
Abstract The Miocene epoch, spanning 23.03–5.33 Ma, was a dynamic climate of sustained, polar 
amplified warmth. Miocene atmospheric CO2 concentrations are typically reconstructed between 300 
and 600 ppm and were potentially higher during the Miocene Climatic Optimum (16.75–14.5 Ma). With 
surface temperature reconstructions pointing to substantial midlatitude and polar warmth, it is unclear 
what processes maintained the much weaker-than-modern equator-to-pole temperature difference. Here, 
we synthesize several Miocene climate modeling efforts together with available terrestrial and ocean 
surface temperature reconstructions. We evaluate the range of model-data agreement, highlight robust 
mechanisms operating across Miocene modeling efforts and regions where differences across experiments 
result in a large spread in warming responses. Prescribed CO2 is the primary factor controlling global 
warming across the ensemble. On average, elements other than CO2, such as Miocene paleogeography 
and ice sheets, raise global mean temperature by ∼2°C, with the spread in warming under a given 
CO2 concentration (due to a combination of the spread in imposed boundary conditions and climate 
feedback strengths) equivalent to ∼1.2 times a CO2 doubling. This study uses an ensemble of opportunity: 
models, boundary conditions, and reference data sets represent the state-of-art for the Miocene, but are 
inhomogeneous and not ideal for a formal intermodel comparison effort. Acknowledging this caveat, this 
study is nevertheless the first Miocene multi-model, multi-proxy comparison attempted so far. This study 
serves to take stock of the current progress toward simulating Miocene warmth while isolating remaining 
challenges that may be well served by community-led efforts to coordinate modeling and data activities 
within a common analytical framework.

Plain Language Summary As human activity continues to increase atmospheric carbon 
dioxide concentrations, scientists turn to warm intervals in Earth's history to develop insight into the 
behavior of the climate system under elevated carbon dioxide and temperature. One such interval is the 
Miocene epoch which has become increasingly relevant as reconstructions of Miocene atmospheric CO2 
concentrations point to values ranging between current concentrations of ∼400 ppm and those projected 
for the end of this century under Shared Socioeconomic Pathways 3 and 4. In this study, we evaluate the 
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Key Points:
•  A synthesis of Miocene modeling 

efforts, and surface temperature 
reconstructions, is presented within 
a single analysis framework

•  Miocene global mean surface 
temperature estimates span 
∼5.3°C–11.5°C higher than 
preindustrial, only ∼2°C is explained 
by non–CO2 boundary conditions in 
climate models

•  Some simulations overlap with 
reconstructed global mean surface 
temperature estimates but fail to 
capture the weak temperature 
gradient
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1. Introduction
The Miocene epoch (23.03–5.33 Ma) encompasses much of the range of climate states between the Ceno-
zoic endmembers of peak Eocene warmth and the modern ice-house state with extensive glaciation at both 
poles (Figure 1, Steinthorsdottir et al., 2020). Terrestrial and marine records show that Miocene climate 
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surface warming patterns simulated by a range of different climate models configured with Miocene 
paleogeography and CO2 concentrations spanning 200–850 ppm. We also synthesize available Miocene 
surface temperature reconstructions. The primary factor controlling the amount of global warming seen 
across the Miocene simulations analyzed is the CO2 concentration that was prescribed within a given 
simulation. On average, Miocene elements other than CO2, such as Miocene paleogeography and ice 
sheets, raise global mean temperature by ∼2°C. While some Miocene simulations with high CO2 forcing 
overlap with the reconstructed global mean surface temperature estimates for their target Miocene 
interval, they still generally fail to capture the reconstructed pattern of warming.

Figure 1. The Miocene within the Cenozoic. The Late Miocene (Tortonian and Messinian, 11.6–5.33 Ma) and Early 
Middle Miocene (Burdigalian, Langhian, and Serravallian, 20–11.6 Ma) are shown, as well as the MCO (16.75–14.5 Ma) 
shaded in pink. Multiproxy CO2 reconstructions are from Foster et al. (2017) and Sosdian et al. (2018). CO2 from leaf 
stomata is shown in green circles, pedogenic carbonate δ13C as black triangles, boron isotopes in foraminifera as pink 
stars, liverwort δ13C as blue octagons, and δ13C of alkenones as orange diamonds. The most likely fit through the data is 
shown as the black line and 68% and 95% confidence intervals are shown as dark and light gray bands. Benthic oxygen 
isotopic composition (δ18Oc) taken from Zachos et al. (2001, 2008). The time period abbreviations shown in the top bar 
are as follows: E, Eocene; M, Miocene, O, Oligocene; PE, Paleocene; P, Pliocene; Q, Quaternary.
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was significantly warmer than today and highly dynamic. Oxygen isotope records of benthic foraminifera 
(δ18Oc) show that peak Miocene warmth and minimum ice volume occurred in the Early to Middle Miocene 
(16.75–14.5 Ma), known as the Miocene Climate Optimum (MCO) (Figure 1). During the MCO, current re-
constructions suggest that sea surface temperatures (SSTs) were 8°C–10°C warmer than present in the high 
southern latitudes (Shevenell et al., 2004) and 10°C–15°C warmer in the high northern latitudes (Super 
et al., 2020), while deep ocean temperatures were ∼5°C–8°C warmer (Lear et al., 2000, 2015), leading to an 
estimated global mean surface temperature anomaly of 7.6°C  2.3°C compared to preindustrial (Goldner 
et al., 2014). The warmer conditions shifted the bioclimatic zones poleward (Pound et al., 2012). While the 
extent of the Greenland glaciation remains unclear (Thiede et al., 2011), it contributed negligibly to global 
ice volume and there is evidence to suggest that even during the late Miocene the Arctic experienced sea 
ice-free summers (Stein et  al.,  2016). Regions of Antarctica supported woody temperate vegetation that 
graded into tundra further inland with a much-reduced ice sheet extent (Pound et al., 2012; Sangiorgi et al., 
2018; Warny et al., 2009). Although cooler than the peak warmth of the MCO, in the late Miocene (11.6–
5.33 Ma), SSTs still ranged between 10°C and 15°C warmer than modern in the high latitudes, and 2°C–4°C 
warmer in the Tropics (Herbert et al., 2016; LaRiviere et al., 2012), while temperatures in the deep ocean 
are estimated to have been ∼4°C warmer than present (LaRiviere et al., 2012). Geochemical and ice-rafted 
debris records indicate an increasing prevalence of colder temperatures as cooling progressed into the late 
Miocene (Stein et al., 2016; Winkler et al., 2002). The wide dynamic range of Miocene climate implies either 
strong sensitivity to forcing or strong and highly variable forcings through the Miocene.

The driving forces behind Miocene warmth and its fluctuations remain enigmatic, and several aspects have 
been difficult to reconcile with CO2 reconstructions that are generally similar to modern or end-of-century 
projections (Figure 1). Typical proxy estimates for the Miocene are in the 300–600 ppmv range (Figure 1, 
Foster et al., 2012, 2017; Sosdian et al., 2018), although during the MCO, recent reconstructions suggest that 
CO2 may have been as high as 800–1,100 ppm (Sosdian et al., 2018; Stoll et al., 2019). A full description of the 
Miocene CO2 reconstructions and their uncertainties is given in Section 8 of (Steinthorsdottir et al., 2020). A 
prolonged carbon isotope excursion between ∼16.7 Ma and ∼13.5 Ma (the Monterey Excursion; Vincent & 
Berger, 1985) documents a marked perturbation of the carbon cycle at this time, modulated by orbital forc-
ing. It is suggested that this excursion is due to enhanced organic matter burial on submerged continental 
shelves and higher CO2 concentrations resulting in higher biological carbon isotope fractionation (Sosdian 
et al., 2020). A long-term decrease in the global carbon isotopic composition record for the late Miocene co-
incides with the long-term decrease in global temperatures, suggesting that carbon cycle changes were the 
driver for late Miocene global cooling. With CO2 concentrations in the 300–600 ppmv range, it has not been 
possible to simulate the observed polar amplified warmth of the Miocene, as well as the lack of summer 
sea-ice more typical of mid-to-late Miocene conditions (Stein et al., 2016).

Numerous studies have therefore explored the role of other potential mechanisms. Although geologically 
recent, paleogeographic differences between the Miocene and today are substantial. There were major dif-
ferences in ocean gateway configurations, such as connections between the Pacific and Atlantic Oceans, the 
Atlantic and Indian Oceans, and the Indian and Pacific Oceans, which today are either restricted or closed 
completely (Figure 2). Mountain building was occurring in all of the world's major mountain chains in the 
Miocene (see He et al., this issue), which transformed local hydrological regimes. Changes in the land sur-
face itself may also be important for driving global warmth. Smaller ice sheets at both poles likely contrib-
uted to the polar amplified warmth and the weaker latitudinal temperature gradient of the time. Vegetation 
distributions resulting from a warmer global climate may itself provide a stabilizing feedback mechanism 
to maintain that warmth (e.g., Bradshaw et al., 2015; Knorr et al., 2011). As described in more depth in the 
following section, while these mechanisms have been shown to contribute to warming in models, they fall 
short of explaining the full extent, and the polar amplified spatial structure, of Miocene warmth (also see 
summary in Steinthorsdottir et al., 2020).

In this study, we synthesize available Miocene modeling efforts, together with available terrestrial and ocean 
surface temperature reconstructions, within a single analysis framework. We evaluate the current range of 
model-data agreement, highlight robust mechanisms operating across Miocene modeling efforts, as well as 
the regions where the differences across models (coming from a combination of model differences in im-
posed non–CO2 Miocene boundary conditions and model feedbacks) result in a large spread in warming re-
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Figure 2. (a) The Middle and Late Miocene sea surface temperature reconstructions synthesized and used within our 
model-data comparison. The cross (plus) symbols indicate the average Middle (Late) Miocene site location, while filled 
circles indicate the modern site location. The color-coding of each circle indicates the type of proxy record available 
for each site. The contoured sea surface temperature field shown is derived from the multimodel mean of all of the 
simulations listed in Table 2 with Early Middle Miocene boundary conditions. (b) The Middle Miocene paleogeography 
is described and made available in this study (updated Herold, Huber, and Müller [2011], see supporting information). 
The red boxes highlight prominent paleogeographic features that evolved over the Miocene and into the Pliocene, 
namely: the Panama Gateway, Bering Strait, Barents Sea Landmass, Indonesian Seaway, Tethys Seaway, Greenland-
Scotland Ridge, and the Canadian Archipelago. See Table 4 which describes the key characteristics associated with the 
various baseline paleogeographic forcings used across the MioMIP simulations.
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sponses. In Section 2, we provide some background on Miocene modeling and the motivation for this study. 
In Section 3, we detail the Miocene modeling efforts analyzed, as well as the Miocene surface temperature 
records that we have synthesized to facilitate a model-data comparison and Miocene global mean surface 
temperature estimates. The intermodel analysis is presented in Section 4, where we discuss global mean 
warmth, simulated warming patterns and present the model-data comparison. We conclude with Section 5.

2. Background
Climate model simulations pertaining to the Miocene date to the early days of climate modeling itself. Ex-
periments to assess the role of uplift of the Himalayas and the Tibetan Plateau and of the American Rockies 
found that lower orography resulted in marked changes in precipitation patterns and warmer winter tem-
peratures, but that the magnitude of the temperature change simulated was insufficient to rule out the need 
for other climate forcings (Kutzbach et al., 1993; Ruddiman & Kutzbach, 1989). These early simulations 
used atmosphere-only models, however, and more recent coupled atmosphere-ocean models show that 
uplift of the Tibetan Plateau also impacts ocean circulation resulting in far-field warming (Su et al., 2018).

Several modeling studies have investigated the role of changes in ocean gateways. Miocene Ocean General 
Circulation Models (OGCMs) simulating an open Isthmus of Panama tend to have a net volume transport 
that is eastward from the Pacific to the Atlantic Ocean (Maier-Reimer et al., 1990; Mikolajewicz et al., 1993; 
X. Zhang et al., 2012). Water from the Pacific Ocean is fresher than that in the Atlantic Ocean, causing 
these modeling studies with an open Isthmus of Panama to simulate a freshening of the North Atlantic, a 
resulting weakening of North Atlantic Deep Water (NADW) formation and strength of the Atlantic Merid-
ional Overturning Circulation (AMOC). This reorganization of ocean circulation results in cooling of the 
Northern Hemisphere and warming of the Southern Hemisphere, but the global mean annual temperature 
changes are small (∼+0.25°C or less, Lunt et al., 2008). With a wide-open Panama Gateway, there no longer 
needs to be a strong relationship between NADW formation and the AMOC, the North Atlantic can im-
port water through the open Isthmus and through Tethys in the surface branch and export in through the 
Panama Gateway in the deep branch. Although the Isthmus would have been closing throughout the Mio-
cene, most proxy records show that NADW did not strengthen significantly until after the Miocene (Bartoli 
et al., 2005; Burton et al., 1997; Haug & Tiedemann, 1998; Lear et al., 2003; Ling, 1997; O'Dea et al., 2016). 
That said, NADW probably initiated and fluctuated in strength since the late Eocene (Coxall et al., 2018). 
Therefore, although the timing of emergence of the Isthmus is still hotly debated (e.g., Montes et al., 2012), 
tectonic changes in this region are not thought to be the cause of Miocene warmth. Together with the Isth-
mus of Panama, the depth and width of other ocean gateways may have also played a role in the Miocene 
temperature distribution. It has been suggested that the closure of the Tethys tropical connection between 
Indian and Atlantic Oceans, together with a deepening or widening of the Drake Passage, induced a reversal 
of the net ocean flow through the Isthmus (Omta & Dijkstra, 2003; von der Heydt & Dijkstra, 2006) approx-
imately in the Early Miocene. Before the Tethys closure, net transport through the Isthmus was toward the 
Pacific, while after closure, it was directed toward the Atlantic as several other Miocene GCMs have shown. 
Nevertheless, independent of the net flow direction in the Isthmus, GCM simulations show export of North-
ern Component Water formed in the Atlantic (though much weaker than present) toward the Pacific (von 
der Heydt & Dijkstra, 2006), keeping intermediate-to-deep waters relatively warm compared to the present 
day (Sijp et al., 2014); the latter holds in particular for the closed-Tethys situation, which is representative 
of most of the middle-to-late Miocene.

Modeling studies that have taken all of the reconstructed paleogeographic, ice sheet, and vegetation dif-
ferences into account simultaneously show that these changes alone (discounting any CO2 differences or 
orbital variability) make the Miocene world globally warmer than today. For preindustrial CO2 concentra-
tions, the models estimate that annual mean temperatures are warmer than preindustrial conditions by 
0.3°C–3°C (Bradshaw et al., 2012; Herold, Huber, Greenwood, et al., 2011; Herold, Huber, & Müller, 2011; 
Knorr et al., 2011) for the late Miocene and 3.1°C for the middle Miocene (Stärz et al., 2017) due to these 
nongreenhouse gas forcings. For middle Miocene boundary conditions, even with a slightly lower CO2 con-
centration than preindustrial (at 200 ppm), a global annual mean temperature of 1.7°C warmer than mod-
ern has been simulated (Frigola et al., 2018). The anomaly between the Miocene temperatures and modern 
temperatures scales nonlinearly with the CO2 concentration however, because of higher Miocene climate 
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sensitivity at higher CO2 concentrations (Bradshaw et al., 2015; Knorr & Lohmann, 2014). Miocene model 
experiments also show that the combined Miocene boundary conditions make the world wetter than today 
(Bradshaw et al., 2012, 2015; Frigola et al., 2018; Herold, Huber, Greenwood, et al., 2011; Herold, Huber, & 
Müller, 2011; Knorr et al., 2011; Stärz et al., 2017).

The inability of Miocene simulations to capture the full extent of the polar amplified warmth and merid-
ional temperature gradient reduction reflected in reconstructions is a problem that is not unique to the 
Miocene. Historically, it has been equally challenging to fully simulate the high-latitude warmth of the 
Eocene (Huber & Caballero, 2011; Huber & Sloan, 2001). That said, the latest DeepMIP effort which targets 
the Eocene has seen some improvement in the ability of models to simulate high-latitude warmth—three 
of the DeepMIP models (NorESM, GFDL, and CESM1.2) show improved skill in capturing elements of the 
polar amplification (Lunt et al., 2020) as reconstructed by a comprehensive synthesis of all the available 
Eocene data (Hollis et al., 2019). In the DeepMIP ensemble, the non–CO2 component of warming from 
preindustrial to Eocene boundary conditions ranges from 3°C to 5°C (Lunt et al., 2020). This indicates that 
a significant contribution to warming comes from paleogeographic forcing, including vegetation changes, 
and ice-albedo effects. The improved model-data agreement seen in these Eocene simulations is likely also 
related to the better representation of cloud microphysics overall (Kiehl & Shields, 2001; Sagoo et al., 2013; 
Zhu et al., 2019). Interestingly, two of the DeepMIP models that best represented the proxy data were also 
models that implemented adapted aerosol concentrations, either coupling aerosols to a new cloud micro-
physics scheme (CESM; Zhu et al., 2019) or including aerosol forcing as a new fixed boundary condition 
(GFDL; Hutchinson et al., 2018; Lunt et al., 2020). These aerosol changes influence cloud microphysics and 
hence the radiative properties of these simulations and represent a major advance in their physical realism, 
but one that is largely unconstrained by geological data (Huber, 2013).

If the Eocene is the warmer endmember for the Miocene, the Late Pliocene which has been a target of the 
Pliocene Model Intercomparison Project represents the cooler endmember. This model intercomparison 
project is now in its second phase (PlioMIP2, Haywood et al. 2016), with a more tightly constrained time 
slice defined compared to the first phase aimed at reducing uncertainty in the proxy data. Because the Late 
Pliocene paleogeography is much more similar to the modern day, the non–CO2 component of warming is 
much smaller than for the Eocene. Global annual mean surface air warming for the multi-model ensemble 
of PlioMIP2 is 3.2°C (with a range between 1.7°C and 5.2°C) relative to pre-industrial. All of these simula-
tions use an atmospheric CO2 concentration of 400 ppm. The multi-model-mean warming for PlioMIP2 is 
larger than seen in PlioMIP1 and is the result of contributions from recent models with modified aerosol 
and cloud microphysics, that have a relatively high climate sensitivity (Haywood et al., 2020). PlioMIP2 
models exhibit polar amplification that is in better agreement with proxies than in PlioMIP1 models (Hay-
wood et  al.,  2011,  2013), at mid and high latitudes, in part due to re-assessment of high latitude proxy 
records (McClymont et al., 2020), and in part due to changes in the configuration of the Bering Straits (Hay-
wood et al., 2020, Otto-Bliesner et al., 2017) in the model simulations. Pliocene model-data comparisons can 
also provide constraints on climate sensitivity (Hargreaves & Annan, 2016; Haywood et al., 2020; Renoult 
et al., 2020), the relationship between climate sensitivity and Earth system sensitivity (Haywood et al., 2020; 
Lunt et al., 2010), and the contribution to warming from non–CO2 forcings (Chandan & Peltier, 2018; Lunt, 
Dunkley Jones, et al., 2012; Lunt, Haywood, et al., 2012). Overall, the Pliocene represents a world that is in 
equilibrium with near-modern CO2 forcing, and exhibits a climate similar to that expected at the end of this 
century under relatively optimistic emissions scenarios (Burke et al., 2018).

Although the Miocene represents a climate state in-between that of the early Eocene and the mid-Pliocene, 
and presents unique modeling challenges, no formal MIP exists for the Miocene. The existing Miocene 
model-data comparison efforts have used different proxy data sets and validation techniques (Bradshaw 
et al., 2012; Goldner et al., 2014; Herold, Huber, Greenwood, et al., 2011; Herold, Huber, & Müller, 2011; 
Krapp & Jungclaus, 2011; Micheels et al., 2011), and are restricted to interpreting results in a single model 
framework. Here, we seek to take advantage of the fact that several Miocene modeling efforts have been 
conducted and evaluate them within a single, consistent, model-data comparison framework to establish 
not only the degree of model-data agreement in simulating Miocene warmth but also the spread in model 
responses.
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As a community, we have endeavored to take the first step toward the ideal solution of having a model-mod-
el and model-data intercomparison effort with uniform boundary conditions and standardized reference 
proxy data sets. Taking a similar approach as in the early steps of the DeepMIP process (Lunt, Dunkley 
Jones, et al., 2012; Lunt, Haywood, et al., 2012), we have surveyed the existing modeling experiments and 
sorted them into two groups based on the Miocene time period they have targeted: (1) Late Miocene exper-
iments with a paleogeography that falls within 11.6–5.33 Ma (Tortonian and Messinian) and (2) Middle to 
Early Miocene experiments with paleogeography that falls within 20–11.6 Ma (Burdigalian, Langhian, and 
Serravallian). Unlike a formal model intercomparison where the same boundary conditions are used in each 
model, it is difficult to isolate the model dependence of the climate response to specific forcing (e.g., CO2 vs. 
paleogeography). Nevertheless, the informal model intercomparison presented in this paper serves to pro-
vide a “multi-model-ensemble of opportunity” view of the spread in model responses to a range of Miocene 
boundary conditions and CO2 forcings, within a single model-data comparison framework; an approach 
that has previously been used in deep-time paleoclimate modeling (Lunt, Dunkley Jones, et al., 2012; Lunt, 
Haywood, et al., 2012). The results presented in this study serve to synthesize the current range of mod-
el-data agreement seen across Miocene modeling efforts to date, highlight robust mechanisms operating 
across Miocene modeling efforts, and take stock of the current progress toward simulating Miocene warmth 
while isolating remaining challenges. Our eventual aim is to catalyze a formalized and community-based 
MioMIP project.

3. Methods
3.1. Available Modeling Efforts

Several studies targeting the Miocene have been performed by modeling groups across the globe. In this 
section, we provide a brief overview of the simulations performed by these studies as summarized in Ta-
bles 1–3. Table 1 summarizes the modeling studies targeting the Late Miocene 11.6–5.33 Ma (Messinian and 
Tortonian), Table 2 summarizes the modeling studies targeting Middle/Early Miocene 11.6–20 Ma (Burdi-
galian, Langhian, and Serravallian). There are 10 Late Miocene and 31 Middle/Early Miocene experiments 
with a total of 41 experiments analyzed. Table 3 lists two additional sets of Miocene simulations from stud-
ies in which sensitivity to orbital changes was assessed. A summary of the key characteristics associated 
with the various baseline paleogeographic forcing used is provided in Table 4. All of the fully coupled model 
simulations have been run for at least 1,100 years and so the atmosphere and surface ocean have reached a 
state of near equilibrium.

CCSM3-NH: A series of simulations have been published using the National Center for Atmospheric Re-
search (NCAR) Community Climate System Model (CCSM3) to simulate Middle to Early Miocene climate 
utilizing the boundary conditions of Herold et al. (2008), that is, Herold et al. (2010) and You et al. (2009), or 
the updated boundary conditions of Herold, Huber, and Müller (2011), that is, Herold, Huber, Greenwood, 
et al. (2011) and Herold et al. (2012). The details of these CCSM3 simulations are summarized in Tables 1 
and 2. Table 4 summarizes the key features associated with the Herold, Huber, and Müller (2011) paleo-
geography boundary conditions which have been widely used by other groups and have formed the basis 
for some other Miocene boundary condition efforts. For the sake of this intercomparison study, output from 
the last 100 years of the CCSM3-NH simulation (Herold, Huber, Greenwood, et al., 2011; Herold et al., 2012; 
Table 2) run for 1,100 years have been provided, at which point global mean ocean temperature varied by 
less than 0.01° per century.

CCSM3 T42 (MARUM): CCSM3 T42 (MARUM) simulations have been performed for the periods just be-
fore (Middle Miocene Climate Optimum; MMCO) and after (Middle Miocene Glaciation; MMG) the Middle 
Miocene Climate Transition around 13–15 Ma (Table 2). These two experiments differ in the atmospheric 
CO2 concentration (400 ppmv in MMCO and 200 ppmv in MMG) and the volume of the Antarctic ice sheet 
(43-m difference in sea-level equivalent). In addition, two sensitivity experiments with respect to atmos-
pheric CO2 have been carried out: experiment MMCO_200 uses the MMCO Antarctic ice sheet but an 
atmospheric CO2 level of 200 ppmv, while MMG_400 uses the larger MMG ice sheet but an atmospheric 
CO2 level of 400 ppm. All other greenhouse gases, as well as ozone distribution, aerosols, solar constant, 
and orbital configuration, were set to pre-industrial levels. All Miocene experiments use Middle Miocene 
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global topography, bathymetry, and vegetation as described in Frigola et al. (2018). The experiments were 
integrated for a total of 1,500 years each, where the last 100 years were used for analyses.

CCSM4: Following on from Goldner et  al.  (2014) which used a “slab ocean”, fully coupled simulations 
have been conducted using version 1.0.5 of the Community Earth System Model with version 4 of the 
Community Atmosphere Model (the equivalent of CCSM4; Gent et  al., 2011). The CESM1.0 model im-
provements, in comparison to older generation models, are described in previous study focused on both 
modern-day climate (Bitz et al., 2012; Neale et al., 2010) and paleoclimate (Goldner et al., 2014; Shields 
et al., 2012); >2,000 years were simulated. The simulations were initialized with initial conditions from 
the prior CCSM3-NH simulations so that they equilibrated quickly, and were run with Early to Middle 
Miocene boundary conditions updated from Herold et al. (2008), Herold, Huber, and Müller (2011), and 
Herold et al. (2012). These updates to the paleogeography were extensive (Figure 2b) and not previously de-
scribed. We therefore provide a description of how these boundary conditions were constructed (supporting 
information S1) and make them available to the community (supporting information Data Set S1). These 
simulations used the bulk aerosol mode (BAM) with preindustrial aerosols prescribed.

CESM1-CAM5: The CESM1-CAM5 simulations are run using Miocene boundary conditions that are es-
sentially identical to those used in the CCSM4 simulations. The updated paleogeography described above is 
used throughout. Orbital parameters and other boundary conditions follow the pre-industrial configuration.

The main difference between the CCSM4 and CESM1-CAM5 cases lies in the physics of the atmospheric 
component. CAM5 has many improvements over its predecessors in its handling of clouds and aerosols 
(Bacmeister et al., 2012; Gettleman et al., 2008, 2010, 2015; Neale et al., 2010), radiative transfer (Iacono 
et al., 2008), deep convection (Neale et al., 2010), and shallow convection and moist boundary layer pro-
cesses (Bretherton & Park, 2009). The combination of these improvements in physical parameterization 
allows for the simulation of complete aerosol-cloud interactions of cloud droplet activation by aerosols, 
precipitation processes due to particle size-dependent behavior, and explicit radiative interaction of cloud 
particles. These simulations are run with the standard CAM5 3-mode modal aerosol mode (MAM3, X. Liu 
et  al.,  2012). The aerosol flux is tuned to be close to the preindustrial control flux (Dicks,  2019). Using 
MAM3 ensures self-consistent aerosol-cloud microphysical interaction.

As described in Zhou et al. (2018), these CESM1-CAM5 simulations were initialized from the end of the 
CCSM4 simulations (at 2,200 model years). The CCSM4 simulation was equilibrated with a surface radiative 
imbalance of 0.08 W m−2. The CESM1-CAM5 simulation used here was continued for another 1,800 years 
at which point the global mean surface temperature was nearly unchanged and the long-term mean surface 
radiative imbalance was 0.07 W m−2. These simulations were then extended, and the output was archived 
for this study.

COSMOS: COSMOS, with its ECHAM5 (Roeckner et al., 2003) atmospheric component and MPIOM (Mars-
land et al., 2003) oceanic component, has been used for simulating the Late Miocene in Knorr et al. (2011) 
and the Middle Miocene Climate transition in Knorr and Lohmann (2014). For further details regarding 
the paleogeography reconstruction and proxy-based reconstruction of the Late Miocene vegetation, refer to 
Micheels et al. (2007, 2011) and the references therein. The corresponding boundary conditions are avail-
able at PANGAEA (Knorr et al., 2019). Further details on ECHAM5/MPIOM are described in Jungclaus 
et al. (2006). Furthermore, Middle to Early Miocene simulations have been performed in a COSMOS model 
configuration (Huang et al., 2017; Stäerz et al., 2017) that additionally include dynamical vegetation as part 
of the land surface scheme JSBACH (Brovkin et al., 2009; Raddatz et al., 2007). The model setup targets the 
Middle to Early Miocene time period (∼23‒15 Ma) using the boundary conditions of Herold et al. (2008), 
including orography, paleobathymetry, and ice sheet adjustments. Additionally, a regional high-resolution 
bathymetric reconstruction comprising the North Atlantic/Arctic Ocean (Ehlers & Jokat, 2013) has been 
implemented.

Genesis-slab ocean: The Genesis simulations were performed to provide boundary meteorology to an 
Antarctic regional climate model; they have different Antarctic ice sheet extents and have extremes of as-
tronomical parameters that lead to highs (ecc. = 0.05, obliquity = 24.5°, longitude of precession = 270°) 
and lows (ecc. = 0.05, obliquity = 22.5°, longitude of precession = 90°) of insolation for Antarctica. Simu-
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lations were also performed with an astronomical configuration similar to the modern day (ecc. = 0, obliq-
uity = 23.5°). The atmosphere is coupled to a 50-m slab diffusive mixed-layer ocean and dynamical sea-ice 
model (Thompson & Pollard, 1997). The runs include dynamic vegetation and oxygen isotope tracing. The 
paleogeography is from Herold et  al.  (2008) with modifications to Antarctica. Simulations were run for 
50 years with 30 years used for analysis.
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Modeling effort Target time period Resolution Atm/Ocn
Length (years 

analyzed) CO2 levels (ppmv) Veg Aerosols

Genesis (slab  
ocean)

Middle Miocene 
(Herold 

∼20–14 Ma

T31/slab 50 (last 30) 280 Dynamic PI

840

2240

280

840

2,240

280

840

2,240

HadCM3L 
– Marzocchi

Late Miocene 
(Messinian)

3.75° × 2.5°/3.75° × 2.5° 200 plus 
additional 
2,100-year 

spin-up 
without 
orbital 

variability 
(last 50)

280 Dynamic PI

Table 3 
Orbital Parameter Sensitivity Experiments
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HadCM3L-Bradshaw: These simulations use the HadCM3LB-M2.1aD and HadCM3LB-M2.1aE (Valdes 
et al., 2017) coupled atmosphere-ocean general circulation models with an interactive vegetation scheme. 
The late Miocene simulations (HadCM3LB-M2.1aD—vegetation model with a 10-day coupling period) 
were run for 2,100  years and the middle Miocene simulations (HadCM3LB-M2.1aE—vegetation model 
with a 5-year coupling period) continue on from the late Miocene simulations and have been run for a fur-
ther 2,000 years. The last 50 years of the simulations are used for analyses. Both the late Miocene and the 
middle Miocene configurations use paleogeographies from Markwick (2007).
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Orbit Greenland ice sheet Antarctic ice sheet
Paleo-geographic 

forcing used Exp. names Exp. names (this study) References

3 different orbital 
configurations

No Fully Glaciated Herold et al. (2012) 1FUCObi 1FUCObi Gasson et al. (2016)

1FUMEbi 1FUMEbi

1FUWAbi 1FUWAbi

3FUCObi 3FUCObi

3FUMEbi 3FUMEbi

3FUWAbi 3FUWAbi

8FUCObi 8FUCObi

8FUMEbi 8FUMEbi

8FUWAbi 8FUWAbi

Partially glaciated 1MECObi 1MECObi

1MEMEbi 1MEMEbi

1MEWAbi 1MEWAbi

3MECObi 3MECObi

3MEMEbi 3MEMEbi

3MEWAbi 3MEWAbi

8MECObi 8MECObi

8MEMEbi 8MEMEbi

8MEWAbi 8MEWAbi

Unglaciated 1NOCObi 1NOCObi

1NOMEbi 1NOMEbi

1NOWAbi 1NOWAbi

3NOCObi 3NOCObi

3NOMEbi 3NOMEbi

3NOWAbi 3NOWAbi

8NOCObi 8NOCObi

8NOMEbi 8NOMEbi

8NOWAbi 8NOWAbi

Modern Reduced Reduced Markwick (2007) Tdiub tdiud “HadCM3L 
ModernOrbit” 

“HadCM3L 
125kOrbit”

Marzocchi et al. (2015), 
Marzocchi et al. (2016), 
Simon et al. (2017), and 
Marzocchi et al. (2019)

125k orbit min 
seasonalityMax 
seasonality NH

tdiue

Max seasonality SH tdiuf “HadCM3L min 
seasonality”  

“HadCM3L max 
seasonality NH”  

“max seasonality SH”

tdiug
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HadCM3L-Marzocchi: These orbital parameter sensitivity simulations are initialized from the end of 
the 2,100-year late Miocene simulation by Bradshaw et al. (2012), so the model setup is identical to that 
described above as “HadCM3L-Bradshaw” for the late Miocene, apart from version HadCM3LB-M2.1aE 
(Valdes et al., 2017) was used. These simulations are all run for an additional 200 years with varying orbital 
parameters. Climatological means of the last 50 years of simulation are used for analyses.

HadCM3L-Farnsworth: These simulations use the HadCM3LB-M2.1aD (Valdes et al., 2017) coupled at-
mosphere-ocean general circulation model with a dynamic vegetation scheme as used for the late Mio-
cene HadCM3L-Bradshaw simulations. The Getech Plc. paleogeographic (topography, bathymetry, and ice 
sheets) boundary conditions are the same as Farnsworth, Lunt, Robinson, et al. (2019) with stage specific 
solar luminosity for the Langhian, Tortonian, and Messinian (see Tables 1 and 2) as calculated by Gough 
et al. (1981). pCO2 is set to 400 ppm (as well as two sensitivity studies at 280 and 560 ppm) in line with proxy 
estimates (Foster et al., 2017). Each simulation is integrated for 7,422 model years and has reached equilib-
rium in both the atmosphere and deep ocean with climate means taken from the last 100 years of each run. 
Each simulation was initialized from a stationary state in the ocean with the atmosphere initialized from a 
preindustrial state (for full details see Lunt et al. [2017] and Farnsworth, Lunt, O'Brien, et al. [2019]).

IPSLCM5A2: These simulations use the IPSL-CM5A2 Earth System Model (Sepulchre et al., 2020), which 
is built upon IPSL-CM5A-LR; the Coupled Model Intercomparision Project Phase 5 (CMIP5) Earth System 
Model developed at IPSL (Institut Pierre-Simon Laplace; Dufresne et al., 2013). As IPSL-CM5A-LR, it is 
composed of the LMDZ atmospheric model (Hourdin et al., 2013), the ORCHIDEE land surface and vege-
tation model (Krinner et al., 2005), and the NEMO ocean model (NEMO v3.6, Madec, 2008), which include 
modules for ocean dynamics (OPA8.2), biochemistry (PISCES, Aumont et al., 2015) and sea-ice (LIM2). 

BURLS ET AL.

10.1029/2020PA004054

14 of 40

Baseline paleogeographic forcing used
Panama 
gateway

Bering 
strait Barents sea landmass

Indonesian 
seaway

Tethys 
seaway

Greenland-
Scotland ridge

Canadian 
archipelago

Middle and early Miocene

Herold, Huber, and Müller (2011) Open Closed Present Open Open Deep Closed

Described in this article (updated Herold, 
Huber, and Müller [2011], see supporting 
information)

Open Closed Present Open Open Shallow Closed

Frigola et al. (2018) which is based on Herold 
et al. (2012), Hall (2012), and Montes 
et al. (2012)

Open Closed Present Open Open Deep Closed

Middle Miocene (Herold) + regional 
bathymetry reconstruction (15 Ma) North 
Atlantic/Arctic (Ehlers & Jokat, 2013)

Open Closed Present Open Open Deep Closed

ERC MAGIC Poblete et al. (accepted) Open Closed Present Open Closed Deep Closed

Z. Zhang et al. (2014); 20 Ma Open Closed Present Open Open Shallow (less 
than 450 m)

Closed

Getech Plc. Open Closed Filled with land in region of 
LGM Fennoscandian ice 
sheet

Open Closed Shallow Closed

Late Miocene

Markwick (2007) Open Closed Present Open Closed Deep Closed

Tortonian (11–7 Ma Micheels et al. (2011) with 
minor modifications cf. Knorr et al. (2011)

Open Closed Present Open Closed Deep Open

Getech Plc. Open Closed Present Open Closed Deep Closed

Z. Zhang et al. (2014); 10 Ma Open Closed Present Open Closed Shallow (250–
300 m)

Closed

Table 4 
Description of Key Characteristics Associated With the Various Baseline Paleogeographic Forcing Used
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Atmospheric and oceanic grids are connected via a coupler (OASIS, Valcke, 2006). The ocean domain is an 
irregular tri-polar grid (ORCA2, Dufresne et al., 2013; Madec & Imbard, 1996). For more detailed descrip-
tions of the model and its different components, the reader is referred to Sepulchre et al. (2020).

NorESM-L: These simulations use NorESM-L which couples the spectral Community Atmosphere Model 
(CAM4) (Eaton, 2010; Neale et al., 2013) and the Miami Isopycnic Coordinate Ocean Model (MICOM). 
NorESM-L performs well in simulating the pre-industrial climate (Z. S. Zhang et al., 2012) and has good 
skill in simulating paleoclimates (Z. Zhang et  al.,  2013; Z. Zhang et  al.,  2014). Detailed introduction of 
NorESM-L can be found in Z. S. Zhang et al., 2012; Bentsen et al., 2013, and the Miocene boundary condi-
tions can be found in Z. Zhang et al. (2014).

3.2. Available Temperature Reconstructions

Here, we describe the proxy data sources used in the model-data comparison shown.

3.2.1. Late and Middle Miocene Terrestrial Mean Annual Temperature Estimates

The Bradshaw et al. (2012) synthesis has been used, as is, to provide Late Miocene terrestrial Mean Annual 
Temperature (MAT) estimates. A new synthesis of global terrestrial MATs has been generated for the Middle 
Miocene through the updating and expansion of the Pound et al. (2012) and Goldner et al. (2014) syntheses. 
Most estimates are from fossil plant data and use either the Co-existence Approach, CLAMP, or Leaf Margin 
Analysis. The Co-existence Approach uses the modern climatic range of a fossil taxons nearest living relative to 
determine the climatic envelope of co-existence for a fossil assemblage (Mosbrugger & Utescher, 1997; Utescher 
et al., 2014). CLAMP and Leaf Margin Analysis use the morphological characteristics of fossil leaves to de-
termine climatic parameters (Uhl et al., 2003; Wolfe, 1971; Yang et al., 2011). The new synthesis expands the 
original data sets of 52–110 sites with important additional localities in the southern hemisphere (Table S1). Ad-
ditional data points have been synthesized from the published literature with a cutoff date of October 2019. To 
maximize geographic spread, some sites with published taxa lists and no climate reconstructions have had MAT 
estimates reconstructed. New MAT reconstructions are based upon the Co-existence Approach, following the 
advice of Utescher et al. (2014) and the updated data set of Pound and Salzmann (2017). All error margins and 
uncertainty ranges follow the published authors, unless none were provided in which case a 5°C uncertainty 
range was applied. A subset of the records within this new Middle Miocene MAT data set, with ages that fall be-
tween 14.5 and 16.75 Ma, are used to estimate MCO global mean surface temperature as outlined in Section 3.4.

3.2.2. Late, Middle Miocene and MCO Sea Surface Temperature Estimates

Published Miocene SST reconstructions (Mg/Ca, Uk
37, and TEX86) have been synthesized from the litera-

ture to provide Late and Middle Miocene mean annual SST estimates (Figure 2 and Table S2). The Herbert 
et al.  (2016) Uk

37 synthesis was used as a starting point. Both the previously published and new records 
within this data set were recalibrated/calibrated by Herbert et al. (2016) using the Müller et al. (1998) cali-
bration. Any additional Miocene SST reconstructions not included in Herbert et al. (2016) were then added, 
without any recalibration or age model adjustments (i.e., the original calibrations and age models were 
used). A community effort to place all available records within a common calibration and age model frame-
work, similar to the recent Eocene effort of Hollis et al. (2019), is planned, for which the summary provided 
in Table S2 can serve as a starting point together with new records published as part of this special issue.

The majority of the Miocene SST records are Uk
37 records to which we assign a 95% confidence interval un-

certainty of ±3°C (K. T. Lawrence et al., 2007). This value is aligned with one standard deviation uncertainty 
estimates of ±1.1°C (Conte et al., 2006) to ±1.5°C (Tierney et al., 2018). Care needs to be taken in tropical 
applications of the Uk

37 ratio especially during past warm intervals because the ratio reaches saturation and 
thus the thermal limit of the paleothermometer at temperatures below the maximum surface water temper-
atures in the modern tropical ocean (Tierney et al., 2018). The remainder are Mg/Ca or TEX86 records. Care 
needs to be taken when interpreting TEX86 records as they have been shown to be influenced by tempera-
ture signals below the surface mixed layer (Lopes dos Santos et al., 2010). For the TEX86 uncertainty esti-
mates, we use the stated 90% or 95% confidence intervals published with a given record or convert the stated 
one standard deviation uncertainty estimate to a 95% confidence interval. Care also needs to be taken when 
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using Miocene age Mg/Ca records given uncertainties in the Mg/Ca of seawater, salinity, and pH (Gray & 
Evans, 2019; Holland et al., 2020). Therefore, whilst most modern Mg/Ca-temperature calibrations have a 
standard deviation on the order of ±1.2°C (Anand et al., 2003), here we assign a 95% confidence interval 
uncertainty of ±4°C on absolute Mg/Ca SSTs. This Mg/Ca uncertainty estimate is based on the average 95% 
confidence interval assigned to the Mg/Ca records synthesized for the Eocene in Hollis et al. (2019), where 
the DeepMIP community did a thorough assessment of the impacts of the above-mentioned factors on Mg/
Ca uncertainty for the Eocene. While a comparable assessment for the Miocene Mg/Ca records is planned, 
this serves as an appropriate intermediate estimate. Given that the number of ocean surface temperature 
records from high latitude regions is limited, future analysis may consider comparing against published 
benthic temperature records.

Late Miocene reconstructed values are defined as all available estimates from a given site falling between 
11.6 and 5.33 Ma and Middle Miocene reconstructed values are defined as all available estimates falling 
between 15.97 and 11.63 Ma. It is important to note that the records differ in temporal resolution and while 
some records span the entire interval, others cover only a portion. To partially address the caveat that some 
records are more representative of the end of the Middle Miocene interval while others the beginning, and 
given that significant cooling occurs toward the end of the Middle Miocene (end of the Langhian though the 
Serravallian), the sensitivity of the model-data SST bias results to focusing on a narrower interval within the 
MCO (14.5–16.75 Ma) has been assessed—noting however that fewer sites are available for the comparison 
after this refinement.

3.3. Model-Data Comparison Methodology

The model-data comparison methodology employed in Section 4.3 is similar to that used in previous Mi-
ocene studies (Bradshaw et al., 2012, 2015). For each site, the one standard deviation (68%) uncertainty 
intervals are added to the mean reconstruction values across the given timeslice and the site location is 
translated back to an estimated paleolocation. The method used to estimate these paleolocations uses plate 
reconstructions consistent with the paleogeographies described in Markwick and Valdes (2004) that were 
based on Rowley (1995, pers. comm.). All model output is interpolated, using bilinear interpolation, to a 
common 1-degree by 1-degree grid. Reconstructed values are compared to the minimum and maximum 
values simulated in the model grid cell containing the reconstructed data, and all adjacent model grid cells. 
This allows for data location uncertainties and model uncertainties such as the misplacement of large-scale 
climate features (it is unreasonable to expect a model to reconstruct the exact climate of a single grid cell, 
also note that by using degrees this encompasses a larger zonal distance in the tropics than high latitudes). 
Since the model simulations and data reconstructions are ranges of possible values rather than a single 
value, the term overlap is used to define where the two value ranges are consistent (see Figure S1). Bias be-
tween the model and data is determined where there is no overlap between the model and data uncertainty 
ranges and the magnitude of this bias is determined by the degree of separation between the uncertainty 
intervals of the two data sets (see Figure S1, note that as illustrated in Figure S1 this represents the mini-
mum possible bias within the given uncertainty ranges). When, for a given model setup, a grid point that 
corresponds with a given terrestrial MAT (SST) site location, as well as its neighboring grid points, are in the 
ocean (over land) the site is removed from the bias calculation.

Note that rather than using the mean reconstructed SST values for the given time interval, ± the assigned 
data uncertainty, an alternative approach would be to fully encompass the variability in SST estimates seen 
across the Late Miocene, Middle Miocene, and MCO time intervals and use maximum and minimum re-
corded values plus uncertainty—as in Bradshaw et al. (2012, 2015). Given that the SST reconstructions have 
varying temporal resolutions, and are not collocated in time, this approach has the potential to mask spatial 
covariance signals (e.g., a higher resolution record can capture more of the sample variance even when the 
two samples have similar means, which in turn could lead to a smaller “bias” derived using the approach 
outlined above, even though the means are similar). Given that this paper focuses on the ability of Miocene 
simulations to represent gross features of Miocene warmth, we feel that the use of mean reconstructed SST 
values is more appropriate in this context.
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3.4. Global Mean Surface Temperature Estimates

Global Mean Surface Temperature (GMST) estimates for the Late Miocene, Middle Miocene, and MCO are 
calculated using the proxy MAT and SST syntheses compiled (Section 3.2). We use a method that has been 
previously employed to provide Eocene GMST estimates. Despite its simplicity, when applied to the same 
set of Eocene temperature reconstructions (Hollis et al., 2019), this method produces values that are largely 
consistent with a range of other methods (Inglis et al., 2020). The zonal mean temperature (T) profile at sea 
level is approximated using a simple model:

     T cosa b c (1)

where coefficients a, b, and c are chosen to minimize the sum of the squared residuals relative to the Mi-
ocene surface temperature proxy data (Figure 3). As demonstrated in Figure 3 of Inglis et al. (2020), this 
model provides an accurate approximation of the modern  T  profile. For both the MAT and SST data, we 
account for the uncertainty in each temperature estimate by assuming a normal probability distribution 
around each temperature estimate with the stated uncertainty interval treated as the 90% confidence in-
terval. For the MAT data, we also account for the uncertainty in the elevation of each site by assuming a 
skew-normal distribution with a 90% confidence interval equal to the lowest and highest elevations within 
all paleotopographic grid points adjacent to the given site (with a lower bound of zero). For the Middle Mi-
ocene and MCO calculations, the paleotopography from the Middle Miocene paleogeography described in 
this article (updated Herold, Huber, and Müller [2011]) is used, while the Knorr et al. (2011) paleogeogra-
phy is used for the Late Miocene. The temperature and elevation distribution at each site is then randomly 
sampled and corrected to sea level by applying a lapse-rate adjustment of 6 K/km. This implies that errors 
in the paleotopography may influence the estimate of global mean surface temperature, and the resolution 
and fidelity of the paleotopography used will be a possible source of errors when the terrestrial data is in-
cluded. Using a standard Monte Carlo bootstrapping method, we resample the same number of data points 
with replacement and find the coefficients in Equation 1 that best fit the sub-sampled data. A probability 
distribution for  T  is found by repeating this procedure 10,000 times. The result is shown in Figure 3, with 
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Figure 3. (Top row) Average zonal mean surface temperature estimate (red line), ± one standard deviation (red shading), computed from proxy MAT (green) 
and SST (purple) data for (a) the Late Miocene, (b) Middle Miocene, and (c) MCO. (Bottom row) Average zonal mean surface temperature estimate calculated 
using only the SST (purple) data for (d) the Late Miocene, (e) Middle Miocene, and (f) MCO.
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shading indicating ± one standard deviation. The latitudinally weighed average of  T  is taken to provide 
an GMST estimate with an associated uncertainty of one standard deviation.

3.5. Zonal Mean Energy Balance Analysis

To establish the relative contribution of energy flux convergence and each radiative component to the 
meridional warming patterns within the Miocene simulations, we employ a 1-D zonal mean energy bal-
ance analysis framework (Feng et al., 2017; Heinemann et al., 2009; Hill et al., 2014; Lunt, Dunkley Jones, 
et al., 2012; Lunt, Haywood, et al., 2012; Lunt et al., 2020). 1-D energy balance is used to approximate zonal 
mean surface temperature:

                   
4

1t toaC T SW H T (2)

where  T  is the zonal mean surface temperature, a function of latitude,  . 
toaSW  is the incoming short-

wave radiation at the top of the atmosphere,   the planetary albedo defined as 



 toa

toa

SW
SW

, H is the com-

bined atmospheric and oceanic energy flux convergence defined as    net net
toa toaH SW LW ,   is a measure 

of the emissivity of the atmosphere where 



 toa

surf

LW
LW

, and C is the surface heat capacity. When applied 

to equilibrated or near equilibrated, annual-mean, climatological fields, the term on the left-hand side is 
negligible, and simulated zonal mean surface temperature profiles are well approximated by the balance 
on the right-hand side of Equation 2. This balance is between net downward shortwave, net outgoing long-
wave, and the convergence of energy by atmospheric and ocean energy transport, such that the solution for

       
   

   
  

  

      
 
 

0.25
1

, ,
toaSW H

T T H 

The change in  T  between each Miocene experiment and its respective control is then 
           Δ , , , ,T T H T H , where the prime represents the control simulation. Given 

that changes in  ,   and H are small relative to their absolute values, the contribution of chang-
es in emissivity, albedo and heat transport can be approximated as   ΔT    Δ emmT    Δ albT  

 Δ tranT , where           Δ , , , ,emmT T H T H ,           Δ , , , ,albT T H T H  and 

          Δ , , , ,tranT T H T H .

Using clear-sky (cs) radiative fluxes Δ emmT  can be decomposed into the contribution due to the greenhouse 
effect (CO2, water vapor, and lapse rate),            Δ , , , ,gg cs cs cs cs cs csT T H T H , and longwave cloud 
changes         Δ Δ Δlwc emm ggT T T . Similarly Δ albT  can be decomposed into the contribution of clear-
sky changes due to surface albedo and aerosols,            Δ , , , ,salb cs cs cs cs cs csT T H T H , and shortwave 
cloud changes         Δ Δ Δ .swc alb salbT T T

There are limitations in this diagnostic approach, particularly when it comes to separating out the changes 
due to clear-sky and cloud radiative forcing in the presence of sea-ice, and we have not separated the contri-
bution of changes in surface elevation from the greenhouse effect. Nevertheless, it provides insight into the 
relative contribution of the five components,   ΔT       Δ Δgg lwcT T     Δ Δsalb swcT T   Δ tranT , 
based on what was feasible given the output available within our MioMIP data set.

4. Results
4.1. Global Mean Temperature

Across all the Miocene experiments, which span a range of models and paleogeographic boundary con-
ditions, prescribed CO2 concentration exerts the primary control on the global mean temperature change 
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relative to the preindustrial control climate, explaining around 75% of the variance (Figure 4a). The best 
fit regression across these experiments is for a climate sensitivity of 0.97 –2/Wm℃  which assuming ∼3.7

–2Wm  per CO2 doubling (this is less valid when doubling at higher CO2; Etminan et al., 2016) translates into 
∼3.6°C per doubling. This first-order linear relationship can be used to provide a few additional insights 
based on this particular ensemble performed with a broad range of boundary conditions reflective of how 
conditions may have changed throughout the Miocene. First, the X-intercept suggests that the mean impact 
of the range of non–CO2 Miocene boundary conditions used is to raise global mean surface temperature by 
1.96°C (this statement ignores nonlinear interactions between CO2 induced temperature changes and tem-
perature changes induced by other changes in the boundary conditions but provides an insightful starting 
point). Second, deviations from this first order linear relationship range from −1.87°C to 2.39°C providing 
an indication of the spread in warming responses arising due to a combination of the spread in imposed 
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Figure 4. (a) The global mean surface temperature change (relative to the preindustrial control) versus prescribed atmospheric CO2 concentration. The 
green, gray, and red shading indicate the Late Miocene, Middle Miocene, and MCO global mean surface temperature change estimates derived from the mean 
annual terrestrial and sea surface temperature reconstructions (Figure 3, top row), while the crosses show the equivalent global mean surface temperature 
change estimates based only on the sea surface temperature proxies (Figure 3, bottom row). (b and c) Global mean surface temperature versus (b) the tropics 
(30°S–30°N) to high latitude (60–90°N and °S) temperature difference and (c) the tropics (30°S–30°N) to middle latitude (30–60°N and °S) temperature 
difference. The green, gray, and red crosses indicate the Late Miocene, Middle Miocene, and MCO estimates derived from the mean annual terrestrial and sea 
surface temperature reconstructions (Figure 3, top row).
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boundary conditions, as well as the spread in climate feedback strengths across models. Using the above 
stated climate sensitivity estimate of 0.97 –2/Wm℃  as an example, this spread in global mean temperature 
responses is equivalent to an uncertainty of 4.4 –2Wm  or 1.2 times the forcing from a CO2 doubling.

As described in Section 3.4, GMST estimates ± one standard deviation have been calculated using the Late 
Miocene, Middle Miocene and MCO syntheses described in Section 3.2. Two different estimates have been 
derived for each interval, first an estimate derived using both the terrestrial MAT and SST data sets (Figure 3, 
top row), and second an estimate based on only the SST data (Figure 3, bottom row). When both the terrestrial 
MAT and SST are included, this method estimates Late Miocene GMST as 19.30°C ± 0.98°C, Middle Miocene 
GMST as 21.21°C ± 0.56°C and MCO GMST as 22.93°C ± 1.01°C. If the terrestrial sites are excluded, these 
GMST estimates based only on SST reconstructions are substantially warmer: Late Miocene GMST 21.95°C ± 
0.81°C, Middle Miocene GMST 24.46°C ± 0.81°C and MCO GMST 25.47°C ± 1.17°C. There are several rea-
sons why the terrestrial data might bias the estimate cold, including calibration techniques biased toward the 
modern temperature range and that many of these records are from mountain ranges (while we have applied a 
lapse rate correction, it is only as good as our elevation estimate derived from a low resolution paleotopography 
product which might lead to a cold/warm biasing). On the other hand, the number of SST reconstructions is 
limited such that increasing the sample size is needed to constrain the large uncertainty in GMST that falls out 
of our analysis. Using a preindustrial value of 14°C (Hansen et al., 2013), Figure 4a compares these Miocene 
GMST estimates with the simulated GMST changes. For the Middle Miocene and MCO, with the exception 
of the COSMOS Late Miocene simulation with 450 ppm CO2, only Middle to Early Miocene simulations with 
840–850 ppm CO2 intersect with the GMST change estimates based on both terrestrial MAT and SST. All the 
simulations fall below the higher SST-only Middle Miocene and MCO GMST change estimates. Of the Late 
Miocene simulations, the COSMOS simulation with 450 ppm and 25% of the modern Antarctic ice sheet 
height, and the NorESM-L simulation with 560 ppm CO2, intercept the reconstructed Late Miocene GMST 
change estimate based on both terrestrial MAT and SST. None of the Late Miocene simulations intercept the 
reconstructed Late Miocene GMST change estimate based only on SST.

4.2. Warming Patterns

Starting with the zonal-mean changes in surface temperature (Figures S2 and S3), across the entire en-
semble the magnitude of tropical warming spans ∼0°C–8°C, while high-latitude warming (latitude > 60°N 
and °S) spans ∼0°C–38°C in the SH and ∼0°C–18°C in the NH. While there is substantial spread in its 
magnitude, polar amplified warming is a robust feature across the ensemble (Figure 5). The wide range of 
warming responses seen in the SH reflects the range of boundary conditions prescribed for the Antarctic Ice 
Sheet given the uncertainty in its evolution across the Miocene. Interestingly, once the zonal-mean respons-
es are stratified by prescribed CO2 concentration, there does not appear to be a consistent mapping between 
the degree of high-latitude warming and tropical warming, with the degree of polar amplification ranging 
substantially across the experiments (e.g., when looking at the 560 ppm experiments in Figure S3 widely dif-
ferent high latitude warming due to varying ice sheet extents has a limited impact on tropical temperatures). 
This result points to a somewhat limited impact of high-latitude glacial changes on the tropics relative to 
the more systematic influence of CO2 on tropical temperature (Figure 5). This feature appears to hold not 
only across the different models, but within a given model, namely HadCM3L, for which experiments with 
a range of Antarctic ice-sheets display considerable variability in high-latitude surface temperature but 
limited variability in tropical temperature (Figure S3).

Stratifying the energy balance analysis by prescribed CO2 concentration we see that a stronger polar green-
house effect (due to CO2, water vapor and lapse rate) and decreased surface albedo, are the dominant con-
tributors to the polar amplified warming—a result consistent with the literature on future climate change, 
for example, Pithan and Mauritsen (2014). One caveat with differencing the all-sky and clear-sky to separate 
the surface and cloud albedo components is that the masking of surface albedo changes by clouds is not 
adequately deconvolved, particularly in the presence of sea ice. For example, in a polar region where cli-
matologically high cloud cover largely masks the influence of surface albedo, the method will overestimate 
the contribution of reduced surface albedo given that the cloud albedo is taken as the residual between total 
albedo and surface albedo. Therefore, the method can incorrectly indicate a cooling signal due to cloud 
albedo changes even if cloud properties remain similar to the control. Given this caveat, the high-latitude 
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cooling/warming signal seen in Figure 5 due to changes in cloud/surface albedo may not be as strong as 
the analysis suggests. Regardless, the total albedo change due to the combined effect of surface and cloud 
albedo changes is a dominant driver of high-latitude warming. Interestingly, across the ensemble, changes 
in oceanic and atmospheric energy flux convergence tends to warm the southern high-latitudes and cool 
the northern high latitudes (there are of course exceptions, Figures S2 and S3). Cloud longwave forcing are 
generally second order. Equatorward of ∼60°N and °S the warming signal is generally more uniform with 
the greenhouse effect term dominating as a function of CO2 concentrations. With this uniformity in mind it 
is not surprising that while the tropics to high-latitude temperature difference generally scales as a function 
of global warming across the ensemble (Figure 4b), the tropics to mid-latitude temperature difference only 
displays a weak sensitivity, with the exception of the NorESM (Figure 4c).

Moving beyond the zonal-mean, the two-dimensional annual mean surface temperature changes for each 
of the Late and Middle to Early Miocene simulations, relative to their preindustrial control simulations, are 
shown in Figures S4 and S5, respectively. The limited impact of high-latitude glacial changes relative to CO2 
forcing on tropical warming is further illustrated when looking at the two-dimensional warming patterns 
stratified according to imposed CO2 concentration (Figure  6). The ensemble mean captures the average 
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Figure 5. The multi-model-mean of the energy balance analysis for the set of Late Miocene experiments with (a) 278 or 280 ppm, (b) 350–450 ppm, and (c) 
560 ppm CO2, and the set of Middle-Early Miocene experiments with (d) 278 or 280 ppm, (e) 350–450 ppm, (f) 560 ppm, and (g) 840/850 ppm CO2. Note that 
the variables required for this analysis were not available for the HadCM3L Tortonia, Messinian, and Langhian experiments, see Figures S2 and S3 for the 
individual experiments.
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response to a given CO2 concentration across a range of models and Miocene boundary conditions, and 
broadly indicates an increase in the degree of polar amplification with CO2. When looking at the variability 
in warming for a given CO2 range, the influence of the range of boundary conditions prescribed for the Ant-
arctic Ice Sheet is most evident, giving rise to a substantial range in warming responses over the Antarctic 
continent. Particularly striking is the limited footprint of this variability. Other dominant sources of spread 
in the surface temperature response for a given CO2 concentration include differences in continental warm-
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Figure 6. (Left) The multi-model-mean of the annual mean surface temperature change relative to the preindustrial control for the set of experiments with (a) 
278 or 280 ppm, (c) 350–450 ppm, (e) 560 ppm, and (g) 840/850 ppm CO2. (Right) The standard deviation of this temperature change across the experiments 
making up each set. The continental outline from the updated Herold, Huber, and Müller (2011) paleogeographic boundary conditions described in this study 
has been used (see supporting information).
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ing. Hotspots like North Africa are presumably due to variability in vegetation changes, either prescribed or 
dynamic. While differences in prescribed orography may be more important in regions like Southern Asia.

Variability in ocean warming seen across the MioMIP ensemble, once stratified by CO2 concentration, is 
muted relative to the spread in warming signals seen over the continents (Figure 7, note the difference in 
the standard deviation (STD) color bar range when compared to Figure 6), but still substantial. There are 
several hotspots of large spread in the response seen across the models. First, the spread across models in 
the degree of warming experienced in the Pacific cold tongue region (typically the central to south-eastern 
equatorial Pacific, but depending on model biases, this can extend well into the western Pacific) is larger 
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Figure 7. (Left) The multi-model-mean of the annual mean sea surface temperature change relative to the preindustrial control for the set of experiments with 
(a) 278 or 280 ppm, (c) 350–450 ppm, (e) 560 ppm, and (g) 840/850 ppm CO2. (right) The standard deviation in this temperature change across the experiments 
making up each set. The continental outline from the updated Herold, Huber, and Müller (2011) paleogeographic boundary conditions described in this study 
has been used (see supporting information).
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(STD between 2°C and 4°C) than in the Indo-Pacific and eastern Pacific warm pool regions (STD < 2°C). 
This result indicates that for a given CO2 forcing there is considerable spread across models in the warming 
of equatorial upwelling regions relative to the rest of the tropics, and hence in the zonal gradient response. 
This disagreement in the response of the tropical Pacific to warming across models is not unique to simu-
lating the Miocene. There is considerable disagreement across CMIP models in the historical and projected 
response of the tropical Pacific (Kociuba & Power, 2015), due to complex and competing atmosphere-ocean 
interactions operating on a range of timescales (Heede et al., 2020). Other hotspots in the spread in the 
SST response include the subpolar gyres in the North Atlantic and Pacific basins and the Southern Ocean. 
Possible explanations for differing model responses in these regions include differing dynamical responses 
in wind-driven and thermohaline ocean circulation or regional cloud feedbacks. Alternatively, the model 
circulation responses might be dynamically similar but there are differences in the extent to which gyre 
boundaries have shifted.

Speaking specifically to the role of the spread in shortwave cloud feedbacks, Figure S7 confirms that the 
above-mentioned hotspots of variable SST responses do tend to correspond with hotspots of variable cloud 
albedo responses - clouds being the primary cause of TOA albedo changes over ocean regions too warm for 
sea-ice (Figure S7). There are several notable features in the model mean TOA albedo response stratified by 
CO2 forcing. First, the north-south dipole signature seen in the eastern equatorial Pacific for all CO2 concen-
trations indicates a southward shift in convection and the ITCZ. Similarly, increased albedo in the central 
Pacific relative to the western Pacific Maritime continent region is indicative of an eastward expansion of 
tropical convection in the Pacific basin, with a similar westward expansion in the Indian Ocean, a feature 
consistent with the enhanced ensemble mean SST warming in these regions relative to the western Pacific 
(Figure 7). Second, the model mean TOA albedo decreases over the subtropical to mid-latitude ocean, more 
so at higher CO2 levels (Figure S7). This shortwave cloud feedback mechanism (Figure 5) contributes to 
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Figure 8. (Left) The multi-model-mean of the annual mean surface temperature change relative to the preindustrial control for the Orbital sensitivity 
simulations outlined in Table 3 (a) HadCM3L, (c) Genesis (Table 3, only the simulations that have 280 ppm CO2). (right) The standard deviation in this 
temperature change across the experiments making up each set of (b) HadCM3L, (d) Genesis 280 ppm CO2 experiments. Note. That the same color bar as in 
Figure 5 has been used to facilitate comparison. See Figure S6 for a version of the standard deviation plots that has a colorbar that ranges from 1°C to 10°C.
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weaker midlatitude to tropical surface temperature gradients with higher CO2, but as the model-data com-
parison results in the next section reveal, this does not manifest in enough midlatitude warming to match 
reconstructed SSTs from these latitudes—with perhaps the exception of the Late Miocene NH at 560 ppm. 
This in turn has implications for the ability of Miocene simulations to reproduce the reconstructed weaken-
ing of the meridional SST gradient between the tropics and the subtropics to mid-latitudes (Figure 4c); and 
potentially the enhanced warming seen in the eastern equatorial Pacific sites following the ocean tunnel 
mechanism - whereby the ocean wind-driven subtropical cells communicate subtropical warming signals 
to equatorial upwelling regions (Erfani & Burls, 2019; Fedorov et al., 2015). Third, Southern Ocean TOA 
albedo increases poleward of ∼50°S, a feature seen in future projections associated with a southward shift 
in the storm tracks (Ceppi et al., 2014; Shaw et al., 2016). Finally, reductions in both land and sea ice lead to 
model mean TOA albedo decreases in both the NH and SH high latitudes, with variability in the prescribed 
extent of ice sheets leading to the large STDs seen over both Antarctica and Greenland (Figure S7).

Sensitivity tests to differences in astronomical parameters were performed with two models in the MioMIP 
ensemble (Figure 8). Compared with the sensitivity to other uncertain boundary conditions, these results 
show important, yet relatively small (comparing Figure 8 with Figure 6), and regional, surface temperature 
sensitivity to changes in orbit. Simulations with differences in atmospheric CO2 and Antarctic Ice Sheet 
extent show an increasing sensitivity to astronomical forcing with decreasing CO2 and with decreasing ice 
sheet extent (Figure S6). The sensitivity to CO2 is likely linked to sea ice extent. There is minimal sea ice 
in the high atmospheric CO2 simulations, and with lower atmospheric CO2 the sea ice extent increases as 
does the variability in sea ice area between simulations with different astronomical boundary conditions. 
Similarly, in the absence of an Antarctic Ice Sheet, there is greater variability in the Antarctic land surface 
albedo and increased sensitivity to changes in orbit. It is worth noting that orbital variability during the 
Miocene likely would have been accompanied by some sort of CO2 variability (as in the Quaternary), and 
therefore the magnitude of orbitally induced climate change modeled here is a minimum estimate.

4.3. Model-Data Comparison

Starting with the Late Miocene, Figures 9 and 10 compare the simulated zonal-mean land and SST pro-
files for all the experiments targeting the Late Miocene against available proxy data estimates. The ex-
periments are again stratified by CO2 forcing. Both the terrestrial and SST records indicate a reduced me-
ridional surface temperature gradient (Figures 9 and 10). Generally speaking, subtropical to midlatitude 
warmth tends to fall into better alignment with the proxy data as CO2 levels increase. For the Northern 
Hemisphere, the NorESM-L simulation with 10 Ma boundary conditions and 560 ppm of CO2 appears to 
provide a reasonable fit from a zonal mean SST perspective (Figure 10), but there are however large zonal 
asymmetries such that midlatitude SSTs are too warm in the Pacific basin, yet too cold in the Atlantic 
(Figures 13e and S9). Although still falling short of the proxy estimate, this experiment simulates one of 
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Figure 9. Zonal-mean, annual-mean land surface temperature for all Late Miocene experiments. Superimposed in gray are Late Miocene in age mean annual 
terrestrial temperature reconstructions. Each panel distills the Late Miocene experiments by prescribed atmospheric CO2 concentration.
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Figure 10. Zonal-mean, annual-mean, sea surface temperature for all Late Miocene experiments. Superimposed in black are Late Miocene in age mean annual 
sea surface temperature reconstructions. Each panel distills the Late Miocene experiments by prescribed atmospheric CO2 concentration.
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Figure 11. Zonal-mean, annual-mean land surface temperature for all Middle-Early Miocene experiments. 
Superimposed in gray are Middle Miocene in age mean annual terrestrial temperature reconstructions. Each panel 
distills the Middle and Early Miocene experiments by prescribed atmospheric CO2 concentration.
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the strongest relaxations of the meridional temperature gradients (Figure 4) with only a few degrees of 
tropical warming, between ∼4°C and 8°C of subtropical warming, and significant high latitude warming, 
exceeding well over 20°C in the Antarctic. It also provides one of the best fits with the terrestrial data 
(Figure 9). With Late Miocene CO2 estimates spanning ∼300–450 ppm (Figure 1), one might expect the 
experiments forced with 350–450 ppm of atmospheric CO2 to provide the best fit with that data. When 
looking at the mean SST bias across simulations (Figure 13), the root-mean-square error (RMSE) is lowest 
for 560 ppm (Figure 13e). That said, there is still the general indication that the deep tropics are warm-
ing too much while the mid- to high-latitudes are too cold (Figure 13c). It also appears that the zonal 
gradient in the equatorial Pacific is generally too strong in the models with not enough warming over 
the eastern Pacific cold tongue region and too much warming in the western Pacific (Figure 13c). From 
the perspective of the terrestrial MAT proxies, the 560ppm Late Miocene simulation leads to the lowest 
RMSE (Figure 13f).

Moving on to the Middle Miocene, both the terrestrial and SST proxies point to a further weakening of the 
meridional surface temperature gradient with a strikingly flat temperature gradient between the tropics and 
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Figure 12. Zonal-mean, annual-mean, sea surface temperature for all Middle and Early Miocene experiments. 
Superimposed in black are Middle Miocene in age mean annual sea surface temperature reconstructions. Each panel 
distills the Middle to Early Miocene experiments by prescribed atmospheric CO2 concentration.
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the subtropics to midlatitudes (Figures 4c, 11 and 12). Increasing CO2 levels brings extra-tropical warmth 
into better alignment with the proxy data but the models still fall short (Figures 11 and 12), particularly on 
the regional scale, for example, cold SST biases persist in the North Atlantic and Southern Ocean even at 850 
ppm (Figure 14g). Both the tropical Middle Miocene SST proxies and the tropical Middle Miocene terrestrial 
proxies indicate that 850 ppm of CO2 leads to too much tropical warming (Figures 14g and 14h). That said, 
all the simulations with lower CO2 concentrations generally suffer from cold biases everywhere outside of 
the tropics (Figures 14 and S11), supporting the conclusion that the models are generally failing to capture 
the weakening of meridional surface temperature gradients and the full extent of Middle Miocene warmth 
seen in the proxy data (Figure 4). This finding holds and intensifies when one narrows the data window to 
the MCO (Figure S12).
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Figure 13. Late Miocene multi-model-mean (left) sea surface, (right) terrestrial mean annual temperature bias. The average of individual model bias at each 
site (Figures S8 and S9) is calculated across the set of Late Miocene experiments with (a and b) 278 or 280 ppm, (c and d) 350–450 ppm, (e and f) 560 ppm, and 
(g and h) 840/850 ppm. The root-mean-square error across all the sites is shown in red on the bottom left. The continental outline from COSMOS T31 (Knorr 
et al., 2011) has been used.
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5. Conclusions
In this study, we have brought together a suite of Miocene climate simulations performed with a range of 
climate models and Late to Early Miocene boundary conditions. Serving as a first pass of this multi-model 
ensemble data set, the focus has been placed on surface warming, specifically the spread and sensitivity 
of warming responses to the range of boundary conditions imposed across the ensemble. Furthermore, 
a model-data comparison has been performed to assess the fidelity with which the ensemble is capturing 
large-scale Miocene warming patterns over both land and ocean, and to develop insight into how high CO2 

BURLS ET AL.

10.1029/2020PA004054

29 of 40

Figure 14. Middle Miocene multi-model-mean (left) sea surface, (right) terrestrial mean annual temperature bias. 
The average of individual model bias at each site (Figures S10 and S11) is calculated across the set of Middle to Early 
Miocene experiments with (a and b) 278 or 280 ppm, (c and d) 350–450 ppm, (e and f) 560 ppm, and (g and h) 840/850 
ppm. The root-mean-square error across all the sites is shown in red on the bottom left. The continental outline from 
the updated Herold, Huber, and Müller (2011) paleogeographic boundary conditions described in this article has been 
used (see supporting information).
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concentrations need to be from a modeling perspective to reproduce the broad warming patterns, specifical-
ly the weak meridional temperature gradient patterns seen in the data.

Summarizing first the key features emanating from our analysis of the global-mean, zonal-mean, and 
two-dimensional surface warming seen across the ensemble:

•  Prescribed CO2 forcing is the primary boundary condition controlling the global mean temperature 
change relative to preindustrial across the Miocene simulations analyzed

•  On average, Miocene boundary conditions other than CO2 raise global mean temperature by just under 
2°C

•  Reconstructed global mean surface temperature estimates range from 19.30°C ± 0.98°C to 21.95°C ± 
0.81°C for the Late Miocene, from 21.21°C ± 0.56°C to 24.46°C ± 0.81°C for the Middle Miocene, and 
from 22.93°C ± 1.01°C to 25.47°C ± 1.17°C for the MOC, depending on the type of surface temperature 
proxy informing the estimate

•  While some Miocene simulations with ≥400 ppm CO2 forcing overlap with the minimum bound of 
the reconstructed global mean surface temperature estimates for their target Miocene interval, they 
generally fail to capture the reconstructed warming pattern. No combination of model and boundary 
condition choices to date satisfactorily simulates Miocene climate

•  A stronger polar greenhouse effect and decreased surface albedo are the dominant contributors to the 
polar amplified warming

•  Strong regional warming is seen in response to prescribed changes in the Antarctic Ice Sheet but the 
influence beyond the Southern Hemisphere high latitudes is limited

•  The degree of polar amplified warming and weakening of the meridional temperature gradient increases 
with prescribed CO2 forcing, but generally falls short of the reconstructed meridional gradient weaken-
ing seen in the proxies

•  “Hot spots” in which the SST response within a narrow range of CO2 forcings is particularly variable 
across models including the eastern equatorial upwelling regions, the subpolar gyres, and the Southern 
Ocean, and appear to be linked to the spread in cloud albedo and ocean responses in these regions

•  Simulations with perturbed orbital parameters show important, yet relatively small and regional, surface 
temperature sensitivity with an increased sensitivity to orbital changes as CO2 concentrations, or the 
extent of the Antarctic Ice Sheet, decrease

The extent to which the Miocene surface temperatures within the ensemble align with available terrestrial 
and SST reconstructions have been assessed. Broadly speaking, the low meridional temperature gradient 
indicated by the proxies, specifically between the mid-latitudes and tropics, is difficult to reconcile with the 
simulations. Under Miocene-like CO2 forcing (the 350–450 ppm experiments), the modeled climates still 
retain relatively large equator-to-pole temperature gradients, especially in the Northern Hemisphere. The 
models do not exhibit the estimated 5°C–10℃ warming of the high latitudes with these CO2 levels. In prac-
tice, this means that to produce realistic warming of the northern high-latitudes, the models require higher 
CO2. Increasing CO2 forcing leads to enhanced warming bringing the midlatitudes into better alignments 
with the data, but this in turn leads to overshooting in the tropics that become too warm. This pattern is 
surprisingly robust across both the Late Miocene, Middle Miocene, and MCO data sets, as well as the inde-
pendent terrestrial and ocean data sets. Achieving the low meridional temperature gradient recorded in the 
Miocene thus remains an outstanding problem for most models.

That said, the latest generation of climate models with state-of-the-art parameterizations of cloud micro-
physics and cloud-aerosol interactions tend to support more positive cloud radiative feedbacks of the mid-
latitude oceans (Lunt et al., 2020; Zhu et al., 2019; Zhu & Poulsen, 2019). In addition, changes in aerosols 
may also be important as seen for the Eocene (Lunt et al., 2020) and Pliocene (Feng et al., 2019; Sagoo & 
Storelvmo, 2017). These model improvements may lead to enhanced midlatitude warming at lower CO2 
concentrations, but how they will then fare at simulating tropical Miocene warmth and the reduced merid-
ional temperature gradient remains to be evaluated. More idealized sensitivity studies have revealed that 
both the meridional and the zonal equatorial Pacific SST gradients scale with the meridional gradient in 
cloud radiative forcing (specifically cloud albedo, Burls & Fedorov, 2014a, 2014b; Erfani & Burls, 2019), and 
provide a plausible mechanism for maintaining Early Pliocene SST patterns (Burls & Fedorov, 2014a, 2014b; 
Fedorov et al., 2015) and the hydrological cycle response (Burls & Fedorov, 2017).
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The model ensemble we have used here was an “post-hoc” model intercomparison using different bound-
ary conditions and forcings for each model. Although we can still group the models into two timeframes 
(Early Middle and Late Miocene) and into different CO2 forcing ranges, it is impossible to cleanly assess 
how much of the inter-model spread can be attributed to differences in boundary conditions versus model 
feedback strengths. In particular, even if we could assign one simulation as a good match with the proxies, 
the reasons for this better match would not necessarily be clear. Therefore, to more rigorously test the mod-
els' ability to simulate Miocene warmth, meridional gradients, and other features such as ocean circulation, 
cloud feedbacks, land surface behavior, and the hydrological cycle, carrying out a formal MIP is desirable.

The current study can guide a discussion on the careful design of the boundary conditions and model con-
figurations to be used in such a formal model intercomparison.

 I.  In terms of paleogeography, the modeling groups participating in a formal MIP should use the same 
configuration for each model, and specific time slices (e.g., the MCO) should be chosen.

 II.  A common set of prescribed ice sheet boundary conditions that sample the uncertainty in reconstruct-
ed estimate should be used.

 III.  Sensitivity studies isolating the impact of gateway changes can then be encouraged by providing alter-
native continental geometries exploring different depths and widths of gateways based on minimum/
maximum estimates from plate tectonic reconstructions. Key gateways to be investigated include the 
Central American Seaway, the Tethys Seaway, the Indonesian Seaway, the Fram Strait as well as the 
Greenland-Scotland Ridge and Canadian archipelago. More detailed discussions about these gateway 
conditions can be found in He et al. (this issue) and Brierley and Fedorov (2016).

 IV.  Models should be grouped into those with static or dynamic vegetation, and all models with static vegetation 
should use the same static vegetation distributions. Using a dynamic vegetation model is optimal as this al-
lows for more direct comparison with vegetation cover indicated by the fossil flora record, for example, Hen-
rot et al. (2017). Care needs to be taken to ensure that plant functional types are appropriate for the Miocene.

 V.  Ideally, all models would treat aerosols in the same way, but if this is not feasible, differences should at 
least be well-documented (e.g., the PlioMIP2 protocol, Haywood et al. [2016], and DeepMIP protocol, 
Lunt et al. [2017]).

 VI.  Finally, simulation should be run with a set of CO2 concentrations that span the spread of uncertainty 
within Miocene CO2 reconstructions. With the “best estimate” CO2 concentration specified for when 
modeling groups can only carry out one simulation.

While a coordinated Miocene model intercomparison effort is an aspiration within the Miocene commu-
nity, the analysis of the informal multi-model ensemble presented here has focused only on annual mean 
surface temperature and albedo responses and there remain several other aspects within this valuable data 
set for investigation in future study, for example, the hydrological cycle, subsurface ocean temperature, and 
circulation, differences in seasonality, and so on. We hope that the synthesis presented here will serve as a 
valuable starting point. We plan on describing updates and future community efforts on the DeepMIP Mio-
cene website—https://www.deepmip.org/deepmip-miocene/.

Data Availability Statement
The new synthesis of terrestrial MATs generated here for the Middle Miocene can be found in the sup-
porting information of this study (additional excel file Table S1). As described in Section 3 of the study, the 
Late, Middle and MCO SST estimates where compiled using published data sets, a summary of these data 
sets with links to their repositories has been complied in the supporting information, together with the 
average estimates derived from each data set for each time period (additional excel file Table S2). This effort 
to synthesis available Miocene SST will be continually updated as part of the Miocene Temperature Por-
tal (https://bolin.su.se/data/miocene-temperature-portal) hosted at Stockholm University. These Tables S1 
and S2 excel files have been archived in the Zenodo repository https://doi.org/10.5281/zenodo.4568897 to-
gether with NetCDF files containing the updated Middle Miocene paleogeography and land surface data 
sets described in supporting information, and a NetCDF file containing the MioMIP variables used to make 
all the figures shown. The code used to make the figures is available on GitHub (https://github.com/nburls/
MioMIP1). A description of each model's setup is provided in Section 3 of this study, together with the rele-
vant configuration information and reference to the original modeling study in Tables 1 and 2.
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