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Abstract— Industrial revolution 4.0 has marked the era of 

advances in interaction among machines and humans and 

cultivate automation. However, manufacturing industries still 

have tasks which are labor intensive for humans with lots of 

repetitive actions. These actions along with other factors can 

cause the worker to be fatigued or exhausted. These in the 

long term can develop into work-related musculoskeletal 

disorders (WMSD). Nevertheless, comprehending fatigue in a 

quantifiable and objective manner is yet an open problem due 

to the heterogeneity of subjects involved for data collection.  

In this study a benchmarking dataset comprising of physical 

fatigue attributes. They are used to perform fatigue prediction 

for manual material handling task. It includes data collected 

from Inertial Measurement unit (IMU) and Heart Rate (HR) 

sensor which is then pre-processed to extract to be used to run 

the model. The data serves as an input to a time-series 

prediction model called as Recurrent Neural Network (RNN).       

Keywords—Manufacturing, Fatigue Prediction, WMSD, 

Recurrent Neural Networks 

I. INTRODUCTION  

The manufacturing industry has witnessed the rise in 
advance automation for over a decade. However, labour 
demanding task are still dominant in manufacturing 
industry. These tasks involve physical exertion and mental 
straining, causing fatigue. It makes it necessary to manage 
operator’s fatigue, else it will hamper the work quality, 
reduce productivity, and could cause incidents and 
accidents.  Nina Vøllestads defined fatigue as “any exercise-
induced reduction in the maximal capacity to generate force 
or power output” [1].  There are several factors that govern 
fatigue in an individual such as social-economic, 
psychological, working environment, etc. Fatigue depends 
on an individual’s perspective, i.e., it is sensation based, 
multi-dimensional construct. It reduces an operator’s ability 
to concentrate, hindering one’s performance. In 1914, Sir 
Thomas Oliver first coined the term occupational fatigue 
which involved the new science of understanting industrial 
pysiology [2]. In essence to operator’s safety and health, 
makes it conspicuous to study fatigue for its short and long 
term effects. Further-more it can’t be separated into physical 
and mental fatigue. Physcial fatigue is defined as the 
diminishing ability of an operator to perform physcial task  
due to excessive phycial exertion. On the contrary, mental 
fatigue is due the excessive cognitive activities [3]. 

 In this report focussing only on physcial fatigue as this 
seems to be the most prevlent in manufacturing 
environments. Short- term effects include constriction of 
motor control, increased malise and reduced physcial 
capacity and these and other effects, can lead to accidents 
[4]. Over the time short-term effects can develop into more 
adverse effect such as Chronic Fatigue Syndrome (CFS) and 
Work-related Musculoskeletal Disorders (WMSD)  [5] [6]. 
The prolonged effects of WMSD are related to significant 
health and economic depresiation. These effects are due to 
the nerve, ligament, muscle, joints and spinal injuries in the 
long term work.  

Under I4.0 workplace automation has increased but 
interestingly the workload and the fatigue induced has also 
increased in the workers [7]. Many studies show that tasks 
with labor instensive physical exertion cause WMSD. 
Reports such as ‘Safety and Health Assessemnt and 
Research for Prevention’(SHARP) and ‘Occupational 
Saftey and Health Administration’ (OSHA) revels that 50% 
of the workforce has WMSD and 34% of lost work days due 
to it , respectively. Other industries such as construction and 
manual material handling (distribution) have also reported 
high fatigue rate amoung its workers [8].  

The European Union , Sweden, Canada and Japan have 
also reported for fatigue amoung the workers after the shift 
works [5] [9] [10] [11]. Working hours, extensive work 
load, unevenly organised shifts (especially night shifts), 
insufficient break time for recovery from fatigue (i.e., rest), 
and craptastic working environments are among other 
factors that can cause fatigue [8]. The cost of fatigue is not 
only beared by the worker but the organization as well 
which is in two ways economic cost and lost working days. 
Ricci et. al. (2007) [12] faound that fatigue cost 83.9% in 
the lost productivity time which amounts to $136 billion 
anually. It reinforces a cost of $20 billion in compensation 
to the employer related to WMSD alone. The report by 
OSHA also outlines that by and large one out of three dollar 
is spent directly on WMSD [13]. Based on the issues 
identified of fatigue on individiuals performance and health 
the current studies sets out to investigate prediction of 
fatigue to mitigate its effect.  It is noteworthy to predict 
fatigue inducing in the worker for the aforementioned 
reason as it cost substantially to both worker and 
organization.  
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II. .REALTED STUDIES 

A feeling of fatigue in an individual is sensation based and 

completely varies for every individual. This makes it 

challenging to quantify the level of fatigue induced. 

However, fatigued has been analyzed in different ways. 

They are subjective based, objective based, and data-driven 

type.  

A. Subjecive Based Analysis 

Questionnaire-based analyses are subjective based, 
often involving self-report rating of = individual discomfort. 
These tend to focus on the workers feelings of fatigue and 
consequences. Wiktorin et. al. (993) [14] developed a 
method consisting of questionnaires and interviews to try 
and understand the level of fatigue in workers. Among these 
(the widely adapted) is used is ‘Rated Perceived Exertion 
(RPE)’ scale, a technique which is used to assess the muscle 
fatigue, also called the ‘Borg Test’ [15]. Borg scales ranges 
from 6 to 20 with every increase in the in the scale reflecting 
maximum exertion. It depends on the self-perceived rating 
of an individual which differs with every individual. 
Furthermore, the Swedish Occupational Fatigue Inventory 
(SOFI) follows a similar principle of RPE and accounts five 
main aspects of fatigue: lack of motivation, physical 
discomfort, physical exertion, sleepiness, and energy/effort  
[16]. A relatively new self-administrated questionnaire 
system to differentiate between motor and cognitive fatigue 
is known as ‘Fatigue Scale for Motor and Cognition’ 
(FSMC) [17]. Aforementioned methods do take in account 
the sensation but lack immediate results and limit in 
intermittent recording techniques which lack the usefulness 
in real time. 

B. Objective Based Analysis 

Objective based fatigue analyses measure involves the 
analysis of body parts which exert the force required during 
the task such as using ergonomic tool posture-based 
analysis. Three posture-based analysis tools were developed 
in 1999:  ‘Posturegram’, Ovako Working Posture Analyzing 
System (OWAS)’ and ‘Quick Exposure Check’ [18]. All 
three techniques work on simlar principle with predefined 
rules to rank working posture whilst, observing risk level. 
While QEC also takes in account the amount of exposure to 
physical exertion. However there are some tools such as 
‘Rapid Upper Limb Assessment’ (RULA) [19], ‘Hand-
Arm-Movemnet Analysis’ (HAMA) and ‘PLIBEL which 
focused on posture and musculoskeletal stress of hand 
movemnet co-ordination  [20]. These methods were limitied 
to posture analysis and not specfic in determining the fatigue 
state. Alternatively, Williams and Rogers designed‘Muscle 
Fatigue Analysis’ (MFA), using a similar principle but 
focousing on fatigue analysis [21]. Body party were 
segregated with the help of working position, the span of 
effort and time required for the task in to four levels. 
Depending on these assessemnt a prioprity score would be 
calculated and the task with high prioprity score would be 
redisigned to reduce the fatigue  [20]. The limitation was 
that these techniques were lab-based. 

C. Data-Driven Analysis 

      A data-driven analysis is a technique which collects 

data from sensors to predict fatigue and is one of the widely 

adopted techniques to measure fatigue through machine 

learning. There are two ways in which data-driven analysis 

can be divided into: First are the invasive data collection 

techniques and secondly the non-invasive data collection. 

A relatively new acclimated technique which has been 

adopted is the wearable sensors.  

1)    Invasive Approaches: these employs biomedical 

sensors which measure the metabolic changes. These 

changes are detected by the sensor and machine learning 

algorithm used to classify a fatigue state in an individual. 

The most popularly used is Electromygraphy (EMG) 

senors. EMG captures the electrical activity (neuronal 

firninh) generated from the central nervous system under 

the skin (motor units). The reults are displayed in the form 

of power spectrum and signal amplitude. The neurons 

supplied are directly proportional to the amplitude 

measured. A study by Isa et. al. in 2014 [22] was carried 

out to study fatigue of differnt muscle in a manual material 

handling task. Similarly, an amalgamation of EMG and 3D 

accelerometer was used to study fatigue for upper arm by 

employing a Principal Component Analysis (PCA) 

classification technique to predict fatigue [23]. Although, it 

was restricted to nerve stimulation and not considering 

changes in muscle fibre. Kider et al. [24] used 

Electrocardiography (EKG) and Galvanic Skin response 

(GSR) to measure fatige. EKG captured heart movements 

elecartical volatge whereas GSR captured the electrical 

conductance from the skin. These methods provided 

noteable results of, however they cannot be used in real 

world application, restricting to lab based. Invasive 

approach does privide a semaless approach and interweave 

with the working process causing discomfort. 

2) Non-Invasive approach: These do not involve 

attaching sensory devices to the body and thus are non-

invasive. Different approaches such as motion capture, 

force sensors and behavioral analysis have been used to 

measure fatigue.  Motion capture are sometimes combined 

with a different invasive sensors coupled machine learning 

algorithm to measure fatigue [25]. This technique are 

popular in driver fatigue assement but are expensive. 

Altenatively, using force sensors to predict fatigue by 

Pradip et al [26], and employed CUSUM algorithm. Force 

sensors used in plates to study ground and foot reaction 

forces were used. The drawback was high number of plates 

were required as a person walks in continous manner and 

this made it complex for modelling challenging to integrate 

consecutive plates. However, there are some other 

techniques, using behavioral charasteristic to predict 

fatigue such as keystroke dynamic, gait, etc. [27]. These 

techniques use behavioural changes in an individual to 

measure fatigue.   

3) Wearable sensor approach: these are less invasive 

and having less discomfort. An popular example of 

wearbale is Inertial Measurement Unit (IMU). It assess gait 

parameter of an individual to predict the onset of fatigue.  

4) Machine Learning: is a strand of artificial 

intelligence(AI) which uses data as input to extract 

knowledge in the form of patterns to learn from it and 

improve it over time to predict fatigue. In research papers, 

the most frequently used ML techniques for prediction are 

Support Vector Machine (SVM), Linear Discriminant 



Analysis (LDA),  k-nearest neighbors (KNN), Naive Bayes 

(NB) and Penalisad Regression Models [28] [26] [27] [5]. 

As fatigue is a multidimensional construct there were 

attempts to mimic human brain operation by using Neural 

networks. It is mostly concentrated towards studying driver 

fatigued. Although, recurrent neural networks have been 

employed to measure fatigue but used  for motion capture. 

It has been derived from feed forward network and is used 

for producing predictive results for sequential data.  

 

III. METHEDOLOGY 

This section gives a brief about the method used for 

predicting the fatigue. 

  

  
Figure 1: Fatigue Prediction Model 

A. Data 

The data for fatigue prediction was obtained from 

benchmarking data collected from different sensors. The 

dataset contained data about the demographic variables 

such as age gender, RPE rated fatigue and data inputs from 

mainly two sensors, ‘Inertial Measurement Unit’ and Heart 

Rate Monitor for which the data was present in tabular 

format [28].   

B. Preprocessing of Data 

In any machine learning application data preprocessing 

plays a pivotal role for improving the efficiency of the 

model.  This helps in choosing the best models by sensing 

a deeper understanding of the data. Once the model is 

chosen, the data can be pre-processed to optimize the 

learning or the best way in which the model can understand. 

A benchmarking dataset was used to train an RNN-LSTM 

network which comprised of floats and integers. In order to 

ameliorate the accuracy of machine learning model, 

normalization was applied to all data in the features. The 

data of each feature that is used by the LSTM model is 

normalized. To build the recurrent neural network, we use 

normalization technique i.e., subtracting the minimum 

value of the data set and then dividing by the range of the 

data set. Furthermore, for scaling the range of the data 

the ‘MinMaxScaler’ class lives within 

the preprocessing module.  

 

C. Recurrent Neural Network Model 

Recurrent neural network is providing a solution to a time 

series prediction problem. RNN is a type of neural network 

(NN) where nodes are connected in such a way to form a 

sequence of data [29]. The Keras neural network 

Application Programming Interface (API) is used to 

construct and train the LSTM model. The API is a Python-

based open-source deep learning framework that leverages 

TensorFlow as a backend. Keras's quick learning curve, 

combined with its ease of implementing deep learning 

models, make it an excellent tool for this project.  

Moreover, TensorFlow, also open source is a machine 

learning framework for numerical computations.  

 RNN is a NN used for predicting time dependent solution, 

uses internal memory remembering from past observation 

to feed the network. The usage of RNN with the 

preprocessing methods outlined validates the usage of NN 

for both supervised and unsupervised learning discussed 

earlier in this section. An RNN makes a prediction by 

combining the input data and prior outputs, which is exactly 

what is needed to predict fatigue based on previous task 

motions. However, the RNN has a limitation of suffering 

from short term memory. The network mainly encounters 

two problems: vanishing gradient or exploding gradient. 

This means it struggles to carry previous observation.  

When training the RNN, back propagation is used to 

calculate the gradient through the layers. These gradients to 

update the weight of the networks suddenly becomes too 

large (exploding gradient) or too small (vanishing 

gradient). Long Short-Term Memory and Gated Recurrent 

Unit are two popular RNN based solution for the gradient 

problems which work well with the time series prediction. 

They both use gates in order to manage the memory 

contents of NN. An input gate, a forget gate, and an output 

gate are all used in the LSTM. The internal state will be 

managed by the input and forget gate, which will decide 

what to save and when to erase. [30]. The GRU uses gates 

in the same way that the LSTM does, except it only has two 

instead of three. There is an update gate that regulates the 

flow of data and specifies how much of the previous 

observation should be passed on to the future, as well as a 

reset gate that indicates how much of the previous data 

should be forgotten. GRU is nothing more than a simplified 

form of LSTM. As it has been demonstrated that RNNs can 

anticipate human motion, it is possible to forecast fatigue 

for a specific material handling operation by integrating the 

ability to anticipate sensory input for fatigue analysis. As a 

result, the machine learning methodology presented will be 

based on RNN techniques. The LSTM, 3-Layer LSTM, and 

4-Layer LSTM models will be employed. 

D. Performance Evaluation  

The evaluation of the performance of the machine learning 

models, the performance measures used are accuracy, the 

percentage of correct classifications made by a given 

model. Practitioners can use this metric to see if a model is 

capable of predicting both fatigued and non-fatigued states 

equally well. The mathematical formula for accuracy is 

stated below: 

 

 



𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

 

 

where TP, TN, FP, FN denote the number of true positives, 

true negatives, false positives, and false negatives, 

respectively.  

IV. EXPERIMENTAL ANALYSIS 

Long Short-Term Memory (LSTM) was the best 

architecture that worked well for us. The LSTM layer 

directly after the input layer, followed by four dense layers. 

The LSTM layer output size was 20. The dense layers had 

32 neurons in each of the layer. Rectified Linear Units 

(ReLU) with a linear identity activation function for input 

values above zero and all zero output for input values below 

or equal to zero were used in the dense layer neurons. There 

are several objectives that have been met by completing 

classification and regression tasks. For classification tasks, 

one neuron with SoftMax activation function was used and 

one with ReLU neuron was used. Mean Squared Error was 

chosen as the error metric and loss function, while the 

binary cross-entropy was chosen for the classification job. 

A maximum of 100 epochs for training were used. The 

implementation was done in Python (v3.8.5) with the 

TensorFlow package (v2.3.0) [31]. Every run was repeated 

numerous times to guarantee that the model's robustness 

and the entire training and evaluation process were not 

accidental. Furthermore, the network operations' random 

seed was not set to a fixed value but was chosen at random 

each time. Leave-One-Out-Cross (LOOCV) validation was 

used to assess all networks. The purpose of the generalized 

analysis was to train the neural networks on patterns that 

were common to all participants, therefore all recordings 

from one participant were left out of training for each test 

and validation set. To obtain answers for both options, the 

analysis was separated into a distinctive and a generalized 

analysis. 

A. Input 

The representation every fatigue was by RPE scale in our 

dataset as a vector of the size 1x23, where 23 is the number 

of features which were include in our prediction. We 

created a matrix with all of the Fatigue RPE scale and their 

features that are considered in the prediction and divided 

all of the tasks into fixed-size windows. Then we reshape 

all of the matrix's vectors to create a NumPy array. It is now 

a shape vector (W - l - f), where W is the number of 

windows, l is the length of A window, and f is the number 

of features. The dataset was then divided into train and test 

sets, with the training set accounting for 70% of the dataset 

and the test set accounting for 30%. As it has the highest 

significance, we train the LSTM Model to determine the 

tiredness of the modified by different feature input for each 

training.  

B. Hidden Layers 

We must evaluate how many hidden layers the model will 

contain, the number of LSTM cells that should be included 

in each layer, and what the dropout should be when 

building the LSTM model. However, there is no universally 

accepted rule for determining the number of hidden layers 

or cells within each layer. The successful models are: one 

with four layers, and the other with three layers and. The 

number of cells and layers depends on the application for 

which the LSTM model will be used, and the cells in each 

layer should have the same number of cells for finding an 

optimal structure. A dense layer is a densely connected NN 

layer in which each cell in the following layer is connected 

by a dense layer. There are also successful models that use 

dense layers by first creating a model of number of hidden 

layers, then adding many dense layers. 

There are hyperparameters that must be appropriately setup 

and modified while developing the LSTM model so that we 

may achieve an accurate fatigue prediction while testing 

our model. In this study, we conducted empirical 

experiments to determine the best hyperparameters for 

improving accuracy and reducing the danger of overfitting 

the data. 

Dropout is a useful approach for reducing overfitting by 

selecting cells in a layer at random based on the probability 

chosen and setting their output to 0. The ideal degree of 

dropout was determined using an empirical test, which was 

then applied to all of the hidden layers. We developed our 

LSTM model, trained it, and then varied the dropout values 

so that the difference between consecutive dropout values 

was constant. The dropout is set to 20%. The optimal value 

of dropout set was 0.2(20%) in our case as it has the 

smallest mean squared error. While doing this test the 

epoch was set to 100, the LSTM cells in each layer was set 

to 32, 64, 128, 1, decay to 0.2. 

 

An epoch occurs when all of the training data has been sent 

through the network; thus, one epoch corresponds to one 

repetition of the entire training data passing through the 

network. When the training data is propagated through the 

network, we divide the training data into the batches’ sizes 

of 16. This indicates that the first 16 samples from the 

training set (0-16) are used to train the network, and then 

the next 16 samples are used to train the network. The 

epoch will continue until all samples have been transmitted 

across the network. The optimal epoch value in our case is 

100 as it showed the lowest value of MSE.  

 

 
Fig 2 Epoch vs Loss 

During training, the loss function quantifies the distance 

between the LSTM model's output and the desired output 



to speed up learning. The validation data, which is set by 

the user, is the desired result; we have chosen to make the 

validation data 50% of the training data. As the training 

data output is compared to the validation data after each 

epoch, this can prevent overfitting by stopping the model 

during training. We may be overfitting if the training loss 

is falling, and the validation is growing at the same time. 

The MSE was chosen as our loss function because it is 

commonly used for time series forecasting when selecting 

a loss function. The mathematical formula for the same is 

given below:  

𝑀𝑆𝐸 =  
∑ (𝑦𝑖 −  𝑦𝑖

𝑝
)𝑛

𝑖=1

𝑛
 

Where, n = samples, i = boss trapping samples, y = 

predicted values  

C. Dense Layers 

A dense layer is a densely connected NN layer, where each 

cell of a dense layer is connected to another dense layer in 

the next layer. The successful models using dense layer by 

building their model of hidden layers followed by multiple 

dense layers. The LSTM model in our case contains four 

layers, two hidden layers and one dense layer. The first 

hidden layer's output is connected to another hidden layer, 

which is then connected to a dense layer, i.e., hidden layer! 

hidden layer! dense layer! were! Represent the connection 

between layers. To avoid the possibility of overfitting, 

dropouts are utilized after each hidden layer. 

V. RESULT AND DISCUSSION 

The performance results are briefly discussed in this part, 

as well as their comparison to the proposed model. This 

section briefly discusses neural network hyper-parameters, 

test and validation findings, and graphical representations 

of outcomes for each baseline technique. The results are 

shown in the form of a table at the end of the section in 

comparison to the proposed model. 

A. Accuracy 

The accuracy of the LSTM neural network is shown in table 

below. The accuracy of the model for training, validation 

and test is shown.  
TABLE I.  Accuracy  

Table 

Head 

Accuracy 

Training data Validation Data Test Data 

NN 0.63 0.70 0.65 

 

The accuracy for training, validation and testing is 63%, 

70% and 65% respectively. The accuracy for the test data 

increases compared to the training data which shows that 

the model learns better with every epoch according to the 

nature of RNN, which has the tendency of using output of 

every layer as input to next layer. 

Figure 3 displays, accuracy with every epoch i.e., the 

training data compared to the cross-validation data set. 

However, in the graph the validation data observes an 

increase compared to the training. This shows that after 

cross-validation the accuracy of predicting fatigue 

increases.     

 
Figure 3 Accuracy for Train data 

A confusion matrix (see Fig. 4), also known as error matrix, 

is a visualization table which that allows to observe the 

performance of the model. It comprises of true positives, 

true negatives, false positives, and false negatives which 

show how well the model is predicting. In this case, the true 

positive predict by the model are greater compared to the 

false positives. However, the model could be further 

improvised by further tunning the hyperparameter in the 

training data for more elevated results.   

 

 
Figure 4 Confusion Matrix 

B. Discussion  

In this paper, a recurrent neural network with LSTM was 

employed for predicting fatigue using two sensors (IMU, 

HR). We demonstrated that neural networks can be used to 

predict fatigue. The study provides that fatigue for manual 

material handling could be employed with a large dataset 

with multiple sensor fusion. In the LSTM network we used 

three dense layers and with epoch set to 100 and batch size 

of 16 to train and fit the NN. However, the results show that 

there was an increase in the accuracy in the test data. The 

NN can be used to predict higher class instead of fatigue vs 

non-fatigue. The limitations to this work were the small 

size of the data set which does not represent a convincing 

sample of the fatigue prediction. In our estimation the 

research can capitalize in the framework and findings by 

elevating the size of the data set.          



VI. CONCLUSION 

Fatigue prediction is important in a manufacturing 

environment to reduce the risk of WMSD and also to 

prevent from decreased productivity. In this paper, 

recurrent neural network was employed to predict fatigue 

from the medium of sensors. However, compared to the 

literature the results are not very convincing, but one can 

argue that neural network is data hungry. This dataset was 

considerably a small dataset.  
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