Vreman performed better than

Smagorinsky model.

They further investigated the effect of the gas sparger properties (sparged area

and its location) on the hydrodynamics in a bubble column and characterized the

macromixing of the gas phase in the column in terms of an axial dispersion coef-

ficient. They compared the predicted liquid phase dispersion coefficient with the

literature correlations. The range of superficial gas velocity investigated in work is

low compared to what is common in industrial application. For large-scale reactors

at high superficial velocities, Bai et al. (2012) recommended to extend the discrete

bubble modelling with bubble coalescence and breakup.

3.4 Brief Overview of Other Numerical Approaches

Esmaeeli and Tryggvason (1996) and Esmaeeli and Tryggvason (1998) used direct

numerical simulations to examine the motion of up to 324 freely evolving two-

dimensional and up to 49 three-dimensional bubbles respectively, at low yet finite

Reynolds numbers (around 1-2, depending on volume fraction and dimensionality).

Tryggvason et al. (2001) used Direct Numerical Simulations on multiphase flows,

using a front-tracking method. The method is based on writing one set of governing

equations for the whole computational domain and treating the different phases as

one fluid with variable material properties. Bunner and Tryggvason (2002) con-
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ducted direct numerical simulations of the motion of up to three-dimensional buoy-

ant bubbles in periodic domains. The full Navier-Stokes equations are resolved by

a parallelized finite-difference/front-tracking method that allows a deformable in-

terface between the bubbles and the suspending fluid and the inclusion of surface

tension. Lu et al. (2005) and Roghair et al. (2011) used a front-tracking/finite-

volume method to fully resolve all flow scales including 16 bubbles and the flow

around them. Yujie et al. (2012) used the volume of fluid (VOF) method to directly

simulate approximately 50 bubbles. Badreddine et al. (2015) has proposed a new

methodology, which is called Finite Size Lagrangian particle tracking (FSL) for the

modeling of a single air bubble rising in stagnant water, and in linear shear flow. The

new methodology inherits features of Lagrangian Particle Tracking (LPT) and Inter-

face Tracking (IT) methods and it is proposed to simulate finite size bubbles whose

diameter is larger than the grid cell but not well resolved for accurate IT methods.

Immersed Boundary Method (IBM) techniques have been also developed for viscous

flow around solid particles: The IB method was extended to Stokes flow around

suspended particles (Fogelson and Peskin, 1988) and Navier-Stokes flow around

fixed cylinders (Lai and Peskin, 2000). Hofler and Schwartzer, 2000 used similar

ideas to compute many-particle systems, albeit at relatively low Reynold numbers.

(Uhlmann, 2005) developed a computationally efficient IBM for particle-laden flows

that is embedded in a finite-volume/ pressure-correction method using two differ-

ent grid: a fixed, uniform and continuous Cartesian grid for the fluid phase and a

uniform grid attached to and moving with the surface of the particles. A variety

of two-dimensional and three-dimensional simulations are presented, ranging from

the flow around a single cylinder to the sedimentation of 1000 spherical particles.

Improvements of the original method proposed by Uhlmann, 2005 was reported by

Breugem, 2012. Kempe and Frolich, 2012 presented a model for particle-particle and

particle-wall collisions during interface-resolving numerical simulations of particle-

laden flows. Schwartz et al., 2015 developed a time scheme for an IB method which

enables the efficient, phase-resolving simulation of very light particles in viscous

flow.
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Numerical Framework of Hydro3D

Model

4.1 Governing equations

The in-house finite-difference-based Large-Eddy Simulation code Hydro3D is the

numerical model employed in this study. Hydro3D solves the filtered Navier-Stokes

equations on staggered grid for the continuous (liquid) phase and has been validated

thoroughly for turbulent flows (e.g. Bomminayuni and Stoesser, 2011; Stoesser et

al., 2015; Cevheri et al., 2016; Liu et al., 2016; Ouro et al., 2017; McSherry et

al., 2018). The dispersed (bubbles) phase is predicted by a Lagrangian Particle

Tracking algorithm and has been previously validated for the case of raising bubbles

in a stagnant tank (Fraga et al., 2016; Fraga and Stoesser, 2016).

4.1.1 Continuous phase

The Navier-Stokes equations are used to resolve three-dimensional, unsteady, tur-

bulent, incompressible fluids in a Cartesian rectangular grid.

In the Large-Eddy Simulation (LES) framework, the continuity and momentum

equations are spatially filtered and normalised with the Reynolds number Re, and

are presented in Eq. 4.1 and 4.2 respectively. The governing equations are solved
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in the whole fluid domain.
∂ui
∂xi

= 0 (4.1)

∂ui
∂t

+
∂(uiuj)

∂xj
= − ∂p

∂xj
+ 2ν

∂(Sij)

∂xj
− ∂τij
∂xj

+ ξi (4.2)

where xj denote the spatial location vectors (i.e. xj = x, y, z for j = 1, 2, 3), ui

and uj (i, j= 1, 2, 3) denote the filtered resolved velocity components in x−, y−
and z−directions, normalised on the reference velocity U , p is the resolved pressure

divided by density,Sij is the strain rate tensor and τij is the unresolved turbulence.

Re = UL/ν is Reynolds number, where ν is the kinematic viscosity and L is the

reference length scale.

The term ξi is a source term that accounts for the contribution of the dispersed

phase to the flow:

ξi = − 1

Vp

M∑
p=1

F ∗p,i∆V (4.3)

where Vp is the volume of the particle, and F ∗p,i is the summation of the forces acting

to the particles and will be be explained further in Section (4.4).

Turbulent flows are characterized by a wide spectrum of turbulence scales in the

fluid motion. The idea of LES is to calculate explicitly the motion of larger and

more energetic eddies by solving the governing 3D Navier-Stokes equations, while

modeling via spatial filtering the motions of the isotropic smaller eddies (Leonard,

1975). In LES, the general rule of spatial filtering is that the filter width is equal

to the grid size, and those turbulent scales smaller than the grid size are modelled,

using a subgrid-scale (SGS) model and this is what the term τij represents in Eq. 4.2.

The assumption of filtering process is reasonable as the small scales are isotropic and

thus easier to model than the large scales which are more energetic and anisotropic

(Stoesser, 2014).Further reduction of the LES requirements can be achieved using,

for instance, a Local Mesh Refinement (LMR) method which allows to use fine grid

resolutions in the areas of interest while coarser ones in which such a resolution is

not needed, (Cevheri et al., 2016).

In this thesis, the Smagorinsky (Smagorinsky, 1963) and Wall-Adapting Local Eddy

viscosity (WALE) (Nicoud and Ducros, 1999) SGS models are adopted. The unre-

118



CHAPTER 4. NUMERICAL FRAMEWORK OF HYDRO3D MODEL

solved velocity fluctuations are accounted using a subgrid stress tensor, τij, included

in the momentum equation (Eq. 4.2), and reads:

τij = ταij +
1

3
τkkδij (4.4)

Here, the former term corresponds to the anisotropic component and the latter to the

isotropic components, where δij is the Kronecker delta. In the standard Smagorinsky

SGS model, the eddy or turbulent viscosity, νt, is approximated as,

νt = (Cs∆)2 |Sij| ,where |Sij| =
√

2SijSij (4.5)

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(4.6)

where Cs is the Smagorinsky constant set to 0.1 (Rodi et al., 2013), ∆ = (∆x∆y∆z)1/3

is the filter size equal to the mesh cell size, and Sij is the resolved rate of strain from

the filtered resolved velocities. This artificial viscosity is then used to calculate the

anisotropic subgrid stress tensor, as

ταij = −2νtSij (4.7)

The WALE model, introduced by Nicoud and Ducros, 1999, has gained popularity

as is can account for wall effects without employing wall-damping functions which

makes it a suitable to the simulation of immersed bodies in which the fluid mesh is

not conformed to their geometry (Cevheri et al., 2016). One of the main advantages

of the model is that it predicts correctly the behaviour of the eddy viscosity near

solid surfaces. The turbulent viscosity νt is calculated as follows:

νt = (Cw∆)2

(
sdijs

d
ij

)3/2(
SijSij

)5/2
+
(
sdijs

d
ij

)5/4
(4.8)

where sdij is the traceless symmetric part of the square of the velocity gradient tensor

(gij) presented in Equation (4.9), Sij is the resolved rate of strain from Equation

(4.6) calculated from the filtered resolved fluid velocities, and Cw is the constant of
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the WALE model assumed to be 0.46 as considered in Cevheri et al., 2016.

sdij =
1

2
(gikgkj + gjkgki)−

1

3
δijgkk

2 with gij =
∂ui
∂xij

(4.9)

4.2 Fractional-step method

The spatially filtered Navier-Stokes equations in the LES framework presented in

Equations (4.1) and (4.2) are advanced in time using the so-called fractional-step

method based on the projection method developed by Chorin, 1968. The main

advantage of this method is that the velocity and pressure computations are decou-

pled. In the present framework, the fluid is solved in a Cartesian rectangular grid

with staggered storage of the velocities using central fourth-order finite-differences

approximations. In a staggered grid, velocity vectors are stored at the middle of the

cell faces while the pressure is stored in the cell centre. Hence, four different grids

are used to compute u, v, w and p.

The fractional-step method uses two steps for implicit coupling of pressure and

velocity terms (Kim and Moin, 1985). In the first step, the intermediate velocities,

u∗i , are initially predicted without enforcing the incompressibility constraint using a

two-stage explicit Runge-Kutta method as follows:

u
∗,n+ 1

2
i = uni +

∆t

2

[
Rn − ∂

∂xi
pn−

1
2

]
(4.10)

u∗,n+1
i = uni + ∆t

[
R∗,n+ 1

2 − ∂

∂xi
pn−

1
2

]
(4.11)

where

R =

[
−∂(uiuj)

∂xj
+

(
1

Re
+ νt

)
∂2ui
∂xi∂xj

]
(4.12)

In the second step, the intermediate velocities are projected onto the divergence-

free vector fields through a Poisson equation, which calculates an increment to the

pressure field, δp:

∇2(δp) =
1

∆t

∂

∂xi
u∗,n+1
i (4.13)
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where ∇2 is the Laplacian operator.

Equation (4.13) is solved iteratively using the multigrid method (Ferziger and Peric,

2002), and the velocity field is updated as follows:

un+1
i = u∗,n+1

i −∆t
∂(δp)

∂xi
(4.14)

pn+ 1
2 = pn−

1
2 + δp (4.15)

The Poisson equation is then solved with the new pressure, and an iterative process

is established.The iteration continues until the divergence-free condition of the com-

puted velocity field within some tolerance is satisfied. It is observed that the overall

algorithm is second-order accurate and stable on either uniform or locally defined

grids when the ghost cell pressures at coarse-fine grid interfaces are treated with a

specific interpolation algorithm, which is described in Section (4.3).

Hydro3D employs a Cartesian grid with a staggered arrangement of pressure and

velocity variables, which has the advantage of avoiding the odd-even coupling be-

tween the pressure and velocity without requiring special interpolation algorithms.

On a staggered grid, scalar quantities such as pressure and divergence are stored

at the cell centres, and vector quantities such as velocity and pressure gradient are

stored at the middle of the cell faces. Figure (4.1(a)) presents a schema showing the

storage of pressures and velocities on a 2D staggered grid, either side of an LMR

interface: the indices (I, J) and (i, j) correspond to coarse and fine grid points, re-

spectively. The indices of u velocity on the east face and v velocity on the north

face of the shaded-fine cell are (i, j), and u velocity on the west face and v velocity

on the south face of the same cell are (i − 1, j) and (i, j − 1), respectively. The

indexing of coarse cells is handled analogously. One or more layers of ghost cells,

denoted in Figure (4.1(b)) by dashed lines, are appended around each side of the

physical domain in order to provide numerical boundaries and to facilitate spatial

approximations of cells at the fine-coarse interfaces without requiring complicated

discretisation stencils of non-uniform grids.

Equation (4.12) contains partial derivatives in space of first and second order, and

in LES, the accurate approximation of these is key to the success of the simulation
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(a) Staggered arrangement (b) Indexing of fine and coarse ghost cells

Figure 4.1: The staggered variable arrangement and index location of coarse and
fine ghost cells.

(Rodi et al., 2013). In Hydro3D, explicit second-order and fourth-order central

differences for continuity, convective and viscous terms are available and for the

sake of simplicity are presented here in two dimensions.

Second-order accurate approximations of the cell-centre partial derivatives in the

continuity equation read:(
∂u

∂x

)
i,j

=
ui,j − ui−1,j

∆x
+O

(
h2
)

and

(
∂v

∂y

)
i,j

=
vi,j − vi,j−1

∆y
+O

(
h2
)

(4.16)

Because of the staggered arrangement, the x−, y− and z−momentum equations are

solved at the cell faces. The second order accurate discretisations of convective and

diffusive terms in the x−momentum equations are as follows:(
∂u2

∂x

)
i,j

=
(ui+1,j + ui,j)

2 − (ui,j + ui−1,j)
2

4∆x
+O

(
h2
)

(4.17)
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(
∂uv

∂y

)
i,j

=
(vi+1,j + vi,j) (ui,j+1 + ui,j)− (vi+1,j−1 + vi,j−1) (ui,j + ui,j−1)

4∆y
+O

(
h2
)

(4.18)(
∂2u

∂x2

)
i,j

=
ui+1,j − 2ui,j + ui−1,j

(∆x)2 +O
(
h2
)

(4.19)

(
∂2u

∂y2

)
i,j

=
ui,j+1 − 2ui,j + ui,j−1

(∆y)2 +O
(
h2
)

(4.20)

And the y−momentum convective and diffusive terms are evaluated as:(
∂v2

∂y

)
i,j

=
(vi,j+1 + vi,j)

2 − (vi,j + vi,j−1)2

4∆y
+O

(
h2
)

(4.21)

(
∂uv

∂x

)
i,j

=
(ui,j+1 + ui,j) (vi+1,j + vi,j)− (ui−1,j+1 + ui−1,j) (vi,j + vi−1,j)

4∆x
+O

(
h2
)

(4.22)(
∂2v

∂x2

)
i,j

=
vi+1,j − 2vi,j + vi−1,j

(∆x)2 +O
(
h2
)

(4.23)

(
∂2v

∂y2

)
i,j

=
vi,j+1 − 2vi,j + vi,j−1

(∆y)2 +O
(
h2
)

(4.24)

Analogous formulae are used to predict convective and diffusive terms for the z−momentum

equation.

Fourth-order accurate approximations of the cell-centre partial derivatives in the

continuity equation are:(
∂u

∂x

)
i,j

=
−ui+1,j + 27ui,j − 27ui−1,j + ui−2,j

24∆x
+O

(
h4
)

(4.25)
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(
∂v

∂y

)
i,j

=
−vi,j+1 + 27vi,j − 27vi,j−1 + vi,j−2

24∆y
+O

(
h4
)

(4.26)

Fourth-order accurate discretisations of convective and diffusive terms in the x−momentum

equation are as follows:(
∂u2

∂x

)
i,j

=
−ũi+2,j

2
+ 27ũi+1,j

2 − 27ũi,j
2 + ũi−1,j

2

24∆x
+O

(
h4
)

(4.27)

(
∂uv

∂y

)
i,j

=
−ũci,j+1ṽ

c
i,j+1 + 27ũci,j ṽ

c
i,j − 27ũci,j−1ṽ

c
i,j−1 + ũci,j−2ṽ

c
i,j−2

24∆y
+O

(
h4
)

(4.28)

(
∂2u

∂x2

)
i,j

=
−ui+2,j + 16ui+1,j − 30ui,j + 16ui−1,j − ui−2,j

12 (∆x)2 +O
(
h4
)

(4.29)

(
∂2u

∂y2

)
i,j

=
−ui,j+2 + 16ui,j+1 − 30ui,j + 16ui,j−1 − ui,j−2

12 (∆y)2 +O
(
h4
)

(4.30)

The y−momentum convective and diffusive terms, at the north face of the cell

indexed by (i, j), are ultimately evaluated as:(
∂v2

∂y

)
i,j

=
−ṽi,j+2

2
+ 27ṽi,j+1

2 − 27ṽi,j
2 + ṽi,j−1

2

24∆y
+O

(
h4
)

(4.31)

(
∂uv

∂x

)
i,j

=
−ũci+1,j ṽ

c
i+1,j + 27ũci,j ṽ

c
i,j − 27ũci−1,j ṽ

c
i−1,j + ũci−2,j ṽ

c
i−2,j

24∆x
+O

(
h4
)

(4.32)

(
∂2v

∂x2

)
i,j

=
−vi+2,j + 16vi+1,j − 30vi,j + 16vi−1,j − vi−2,j

12 (∆x)2 +O
(
h4
)

(4.33)

(
∂2v

∂y2

)
i,j

=
−vi,j+2 + 16vi,j+1 − 30vi,j + 16vi,j−1 − vi,j−2

12 (∆y)2 +O
(
h4
)

(4.34)
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where ũi,j and ṽi,j are the interpolated velocities at the cell centre (i, j):

ũi,j =
−ui+1,j + 9ui,j + 9ui−1,j − ui−2,j

16
+O

(
h4
)

(4.35)

ṽi,j =
−vi,j+1 + 9vi,j + 9vi,j−1 − vi,j−2

16
+O

(
h4
)

(4.36)

and ũci,j and ṽci,j are the interpolated velocities at the corner (i, j):

ũci,j =
−ui,j+2 + 9ui,j+1 + 9ui,j − ui,j−1

16
+O

(
h4
)

(4.37)

ṽci,j =
−vi+2,j + 9vi+1,j + 9vi,j − vi1,j

16
+O

(
h4
)

(4.38)

The partial derivatives of the z−momentum equation are defined similarly.

It should be noted that Hydro3D is parallelized using domain decomposition, that

is, the computational domain is divided into a number of smaller sub-domains to

allow parallelization. Communication across internal boundaries between neigh-

bouring sub-domains is achieved using layers of ghost cells that are located around

the peripheries of the domains. The standard message passing interface (MPI) ac-

complishes communication between sub-domains.

In Eulerian-Lagrangian simulations, the effect of the bubbles are represented by the

term ξi in Equation (4.2), which is used to correct the predicted velocity ũ obtaining

the updated intermediate velocity ũ∗(x, t), as indicated in Equation (4.39):

ũ∗ = ũ+ ξi∆T (4.39)

Here, the corrected velocity satisfies the divergence-free condition once Equation

(4.40) achieves a residual lower than a set tolerance ε often set to a value ≤ 10−7.

5 ·ũ∗ ≤ ε (4.40)
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4.3 Local Mesh Refinement (LMR)

In the present study, a 2:1 reduction in grid element size between neighbouring sub-

domains is imposed on the staggered computational grid to achieve LMR in critical

areas. In the following, the arrangement of ghost cell velocities and pressures is

mostly depicted in two dimensions for simplicity.

The calculation of ghost cell pressures is achieved by adjusting the coarse pressure

gradients at the coarse-fine interface to those computed for neighbouring fine cells,

thereby coupling the pressure fields. Pressure values, the location of which are

indicated by ”x” symbols in Figure (4.2), are first quadratically interpolated using

pressure values from the coarse grid computational cells (indicated by solid right

triangles, (I) in the same figure) as follows:

pαI,J =
5pI−1,J + 30pI,J − 3pI+1,J

32
+O

(
h2
)

pbI,J =
5pI+1,J + 30pI,J − 3pI−1,J

32
+O

(
h2
) (4.41)

Another quadratic interpolation is then applied to calculate fine ghost pressures

using the computational cells indicated by solid let triangles (J) and the interpolated

pressures:

pi,j+1 =
8pαI,J + 10pi,j − 3pi,j−1

15
+O

(
h2
)

pbi+1,j+1 =
8pbI,J + 10pi+1,j − 3pi+1,j−1

15
+O

(
h2
) (4.42)

In the restriction process, the edge-centred gradients of the fine grids, Ffineα and

Ffineb in Figure (4.2), are calculated as follows:

Fα
fine =

pi,j+1 − pi,j
∆yfine

+O (h) and F b
fine =

pi+1,j+1 − pi+1,j

∆yfine
+O (h) (4.43)

The coarse grid pressure gradients are then taken as the arithmetic average of the

fine-grid pressure gradients to enforce the continuity of the gradient across the in-

terface. Ghost cell pressures from the coarse grid (I, J − 1) are calculated using the
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Figure 4.2: Pressure locations around the interface between a fine and a coarse grid.

following formula:

pI,J − pI,J−1

∆ycoarse
=

(
Fα
fine + F b

fine

2

)
+O (h) (4.44)

Although quadratic interpolations give first-order accurate approximations of the

Laplacian operator along the interface, it is proposed in Cevheri and Stoesser (2018)

that this is sufficient to ensure global second-order accuracy of the projected velocity

field.

Figure (4.3) presents the indexing of neighbouring cells around a non-matching

interface to illustrate the means by which pressure values are calculated in the

three-dimensional domain. Considering refinement in the y−direction, a coarse cell,

which is located on the north faces of four fine cells, is indexed as (I, J,K), and

the south neighbours associated with it are indexed as follows: (i, j, k), (i, j, k + 1),

(i+1, j, k) and (i+1, j, k+1). In the prolongation process, quadratic interpolations

are performed to obtain the four ghost fine pressure values on the coarse side of the

interface, which are denoted pa, pb, pc and pd in Figure (4.3):

pαI,J,K =
1

1024
(25pI−1,J,K−1 + 150pI,J,K−1 − 15pI+1,J,K−1 + 150pI−1,J,K

+900pI,J,K − 90pI+1,J,K − 15pI−1,J,K+1 − 90pI,J,K+1 + 9pI+1,J,K+1) +O
(
h2
) (4.45)
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Figure 4.3: Pressure locations between fine and coarse grids for three-dimensional
problems when the refinement is considered in the y−direction.

pbI,J,K =
1

1024
(−15pI−1,J,K−1 + 150pI,J,K−1 + 25pI+1,J,K−1 − 90pI−1,J,K

+900pI,J,K + 150pI+1,J,K + 9pI−1,J,K+1 − 90pI,J,K+1 − 15pI+1,J,K+1) +O
(
h2
)

(4.46)

pcI,J,K =
1

1024
(−15pI−1,J,K−1 − 90pI,J,K−1 + 9pI+1,J,K−1 + 150pI−1,J,K

+900pI,J,K − 90pI+1,J,K + 25pI−1,J,K+1 + 150pI,J,K+1 − 15pI+1,J,K+1) +O
(
h2
)

(4.47)

pdI,J,K =
1

1024
(9pI−1,J,K−1 − 90pI,J,K−1 − 15pI+1,J,K−1 − 90pI−1,J,K

+900pI,J,K + 150pI+1,J,K − 15pI−1,J,K+1 + 150pI,J,K+1 + 25pI+1,J,K+1) +O
(
h2
)

(4.48)

Additional information pertaining to the derivation of Equations (4.45)-(4.48) can

be found in Thorne (2003). Another quadratic interpolation is then applied to
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calculate fine ghost pressures using the computational cells indicated by solid left

triangles (J) and the interpolated pressures:

pi,j+1,k =
1

15

(
8pαI,J,K + 10pi,j,k − 3pi,j−1,k

)
+O

(
h2
)

(4.49)

pi+1,j+1,k =
1

15

(
8pbI,J,K + 10pi+1,j,k − 3pi+1,j−1,k

)
+O

(
h2
)

(4.50)

pi,j+1,k+1 =
1

15

(
8pcI,J,K + 10pi,j,k+1 − 3pi,j−1,k+1

)
+O

(
h2
)

(4.51)

pi+1,j+1,k+1 =
1

15

(
8pdI,J,K + 10pi+1,j,k+1 − 3pi+1,j−1,k+1

)
+O

(
h2
)

(4.52)

In the restriction process, the coarse ghost pressure value, pI,J−1,K , is calculated by

adjusting the coarse pressure gradients at the coarse-fine interface to those computed

for neighbouring fine cells in the following form:

pI,J,K − pI,J−1,K

∆ycoarse
=

1

4

(
pi,j+1,k − pi,j,k

∆yfine
+
pi+1,j+1,k − pi+1,j,k

∆yfine
+
pi,j+1,k+1 − pi,j,k+1

∆yfine

)
+

1

4

(
pi+1,j+1,k+1 − pi+1,j,k+1

∆yfine

)
+O (h) (4.53)

Prolongation and restriction of ghost velocities, which are tangential to the non-

matching interface, are required in the discrete formulations of derivatives. The

procedures are different for velocity components that are tangential and normal

to the non-matching LMR interfaces; evaluation of tangential velocities is not as

challenging as evaluation of normal velocities. Figure (4.4) is a schema illustrating

the arrangement of ghost cell tangential velocities at a fine-coarse grid interface.

In the prolongation procedure, fine grid tangential ghost velocities are calculated

using quadratic interpolations with mass conservation in the following forms for
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Figure 4.4: Location of velocities tangential to the LMR interface between fine and
coarse grids.

two-dimensional and three-dimensional problems, respectively:

ui+1,j+1,k =
1

128
(3uI,J−1,K−1 + 15uI,J,K−1 − 2uI,J+1,K−1 + 15uI,J−1,K

+128uI,J,K − 15uI,J+1,K − 2uI,J−1,K+1 − 15uI,J,K+1 + uI,J+1,K+1) +O
(
h2
) (4.54)

ui+1,j+1,k+1 =
1

128
(−2uI,J−1,K−1 − 15uI,J,K−1 + uI,J+1,K−1 + 15uI,J−1,K

+128uI,J,K − 15uI,J+1,K + 3uI,J−1,K+1 + 15uI,J,K+1 − 2uI,J+1,K+1) +O
(
h2
) (4.55)

The second-order average of these edge values is then taken to obtain the value at

the location in between: ui+2,j+1 = (ui+1,j+1 + ui+3,j+1)/2 in 2D and ui,j+1,k+1 =

(ui−1,j+1,k+1 + ui+1,j+1,k+1)/2 in 3D.

In the restriction procedure, the coarse tangential velocities are obtained by aver-

aging the computed fine values, thus enforcing mass conservation at the interfaces.

Mass conservation is also enforced for velocities normal to the interface. The coarse

grid ghost velocity, indexed by (I, J − 1), is calculated as follows:

uI,J−1 =
ui+1,j + ui+1,j−1

2
+O

(
h2
)

(4.56)
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and the three-dimensional procedure for the coarse grid ghost velocity indexed by

(I, J − 1, K), which is prescribed for the three-dimensional pressure formulation, is

achieved for both approaches as follows:

uI,J−1,K =
ui+1,j,k + ui+1,j−1,k + ui+1,j,k+1 + ui+1,j−1,k+1

4
+O

(
h2
)

(4.57)

Interpolation and restriction procedures for the velocity component normal to the

interface differ slightly from those used for the tangential velocities. Figure (4.5)

presents the arrangement of ghost cells.

In the prolongation process, the values marked with ”x” symbols in Figure (4.5) are

first calculated using coarse grid computational values as follows:

vi,j+2 =
vI−1,J + 8vI,J − vI+1,J

8
+O

(
h2
)

vi+1,j+2 =
vI+1,J + 8vI,J − vI−1,J

8
+O

(
h2
) (4.58)

One additional quadratic interpolation between computed coarse and fine grid values

is then employed using vi,j+2 and vi+1,j+2, which are interpolated quadratically with

mass conservation enforced. This interpolation is defined as follows:

vi,j+1 =
1

3
(vi,j+2 + 3vi,j − vi,j−1) +O

(
h2
)

vi+1,j+1 =
1

3
(vi+1,j+2 + 3vi+1,j − vi+1,j−1) +O

(
h2
) (4.59)

The formulation or three-dimensional problems is similar. First the normal velocities

on the coarse edge are interpolated as follows:

vi,j+2,k =
1

128
(3vI−1,J,K−1 + 15vI,J,K−1 − 2vI+1,J,K−1 + 15vI−1,J,K

+128vI,J,K − 15vI+1,J,K − 2vI−1,J,K+1 − 15vI,J,K+1 + vI+1,J,K+1) +O
(
h2
) (4.60)

vi+1,j+2,k =
1

128
(−2vI−1,J,K−1 + 15vI,J,K−1 + 3vI+1,J,K−1 − 15vI−1,J,K

+128vI,J,K + 15vI+1,J,K + vI−1,J,K+1 − 15vI,J,K+1 − 2vI+1,J,K+1) +O
(
h2
) (4.61)
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Figure 4.5: Location of velocities normal to the LMR interface between fine and
coarse grids.

vi,j+2,k+1 =
1

128
(−2vI−1,J,K−1 − 15vI,J,K−1 + vI+1,J,K−1 + 15vI−1,J,K

+128vI,J,K − 15vI+1,J,K + 3vI−1,J,K+1 + 15vI,J,K+1 − 2vI+1,J,K+1) +O
(
h2
) (4.62)

vi+1,j+2,k+1 =
1

128
(vI−1,J,K−1 − 15vI,J,K−1 − 2vI+1,J,K−1 − 15vI−1,J,K

+128vI,J,K + 15vI+1,J,K − 2vI−1,J,K+1 + 15vI,J,K+1 + 3vI+1,J,K+1) +O
(
h2
) (4.63)

before the quadratic interpolation is performed according to Equation (4.59) to

compute the values of vi,j+1,k, vi+1,j+1,k, vi,j+1,k+1 and vi+1,j+1,k+1.

In the restriction process, the fourth-order averages of computed fine grid values are

used to calculate the coarse grid ghost velocities instead of second-order averages as

was the case for the tangential velocities (Equations 4.56 & 4.57). The fourth-order

formulation is as follows:

vI,J−1 =
−vi−1,j + 9vi,j + 9vi+1,j − vi+2,j

16
+O

(
h4
)

(4.64)

In 3D, the formulation of the fourth-order average is slightly more complicated

than in 2D. Figure (4.6) presents a view of a 3D interface in the x − z plane, with
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Figure 4.6: Location of velocities normal to the LMR interface between fine and
coarse grids for 3D problems when the reinement is considered in the y−direction.

the locations of fine and coarse grid velocities denoted by hollow and solid circles,

respectively. In the first step, the values marked with ”x” symbols are calculated as

follows, using the first ”x” on the left side of Figure (4.6) as an example:

vα =
−vi−1,j,k−1 + 9vi−1,j,k + 9vi−1,j,k+1 − vi−1,j,k+2

16
+O

(
h4
)

(4.65)

The coarse grid ghost velocity is then evaluated using the calculated values at ”x”

locations as follows:

vI,J−1,K =
−vα + 9vb + 9vc − vd

16
+O

(
h4
)

(4.66)

Finally, it should be noted that although the generated grid consists of domains

at different resolutions, refinement in time is not employed in the present study.

Instead, all grids in all levels are advanced with a uniform time-step to simplify the

implementation and to make for more straightforward parallelisation and CPU load

distribution.
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4.4 Simulation of the dispersed phase

Dispersed phase is simulated with a Lagrangian Particle Tracking (LPT) algorithm.

Particles are represented by volumeless Lagrangian markers, considered as rigid and

spheric with no direct interaction between them. Only linear interaction between

interfacial forces is considered.

Newton’s second law is applied to describe the motion of individual particles:

mp
∂υp,i
∂t

= Fp,i (4.67)

where mp is the particle’s mass, υp,i is the particle’s velocity in spatial direction i

and Fp,i is the sum of the interfacial liquid forces acting on the particle in direction

i. The integral forces acting upon each particle are calculated by the semi-empirical

expressions. The following five forces are considered (Delnoij et al., 1997): buoyancy,

fluid stress, added mass, drag and lift.

The buoyancy force is computed as:

FG,i = (mp −ml)g (4.68)

where mp is the particle’s mass, ml is the displaced liquid mass and g the gravity

acceleration. The buoyancy force applies only in the vertical direction i=3.

The fluid stress force, which accounts for part of the fluid’s resistance to the particle’s

movement which is dependent to the slip velocity is computed as:

FS,i = ml
Dui
Dt

(4.69)

where ui the fluid velocity at the bubble’s geometric center location.

The added mass force, which represents the fluid’s resistance to the particle’s move-

ment which is dependent to the slip velocity is calculated as:

FA,i = −CAml
∂

∂t
(υp,i − ui) (4.70)

where CA is an empirical coefficient assumed to be 0.5 for a sphere (Delnoij et al.,
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1997) and the difference between particle and water velocity is often referred to as

the slip velocity uslip.

The drag force, which is exerted by the particle on the liquid (and vice versa) in the

direction of motion, is computed as:

FD,i =
1

2
CD%Afr|υp,i − ui|(υp,i − ui) (4.71)

where Afr is the frontal area of the particle and ρ the fluid density. CD is the drag

coefficient that depends on the local Reynolds number Rep and is calculated as:

CD =

 24
Rep

(
1 + 0.15Re0.687

p

)
Rep ≤ 800

0.44 Rep > 800
(4.72)

The lift force, which is the force exerted on the particle perpendicular to the axis of

motion and which is responsible for the particles spreading, is computed as:

FL,i = −CLmp(υp,i − ui)× ωi (4.73)

where ω is the fluid vorticity and CL = 0.53 (Delnoij et al., 1997) is the lift coefficient

for a sphere.

Fp,i = FG,i + FS,i + FA,i + FD,i + FL,i (4.74)

4.5 Eulerian-Lagrangian mapping

The dispersed phase is accurately predicted with the aid of a Lagrangian Particle

Tracking (LPT) algorithm using a two-way coupling approach. Firstly, the interfa-

cial particle forces are calculated from Equations (4.68)-(4.74) and through Equation

(4.67) the particles’ velocities are obtained (forward coupling). Secondly, the con-

tribution of the dispersed phase to the continuous phase is computed and added

as a source term, ξi (Equation 4.3), to the liquid’s momentum equation (Eq. 4.2)

(backward coupling). Forward and backward coupling are achieved by connecting

randomly placed Lagrangian particles with fixed locations of the Eulerian frame-
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work through a mapping technique. Mapping consists of two basic elements: 1)

the definition of the volume of fluid influenced by the particle and 2) interpolation

techniques to transfer quantities between Eulerian and Lagrangian frameworks. The

most straightforward approach to point 1) is the PSI-cell (Particle-Source-In Cell)

mapping technique (Crowe et al., 1977). By employing the PSI-cell technique, only

the fluid nodes of the cells in which the Lagrangian particle’s center is located receive

the momentum source. Hu and Celik (2008) developed the PSI-ball method, where

the influence of individual particles on the fluid is within a prescribed volume (ball)

around a Lagrangian point, including nodes outside the cell in which the particle is

hosted. With regards to element 2) of the mapping, transfer of quantities, this has

been a prime aspect for CFD modellers. For example Delnoij et al., 1997 proposed

an area-weighted averaging; Lain et al., 1999 suggested linear interpolation plus

a fluctuating component; Kitagawa et al., 2001 used a box or Gaussian template

function; Deen et al., 2004 and Darmana et al., 2006 used a clipped fourth-order

polynomial kernel; Sunkorn et al., 2011 and Hu and Celik, 2008 chose a truncated

Gaussian for the forward coupling whilst applying a distance weighted function for

the backward coupling.

In this work, the Eulerian-Lagrangian interpolation technique is based on second-

order delta functions developed originally for immersed boundaries by Yang et al.,

2009.

h =

∆x Dp
∆x
≤ 1

Dp
Dp
∆x

> 1
(4.75)

where h is the dynamic spacing based on the Dp/∆x ratio to define the bubble’s

influence volume with minimum mesh dependency.

According to Equation (4.75), whenever a particle is smaller than the cell, the cell

size ∆x will be the stencil for the delta function. Typically a second-order delta

function is applied on a 5h-sized cube. If Dp ≤ ∆x then 5 nodes will be considered

in each direction (the one that contains the particle and two more at the sides),

making a total of 125 in the volume. The delta functions create a 3D Gaussian-like

function centered in the Lagrangian point, so the nodes that are distant or near the

corners of the resulting cube will have tiny influence or none. If the bubble is bigger

than the cell, then an analogous volume based on its diameter Dp would be defined.
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Following the previous example, the resulting cube would have 5Dp edges. This

procedure ensures the accuracy of the delta functions’ interpolation with a large

enough representation of points.

Regarding to interpolation, the delta functions have been successfully applied in re-

cent years to immersed boundary problems, which have similarities with Lagrangian

Particle Tracking. In both there are discrete forcing points which do not coincide

with the Eulerian grid nodes and hence transferring forces between different frames

of reference is a key element. The general expression of the three-dimensional delta

function is as follows:

δ(xp − xj) =
1

h3
φ

(
xp − xj
h

)
φ

(
yp − yj
h

)
φ

(
zp − zj
h

)
(4.76)

where the subscript j refers to the cell nodes, p to the particles/bubbles h is the

size of the stencil, previously defined in Equation (4.75). The piecewise function φ

chosen for the present case is second-order smooth polynomial.

4.6 Crossflow

Free-stream turbulence is an essential step in order to represent natural environ-

mental flow conditions. Therefore, precursor simulations were initially run before

the main simulation and then inlet planes fed into the latter (e.g. Rodi et al., 2013;

Zhiyin, 2015; Shahriari et al., 2020). However, the precursor simulations demand

a considerable amount of computational resources as LES require small time steps

and fine grid resolutions. Moreover, it was found that the initial velocity profiles

simulated by these precursor simulations were overestimated compared to the ex-

perimental initial profiles and result higher calculated ambient velocity profiles.

Therefore, the approach adopted for the generation of the crossflow conditions was

the generation of artificial turbulent field using a Synthetic Eddy Method (SEM)

Ouro, 2017. This method was initially developed by Jarrin et al., 2006 and has been

widely applied specially for LES and in transition regions between RANS and LES.

The SEM is based on the generation of a finite number of eddies, Ned that are

the source of velocity fluctuations on the generated inlet. The number of eddies is
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calculated based on the length-scale, le, and inlet plane dimensions. The resulting

instantaneous velocity at the inlet results from the addition of the prescribed mean

inlet velocity U0, and the artificial velocity fluctuation u
′
i(x), calculated as a function

of the previously described parameters as following:

u
′

i(x) =
1√
Ned

Ned∑
k=1

αijε
k
jf

k
σε

(
x− xk

lke

)
(4.77)

where αij is a tensor of the Lund coefficient presented in Equation (4.78) (Lund

et al., 1998) related to the prescribed Reynold stresses (Rij = u
′
iu
′
j) from Equation

(4.78), εkj is a random number between [-1,1], with zero average, fkσε corresponds to

a Gaussian shape function given to the vortex representation (Jarrin et al., 2006),

and xk indicates the centre of coordinated of the kth-eddy.

aij =


√
R11 0

R21/α11

√
R22 − α2

21 0

R31/α11 (R32 − α21α31)/α22

√
R33 − α2

31 − α2
32

 (4.78)

In order to avoid any additional complexity to the generation of the artificial tur-

bulent inflow, the turbulence at the inlet is considered isotropic, i.e. u
′
iu
′
j = 0, and

homogeneous, i.e. u
′
iu
′
i = u

′
ju
′
j = 2/3k, (Otero, 2009). This yields to a Reynolds

stresses tensor presented in Equation (4.79). Thus, this method allows to input the

same turbulence intensity level measured during the experiments into the numerical

simulations.

RHIT =

2/3K 0

0 2/3k 0

0 0 2/3k

 =

(I ∗ U0)2 0 0

0 (I ∗ U0)2 0

0 0 (I ∗ U0)2

 (4.79)

During the calculation of the inlet planes at each time step n, the eddies are con-

vected based on the free-stream velocity as,

xn(t+ ∆t) = xn(t) + U0 ∗∆t (4.80)

where ∆t is the time step, which is usually assumed constant.
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4.7 Stratification

Even though many types of flows can be treated with the equations of mass and

momentum, determining the effects of temperature variations on the flow is nec-

essary for stratified flows. The energy equation is adopted to determine effects of

temperature variations on a number of cases of vertically stratified flow in a stagnant

ambient.

The principal effect of temperature on a fluid results from the fact that changes in

temperature cause variations in the fluid’s density: when heated, a fluid’s volume

increases, thus making it lighter and causing it to rise. This results in the occurrence

of buoyancy forces which depend on the temperature (thermal buoyancy forces).

Incorporating yet further effects of temperature on the fluid and the flow leads to

non-linear equations which are difficult to treat. The approach adopted in this thesis

is the Boussinesq approximation:

- density is constant except in the buoyancy terms; i.e. the continuity equation

retains its incompressible form and in the momentum equations, density varies only

in the (gravitational) body force term;

- all other fluid properties are assumed constant;

- viscous dissipation is negligibly small.

The later two assumptions simplify the equations to the effect that the focus of

interest is on the thermal buoyancy forces.

To describe the variations of density, the energy conservation equation is also in-

cluded, for constant thermal diffusivity α and negligible viscous dissipation. The

continuous phase temperature field is governed by the energy equation:

∂T

∂t
+
∂Tui
∂xi

=
1

RePr

∂2T

∂xi∂xj
− ∂qij
∂xj

(4.81)

where qij is the SGS thermal flux.

The momentum equation (4.2) thus take the form:

∂ui
∂t

+
∂(uiuj)

∂xj
= − ∂p

∂xj
+

1

Re

∂2ui
∂xi∂xj

+ (1− ρ(T ))gi −
∂τij
∂xj

+ ξi (4.82)
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Following previous LES studies, a linear relation is assumed between the water

density ρ and the temperature T;

ρ = ρr[1− β(T − tr)] (4.83)

with thermal expansion coefficient β = 2 ∗ 10−4K−1 and ρr and Tr reference quan-

tities.

4.8 Immersed Boundary Method

Immersed boundary method (IBM) was originally developed by (Peskin, 1972) with

the aim of developing a methodology for the simulation of heart valves. Peskin (1972)

developed a non-body conformal methodology that constituted a computationally

cheap while accurate approach to biomechanical flows. In the 1990s, the popularity

of IBM increased notably as the research community explored new improvements

onto the method so as to enlarge its range of applications and accuracy. The main

advantages of using IBM are: a) the capability to combine with structural meshes

(usually rectangular Cartesian mesh) which allows the use of efficient flow solvers,

such as fast Poisson equations (Sotiropoulos and Yang, 2014); and b) the relatively

low computational cost compared to body-fitted models as highlighted by Fadlun

et al. (2000).

There are mainly two IB method varieties: the continuum and discrete approaches.

The continuum models use the geometrical description of a continuous surface to

project the velocities over the normal vector to the body surface. It usually involved

the categorisation of the Eulerian cells into solid, fluid or intermediate (Kang and

Sotiropoulos, 2015). In the present study, the discrete approach is adopted. Discrete

models are those where the body is built as a set of individual Lagrangian points

that conform its shape. Figure (4.7) exhibits a two-dimensional representation of

a staggered grid with uniform grid spacings (δx & δy) and Lagrangian markers

(red circles). Uhlmann (2005) developed the direct forcing (DF) method using delta

functions to essentially form a two-way interpolation procedure between the Eulerian

cells and Lagrangian cells where information between the fluid and solid frameworks
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are exchanged.

The direct forcing method follows a multi-step predictor-corrector procedure, which

is adapted as follows: first the predicted Eulerian velocities (u∗) are calculated from

Equations (4.10)-(4.11). A delta function (δ) is used as an interpolation function to

transfer u∗ onto the Lagrangian grid from its closest number of Eulerian neighbours,

ne (filled black symbols in Figure 4.7) and the interpolated Lagrangian velocity, UL

is obtained:

UL =
ne∑

ijk=1

u∗ijkδ(xijk −XL)∆xijk (4.84)

where xijk is the vector of coordinates of the Eulerian mesh cells ijk. XL =

(XL, YL, ZL)T is the location of the Lagrangian marker, L and ∆xijk = ∆x∆y∆z is

the Eulerian cell volume.

The interpolating delta functions are calculated from the multiplication of three

one-dimensional kernels, φ as shown:

δ(xijk −XL) =
1

∆xijk
φ

(
xijk −XL

∆x

)
φ

(
yijk − YL

∆y

)
φ

(
zijk − ZL

∆z

)
(4.85)

The second step of the DF method is to compute the force FL that each Lagrangian

marker needs to exert on the fluid to satisfy the no-slip condition at the marker’s

position. The force term is calculated as the difference between the desired velocity

at the marker, U∗L, and the velocity previously interpolated from the fluid mesh, UL.

In the case of a static body, the desired velocity at the neighbours used in marker

U∗L is zero.

The third step constitutes the backwards procedure where the Lagrangian force is

transferred back to the Eulerian mesh cells in order to obtain the Eulerian force, f .

The same delta function as in Equation (4.85) is used to reverse interpolate FL from

the closest Lagrangian cell and is performed as:

FL =
U∗L − UL

∆t
(4.86)
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Figure 4.7: Two-dimensional representation of the Cartesian staggered grid. The
neighbours used in the interpolation for a Lagrangian marker (filled red circle) are
the black-filled symbols within the square boundary. x represents pressure nodes,
hollow squares are x-velocity nodes, hollow circles are y-velocity nodes, and red
circles are the Lagrangian markers. ∆VL denotes the Lagrangian marker volume.
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f(xijk) =

nL∑
L=1

FL · δ (XL − xijk) ·∆VL (4.87)

where ∆VL is the Lagrangian volume, which should be approximately equal to ∆xijk.

In the final corrector step, the predicted Eulerian velocity, u∗ is updated with the

Eulerian force from the IB method correction as follows:

u∗ = ũ∗ + f∆t (4.88)
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Chapter 5

Simulation of multi-phase plumes

in crossflow

5.1 Introduction

Multi-phase plumes are buoyancy driven flows where the buoyancy is provided by

a continuous release of an immiscible dispersed phase, such as gas bubbles, liquid

droplets or solid particles (Socolofsky et al., 2002). Crossflow, i.e. ambient cur-

rent, that is usually present in many of the aforementioned applications (Lima Neto

et al., 2007), is very influential in determining the behavior of multi-phase plumes.

Although the effect of crossflows on single-phase plumes and jets has been stud-

ied extensively (Muppidi and Mahesh (2005);Yuan et al. (1999)), little is known

about their effect on multi-phase plumes (Salewski et al., 2007). In this chapter

the effect of crossflow on multi-phase buoyant plume’s dynamics has been investi-

gated numerically with the aid of a thoroughly validated Large-Eddy Simulation

Eulerian-Lagrangian algorithm (Fraga et al., 2016).

The main difference between single- and multi-phase plumes results from the discrete

nature of the buoyant dispersed phase. In the case of a single-phase plume, the

buoyancy arises by the changes in the density of the continuous phase -the advection

of buoyancy is controlled by the motion of the entrained fluid. In contrast, in

the case of a bubble plume the bubbles themselves comprise the buoyancy of the
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plume, entraining the surrounding fluid without mixing it, remaining discrete from

the ambient fluid and following trajectories different from those of the entrained

continuous phase. Crossflows affect a wide range of plume properties, changing

the basic plume dynamics. Even in the case of single-phase plumes, crossflows can

cause entrainment enhancement, deflection of the plume centerline, deformation of

the plume shape into a counter-rotating vortex pair (Frict and Roshko, 1994), and

fluid leakage in the downstream wake of the plume, i.e. ambient flow is detached

from the main flow and is advected downstream away from the jet (Davidson and

Pun, 1999).

The accurate prediction of bubble plumes has been a challenging task for both ex-

perimentalists and Computational Fluid Dynamics modellers due to the interaction

between two strong sources of advection, the bulk velocity of the ambient flow and

the buoyancy of the plume. Experimental studies that have investigated bubble

plumes in crossflow are reported briefly. Socolofsky and Adams (2002) conducted

bubble plume experiments in uniform and stratified crossflow, focusing on the tra-

jectories of the dispersed phase and defining a characteristic critical height where the

ambient fluid separates from the dominant dispersed phase. Rezvani (2016) mea-

sured the continuous phase dynamics inside and outside a bubble plume in turbulent

crossflow. Zhang and Zhu (2013) focused on the bubble characteristics of bubble jets

in crossflow by injecting air-water mixtures, showing that radial properties follow

the Gaussian distribution and that the distribution of bubble diameter was affected

primarily by the air and water rates and the distance from the nozzle.

Besides experimental studies, computational research on multi-phase plumes in

crossflow is limited. Advanced 2D and 3D numerical simulations are performed

mainly on multi-phase plumes in stagnant environment and/or vertically stratified

ambient fluid and single-phase plumes in crossflow. Integral models have been em-

ployed in order to simulate oil and gas blowouts with emphasis on deep-water condi-

tions; Yapa et al. (1999) simulated sub-sea blowouts with oil, gas and entrained sea

water. The plume was considered as a mixture of non-miscible fluids (oil droplets

and gas bubbles dispersed in seawater). Johansen (2000) developed a deepwater spill

model capable of simulating gas hydrate formation/decomposition, gas dissolution

and gas separation from the main plume. On the same note, Zheng et al. (2003)
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and Chen and Yapa (2003) proposed a mathematical model to simulate the hydro-

dynamics and thermodynamics of the jet/plume; the thermodynamics and kinetics

of hydrate formation and decomposition; and gas dissolution. The afforementionted

models are applied to large-scale water bodies and even though they take into ac-

count the effect of cross currents and separation of continuous and dispersed phase,

they focus more on the hydrates’ dispersion rather on the change of dynamics of the

surrounding fluid due to the dispersed phase.

Le Le Moullec et al. (2008) applied a three-dimensional EE two-phase numerical

approach for the simulation of a crossflow gas-liquid wastewater treatment reactor

using the CFD code FLUENT, testing two different turbulence models: κ-ε and

Reynolds Stress Model (RSM). Even though time-averaged horizontal velocity along

the length of the reactor and vertical velocities at specific heights were presented,

the study is focused on the mixing and flow within the reactor and not on the gas-

liquid physics. Wang et al. (2012) presented instantaneous snapshots of the interface

of deforming liquid bubbles and drops in a gas cross-flow, using a second-order

hybrid level set-volume constraint method for numerically simulating a co-flowing

liquid jet in gas deforming bubbles. Chen et al. (2003) applied a LES based model

in order to simulate double-plume formation by oceanic CO2, including seawater

entrainment, gravity waves and peeling out of the plume. Momentum, mass and

heat transfer phenomena are described using empirical formulae. Double-plume

structure after the CO2 injection and temperature field contours were simulated.

Decrop et al. (2015) extensively studied negatively-buoyant, vertically downward

injected turbidity plumes, i.e. mixtures of water and sediment particles, in crossflow

using two-phase Large-Eddy Simulations. Fu et al. (2013) simulated solid particles

discharged in gas crossflow using RANS, unsteady RANS (URANS) and detached

eddy simulation (DES) techniques and presented the dynamics of the gas flow field

and the dispersion of the solid particles.

In this chapter the results of Eulerian-Lagrangian LES simulations of a bubble plume

in different crossflows are reported and discussed, with emphasis on fluid proper-

ties/dynamics. The EL-LES model is initially validated using a set of experiments

conducted in Texas A&M University. The main objective of this study is to inves-

tigate the effect of crossflows on the dynamics of a bubble column and the resulting
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secondary flow.

The numerical simulations presented in the following chapters are conducted with

the in-house code Hydro-3D which is a finite-difference-based large-eddy simulation

code following the methodology described in Chapter 4.

5.2 Experimental Setup

In this section, details about the experiments conducted by Rezvani (2016) are given.

The experiments were carried out in a glass-walled flume 35m long by 0.9m wide

and 1.2m deep in the Fluid Dynamics Laboratory of the Zachry Department of Civil

Engineering at Texas A&M University. The tank was equipped with a recirculation

pump system, which was used to simulate different ambient currents (generating a

forced current). Independent sets of experiments were conducted for open channel

crossflow.

To generate the bubble plume, Rezvani (2016) used a 2.5cm tall by 1.4cm in di-

ameter porous aquarium airstone, which was located at the centerline of the wave

flume at a depth of 0.68m. The bubble flow rates were chosen as Qo = 0.5, 1 and

1.5L/min to match those of previous experiments with zero crossflow (Seol et al.,

2009). The bubble flow rates at standard pressure and temperature were moni-

tored by a calibrated gas flowmeter. As reported in Lai (2015), who used a similar

setup, the generated air bubbles have a median diameter d50 of 2.4mm (Figure 5.1)

with a corresponding velocity of 24cm/s (Clift, 1978). The bubble size was visually

validated from the raw images in the crossflow experiments.

Crossflows were generated using two centrifugal pumps equipped with a frequency

controller. The pumps were capable of generating flows ranging between 1.32m3/sec

and 6.06m3/sec. The flow rates were monitored by the inline propeller flow meter

in the external recirculation piping as well as by ADV velocity measurements in

the flume during the experiments. Recirculating flow entered the flume through a

ramp inlet in the flume bottom creating a submerged wall jet. In order to destroy

the jet structure of the inflow at the flume entrance, an array of bricks was placed

immediately after the inflow (Ghisalberti and Nepf, 2002). A homogeneous grid of

porous plates was then used to smooth the velocity profile as suggested by Stoker
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Figure 5.1: Bubbles size distribution from Lai (2015).

(1946). Flow straighteners made out of PVC pipes with a diameter of 2.54cm and

length of 70cm were used to eliminate large scale turbulence and secondary currents.

The bubble plume was located at 19 times the water depth downstream of the flow

straightener, which was about 2/3 of the flume length. Measurements of the velocity

field validated the uniform open channel flow condition in the measurement section.

In all the experiments, the center plane of the bubble plume was illuminated by

a laser sheet. The vertical illumination plane along the centerline of the bubble

diffuser was produced using continuous lasers along with a pair of cylindrical lenses

that focused and expanded the beam, creating the light sheet. The light sheet was

formed outside the tank and directed into the tank through the glass at the side of

the tank and oriented upward by a mirror placed on the bottom of the tank.

Quantitative measurements for the forced current case were accomplished using

Standard Particle Image Velocimeter (PIV), where the source of light sheet was a

continuous Argon-ion laser (Spectra- Physics) capable of a peak power of 2.8W. The

flume water was seeded with neutrally buoyant homopolymer polyamide particles

(manufactured by Vestonic) with mean diameter of 56 microns and of specific grav-

ity 1.03. Flow images were captured by a high speed Phantom camera (Phantom

v5.1, Vision Research Inc.) mounted on a three-dimensional traverse and positioned

perpendicularly to the light sheet. The camera frame rate was 200Hz and the expo-
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Figure 5.2: Schematic of the PIV setup from Rezvani (2016).

sure time was 300 microseconds collecting 2000 images for each measurement burst

(e.g., 10sec burst duration, limited by camera physical memory). The resolution of

the camera is 1024x1024 pixels at 10 bit gray scale resolution. In order to cover the

whole field of interest, 25 fields of view (FOV) were used, starting from the center

of the bubble diffuser. Each FOV is defined by two numbers; first number indicates

the row number and the second number shows the number of column in our mea-

surement matrix. Each FOV has the dimension of 15cmx15cm with 1.5cm overlap.

Experiments were repeated three times at each FOV, which resulted in a total of

30 seconds of data, or 6015 images at each flow rate. The PIV processing of these

images resulted in 30s of instantaneous velocity data (in 10sec bursts), providing

the full-field velocity along the plume center plane. Meanwhile, PIV sequences were

neither synoptic from FOV to FOV nor were the data contiguous over the whole

30 s at each measurement point; therefore, we rebuild the flow field from statistical

averages of the results. Figure 5.2 shows a schematic of the experimental setup.

At the outset, three types of fluid velocities can be expected inside a bubble plume:

(i) bulk entrained flow, (ii) bubble wakes and (iii) return flow due to rising bubbles.

All must be registered by the chosen instrument for correct quantification of plume

turbulence. The instrument must also have moderately high spatio-temporal resolu-
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tions, and preferably with all three components of the velocity vector available. This

naturally rules out all intrusive single-point devices and suggests the use of particle

image velocimetry (PIV). In multiphase flows, the technique is complicated by the

need to discriminate between continuous liquid phase and dispersed gas phase. To

this end, phase-discriminating PIV that uses fluorescent seedings and optical filters

for phase selection has been developed. Two cameras are needed for the synoptic

measurements of both phases. In (Simiano et al., 2006), the method is applied in the

center plane of bubble plumes but only fluid velocities are captured. A simplified

technique that uses only a single camera and standard algorithms of PIV and particle

tracking velocimetry PTV for the calculation of phase velocity is proposed in (Seol

et al., 2007). Inherent to this is the removal of bubble wake velocities that leads

to an underestimation of the streamwise velocity and hence its stresses. In general,

the major challenge in applying PIV to bubbly flows is the existence of shadowy

regions behind bubbles which could render the measured velocities uncertain and

inaccurate.

In addition to PIV experiments by Rezvani (2016), the author and Lai (2015) have

measured the velocity of a bubble plume in crossflow using Acoustic Doppler Ve-

locimeter (ADV). Hence, the PIV results can be compared against data measured

by another instrument that has a different operating principle. The same experi-

mental setup was applied for the ADV measurements. We have selected the Nortek

Vectrino II for three-dimensional fluid velocity measurements. It is the latest gen-

eration of ADV and is capable of synoptic measurements along a 35mm strip at

temporal frequencies up to 100Hz and at spatial resolutions from 4mm down to

1mm. Being calibration-free on the part of the experimenter, it is convenient. The

coherent-pulse technology of ADVs is well understood and its performance in prob-

ing energetic turbulent flows has been well-documented. We are therefore led to

explore its capabilities in probing the bubble plume, as an alternative to PIV. A

concern arises on whether the returned measurements are correct in the presence

of bubbles which are strong acoustic scatterers. It has long been considered that

bubbles cause outliers to appear in the time series which have to replaced by some

in-range values. Surprisingly, it turns out that no such replacement is necessary for

the Vectrino II data obtained from our flow field (void fraction < 2%).
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5.3 Numerical Setup

The model has been previously validated for gas plume in a stagnant liquid tank by

Fraga et al. (2016). The model performance is assessed by predicting the dynamics

of a set of experiments conducted in Zachry Laboratory of the Department of Civil

Engineering of Texas A&M University. The numerical setup (Fig. 5.3) follows the

experimental setup (see Chapter 5.2).

Case
#

Crossflow velocity
ucf (m/sec)

Water
Depth (m)

Bubble flow rate
Qb (l/min)

1 0.04 0.82 0.5
2 0.10 0.82 0.5
3 0.15 0.82 0.5

Table 5.1: Flow characteristics of the three numerical cases.

Table 5.1 summarizes the main characteristics of the three cases reported in this

chapter. More details for the experimental cases 1 and 2 can be found in Rezvani

(2016). Case3 was only simulated numerically using LES.

Case
#

Mesh ∆x
(mm)

∆y
(mm)

∆z
(mm)

Total grid-
points
(Mio)

∆+
x ∆+

y ∆+
z Exp.

Data

1
Coarse7.5 4.5 4.1 22.4 25.5 15.3 13.9 PIV

&
Fine 3.75 2.25 2.05 179.2 12.75 7.6 7.0 ADV

2
Coarse7.5 4.5 4.1 22.4 40.425 24.2 22.0

PIV
Fine 3.75 2.25 2.05 179.2 20.175 12.1 11.0

3 Coarse7.5 4.5 4.1 22.4 57 34.2 31.2 N/A

Table 5.2: Grid details of the three Large-eddy simulations cases.

where ∆x, ∆y and ∆z are the grid resolution in x, y and z direction respectively and

∆+
x , ∆+

y and ∆+
z is the grid resolution in wall units in x, y and z direction respectively.

The numerical simulations are carried out under analogous conditions to the exper-

iments. A sketch of the numerical setup is given in Figure 5.3, where the distance s
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Figure 5.3: Schematic of side view of the experimental setup along with profile
locations used in Figures 5.4-5.15.

is equal to 0.1m. Validation profiles of velocity and stress will be given every 0.1m,

i.e., s, downstream the diffuser in the following. This is because the experimental

measurements taken from Rezvani (2016) are within 0.6m downstream the diffuser.

For the numerical simulations, the channel is 4.2m long and the bubbles are released

1.4m downstream the inlet. This is to align with the experimental condition by

Rezvani (2016): ”The bubble plume was located at about 2/3 of the flume length ”.

The generated air bubbles have a mean diameter Dp of 2.5mm and a standard

deviation of 0.28mm, following the log-normal distribution observed by Lai (2015)

presented in Figure 5.1.

The average number of bubbles for a fully developed bubble plume is approximately

2500 for case1, and just over 2600 for case2 and case3. Boundary conditions for the

fluid phase include the use of wall-functions boundary condition at all solid walls and

a free slip condition at the water surface. Free slip condition at the water surface

has been applied and validated in numerous LES gas-liquid studies, e.g. Delnoij

et al., 1997; Torti et al., 2013; Fraga and Stoesser, 2016.

Two different mesh resolutions are used for cases 1 & 2, a coarse and a fine mesh

(Table 5.3). Only the coarse mesh resolution is used for case3 as there are no

experimental results for comparison. In the fine mesh simulation, LMR technique

has been applied as described in Chapter 4, in an effort to keep computational cost

low. The mesh resolutions in Table 5.3 were chosen based on the limit Dp/ Dx =

0.67, as proposed by (Milelli et al., 2001) shown in Table 5.3. The selection of mesh
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is based on the grid size sensitivity study presented in Fraga et al. (2016) for plumes

in stagnant liquid.

Coarse mesh Fine mesh Milelli’s limit
Dp/ ∆x 0.33 0.66 0.67

Table 5.3: Bubble-to-mesh size ratio for the two mesh resolutions tested.

In their study, Fraga et al. (2016) used three different size of grid, i.e. coarse

∆x = 6.25mm, medium ∆x = 3.125mm and fine ∆x = 2.5mm, and constant bubble

diameter Dp = 2mm. The size of the medium mesh (∆x = 3.125mm) is very

close to Milelli’s proposed limit, the fine grid (∆x = 2.5mm) exceeds it and the

coarse grid is considered reasonably fine to effectively resolve explicitly large-scale

turbulence. The results showed that the profiles of the simulations on the coarse

and medium meshes are almost identical, exhibiting very little sensitivity to the

chosen resolution. However, mesh refinement over the Milelli’s limit appears to give

different results. This is because the smaller filter-width of the finer mesh does not

help in capturing the eddies generated at (or below) the bubble scale. As a result,

the same turbulence is distributed over a wider plume, resulting in under-prediction

of the turbulent fluctuations.

In order to provide a realistic, fully turbulent inflow whilst avoiding extreme compu-

tational cost, the velocity inlet boundary conditions is generated using a Synthetic

Eddy Method (SEM), as described in Chapter 4.6. The initial u-velocity time-

averaged profile of the centerline is extracted from the same experimental setup as

described previously but with crossflow only (Rezvani (2016)), and used as the mean

velocity profile on which SEM fluctuations are applied. The outflow is treated with

convective outflow boundary condition.

Two time steps are chosen, i.e. 0.001sec and 0.005sec, for Case1 and Case2 both

for coarse and fine mesh. For Case3, only the 0.001sec time-step is used. The time-

steps are chosen to be below the CFL-condition (Courant et al., 1928) and the DIF

condition (Miller, 1971), as described in Chapter 2.6.1.

Total number of iterations is 1,500,000 for each case examined. This is because the

simulations converged after 1,200,000 iterations. The averaging of the velocities and

stresses started after 500,000 iterations.
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5.4 Results

5.4.1 Validation profiles

A quantitative evaluation of the code’s performance is detailed in this section by

presenting the results of a series of simulations that have been performed on grids

with different resolutions, as summarized in Tables 5.1&5.3, and different time-steps.

Vertical profiles of simulated quantities at selected locations along the centerline of

the computational domain are plotted against the PIV experimental data of Rezvani,

2016 and ADV experimental data. The six locations are shown in Figure (5.3). Data

from the LES simulations; coarse mesh and 0.001sec time-step (solid line), fine mesh

and 0.001sec time-step (dashed line), coarse mesh and 0.005sec time-step (dotted

line) and fine mesh and 0.005sec time-step (dash-dot-dash line) are plotted, as well

as experimental data; PIV (crosses) and ADV (rhombs). The horizontal dotted lines

shown in Figures (5.5)-(5.20) indicate the area where the ambient fluid profiles are

within the bubble plume.

Profiles of the initial time-averaged horizontal u-velocity normalized by the bulk

velocity are presented in Figure (5.4). PIV measurements (cross symbols) were

extracted from the experimental cases without bubbles and the curve that fit best

to the data (solid line) is used as the mean velocity profile on which SEM fluctuations

are applied.

(a) Initial u-velocity profile for case1

u / ubulk

1.2

(b) Initial u-velocity profile for case2

Figure 5.4: Initial time-averaged streamwise velocity profiles of LES and PIV ex-
periments for cases 1&2.
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In the following figures (5.5)-(5.20), the legend exp PIV refers to experimental PIV

results, exp ADV to experimental ADV results, LES coarse0.001 to LES results

with coarse mesh and 0.001sec time-step, LES fine0.001 to LES results with fine

mesh and 0.001sec time-step, LES coarse0.005 to LES results with coarse mesh and

0.005sec time-step and LES fine0.005 to LES results with fine mesh and 0.005sec

time-step

Figure (5.5) shows the vertical profiles of simulated time-averaged horizontal u-

velocities at selected locations (every 0.1m downstream the diffuser) referenced in

(Figure 5.3) along the centerline of the computational domain plotted against the ex-

perimental data. Note that velocities are normalized with the bulk u-velocity, ubulk.

The agreement between the LES and the experiments is generally good. There are

some discrepancies in the profiles of time-averaged horizontal velocities at locations

x/s=1, x/s=2 and x/s=3, i.e. within the bubble column and just downstream the

bubble column. In these locations, the range of the experimental data is quite wide

and it is difficult to identify a clear profile of the horizontal u-velocities. The match

between simulations and experiments becomes better with increasing distance from

the bubble plume. The agreement between the LES simulations is also good.

Figure (5.6) presents the vertical profiles of time-averaged vertical w-velocity at the

same locations as in Figure (5.5). The match between simulations and experiments

is good and becomes better with increasing distance from the bubble column, i.e.

after x/s=3. The most significant discrepancies are observed at location x/s=2 and

x/s=3, i.e. at the outer boundary of the bubble plume and just downstream of it,

where the numerical results stand between the PIV and ADV data. There is however

a good agreement between the numerical simulations for both velocity profiles. The

comparison of profiles indicates that overall the coarse grid is capable of reproducing

fairly well the flow and good agreement with the experimental data is observed.

Figures (5.7) and (5.8) present profiles of Reynolds stresses in the horizontal and ver-

tical directions normalized by u2
bulk. Numerical simulations are compared with PIV

experiments. Similar patterns are observed in both figures. Significant peaks are

observed at the bubble column boundaries and just downstream the bubble column,

i.e. x/s=1 and x/s=2. The agreement between numerical and experimental results

is good. However, the peaks of horizontal normal stress (Fig. 5.7) and the peaks of
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(a) x/s=0 (b) x/s=1

(c) x/s=2 (d) x/s=3

(e) x/s=4 (f) x/s=5

Figure 5.5: Case1: Vertical profiles of normalized u-velocities along the centerline
of the domain.
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(a) x/s=0 (b) x/s=1

(c) x/s=2 (d) x/s=3

(e) x/s=4 (f) x/s=5

Figure 5.6: Case1: Vertical profiles of normalized w-velocities along the centerline
of the domain.
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(a) x/s=1 (b) x/s=2 (c) x/s=3 (d) x/s=4 (e) x/s=5

Figure 5.7: Case1: Vertical profiles of normalized horizontal normal stress along the
centreline of the domain.

vertical normal stress (Fig. 5.8) at x/s=1 and x/s=2 are slightly underestimated by

the simulations with 0.005sec time-step. This is because the higher time-step does

not help in capturing the eddies generated in the bubble scale. The match between

simulations and experiment becomes better at the plume’s wake.

Figure (5.9) shows horizontal profiles of time-averaged horizontal u-velocities every

0.1m above the diffuser. The velocities are normalised with the bulk u-velocity, ubulk.

The agreement between the numerical results is good. Comparing the numerical with

the experimental PIV results, we notice that the peak velocity is underestimated

from z/h=1 to z/h=3, in particular from the simulations with the higher 0.005sec

time-step.

Figure (5.10) shows horizontal profiles of time-averaged vertical w-velocities every

0.1m above the diffuser. The numerical simulations with 0.005sec time-step under-

predict the peak velocities along the entire height of the bubble column.
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(a) x/s=1 (b) x/s=2 (c) x/s=3 (d) x/s=4 (e) x/s=5

Figure 5.8: Case1: Vertical profiles of normalized vertical normal stress along the
centerline of the domain.

Figure (5.11) shows horizontal profiles of time-averaged Reynold stress u′u′ in the

horizontal direction normalised by u2
bulk, every 0.1m above the diffuser. The Reynold

stress profiles have been captured by the numerical simulations. However, some

under-prediction of the peak values is noticed, mainly from the fine mesh-high time-

step LES simulation. Similar pattern is noticed at the horizontal profiles of time-

averaged Reynold stress w′w′ in the vertical direction in Figure (5.12).

159



CHAPTER 5. SIMULATION OF MULTI-PHASE PLUMES IN CROSSFLOW

(a) z/h=1 (b) z/h=2

(c) z/h=3 (d) z/h=4

(e) z/h=5 (f) z/h=6

Figure 5.9: Case1: Horizontal profiles of normalized u-velocities along the centerline
of the domain.
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(a) z/h=1 (b) z/h=2

(c) z/h=3 (d) z/h=4

(e) z/h=5 (f) z/h=6

Figure 5.10: Case1: Horizontal profiles of normalized w-velocities along the center-
line of the domain.
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(a) z/h=1 (b) z/h=2

(c) z/h=3 (d) z/h=4

(e) z/h=5 (f) z/h=6

Figure 5.11: Case1: Horizontal profiles of normalized horizontal normal stress along
the centerline of the domain.
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(a) z/h=1 (b) z/h=2

(c) z/h=3 (d) z/h=4

(e) z/h=5 (f) z/h=6

Figure 5.12: Case1: Horizontal profiles of normalized vertical normal stress along
the centerline of the domain.
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Results from Case2 are also used for the validation of the code in Figures (5.13)-

(5.20). The agreement between the simulated velocities and the experimental mea-

surements is good.

Figures (5.13) and (5.14) show the vertical profiles of the time-averaged horizontal

velocity and the time-averaged vertical velocity respectively. Figures (5.15) and

(5.16) show the vertical profiles of the time-averaged horizontal normal stress and the

time-averaged vertical normal stress, respectively. There is a very good agreement

between the experimental and the numerical results in all the vertical profiles of the

aforementioned figures.

There is a very good agreement between numerical and experimental results for the

horizontal profile plots (Figures 5.16 - 5.20 of the velocities and Reynolds stresses,

with the exception of the peak of vertical velocity at z/h=1 (Figure 5.18(a)) and

the peaks of horizontal normal stress between z/h=1 and z/h=3 (Figure 5.19).

It is evident in both cases that the areas, where most of the discrepancies between

numerical and experimental velocities are observed, are these at the edge of the

bubble plume and just downstream, i.e. 10cm and 20cm, of the bubble plume. This

may be explained by the fact that the profiles closer to the plume are influenced

by bubbles that have been pulled out of the plume due to the crossflow and this is

where the PIV data are less reliable.

The EL-LES approach is able to accurately reproduce the horizontal turbulence

generated within the bubble plume as well as the peak of turbulence in the direction

of bubbles’ motion. i.e. vertically. The fine mesh with 0.005sec simulation is the

exception. This indicates that further investigation on the mesh size, time-step and

bubble size correlation should be conducted.
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(a) x/s=0 (b) x/s=1

(c) x/s=2 (d) x/s=3

(e) x/s=4 (f) x/s=5

Figure 5.13: Case2: Vertical profiles of normalized horizontal velocities along the
centerline of the domain.
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(a) x/s=0 (b) x/s=1

(c) x/s=2 (d) x/s=3

(e) x/s=4 (f) x/s=5

Figure 5.14: Case2: Vertical profiles of normalized vertical velocities along the cen-
terline of the domain.
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(a) x/s=1 (b) x/s=2 (c) x/s=3 (d) x/s=4 (e) x/s=5

Figure 5.15: Case2: Vertical profiles of normalized horizontal normal stress along
the centerlinbe of the domain.

(a) x/s=1 (b) x/s=2 (c) x/s=3 (d) x/s=4 (e) x/s=5

Figure 5.16: Case2: Vertical profiles of normalized vertical normal stress along the
centerline of the domain.
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(a) z/h=1 (b) z/h=2

(c) z/h=3 (d) z/h=4

(e) z/h=5 (f) z/h=6

Figure 5.17: Case2: Horizontal profiles of normalized u-velocities along the centerline
of the domain.
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(a) z/h=1 (b) z/h=2

(c) z/h=3 (d) z/h=4

(e) z/h=5 (f) z/h=6

Figure 5.18: Case2: Horizontal profiles of normalized w-velocities along the center-
line of the domain.
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(a) z/h=1 (b) z/h=2

(c) z/h=3 (d) z/h=4

(e) z/h=5 (f) z/h=6

Figure 5.19: Case2: Horizontal profiles of normalized horizontal normal stress along
the centerline of the domain.
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(a) z/h=1 (b) z/h=2

(c) z/h=3 (d) z/h=4

(e) z/h=5 (f) z/h=6

Figure 5.20: Case2: Horizontal profiles of normalized vertical normal stress along
the centerline of the domain.
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5.4.2 Time-averaged flow

Simulated time-averaged horizontal and vertical velocities of the surrounding fluid

of the bubble column, normalized with the ubulk, are shown in Figures 5.21 and 5.22

for the three different cases (Table 5.1) examined in Chapter 5.4.1. The bubbles are

also pictured in Figure 5.21 as small spheres, whereas the area of the bubble plume

is defined by two black lines. In Figures 5.22-5.24 only the black lines are used to

define the bubble column.

The continuous phase (ambient flow) is continuously streamed towards the bubble

column, where the bubbles transmit kinematic momentum flux to the flow. Once

the ambient flow passes through the bubble column, it carries downstream the mo-

mentum gained from the bubble column. This process leads to a vertical motion

downstream the bubble column. The induced motion is more apparent in cases with

weaker crossflow (case1), hence showing longer contact time between the bubbles

and the ambient fluid. As the crossflow gets stronger vertical momentum spreads

over a larger area (cases 2 and 3). In weak crossflow, the bubble column in Case1

Fig. 5.24(a) and 5.25(a) acts as an obstacle generating greater velocity gradients.

Some entrained fluid is captured within the bubble plume throughout the entire

water depth, resulting separated plume; whereas in a stronger crossflow (cases 2

and 3), the entrained fluid separates from the bubbles and the separated fluid rises

independently in the far field (Figures 5.21(b) and 5.21(c)).

As the plume rises towards the water surface it bends in the direction of flow,

deflected by the crossflow and thus, horizontal and vertical velocity gradients are

reduced. There is an area at the water surface where entrained fluid that contains

vertical momentum is deflected into horizontal momentum, even leading to negative

horizontal velocity (Fig. 5.21(a)), i.e. fluid that is being convected upstream and

which creates recirculation near the surface upstream the plume.
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(a) Case1 (b) Case2 (c) Case3

Figure 5.21: Normalized time-averaged u-velocity contours for the three cases with
crossflow velocities a) 0.04m/sec, b) 0.10m/sec and c) 0.15m/sec.

(a) Case1 (b) Case2 (c) Case3

Figure 5.22: Normalized time-averaged w-velocity contours for the three cases with
crossflow velocities a) 0.04m/sec, b) 0.10m/sec and c) 0.15m/sec.

The normalized time-averaged w-velocity contour at the centerline of the channel

and the vertical lines denoting the bubble column (Fig. 5.22) are in good agreement

with the experimental time-averaged w-velocity contours in Fig. (5.23).
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(a) Case1-experimental (b) Case2-experimental

Figure 5.23: Time-averaged w-velocity contours for the two experimental cases with
crossflow velocities a) 0.04m/sec, b) 0.10m/sec.

Figure 5.24 shows the turbulence intensity contours of the three different cases ex-

amined in this section. Turbulence intensity is defined according to Panton (1984)

as:

I =

√
1
3
(u′u′ + v′v′ + w′w′)

Vref
(5.1)

where I is the overall turbulence intensity and u′u′, v′v′, w′w′ are the x−, y− and

z− components of the turbulent fluctuations and Vref is the reference mean velocity

defined as, Vref =
√
U2
mean + V 2

mean +W 2
mean. where Umean, Vmean and Wmean are

the averaged velocities in x, y, and z axes respectively.

It is shown that turbulence intensity decreases with increasing the crossflow, which

means that the bubbles are carried away by the crossflow. For the higher crossflow

cases, i.e. Case2 and Case3, the regions of highest turbulence intensity correlate

with the edges of upward rising separated fluid in the wake, indicating that the ve-

locity shear between the bottom of the separated plume and the ambient exhibit the

greatest turbulence intensities. High turbulence intensity is also noticed at the sur-

face, where bubbles are gathered, at the bottom of the channel, due to the boundary

effect, and around the diffuser, due to the separation caused by the diffuser. For

Case 1, large turbulence is also found upstream of the plume, where the shear layer

of the plume interacts with the oncoming flow.
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(a) Case1 (b) Case2 (c) Case3

Figure 5.24: Turbulence intensity contours for the three cases with crossflow veloc-
ities a) 0.04m/sec, b) 0.10m/sec and c) 0.15m/sec.

5.4.3 Flow structure

The previous section discussed the main features of time-averaged flow separation

and recirculation. Of particular interest is the area around the bubble plume which

is where the liquid and the gas phase interact.

Figures 5.25(a), 5.27(a) and 5.30(a) present isosurfaces of the Q-criterion, an appro-

priate tool of visualisation of coherent structures from large-eddy simulations (Rodi

et al., 2013). The Q-criterion (Hunt et al., 1988) is defined as:

Q =
1

2
(|Ω| − |S|) (5.2)

where Ω is the rotation rate and S is the strain rate, defined as follows:

|Ω| =
3∑

i,j=1

[
1

2
(
∂ui
∂xj
− ∂uj
∂xi

)]2 (5.3)

|S| =
3∑

i,j=1

[
1

2
(
∂ui
∂xj

+
∂uj
∂xi

)]2 (5.4)

where ui and uj are instantaneous velocity components. Positive isosurfaces of Q

isolate areas where the strength of rotation overcomes the strain, thus visualising

rotation in the form of vortex tubes. The Q-criterion isosurfaces are colour-coded
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with the streamwise vorticity ωx, which measures the rotation intensity around the

streamwise x axis. Positive streamwise vorticity (red) corresponds to clockwise

rotation while blue represents anti-clockwise motion.

The water flow in the flume is illustrated in Figures 5.25 & 5.26 for Case1, Figures

5.27 & 5.29 for Case2 and Figures 5.30 & 5.31 for Case3. Figures 5.26, 5.29 &

5.31 display streamlines of the time-averaged flow at specific planes of the flume,

coloured by the vertical mean velocity for the three cases examined in the paper.

These planes are (a) the z-plane at the surface of the channel at z/h = 1, (b) the y-

plane in the middle of the channel at y/d = 0.5 and the x-planes at (c) the diffuser

x = 0, (d) 0.5m downstream the diffuser, (e) 1.5m downstream the diffuser and

(f) 2.5m downstream the diffuser and where negative distances indicate the area

upstream the diffuser.

(a) Three-dimensional view of the generation of secondary currents. (b) Fully developed bubble
plume.

Figure 5.25: (a) Three-dimensional view of Q-criterion isosurfaces coloured by the
vorticity in x-direction for Case1 and (b) Fully developed plume coloured by the size
of the bubbles’ diameter.
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(a) z/h=1 (b) y/d=0.5

(c) x=0 (d) x=0.5

(e) x=1.5 (f) x=2.5

Figure 5.26: Time-averaged w-velocity contours and streamlines on (a) a horizontal
plane close to the surface, (b) a vertical plane at the middle of the flume and (c)-(f)
streamwise planes for Case1.

In all cases, the bubble plume triggers a secondary motion dominated by two counter-

rotating vortices that develop downstream. In Figures 5.25(a), 5.27(a) & 5.30(a)
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(a) Three-dimensional view of the generation of secondary currents. (b) Fully developed bubble
plume.

Figure 5.27: (a) Three-dimensional view of Q-criterion isosurfaces coloured by the
vorticity in x-direction for Case2 and (b) Fully developed plume coloured by the size
of the bubbles’ diameter.

the isosurfaces reveal the presence of a roller that originates near the water surface

upstream of the plume, a result of the negative flow seen in Figure 5.21(a). The

roller is blocked by the bubble plume, pushed towards the sidewalls of the flume and

it is converted into a pair of elongated counter-rotating streamwise vortices. These

vortices are driven by the secondary flow and Figures 5.25(a), 5.27(a) & 5.30(a)

illustrate their development throughout the entire length of the plume. Near the

bottom of the plume a horseshoe vortex is formed but this vortex is rather weak

compared to the vortex structure near the water surface.
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(a) (b)

Figure 5.28: Images of PIV experiments showing the bubble column for 0.10m/s
crossflow and 0.5l/min bubble flow rate.

As bubbles move upwards, the crossflow is blocked by the bubble column and vice-

versa the crossflow causes deflection to the bubble column downstream. The incli-

nation of bubble plume is higher with stronger crossflows. In Case1 (Fig. 5.25(b)),

where the crossflow is 0.04m/sec the bubble column is almost vertical to the flow

forming an angle of 9o with the vertical, while in Case2 (Fig. 5.27(b)), with 0.10m/sec

crossflow, the bubble column is inclined 20o vertically and in Case3 (Fig. 5.30(b)),

with 0.15m/sec crossflow, the bubble column is inclined by 30o from the vertical.

While major separation within the bubble column does not occur, a detachment

of bubbles with smaller diameter as they reach the flume surface is observed with

stronger crossflow. Bubble plume forms a characteristic half moon shape in the

streamwise direction, which becomes more obvious as the crossflow goes stronger

(case3, Fig. 5.30(b)).

Similar geometry and dispersion to the numerical bubble column in Figure 5.27(b)

was observed in the PIV experiments with the experimental bubble column depic-

tured in Figure 5.28.
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(a) z/h=1 (b) y/d=0.5

(c) x=0 (d) x=0.5

(e) x=1.5 (f) x=2.5

Figure 5.29: Time-averaged w-velocity contours and streamlines on (a) a horizontal
plane close to the surface, (b) a vertical plane at the middle of the flume and (c)-(f)
streamwise planes for Case2.
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(a) Three-dimensional view of the generation of secondary currents. (b) Fully developed bubble
plume.

Figure 5.30: (a) Three-dimensional view of Q-criterion isosurfaces coloured by the
vorticity in x-direction for Case3 and (b) Fully developed plume coloured by the size
of the bubbles’ diameter.

The cases studied in this chapter show that the background flow is essentially

isotropic with some anisotropy created due to the existence of the diffuser struc-

ture at the bottom of the domain, which becomes larger by increasing the crossflow.

With bubble injection, different degrees of separation between the weak and strong

crossflow cause different behavior in the wake region, which is also observed in the

experiments.
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(a) z/h=1 (b) y/d=0.5

(c) x=0 (d) x=0.5

(e) x=1.5 (f) x=2.5

Figure 5.31: Time-averaged w-velocity contours and streamlines on (a) a horizontal
plane close to the surface, (b) a vertical plane at the middle of the flume and (c)-(f)
streamwise planes for Case3.

In weak crossflows, some entrained fluid stays within the bubble plume from the
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injection point until the surface (Case1 in Fig. 5.26(a)). In strong crossflows, there

is significant separation between the dominant dispersed phase and the entrained

fluid. The separated fluid continues to rise in the far field because of the acceleration

gained within the bubble column (Socolofsky and Adams, 2002).

In Figures 5.27(a) and 5.30(a), it becomes evident that the cylindrical vortex that

is formed close to the free surface becomes smaller with raising crossflow; then it

streams towards the sidewalls and converts to a pair of elongated streamwise vortices,

similar to case1 in Figure 5.25(a). In case2 and case3 however, the streamwise

vortices remain closer to water surface throughout the length of the flume, whilst in

case1 (Fig. 5.25) the streamwise vortices start close to the water surface and moving

downwards with increasing distance from the bubble column. The isosurfaces reveal

the presence of a wake formed by the separated fluid that originates from the height

of the diffuser and continues upwards until the middle of the channel.

5.5 Conclusions

This study presented numerical simulations of multi-phase plumes and their dynam-

ics in crossflow, using LES for resolving the turbulence for the continuous phase and

a EL approach for the dispersed phase.

The code was validated by reproducing two sets of experiments conducted at Texas

A&M University. The simulated horizontal and vertical velocities of the ambient flow

are overall in a good agreement with the experimental results, with some discrepan-

cies observed within the bubble column. The code underpredicts the horizontal and

vertical normal stresses within the bubble plume and just downstream the bubble

plume for the case with crossflow of 0.04m/sec and overpredicts the peak of the

vertical normal stress for the case with crossflow of 0.10m/sec. This might suggest

a limitation of the model to capture the entire spectra of turbulence generated at

the bubble scale.

Regarding the different mesh resolutions that were tested, they are both in a very

good agreement with the experimental measurements. Discrepancies on the simu-

lated velocities of the two meshes are observed at the bottom of the channel, where

there is also lack of experimental data. It is not clear though which one gives a more
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accurate prediction of the normal stresses.

The analysis of the secondary flow has shown that multi-phase plume behave as

single-phase plumes up to a specific height, where the crossflow separates the en-

trained fluid from the dispersed phase. It has also revealed the formation of a roller

upstream the bubble plume that cascades to two strong counter-rotating vortices at

the upper half of the channel in the plume’s wake and weaker horse-shoe vortices

close to the bottom.

The effect of three different crossflows, i.e. 0.04m/sec, 0.10m/sec and 0.15m/sec,

was examined on a bubble plume with contant bubble flow rate 0.5l/min. Bubble

plume inclination is increasing proportionally with increasing the crossflow. Fully

developed bubble plume forms a characteristic half moon shape. Stronger crossflow

causes a smaller roller upstream the bubble plume, i.e. the entrained fluid flows

through the bubble plume without being blocked.
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Chapter 6

A Large-Eddy simulation-based

Eulerian-Lagrangian approach of

bubble plumes dynamics in

stratified flow

6.1 Introduction

Stratified fluid environments are observed in numerous environmental problems,

mainly large water bodies, such as lakes, reservoirs and the sea. Strong bubble-

induced buoyancy fluxes can generate turbulent plumes that provide significant

mixing for stratified fluid environments. For example, bubble plumes have been

widely used for reservoir destratification and aeration systems (e.g. Wuest et al.,

1992; Asaeda and Imberger, 1993; Lemckert and Imberger, 1993; Schladow, 1993).

Bubble plumes have also been used to mix hot and toxic fluids in chemical engi-

neering applications (Leitch and Daines, 1989). The interaction of bubble plume -

continuous phase is significantly different from the interaction of bubble plume in

crossflow or stagnant ambient without stratification. Stratification can cause fluid

in the plume to peel off and form an annular plume that falls down along the out-

side of the inner plume, similar to a fountain. This peeling process and associated
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downward flow in the outer plume can lead to trapping of entrained fluid and weakly

buoyant particles within the water layer. One such example with significant envi-

ronmental impact is a multiphase hydrocarbon plume from underwater accidental

oil well blow-outs (Camilli et al., 2010). The underwater trapping increases the

opportunity for bio-degradation of the oil droplets, but also significantly increases

the difficulty in estimating the total oil leak rate based on the surface plume signal

as well as predicting the oil plume surfacing location.

Experimental studies on bubble plumes in stratified flows provide valuable data

for understanding the complex interactions between buoyant plumes and the sur-

rounding environment. Limited direct measurements of field data can be found in

experimental studies, e.g. Johansen, 2003; Camilli et al., 2010; Socolofsky et al.,

2011; Weber et al., 2012. On the same note, laboratory experiments in water tanks

under controlled stratification conditions have played a vital role in understanding

complex plume flow physics. Asaeda and Imberger (1993) observed various represen-

tative types of bubble plume structure and correlated plume behaviour with several

key plume parameters using shadowgraph visualization of coloured dyes, and more

recently Richards et al. (2014). Socolofsky (2001), Socolofsky and Adams (2003)

and Socolofsky and Adams (2005) performed a series of laser-induced fluorescence

(LIF) measurements for buoyant plumes driven by air bubbles or oil droplets, as well

as for inverted plumes driven by settling sediments. Seol et al. (2009) performed LIF

measurements to study both the instantaneous and the mean plume structures. Ob-

taining quantitative velocity information is very challenging in the laboratory due to

the difficulty in controlling the bubble size in salt stratification and the complexity

of matching the index of refraction throughout the ambient stratification.

Besides experimental studies, there is a number of numerical studies that have de-

veloped one-dimensional integral plume models as a tool for predicting mean plume

dynamics in stratification (e.g. McDougall, 1978; Milgram, 1983; Wuest et al., 1992;

Asaeda and Imberger, 1993; Crounse et al., 2007; Socolofsky et al., 2008). Integral

plume models usually assume a self-similar cross-plume variation (e.g. top hat or

Gaussian) for plume variables (Davidson, 1986). Even though the computational

cost of calculating the mean plume characteristics with integral models is signifi-

cantly reduced, there is a lack of accuracy. By performing cross-plume integration
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with the self-similarity assumption, the three-dimensional conservation laws are re-

duced to a set of coupled one-dimensional ordinary differential equations. Associated

with the reduction of dimension, additional closures are required to model the tur-

bulent entrainment fluxes between the inner and outer plumes as well as the peeling

flux from the inner plume at the origin of the outer plume. These fluxes are usually

parameterized based on the primary variables of the integral model, with model

coefficients that usually require calibration based on data from experimental studies

on single-phase plumes and/or multi-phase plumes in stratification (e.g. Morton

et al., 1956; Papanicolaou and List, 1988; Asaeda and Imberger, 1993; Wang and

Law, 2002; Carazzo et al., 2006).

In order to capture the three-dimensional structures of plumes, more advanced com-

putational techniques are employed. Computational models based on Reynolds-

averaged Navier–Stokes (RANS) equations have been developed and widely used in

chemical engineering applications. RANS models rely on different closures to pa-

rameterize turbulent transport (e.g. Becker et al., 1994; Sokolichin and Eigenberger,

1994; Pfleger and Becker, 2001; Zhang et al., 2006; Tabib et al., 2008). LES has

been used to simulate multiphase plumes in several recent studies (e.g. Deen et al.,

2001; Niceno et al., 2008; Dhotre et al., 2013; Tabib et al., 2008; Fabregat et al.,

2015). However, LES studies on multi-phase plumes in stratification are very lim-

ited to the author’s knowledge. Yang et al. (2015) and Yang et al. (2014) developed

a hybrid LES model for simulating hydrocarbon plume dispersion in ocean turbu-

lence. Using their LES model, Yang et al. (2015) and Yang et al. (2014) studied the

complex dispersion phenomena of oil plumes released into the ocean mixed layer,

and investigated the effects of various environmental mixing mechanisms such as

shear turbulence, waves and Langmuir circulations.

In this chapter, an EL-LES model (previously validated for bubble plumes in a tank

by Fraga et al. (2016)) has been adopted and modified to simulate bubble-driven

buoyant plumes in vertically stratified ambient fluid. To validate the model and

investigate the essential plume characteristics in a controlled environment, the key

simulation parameters are chosen to be similar to those of the laboratory measure-

ments of Socolofsky (2001). In the simulation, a bubble plume is released from a

localized source and rises through a stratified fluid column. The strength of the
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flow stratification is kept the same as in the experiment. Various bubble rise ve-

locities relative to the fluid velocity are considered and their effects on the plume

characteristics are studied.

6.2 Experimental & Numerical Setup

The model has been previously validated for gas plume in a stagnant homogeneous

liquid matrix by Fraga et al. (2016). The model performance is assessed by predicting

the dynamics of a set of experiments conducted by Socolofsky (2001) and Socolofsky

and Adams (2005).

The experiments were carried out in a glass-walled stratified tank 1.2m square by

2.4m tall. The tank was stratified with salt (NaCl) using the two-tank method

(Asaeda and Imberger, 1993). Figure (6.1) presents a schematic of this method,

which derives its name from the second tank, used to prepare the salt solution

before it is pumped into the experimental tank. Initially, the water in the stirred

reactor has a density equal to the desired maximum density of the profile. As the

experimental tank is filled, freshwater is added to the stirred reactor, making the

density of water pumped into the experimental tank decrease monotonically during

filling. A perforated splash plate dissipates the energy of the water as it enters

the experimental tank so that a stratification profile develops. Using the two-tank

method, any arbitrary stratification profile can be created.

Salinity profiles were recorded using a Head microscale conductivity and temperature

(CT) probe and an Ocean Sensors OS300 CT probe, both mounted on a Parker linear

actuator with 2.8m of travel, allowing a vertical resolution of less than 1cm. Initial

profiles were taken a few minutes before each experiment. Profiles could not be

taken during experiments because of internal waves; hence, post-experiment salinity

profiles were made 1hr after an experiment when the waves had dispersed.

Rhodamine 6G fluorescent dye (excitation and emission frequencies 480 and 560 nm,

respectively) was injected as a passive tracer at the base of the plume at a rate of

0.1mg/s using a collar diffuser. For visualization, laser induced fluorescence (LIF)

images were created using a Coherent 6W argon-ion laser (two laser lines at 494 and

515 nm) connected by a fiber optic cable to a cylindrical lens, generating a 1.5cm
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Figure 6.1: Schemantic of the two-tank stratification method

thick light sheet through the centerline of the plume. Using an optical filter that

blocks light with a wavelength less than 530nm, laser light scattered by the bubbles

could be removed, yielding images of the fluorescing dye only; removing the filter

provided images of the bubbles.

Plumes were created from air bubbles (dispersed phase density ρb = 0.0014g/cm3),

oil droplets (vegetable oil with ρb = 0.930g/cm3 and crude oil from the Gulf of

Mexico with ρb = 0.871g/cm3), and glass beads (creating an inverted plume with

ρb = 2.50g/cm3). For the air experiments two diffusers were used, a Coral Life

limewood saltwater aquarium airstone (mean bubble diameter of 550µm) and slip

velocity us = 7.2cm/s) and a standard composite aquarium airstone (mean bubble

diameter of 2mm and us = 23cm/s). Both oils were injected through a 0.7mm diam-

eter spray nozzle (us = 10cm/s for the vegetable oil and us ranged from O(1)mm/s

to 10cm/s with the bulk of the oil rising at 8cm/s for the crude oil). Steady state

was achieved in the experiments on the order of 2-3 times the travel time for the

bubbles to reach the top of the tank (at most 1min for air and glass experiments).

The steady state was maintained (trap and peel heights remained constant and the

intrusion layers did not reach the tank walls) for between 20min and 30min on av-

erage. The experiments were run on average for 5min to achieve sufficient mixing,

but to avoid boundary effects of the tank. More details for the experiments can be

found in Socolofsky (2001) and Socolofsky and Adams (2005).
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Figure 6.2: Schemantic of the numerical setup

Table 6.1 summarizes the main characteristics of the three cases reported in this

study. In all cases the plumes are created from air bubbles with mean bubble

diameter of 2mm, as per the experiments.

Type Experiment
ID

uslip
(m/sec)

Qb

(m3/s;
10−5)

B
(m4/s3;
10−5)

N
(s−1)

UN

T1* T04 0.072 0.67 6.63 0.36 1.03
T2 Shad1 0.233 6.72 65.86 0.25 2.06
T3 g50a 0.233 6.83 6.7 0.25 3.64

Table 6.1: Flow characteristics of the three cases.

The numerical simulations are carried out under analogous conditions to the exper-

iments. A sketch of the numerical setup is given in Figure 6.2. Boundary conditions

for the fluid phase include the use of no-slip boundary condition at all solid walls

and a free slip condition at the water surface. To limit the influence of the side

boundaries and provide sufficient horizontal space for the intrusion layer to expand

during the simulation, the numerical domain is chosen to be twice as wide as the
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experimental tank, i.e. 2.4m square by 4.8m tall.

Three different uniformly spaced grids are employed for the simulations. The three

mesh resolutions are ∆x = 6.25mm, ∆x = 4mm and ∆x = 3.125mm, yielding s

total number of gridpoints of 14Mio, 54Mio and 113Mio, respectively. The time

step for all simulations is 0.001sec and the simulation time is 600,000 iterations to

allow for model on average. The averaging of the velocities and stresses started after

200,000 iterations.

6.3 Results

6.3.1 Model validation

A quantitative evaluation of the code’s performance is detailed in this section by

presenting the results of a series of simulations that have been performed on grids

with different resolutions.

Socolofsky and Adams (2005) classified the plumes in three types based on their

experimental study; i.e. Type 1*, Type 2 and Type 3 (Fig. 6.3(a)). Type 1* plumes

have no subsurface intrusions; Type 2 plumes have distinct, steady subsurface intru-

sions and Type 3 plumes have irregular, unsteady subsurface intrusions. Moreover,

characteristics of the plumes are defined, such as the intrusion level or trap height

hT and the peel height hP (Fig. 6.3(b)).

Fig. 6.4(a) shows the correlation of the non-dimensional plume trap height hT/lc

(referred here as the trap height) with the non-dimensional slip velocity UN for the

three cases studied in this chapter. Fig. 6.4(b) shows the non-dimensional plume

peel height hP/lc (referred here as the peel height) as a function of UN . The non-

dimensional slip velocity (Eq. 6.1) is proportional to the slip velocity us normalized

by the entrained plume fluid velocity at the characteristic length lc (Eq. 6.2):

UN =
us

(BN)(1/4)
(6.1)

lc = (
B

N3
)(1/4) (6.2)
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(a) Schemantic of multiphase plume type classification in stratification

(b) Schemantic of trap height hT and peel
height hP

Figure 6.3: Schemantic of multiphase plume types and characteristics from Socolof-
sky and Adams, 2005.
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where N is the buoyancy frequency:

N2 = −g
ρ

∂ρ

∂z
(6.3)

and B is the kinematic buoyancy flux of the dispersed phase, defined as:

B = ρQ
ρ− ρb
ρ

(6.4)

The trend for the peel height is similar to that for the trap height. Closed symbols

are numerical results and open symbols are experimental results. The agreement

between LES simulations and experiments is good. LES simulations with medium

mesh (red symbols) and fine mesh (grey symbols) are in closer agreement to the

experimental results for trap height and peel height (Figure 6.4).
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(a) Trap height hT comparison of experimental data and
LES simulations

(b) Peel height hP comparison of experimental data and
LES simulations

Figure 6.4: Correlation of plume trap height (a) and plume peel height (b) to UN .
Rhombes are Type1* plumes, stars are Type2 plumes and squares are Type3 plumes.
Open symbols are experiments; closed symbols are LES simulations.
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6.3.2 Time-averaged flow

Figures 6.5(b), 6.6(b) and 6.7(b) present contours of the time-averaged vertical

velocity in a horizontal plane near the water surface and it shows how the high-

momentum fluid from the plume is convected primarily to the corners of the tank.

Figures 6.5(a), 6.6(a) and 6.7(a) show contours of the time-averaged vertical velocity

in a radial plane and displays the plume and the upper cells of returning flow. The

orientation of the axis of recirculation changes from radial for the upper loop of the

”eight” to wall-parallel for the lower loop. Whilst the plume is radially symmetric

about the centreline of the tank, the tank itself is not and hence the distance from

the plume to the wall is maximal in the diagonal direction. This means that the

fluid has to fill the low momentum in corners and hence it flows down faster in the

corners of the tank thereby creating an imbalance of momentum in the horizontal

plane.

(a) y/Lx=0.5 (b) z/Lx=0.96

Figure 6.5: Time-averaged w-velocity contours and streamlines at heights (a)
y/Lx=0.5, (b) z/Lx=0.96 for Type 1*.
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(a) y/Lx=0.5 (b) z/Lx=0.96

Figure 6.6: Time-averaged w-velocity contours and streamlines at heights (a)
y/Lx=0.5, (b) z/Lx=0.96 for Type 2.

(a) y/Lx=0.5 (b) z/Lx=0.96

Figure 6.7: Time-averaged w-velocity contours and streamlines at heights (a)
y/Lx=0.5, (b) z/Lx=0.96 for Type 2.
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6.3.3 Flow structure

The water flow in the tank is illustrated in Figure 6.8 and Figure 6.9. In Fig. 6.8

the streamlines of the time-averaged flow coloured with the vertical velocity are

presented in half of the tank (including half of the bubble plume). The hydrodynamic

elements that are featured depend on the type of the plume and are as follows:

For Type 1* plumes:

As bubbles move upwards fluid is entrained creating a high-momentum vertical

fluid flow towards the water surface. However, because the bubble motion is weak

compared to the detraining eddy motion, the first peel disperses the bubble core

horizontally, with some bubbles leaving the inner core. A distinct detrainment

zone and intrusion layer with Type 2 characteristics is observed for the first peel.

As bubbles rise, they also entrain some ambient fluid and carry it upward into

the secondary plume. The secondary plume that form above the first peel has a

more distributed inner bubble core. As the bubble plume continues to rise, it peels

erratically, and the plume peel behaviour exhibits Type 3 characteristics, continuous

and overlapping peels. The weak plume also swings back and forth as eddies detrain

from side to side.

Once the fluid reaches the water surface it spreads laterally towards the walls before

it moves back down, thereby creating a large recirculation in the radial plane that

dominates the top half of the tank.

The momentum imbalance leads to a vortex/cell in a plane parallel to the walls

in the lower half of the tank. The twisted double-vortex structure is similar to a

number eight shape with the two loops. The upper vortex is larger and exhibits

higher velocity magnitudes than the lower one.

A snapshot of the plume-fluid dynamics is provided in Fig. 6.9(a) which depicts

isosurfaces of the Q-criterion, an appropriate tool to visualize coherent structures

from large-eddy simulations (Rodi et al., 2013). The isosurfaces are color-coded

with the averaged streamwise (vertical) velocity. Coherent structures in the form of

horsehoe vortices are visible at the edge of the plume. The vortices are generated

in the shear layer as a result of the large radial gradient of streamwise velocity in

the radial direction indicated by the low velocities (blue color) at the edge of the
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plume. These structures start out as tubes around the plume.

The continuous upwards movement of the plume convects the tubes vertically up-

wards, but due to the radial velocity gradient they are gradually stretched and result

in the form of coherent structures in the middle of the tank height.

Type 2 Plumes

As bubbles move upwards fluid is entrained creating a high-momentum vertical fluid

flow towards the water surface. The first peel disperses the bubble core horizontally,

with some bubbles leaving the inner core. A distinct detrainment zone and intrusion

layer are observed for the first peel. As bubbles rise, they also entrain some ambient

fluid and carry it upward into the secondary plume. The secondary plume that form

above the first peel has a more distributed inner bubble core. As the bubble plume

continues to rise, it peels erratically, and the plume peel behavior exhibits Type 3

characteristics, continuous and overlapping peels.

Once the fluid reaches the water surface it spreads laterally towards the walls before

it moves back down, thereby creating a large recirculation in the radial plane that

dominates the top half of the tank.

The momentum imbalance leads to a vortex/cell in a plane parallel to the walls

in the lower half of the tank. The twisted double-vortex structure is similar to a

number eight shape with the two distinct loops, where the lower vortex at the lower

half of the tank is bigger and more dominant than in type 1* plumes.

A snapshot of the plume-fluid dynamics is provided in Fig. 6.9(b) which depicts

isosurfaces of the Q-criterion. The isosurfaces are color-coded with the averaged

streamwise (vertical) velocity. The continuous upwards movement of the plume

convects the tubes vertically upwards, but due to the radial velocity gradient they

are gradually stretched and result in the form of a horseshoe vortex. The different

concentrations of bubbles and velocity fluctuations inside the plume generates two

distinct detrainement zones. Intrusions do not overlap because most of the entrained

fluid is ejected at each detrainment.

Type 3 Plumes

Comparing Type 3 plume with plumes Type 1* and Type2, the downdraft plume

and intrusions appear less distinct and exhibit nearly constant width, indicating a
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(a) Type1* (b) Type2

(c) Type3

Figure 6.8: Three-dimensional view of half of the tank including the bubble plume
and the streamtracezs defining the secondary circulation for a) Type 1*, b) Type 2
and c) Type 3. 199
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(a) Type1* (b) Type2

(c) Type3

Figure 6.9: Three-dimensional view of Q-criterion isosurfaces coloured by the aver-
aged vertical velocity for a) Type 1*, b) Type 2 and c) Type 3.
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uniform volume flux and exchange between the entrained and ambient fluid over

the height of the plume. The bubbles velocity is higher than the detraining eddy

motions. The bubbles create mixing by lifting packets of fluid short distances along

the inner plume core. The detrained fluid completely shrouds the upward rising

plume core. The bubbles remain in a tight core, unaffacted by the detrainment

events.

The momentum imbalance leads to a vortex/cell in a plane parallel to the walls in

the lower half of the tank. The characteristic double-vortex structure observed in

plume Types 1* and 2, similar to a number eight shape with the two loops, is not

observed in this type; there is a single vortex structure starting from the bottom of

the tank and dominating the entire tank height.

A snapshot of the plume-fluid dynamics is provided in Fig. 6.9(c) which depicts

isosurfaces of the Q-criterion. The isosurfaces are color-coded with the averaged

streamwise (vertical) velocity.

6.4 Conclusions

This chapter presented numerical simulations of multi-phase plumes and their dy-

namics in vertically stratified flow, using LES for resolving the turbulence for the

continuous phase and a EL approach for the dispersed phase.

The code was validated by reproducing three sets of experiments conducted by

Socolofsky and Adams (2005) and Socolofsky (2001). There are no experimental

data for the velocities of the ambient flow, as they cannot be measured due to the

inner wake. Regarding the different mesh resolutions that were tested, they are both

in a good agreement with the experimental measurements. The numerical analysis

identified three types of plumes in accordance with the experimental findings.

The analysis of the secondary flow, using Q-criterion surfaces and 2D and 3D stream-

lines, has shown that the different plume types result from variations in peeling

efficiency and from the relative magnitude of the initial velocity of the bubbles

compared to the fluid velocities of the plume.
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7.1 Conclusions

This thesis focuses on the description of multi-phase plume dynamics using an ad-

vanced CFD model. A computational approach for turbulent multi-phase plume dy-

namics in crossflow and stratified ambient has been presented. A refined Large-Eddy

Simulations (LES) code is used in conjunction with an Eulerian-Lagrangian (EL)

approach which is adopted to represent the dispersed phase. The EL Lagrangian

Particle Tracking (LPT) algorithm has been extensively validated, involving three

flow cases for bubble plumes in crossflow and three cases for bubble plumes in ver-

tically stratified tank. The predictions of the numerical code have been shown (in

Chapter 5 and Chapter 6) to be in reasonably good agreement with the experiments

in terms of mean horizontal and vertical velocities and turbulent Reynold stresses.

The effect of crossflow on bubble plume dynamics and vice versa has been care-

fully investigated and presented in Chapter 5. To the knowledge of author, such

computational setup has rarely carried out in the past, less so with such a detailed

prediction of the physics around bubble plumes. To achieve a faithful representation

of the crossflow in a channel, a turbulent Synthetic Eddy Method has been adopted

at the inlet boundary. Experimental data has been used to validate the simulations.

A Local Mesh Refinement (LMR) technique was adopted for the fine mesh simula-

tions to speed up the computational time. A good agreement of computed vertical
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and horizontal profiles of the continuous phase with the measured ones has been

found. However, some discrepancies have been noticed within the bubble column

and directly downstream the bubble column. This might suggest a limitation of

the model to capture the entire spectra of turbulence generated at the bubble scale.

Extensive analysis by means of streamwise velocity contours and turbulent intensity,

2D and 3D streamlines, and isosurfaces of Q-criterion has been carried out and sev-

eral differences between the different cases have been identified. The analysis of the

secondary flow has shown that multi-phase plume behaves as single-phase plumes

up to a specific height, and it has also revealed the formation of a roller upstream

the bubble plume that cascades to two strong counter-rotating vortices at the upper

half of the channel in the plume’s wake. The findings attempt to contribute to the

design of more efficient environmental systems for aeration and/or destratification

of reservoirs and more effective contamination control in accidental blow-outs.

The effect of vertically stratified ambient on bubble plume dynamics has been inves-

tigated and presented in Chapter 6. To the knowledge of the author, such computa-

tional setup has rarely carried out in the past, less so with an EL approach for the

dispersed phase. The LES-computed results have been validated against experimen-

tal data and reasonable agreement has been found. Through contours of streamwise

velocity, 2D and 3D streamlines and isosurfaces of Q-criterion, the dynamics of three

different types of bubble plumes have been revealed. Trap heights and peel heights

have been identified for each one of the cases. The analysis of the secondary flow

has shown that the different plume types result from variations in peeling efficiency

and from the relative magnitude of the initial velocity of the bubbles compared to

the fluid velocities of the plume.

7.2 Contribution of Thesis

The contribution of the current thesis to the field of Computational Fluid Dynamics

(CFD) and hydraulics engineering as follows:

• From numerical point of view, a two way coupling formulation is adopted be-

tween phases. PSI-cell technique utilises second-order smooth delta functions

as the interpolation technique for the forward coupling and a volume average
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for the backward coupling between phases. The air diffuser has been repre-

sented by Lagrangian nodes using the immersed boundary method (IBM). A

synthetic eddy method (SEM) has been adopted for the velocity inlet con-

ditions, instead of precursor simulations; an approach that reduces the total

computational time for each simulation. A local mesh refinement approach

was adopted for fine mesh simulations to decrease the mesh size within the

bubble plume and the area affected by the bubble plume; an approach that

reduces the computational cost for LES simulations.

• From analysis point of view, a very detailed analysis of the interaction of

dispersed and continuous phases and the resulting hydrodynamics has been

carried out. The physics of each case examined have been reflected on the

3D streamlines, velocity profiles and contours, Q-criterion representation of

coherent structures and Reynolds stresses.

7.3 Outlook

The present study has demonstrated the capability of the in-house built model Hy-

dro3D to predict the flow in and around bubble plumes. In the author’s view, there

are promising research routes that can extend further the investigation accomplished

in this thesis.

The motivation of the current thesis is environmental applications and contamina-

tion problems. Thus, it is an ultimate goal of a numerical model to be able to

accurately model the multi-phase flows. Further research is necessary to address the

limitations of LES-EL model in order to allow more accurate large-scale predictions

of bubble dynamics. The inability of the model to fully capture smaller turbulent

scales suggests that a more sophisticated large-eddy simulation closure model is

needed, possibly to add bubble-induced turbulence production to the sgs-model.
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Appendix

Following the numerical study conducted in Chapter 5 for multi-phase plumes of gas

flow rate Qb = 0.5l/min in three different crossflows with ubulk equal to 0.04m/sec,

0.10m/sec and 0.15m/sec respectively, a second set of simulations was conducted

for higher gad flow rate, i.e. Qb = 1.5l/min. Two different mesh resolutions were

examined (fine and coarse) similar to the mesh resolution applied for the simulations

in Chapter 3. Two different crossflow velocities ubulk are examined in this case,

i.e. ub = 0.04m/sec and ub = 0.15m/sec. In the following figures, the Q-criterion

isosurfaces are shown for the aforementioned two cases.

It is evident from Fig. 1 that even with higher gas flow rate (three times higher

than the gas flow rate examined in Chapter 5), the hydrodynamics in the examined

channel are very similar to those described in Chapter 5. In the case with the low

crossflow, the bubbles act initially as an obstacle to the flow (Fig. 1(a)), making

the fluid to move around the bubbles towards the side walls of the channel. In the

case with the high crossflow, the bubble column is inclined due to the higher forces

acting on it and it is easier for the flow to go through the bubbles.
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(a) Three-dimensional view of the generation of secondary currents for
Case1.

(b) Three-dimensional view of the generation of secondary currents for
Case2.

Figure A.1: (a) Three-dimensional view of Q-criterion isosurfaces coloured by the
vorticity in x-direction for (a) Case1 with Qb = 1.5l/min and ubulk = 0.04m/sec and
(b) Case2 with Qb = 1.5l/min and ubulk = 0.15m/sec
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