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a b s t r a c t 

Machine learning based Intrusion Detection Systems (IDS) allow flexible and efficient au- 

tomated detection of cyberattacks in Internet of Things (IoT) networks. However, this has 

also created an additional attack vector; the machine learning models which support the 

IDS’s decisions may also be subject to cyberattacks known as Adversarial Machine Learning 

(AML). In the context of IoT, AML can be used to manipulate data and network traffic that 

traverse through such devices. These perturbations increase the confusion in the decision 

boundaries of the machine learning classifier, where malicious network packets are often 

miss-classified as being benign. Consequently, such errors are bypassed by machine learn- 

ing based detectors, which increases the potential of significantly delaying attack detection 

and further consequences such as personal information leakage, damaged hardware, and fi- 

nancial loss. Given the impact that these attacks may have, this paper proposes a rule-based 

approach towards generating AML attack samples and explores how they can be used to tar- 

get a range of supervised machine learning classifiers used for detecting Denial of Service 

attacks in an IoT smart home network. The analysis explores which DoS packet features 

to perturb and how such adversarial samples can support increasing the robustness of su- 

pervised models using adversarial training. The results demonstrated that the performance 

of all the top performing classifiers were affected, decreasing a maximum of 47.2 percent- 

age points when adversarial samples were present. Their performances improved following 

adversarial training, demonstrating their robustness towards such attacks. 

Crown Copyright © 2021 Published by Elsevier Ltd. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

The proliferation in Internet of Things (IoT) devices, which 

routinely collect sensitive information, is demonstrated by 

their prominence in our daily lives. Although such devices 

simplify and automate everyday tasks, they also introduce 

tremendous security flaws. Current insufficient security mea- 
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sures employed to defend smart devices make IoT the ‘weak- 

est’ link to breaking into a secure infrastructure, and therefore 

an attractive target to attackers. 

As the number of IoT devices increases exponentially 

( Gubbi et al., 2013 ), the number of unknown vulnerabilities 

and threats also increases, resulting in perimeter defences 

becoming weaker. Intrusion Detection Systems (IDSs) have 

emerged as successful attack detection and identification 

methods in IoT networks. In particular, due to the rapid in- 

crease in the development of IoT devices, their heterogene- 

ity, and the amount of data that is produced from such tech- 

https://doi.org/10.1016/j.cose.2021.102352 

0167-4048/Crown Copyright © 2021 Published by Elsevier Ltd. This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 
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nologies, machine learning techniques have been integrated 

to support IDSs in IoT networks to defend against a greater ar- 

ray of attacks (e.g. Amouri et al., 2018; Anthi et al., 2018; Doshi 

et al., 2018; McDermott et al., 2018; Meidan et al., 2018; Shukla, 

2017 ). Many of these approaches employ supervised machine 

learning to support the detection of malicious behaviour in 

IoT. In particular, a recent study by da Costa et al. (2019) re- 

viewing state-of-the-art IDSs for IoT reported that the ma- 

jority of these systems utilise supervised approaches, such 

as Support Vector Machines (SVM), Random Forest, and Deci- 

sion Trees. A recent supervised IDS evaluated using real net- 

work data derived from a typical IoT testbed presented by 

Anthi et al. (2018) also demonstrated that a Decision Tree was 

the best performing classifier for detecting cyber attacks in 

IoT. 

However, the trained models which support such systems 

may also be subject to attacks and thus introduce a new at- 

tack vector. Attacks that target the machine learning mod- 

els within these systems are known as Adversarial Machine 

Learning (AML). The aim is to exploit the weaknesses of the 

pre-trained model by manipulating data and network traf- 

fic that traverse through IoT devices. These perturbations in- 

crease the confusion in the decision boundaries of the ma- 

chine learning classifier, where malicious network packets 

are often miss-classified as being benign. Consequently, the 

model’s effectiveness can be reduced and such errors are by- 

passed by the machine learning based detectors, which in- 

creases the potential of significantly delaying attack detection 

and further consequences. 

Subsequently, the existence of such techniques suggests 

that machine learning based detectors may be at risk. More 

specifically, in the context of IoT, AML can be used to manip- 

ulate data from network traffic or data collected from the de- 

vices/sensors. From an adversary’s perspective, AML can also 

include perturbations to malicious data to cause an increase 

in misclassification, consequently bypassing the IDS. As ma- 

chine learning based detection mechanisms become increas- 

ingly common, it is understandable that the adversary’s moti- 

vation to bypass them also increases. Consequently, machine 

learning based detectors must be further evaluated against 

AML attacks. 

The experiments presented in this paper focus on hard- 

ening Denial of Service (DoS) defences against AML. DoS at- 

tacks are considered as being one of the most severe attacks 

against IoT ( Chen et al., 2018; Doshi et al., 2018; Verma and 

Ranga, 2019 ). Such attacks affect the services of small net- 

works, such as smart homes ( Verma and Ranga, 2019 ), by tar- 

geting the smart devices within such environments (e.g. smart 

light bulbs, smart door locks, smart televisions) and making 

them unavailable to the intended users ( Dhanjani, 2013; No- 

tra et al., 2014; Ronen and Shamir, 2016; Sivaraman et al., 2015 ). 

In this case, securing such devices from DoS attacks has been 

the main focus in several recent studies (e.g. Anthi et al., 2018; 

Syed et al., 2020; Vaccari, Aiello, Cambiaso, 2020 ). An important 

feature of DoS attacks is that it is feasible to deploy by craft- 

ing custom packets. In the context of AML, and as DoS attacks 

are self-contained, an adversary can manipulate various DoS 

packet features without voiding the attack. Network packets 

from other attack types may also be manipulated; however, 

such packet behaviours are more sensitive to perturbation as 

Fig. 1 – An overview of the study design. 

they affect the validity of the packet and, subsequently, the 

attack itself. 

To the best of our knowledge, this is the first investigation 

into the behaviour of a supervised IDS against an AML attack 

in the context of IoT using network packet data. The work 

presented herein considers a realistic attacker model, as well 

as a dataset collected from a representative smart home IoT 

testbed. The main contributions of the work presented in this 

paper are the empirical investigations into: 

• Generating adversarial samples from a smart home IoT 

network dataset 

• Investigate the behaviour of a range of supervised classi- 

fication algorithms used for IDSs in IoT networks against 

these adversarial samples 

• Explore how adversarial training can be used to increase 

the robustness of such models 

The study was designed as follows (see Fig. 1 ): 1) randomly 

split the smart home IoT network dataset into training and 

testing set, each containing 60% and 40% data points respec- 

tively, 2) evaluate a range of supervised classification algo- 

rithms and identify which are the best performing, 3) gener- 

ate malicious adversarial DoS packets using a rule-based ap- 

proach, 4) evaluate the performance of the trained model in 

2 on the generated adversarial samples in 3, 5) re-train and 

evaluate the most affected model using a new training dataset 

which includes a percentage of adversarial samples from 3. 

The remainder of this paper is divided into the fol- 

lowing main sections: Section 2 presents the related work, 
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Section 3 discusses the data collected as part of the evaluation 

of a state-of-the-art IDS presented by Anthi et al. (2018) which 

is used to support the AML experiments herein, Section 4 dis- 

cusses AML attack types and approaches, Section 5 presents 

an approach to generate malicious adversarial DoS packets, 

Section 6 evaluates the performance of the model against AML 

samples, Section 7 evaluates the performance of the model 

following adversarial training, and finally Section 8 concludes 

the paper. 

2. Related work 

Due to the advancement in machine learning, there has been a 

substantial increase in IDSs which use such techniques for IoT 

networks. Nevertheless, there has been significantly less focus 

on AML in this context. In the field of cybersecurity, the current 

research surrounding AML focuses on email spam classifiers, 

malware detection, and very recently, there has been interest 

in AML against network IDSs for traditional networks and ICS 

( Anthi, Williams, Rhode, Burnap, Wedgbury, 2021 ) . 

In more detail, in the context of spam classifiers, both 

Nelson et al. (2008) and Zhou et al. (2012) demonstrated 

that an adversary can successfully exploit and bypass ma- 

chine learning methods by including perturbations to a 

small percentage of the original training data. In addition, 

Grosse et al. (2017) evaluated the robustness of a neural net- 

work trained on the DREBIN Android malware dataset. They 

reported that the model misclassified the perturbed inputs in 

the training set. This attack requires the adversary to have 

some degree of knowledge of both the dataset and its features. 

Furthermore, Hu and Tan (2017) presented a more sophisti- 

cated adversarial technique that uses the concept of GAN to 

successfully attack malware classifiers without requiring any 

knowledge of the targeted system or dataset. 

In the context of IoT, there exist only a handful of investi- 

gations into AML attacks; the majority of which focus on ma- 

chine learning detection methods for malware. Particularly, 

Abusnaina et al. (2019) investigated a range of off-the-shelf 

methods to craft adversarial IoT software and a GEA method. 

The results show that all adversarial samples were success- 

ful in bypassing the detector. Moreover, Han et al. (2019) de- 

veloped a framework that employs genetic algorithms to gen- 

erate adversarial samples for IoT Android applications. The 

framework demonstrated to have a success rate of nearly 

100%. Furthermore, there exist a few studies that focus on de- 

tecting and defending against adversarial samples in IoT. For 

instance, Baracaldo et al. (2018) use contextual information 

about the origin and the transformation of data points in the 

training set to identify perturbed data in a sensors’ measure- 

ment dataset. 

Furthermore, recent work has focused on AML against 

traditional network IDSs and ICS. More specifically, 

Rigaki (2017) use the KDD’99 dataset to generate adversarial 

samples and demonstrate the effectiveness of AML against 

supervised algorithms. Moreover, Zizzo et al. (2019) showcase 

a simple AML attack against an LSTM classifier which was 

applied on an ICS dataset. This attack required the man- 

ual identification of features that needed to be perturbed 

in order to generate adversarial samples. Yaghoubi and 

Fainekos (2019) evaluate a gradient-based search approach 

on a Simulink model from a steam condenser. This approach 

demonstrated only to be efficient against a handful of sys- 

tems that employ RNN with smooth activation functions. 

Erba et al. (2019) present two types of real-time evasion 

attacks, using RNN models and an autoencoder to generate 

adversarial samples. 

As a result, the work cited above focuses on other areas of 

cybersecurity, including email spam classifiers and traditional 

malware detection. In the context of IoT, AML has been used 

to target IoT software, Android applications, and sensor met- 

ric data, and has yet to address the subject of how AML may 

affect supervised machine learning-based IDSs trained on IoT 

network traffic data. In the same context, there has yet to be 

an investigation into how to defend such IDS systems against 

AML attacks. 

3. Attacking a supervised machine learning 

detector 

To support the experiments presented in this paper, as well 

as to demonstrate how AML can affect relevant supervised 

machine learning-based detectors, the data collected as part 

of the evaluation of a state-of-the-art IDS presented by 

Anthi et al. (2018) was used. In particular, the IDS utilises a De- 

cision Tree classifier to determine whether network packets 

are malicious, the type of the attack which has occurred, and 

which device is affected. The focus of this paper is on how AML 

can be used to generate adversarial DoS packets to bypass su- 

pervised models. The following Sections discuss the features 

present in the smart home IoT network dataset and presents 

the methodology behind generating adversarial samples and 

evaluating the best performing supervised classifiers. 

3.1. Dataset 

To support the AML experiments presented in this paper, 

an authentic and suitable-sized IoT smart home dataset was 

used. More specifically, Anthi et al. (2018) assembled an IoT 

testbed consisting of a range of commercially relevant and 

representative IoT hardware, including the Belkin NetCam 

camera, TP-Link NC200 Camera, TP-Link Smart Plug, Samsung 

Smart Things hub, Amazon Echo Dot, British Gas Hive con- 

nected to two sensors: a motion sensor and a window/door 

sensor, and Lifx Lamp. In addition, a laptop was connected to 

the network to continually record the network traffic and au- 

tomatically generate and save the log files, and deploy various 

attacks. For an illustration of the architecture of the testbed 

and the components used for generating the datasets, see 

Anthi et al. (2018) . 

A dataset containing both benign and malicious data 

points was generated from the smart home IoT testbed in 

which 3 weeks worth of benign data and 3 weeks of malicious 

data was collected using the tcpdump ( Wir, 2018 ) tool. To gener- 

ate the malicious data, Anthi et al. (2018) describes the 5 attack 

types deployed on the testbed: Denial of Service (DoS), Man-In- 

The-Middle (MITM)/Spoofing, Reconnaissance, and Replay. To 

support the AML experiments herein, benign packets, as well 

as packets that were identified as DoS, were selected. The fi- 
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nal dataset consisted of 41,236 DoS and 110,390 benign data 

points. 

4. Adversarial machine learning 

As aforementioned, AML aims to automatically add perturba- 

tions to data points in order to increase the confusion in the 

decision boundaries of the machine learning classifier. As a 

result, malicious network packets can then miss-classified as 

being benign. The following sections introduce the types of 

AML attacks, as well as the methods used to automatically 

generate adversarial samples. 

4.1. Adversarial attack types 

Papernot et al. (2016) categorises adversarial attacks based on: 

• Their complexity . The consequences of such attacks can 

vary. Slightly reducing the confidence of a model may be 

considered as having fewer consequences in comparison 

to significantly reducing its overall precision. 

• The knowledge an adversary may have may be categorised 

into three main types of attacks: 

• White box attack: when an adversary has knowledge re- 

lated to the learning model, such as its architecture, the 

data it reads, and the features used to support its train- 

ing. 

• Black box attack: when an adversary does not know the 

internal workings of the target model. 

• Gray box attack: when an adversary has some knowl- 

edge surrounding the model’s architecture or the data 

it reads. 

4.2. An attacker’s motive 

There are many reasons why an adversary may wish to deploy 

a DoS attack against IoT devices within a smart home. The 

purpose of a DoS attack is not to get unauthorized access or to 

obtain sensitive data, but to flood the victim’s device in order 

to make these devices and their services unavailable to the 

user. 

For example, in the context of an IoT smart home, devices 

such as smart cameras may be used for physical security pur- 

poses. Attackers may use DoS to cause a camera to blackout, 

allowing the coast to be clear to physically access a home 

without creating digital forensic evidence ( OConnor et al., 

2019 ). 

4.3. Attacker model 

The work presented herein considers the following attacker 

model. It is assumed that the attacker does not have phys- 

ical access to the IoT devices, but has successfully retrieved 

the password for the central access point within the smart 

home network. This type of attacker may be physically located 

within the wireless range of the targeted user’s smart home 

network. An attacker with control over the wireless router 

can access devices over the local network and can deploy 

several different attacks ( Vanhoef and Piessens, 2014; 2015; 

2016 ). Such an attacker may have a pre-existing relationship 

with the victim and was given administrative access to the 

router/network ( OConnor et al., 2019 ) when they were present 

in the home. 

Subsequently, the attacker has the following capabilities: 

• Scan the network. 

• Passively eavesdrop on the wireless communications. 

• Deploy active attacks such as DoS, MAC/ARP Spoofing, and 

MITM. 

The attacker has the following objectives: 

• To collect information about the connected devices (i.e. 

what devices are connected, what ports are open). 

• To make the devices unavailable to the intended user by 

deploying a DoS attack. 

Additionally, it is assumed that the smart home’s network 

is protected by utilising a supervised machine learning IDS. 

4.4. Adversarial sample generation methods 

Various methods exist through which adversarial samples can 

be generated. Such approaches differ in complexity, speed, 

and efficiency. The aforementioned methods discussed in 

Section 2 provide sophisticated approaches for generating ad- 

versarial samples. 

Two relevant techniques towards automatically gener- 

ating perturbed samples include the Fast Gradient Sign 

Method (FGSM) and the Jacobian based Saliency Map At- 

tack (JSMA), presented by Goodfellow et al. (2014a) and 

Papernot et al. (2016) respectively. Both FGSM and JSMA fol- 

low similar methodologies, in that adding small perturbations 

to the original data can result in such samples exhibiting ad- 

versarial characteristics and may be classified differently by 

the targeted model. Both methods are applied by using a pre- 

trained Multilayer Perceptron (MLP) network as the underlying 

model for the adversarial sample generation. 

Rigaki (2017) evaluated the aforementioned methods on 

the NSL-KDD dataset for traditional IT systems and demon- 

strated that such approaches can successfully generate ad- 

versarial samples that reduce the performance of the super- 

vised classifier. In addition, presenting a pre-trained model 

with AML samples generated from a dataset of industrial IoT 

device measurements demonstrated to significantly reduce its 

performance by 20 percentage points ( Anthi et al., 2021 ). 

Given measurement data from IoT devices, such as 

recorded temperatures from a sensor, the aforementioned ap- 

proaches may be applicable. However, such approaches as- 

sume that all features can be equally perturbed by the same 

predefined constant. Thus, when considering network packet 

features, this may mean that perturbing these values outside 

of their valid ranges may jeopardise the validity of the packet, 

and subsequently the attack. For instance, a flag can only be 

0 or 1 and the packet length must have a maximum integer 

value of 64 Kilobytes. Therefore, the aforementioned methods 

for generating adversarial samples may be ineffective when 

applied to network packets. 
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5. Generating adversarial samples 

With the limitations of the approaches discussed in 

Section 4.4 in mind, this paper proposes a rule-based ap- 

proach towards generating AML DoS attack samples that aim 

to target the supervised models which may support IDSs in 

smart home IoT environments. 

The proposed approach is evaluated using malicious DoS 

packets against IoT devices. The rationale for choosing this 

type of attack is twofold; 1) DoS is one of the most catas- 

trophic attacks against IoT devices ( Chen et al., 2018; Doshi 

et al., 2018; Verma and Ranga, 2019 ), and 2) DoS attacks are not 

connection-based; therefore, the packets are self-contained 

and their features can be manipulated without voiding the at- 

tack. 

Inspired by the JSMA and FGSM methods, the proposed ap- 

proach aims to manipulate DoS attack packet features by con- 

sidering: 

1. Feature Importance - identifying the most important fea- 

tures that aid in attack detection. 

2. Practicality - perturbing packet features that an adversary 

can modify by changing the attack configurations or by us- 

ing packet crafting tools such as Scapy. Scapy (2020) . 

3. Validity - given their practicalities, perturbing packet fea- 

ture values between their valid ranges. 

5.1. Feature selection 

Given the dataset discussed in Section 3.1 all benign and 

DoS packets were extracted. For this analysis, it is essen- 

tial to highlight that capture related features (e.g. caplen, 

frame.enacp_type, frame.offset_shift, frame.len, frame.cap_len, 

frame.marked, frame.ignored ) provided by the network sniffer 

(i.e. tcpdump ) were omitted from the feature space. The ratio- 

nale behind this is that such features are not included in the 

original packet feature space and are generated by the net- 

work traffic tool. Therefore, these features cannot be directly 

manipulated by an adversary. However, the tcp.delta_time 

feature was not omitted as it can be indirectly manipulated 

by an adversary who may want to increase or delay the time 

between the sending of DoS packets. 

Having removed the aforementioned attributes from the 

dataset, the Information Gain filter, InfoGain Ratio Attribute 

Evaluation , provided as part of Weka (2020) was used to identify 

which features best discriminate between the malicious and 

benign packets. Due to its computational efficiency and sim- 

ple interpretation, Information Gain is one of the most popu- 

lar feature selection methods ( Tang et al., 2014 ) and has been 

used for feature selection in other relevant work (e.g. Alazab 

et al., 2012; Anthi et al., 2018; Effendy et al., 2017 ). 

This filter evaluates the importance of the features in the 

training dataset by measuring their information gain with re- 

spect to the classes. In more detail, this filter measures how 

each feature contributes to decreasing the overall entropy - 

a measure to calculate the degree of disorder or uncertainty. 

Subsequently, an important feature holds the most informa- 

tion and reduces the entropy the most ( Sharma and Dey, 2012 ). 

The entropy H (Cl ass ) for each class is defined in Eq. (1) , where 

Table 1 – Feature importance ranking using InfoGain Ratio 
Attribute Evaluation. 

Attribute Weight 

len 0.873 

tcp.time_delta 0.731 

ip.flags.df 0.675 

ip.flags.mf 0.298 

ip.frag_offset 0.278 

ip.ttl 0.178 

tcp.seq 0.169 

ip.proto 0.091 

icmp.type 0.040 

icmp.code 0.040 

tcp.window_size 0.021 

tcp.flags.urg 0.021 

tcp.flags.cwr 0.021 

tcp.len 0.021 

tcp.flags.ecn 0.021 

p i is the probability of randomly selecting an instance of class i 

from the dataset and log 2 is the base 2 logarithm. The Informa- 

tion Gain is defined in Eq. (2) , where H (Cl ass ) is the previously 

defined entropy for each class and H (Cl ass | At t ribut e ) is the sum 

of the entropies of a specific attribute A for each class. For a 

working example of how the entropy and Information Gain 

are calculated, see Omuya et al. (2021) . 

H (Cl ass ) = −
∑ 

p i log 2 p i (1) 

I (C l ass, At t ribut e ) = H (Cl ass ) − H (Cl ass | At t ribut e ) (2) 

Table 1 illustrates the top 15 features which best discrimi- 

nate between benign and DoS packets with their respective in- 

formation weight ranking. The remaining features resulted in 

a much lower importance score. Based on these results, as well 

as domain knowledge and practicality, the following features 

were chosen to be manipulated to generate adversarial pack- 

ets: len, tcp.time_delta, ip.flags.df, ip.flags.mf, ip.ttl, tcp.flags.urg, 

tcp.flags.cwr , and tcp.flags.ecn . 

More specifically, adversaries may increase the network 

packet size by introducing padding to the packet header 

or they may reduce its size by fragmenting a single packet 

into more packets ( Kirda and Trachtenberg, 2009 ). The 

tcp.time_delta measures how much time has elapsed between 

the arrival of the prior packet and the current packet. Lower 

values of delta times correspond to higher rates of transmitted 

packets which may indicate that a DoS attack has occurred. 

Although this is a feature calculated by the network sniffer 

tool, it will be used in this work to explore how a lower rate 

flow of packets can affect the supervised classifier. 

The ip.flags.df can be set to indicate that a packet cannot 

be fragmented for transmission. The ip.flags.mf can be set to 

indicate that the packet contains more fragments. Time To 

Live (TTL) refers to the amount of time or number of hops 

a packet is set to exist inside a network before being dis- 

carded by a router. When crafting or manipulating packet fea- 

tures, the TTL value can be specified and set between 0 and 

255. The TCP flags can also be set or unset, the tcp.flags.urg 
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Fig. 2 – Distribution of len values for both benign and malicious packets. 

Fig. 3 – Distribution of ip.ttl values for both benign and malicious packets. 

is used to indicate whether to abort other segments so that 

the given segment is given priority, the tcp.flags.cwr indicates 

that the host received a TCP segment with the ECE flag set 

and had responded in congestion control mechanism and the 

tcp.flags.ecn flag is used to echo back the congestion indication. 

An adversary can craft packets where an invalid or unusual 

combination of flags can be set. 

To better understand the structure of benign IoT network 

packets, and subsequently, define the ranges in which these 

features can be perturbed, the distribution of the values of 

the len and ip.ttl features in the benign packets were analysed. 

Figure 2 reports the distributions of the values for the len fea- 

ture for both packet types. The minimum len value for benign 

packets was reported as 52, with the maximum value being 

1,514. A significantly large number of len values for the benign 

packets (22,921) fall between the ranges of 54 and 194. 

Figure 3 reports the distributions of the values for the ip.ttl 

feature for both packet types. The minimum ip.ttl value for 

benign packets was reported as 1, with the maximum value 

being 255. A significantly large number of ip.ttl values for the 

benign packets (20,633) fall between the ranges of 30 and 70. 

5.2. Model training 

Given the uneven number of classes, the dataset described in 

Section 3.1 was balanced to consist of 41,236 samples of both 

packet types. Subsequently, a random subset of approximately 

60% of the dataset was selected for training, with 24,741 sam- 

ples of each class. The remaining 40% of the dataset was used 

for testing, with 16,495 samples of each class. 

Previous work by Anthi et al. (2018) reported that 

Weka’s implementation of Ross Quinlan’s C4.5 algorithm 

( Quinlan, 2014 ), the J48 Decision Tree method with no pruning, 

was the best performing classifier in discriminating between 

different cyber attacks. In this paper, to explore how well su- 

pervised machine learning algorithms can detect DoS attacks 
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Table 2 – Weighted average results following 10-fold 
cross-validation. 

Classifier P R F 

J48 Decision Tree 0.999 0.999 0.999 

Random Forest 0.999 0.999 0.999 

Naive Bayes 0.997 0.997 0.997 

Bayesian Network 0.999 0.999 0.999 

SVM 0.999 0.999 0.999 

Zero R 0.500 0.500 0.405 

One R 0.972 0.970 0.970 

in an IoT environment, the corresponding smart home dataset 

was used to evaluate a range of state-of-the-art classifiers dis- 

tributed as part of Weka. 

Classifiers included generative models that consider con- 

ditional dependencies in the dataset or assume conditional 

independence (e.g. Bayesian Network, Naive Bayes) and dis- 

criminative models that aim to maximise information gain or 

directly map data to their respective classes without model- 

ing any underlying probability or structure of the data (e.g. J48 

Decision Tree, SVM). 

Table 2 demonstrates the results following classification, 

reporting models with the highest performances, with each 

using their default parameters. The overall performance rep- 

resents weighted-averaged of precision (P), recall (R), and F1- 

score (F) for all experiments. 

Overall, the classification performance for detecting DoS- 

specific attacks across each classifier achieved a high result. 

This is intuitive to DoS attacks as such packets have distinct 

values (i.e. len and ip.ttl values) in comparison to those that are 

benign. In particular, the classification performances of the J48 

Decision Tree with no pruning, Random Forest, Bayesian Net- 

work, and SVM achieved the best performances, resulting in 

F1-scores of 99.9%. 

5.3. Generating perturbed samples 

Based on the observations in Section 5.1 and to support the 

initial AML experiments within this paper, a range of feature 

combinations were perturbed. Firstly, to investigate how per- 

turbing individual features may affect the classifier, adversar- 

ial samples were generated where only one of the features was 

modified at a time. 

This approach aims to mask adversarial samples to be- 

nign packets as closely as possible. Given the distributions 

in Section 5.1 , the len and ip.ttl feature values of the mali- 

cious packets were perturbed as being a random value be- 

tween the ranges of 54 and 194 and 30 and 70 respectively. 

For the flag features, the adversarial samples were gener- 

ated by randomly setting the flag (1) and unsetting the flag 

(0). To explore whether a lower rate of packet flow can af- 

fect the classifier’s performance, the tcp.time_delta feature was 

altered by increasing their values incrementally by five per- 

cent up to 50%. Finally, to explore whether DoS packets with 

lower tcp.time_delta values are misclassified as benign, adver- 

sarial samples were generated when all features, excluding 

tcp.time_delta , were perturbed. 

To avoid bias, and by drawing inspiration from the cross- 

validation method ( Refaeilzadeh et al., 2009 ), 20 iterations 

of perturbed samples for each feature-set were generated. 

Table 3 shows an example of how a malicious DoS packet may 

be modified when all features, excluding tcp.time_delta , are per- 

turbed during the first 5 iterations given this approach. 

It is worth highlighting, although such method of pertur- 

bation may be considered forceful, this level of perturbation 

is possible to be achieved by an adversary, specifically in IoT 

network environments. This is because the behaviour of the 

devices are not considered as being variable and do not have 

extreme deviations. As a result, an adversary can employ pas- 

sive sniffing techniques to observe the activity of the IoT net- 

work, and thus craft and deploy adversarial attacks. 

6. Evaluating the model on adversarial 
samples 

The J48 Decision Tree, Random Forest, Bayesian Network, and 

SVM classifiers were first evaluated on the training dataset us- 

ing 10-fold cross-validation and applied to the original testing 

dataset. The F1-score achieved by each classifier was 99.9%. 

The confusion matrix in Table 5 shows how the predicted 

classes in the original testing dataset compare against the ac- 

tual ones following 10-fold cross-validation using the J48 De- 

cision Tree. 

To explore the effects of the AML attack on the pre-trained 

classifier, adversarial samples were generated for all malicious 

DoS data points present in the testing data by individually per- 

turbing each of the features discussed in Section 5.1 , as well 

as perturbing all features, excluding tcp.time_delta . The ratio- 

nale behind this is to investigate the model’s behaviour when 

the adversary only alters packet features and not the rate of 

the attack. The original malicious packets were excluded from 

the testing data. The adversarial samples were subsequently 

included along with the benign testing data points and pre- 

sented to the trained model. Table 4 therefore reports the av- 

erage weighted Precision, Recall, and F1-score following these 

20 iterations for each classifier. 

When the tcp.flags.cwr, tcp.flags.ecn, tcp.flags.urg, len and 

tcp.time_delta were perturbed individually, each of the mod- 

els’ performances were unaffected. This may be explained by 

the fact that such features have a lower importance score (see 

Table 1 ) and also may rely on the values of other features to 

distinctly discriminate between both packet types. 

When all features, excluding tcp.time_delta , were perturbed, 

the classification performance of all the models were affected. 

In particular, the J48 model achieved an F1-score of 52.7%, the 

highest decrease across the models (a difference of 47.2 per- 

centage points in comparison to its performance when classi- 

fying the original testing data). This may be because the mali- 

cious DoS packets were significantly modified, therefore their 

similarity to the benign packets was increased. In addition, 

when perturbing the ip.flags.df and ip.ttl features individually, 

the J48 model’s performance achieved an F1-score of 73.3% 

and 68.2% respectively; again, the highest decrease across the 

models (a difference in 26.6 and 31.7 percentage points). This 

may be explained by the fact that the majority of the benign 

packets and a small number of DoS packets had the i ip.flags.df 
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Table 3 – An example of how malicious packet features are perturbed. 

Packet len ip.ttl ip.flag.mf ip.flag.df tcp.flags.cwr 

Original Packet 94 64 0 0 1 

Iteration 1 147 37 1 0 1 

Iteration 2 64 36 0 0 1 

Iteration 3 129 66 0 0 1 

Iteration 4 185 30 0 0 1 

Iteration 5 171 48 0 0 0 

Table 4 – Classification performances when applied to generated adversarial samples. 

J48 Decision Tree Random Forest Bayesian Network SVM 

Perturbed Features P R F P R F P R F P R F 

All features (excluding tcp.time_delta ) 77.8 60.2 52.7 85.7 80.5 79.8 91.3 89.5 89.3 81.5 70.5 67.7 

ip.flags.df 83.3 75.0 73.3 92.8 91.6 91.5 99.5 99.5 99.5 83.3 75.0 73.4 

ip.flags.mf 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 91.3 89.4 89.3 

tcp.flags.cwr 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 

tcp.flags.ecn 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 

tcp.flags.urg 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 

ip.ttl 81.6 70.9 68.2 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 

len 99.1 99.1 99.1 99.7 99.7 99.7 96.8 96.6 96.6 99.9 99.9 99.9 

tcp.time_delta 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 

Table 5 – Confusion matrix for the original testing dataset 
following 10-fold cross-validation using the J48 Decision 

Tree. 

Predicted 

a b 

Actual DoS a 16,495 0 

Benign b 1 16,494 

set. Due to the tools used to deploy the DoS attacks, the default 

TTL value for these packets were set as 64. As a result, perturb- 

ing the TTL value between the aforementioned ranges signif- 

icantly altered the distribution of the feature values. Subse- 

quently, this demonstrated to impact the classifier’s perfor- 

mance. Given these results, to achieve the most impact, an ad- 

versary would have to perturb all selected features excluding 

modifying the rate of the attack (i.e. tcp.time_delta ) to success- 

fully reduce the performance of a machine learning based IDS 

that uses either of the four classifiers to support the classifi- 

cation of DoS packets, and subsequently divert malicious data 

points. 

The confusion matrices in Tables 6 , 7 , and 8 provide a better 

insight into the performance of the J48 Decision Tree across 

the experiments. In comparison to the original performance 

in Table 5 , the model demonstrates a significant increase in 

false positives when all features, excluding tcp.time_delta , and 

when only ip.ttl are perturbed. In addition to these results, 

when the ip.flags.df feature is perturbed, the model reports a 

higher false positive rate of almost 50%. 

Table 6 – Confusion matrix after perturbing all select fea- 
tures (excluding tcp.time_delta ) following 10-fold cross- 
validation using the J48 Decision Tree. 

Predicted 

a b 

Actual DoS a 3,345 13,150 

Benign b 1 16,494 

Table 7 – Confusion matrix after perturbing ip.ttl following 
10-fold cross-validation using the J48 Decision Tree. 

Predicted 

a b 

Actual DoS a 6,901 9,594 

Benign b 1 16,494 

Table 8 – Confusion matrix after perturbing ip.flags.df fol- 
lowing 10-fold cross-validation using the J48 Decision 

Tree. 

Predicted 

a b 

Actual DoS a 8,245 8,250 

Benign b 1 16,494 
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Table 9 – Perturbed data iteration with highest impact on 

the model’s performance. 

Classifier Iteration F1-score 

J48 Decision Tree 1 52.6 

Random Forest 7 79.5 

Bayesian Network 19 89.0 

SVM 20 67.2 

7. Defending against adversarial machine 

learning 

There exist a few methods that attempt to defend against 

AML attacks. Two of the most common approaches in- 

clude adversarial training and adversarial sample detection. 

Goodfellow et al. (2014b) demonstrated that re-training a 

model on a dataset containing both the original and adversar- 

ial data samples significantly improves its efficiency against 

adversarial samples. The second method involves develop- 

ing mechanisms of detecting adversarial samples using direct 

classification, neural network uncertainty, or input processing 

( Zizzo et al., 2019 ). However, such detection mechanisms have 

not demonstrated as being robust enough in defending again 

AML ( Athalye et al., 2018; Zizzo et al., 2019 ). 

Subsequently, given the positive findings of how AML af- 

fects supervised detectors, the classifiers were further evalu- 

ated using adversarial training. In this case, a random sam- 

ple of 10% of the adversarial data points (1,650 packets) 

when all features, excluding tcp.time_delta , were perturbed and 

achieved the highest decrease in the model’s performance 

were included in the original training dataset. Table 9 reports 

the iteration of data, as well as the F1-score, achieved when 

each model were applied to the perturbed data. 

The experiments described in Section 6 were repeated 

by retraining the models on the newly generated training 

datasets and applying them on the unseen adversarial sam- 

ples generated in the remaining iterations. Table 10 reports the 

average precision, recall, and F1-score following 20 iterations 

which included newly selected random perturbed samples in 

the training set following 10-fold cross-validation. 

The results demonstrate that including adversarial sam- 

ples in the training data increased the performances of each 

model. For each combination of features, the classification 

performance achieved an F1-score of over 90%, an increase 

of over 25 percentage points in comparison to the classifica- 

tion performances reported in Table 4 . These results are intu- 

itive, as, during adversarial training, the classifiers are trained 

to recognise the extended decision boundaries of the features 

which discriminate between benign and malicious packets. 

8. Conclusion 

Machine learning based IDSs are known as being fundamen- 

tal methods for detecting cyber attacks in IoT systems due 

to their reliability and versatility. However, as shown by the 

results presented herein, it is evident that machine learning 

based detectors are vulnerable to attacks that may severely 

undermine or mislead their capabilities. Adversarial Machine 

Learning (AML) may have significant repercussions for IoT 

infrastructures, as adversaries may alter malicious DoS data 

points to bypass the IDS, causing delayed detection of threats, 

leakage of confidential information, and severe harm. There- 

fore, in order to develop more robust machine learning based 

IDSs, it is apparent that understanding the applicability of 

AML attacks in IoT systems is crucial. 

This paper explored how adversarial attacks can be used 

to target supervised classifiers by presenting generated ad- 

versarial DoS samples to a trained model and understanding 

their classification behaviours. To support the experiments in 

this paper, an IoT network dataset containing benign and DoS 

packets were used to train and test a selection of state-of-the- 

art supervised classifiers, including the J48 Decision Tree, the 

best performing classifier for detecting malicious and benign 

packets in the IDS presented by Anthi et al. Anthi et al. (2018) . 

The experiments herein focused on DoS attack packets as it 

is one of the most severe attacks against IoT devices, it is fea- 

sible to deploy by crafting custom packets, and finally, due to 

the nature of DoS, an adversary can manipulate packet fea- 

tures without voiding the attack. 

To identify which features can be manipulated, the impor- 

tance of the features for discriminating against both packet 

types was measured. Based on these results, the top-ranked 

features were selected for perturbation to generate adversarial 

packets. Firstly, to investigate how individual features may af- 

fect the classifier, adversarial samples were generated where 

only one of the features were modified at a time. An adver- 

Table 10 – Classification performances following adversarial training. 

J48 Decision Tree Random Forest Bayesian Network SVM 

Perturbed Features P R F P R F P R F P R F 

All features (excluding tcp.time_delta ) 99.5 99.5 99.5 99.9 99.9 99.9 99.9 99.9 99.9 99.1 99.1 99.1 

ip.flags.df 99.7 99.7 99.7 99.9 99.9 99.9 99.9 99.9 99.9 94.6 94.0 94.0 

ip.flags.mf 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.8 99.8 99.8 

tcp.flags.cwr 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 

tcp.flags.ecn 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 

tcp.flags.urg 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 

ip.ttl 99.8 99.8 99.8 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 

len 99.1 99.1 99.1 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 

tcp.time_delta 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 
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sarial dataset was generated where all features, excluding 

tcp.time_delta , were perturbed. Such samples were evaluated 

against four trained models, including J48 Decision Tree, Ran- 

dom Forest, Bayesian Network, and SVM. The results demon- 

strate that perturbing all features, excluding tcp.time_delta , 

achieved the highest impact on the J48 model as the classifi- 

cation performance decreased by 47.2 percentage points (from 

99.9% to 52.7%). 

Given these positive findings, the paper also explores how 

adversarial samples can enhance the robustness of the mod- 

els using adversarial training. A random sample of 10% of the 

generated adversarial data points when all the features were 

perturbed was included in the original training dataset. The 

models were retrained and applied to all unseen adversarial 

samples, excluding the adversarial samples included in the 

training set. Overall, the classification performances signifi- 

cantly increased when adversarial samples were present in 

the training datasets. 

The results reported herein demonstrate that the proposed 

approach towards generating adversarial DoS packet sam- 

ples is effective in reducing the performance of all the top- 

performing classifiers. Subsequently, this indicates that this 

method is successful in attacking a range of supervised clas- 

sifiers of different types, mainly generative and discriminative 

models. There is scope to expand this approach as part of fu- 

ture work to target other attack types, as well as other types 

of machine learning, such as unsupervised and deep learning 

methods. 

9. Limitations and Future Work 

The experiments outlined herein have shown that adversar- 

ial DoS samples can successfully be produced in the context 

of IoT network traffic and can significantly affect the classifi- 

cation efficiency of a supervised machine learning based IDS. 

However, it is important to highlight that the approach pre- 

sented herein has its limitations. 

One of the main limitations surrounding this work is the 

crude approach towards the perturbation of the chosen fea- 

tures. That is, here, we assume that the adversary has full 

knowledge of the dataset and the trained model. Therefore, 

following the analysis of the benign packets, the adversary 

can identify the ranges in which the feature values fall into 

and subsequently map the malicious packets to mimic the 

behaviours of the benign. The manual overhead associated 

with this approach may be addressed by utilising a more so- 

phisticated method of generating perturbed packets (e.g. It- 

erative Gradient Sign, Carlini Wagner, Generative Adversarial 

Networks (GANs)), where the attacker does not know the sys- 

tem or the dataset. 

The work presented in this paper focuses on perturbing 

malicious DoS packets to bypass the detector. However, this 

is only the tip of the iceberg. The applicability of such an 

approach and other AML approaches of bypassing machine 

learning-based IDSs need to be further investigated for other 

attack types. 

Lastly, with regards to adversarial training, the results 

demonstrated the efficiency of such an approach to increase 

the robustness of the IDS. However, it is important to highlight 

that this method may not always be sufficient as it is difficult 

to anticipate all possible types of AML attacks against a given 

system. Therefore, there is a need to investigate other, more 

sophisticated defence mechanisms. 
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