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Abstract

Computational modelling and simulations are critical analytical tools in contemporary

neuroscience. Models at various levels of abstraction, corresponding to levels of or-

ganisation of the brain, attempt to capture different neuronal or cognitive phenomena.

This thesis discusses several models and applies them to behavioural and electrophys-

iological data.

First, we model a voluntary decision process in a task where two available options

carry the same probability of a reward for the outcome. Trial-by-trial accumulation

rates are modulated by single-trial EEG features. Hierarchical Bayesian parameter

estimation shows that the probability of reward is associated with changes in the speed

of accumulation of evidence.

Second, we use a pairwise Maximum Entropy Model (pMEM) to quantify irregu-

larities in the MEG resting-state networks between juvenile myoclonic epilepsy (JME)

patients and healthy controls. The JME group exhibited on average fewer local min-

ima of the pMEM energy landscape than controls in the fronto-parietal network. Our

results show the pMEM to be descriptive, generative model for characterising atypical

functional network properties in brain disorders.

Next, we use a hierarchical drift-diffusion model (HDDM) to study the integration

of information from multiple sources. We observe a non-perfect integration in the case

of the accumulation of both congruent and incongruent evidence. Based on fitting the

HDDM parameters, we hypothesise about the neuronal implementation by extending

a biologically plausible neuronal mass model of decision making.

Finally, we propose a spiking neuron model that unifies various components of

inferential decision-making systems. The model includes populations corresponding
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to anatomical regions, e.g. the dorsolateral prefrontal cortex, orbitofrontal cortex,

and basal ganglia. It consists of 8000 neurons and realises dedicated cognitive opera-

tions such as weighted valuation of inputs, competition between potential actions, and

urgency-mediated modulation.

Overall, this work paves the way for closer integration of theoretical models with

behavioural and neuroimaging data.
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Chapter 1

Introduction

What I cannot create,

I do not understand.

Richard Feynman

1.1 The importance of modelling in neuroscience

The human brain consists of almost 86 billion neurons, each with around 10,000

synapses [290]. Highly complex wiring is complemented with a non-homogeneous hi-

erarchical structure and the nonlinear behaviour of the neuronal cells [61, 184]. All

this makes the brain one of the most complicated biological systems to study. De-

spite decades of intensive research of various levels of its organisation (molecular, cell,

circuit, and cognitive), the operating principles of the mind and brain remain largely

unknown.

One of the most powerful tools in neuroscientific research is computational mod-

elling [87, 228]. Models typically build upon the experimental evidence to simplify

the understanding of complex cognitive phenomena [43]. The importance of computa-

tional modelling was emphasised in 2011, when the European Commission selected the

Human Brain Project as one of its ‘Flagship Projects’ and contributed around e 1 bil-

lion to ‘advance knowledge in the fields of neuroscience, computing, and brain-related

medicine’ [260]. The initial ambitious goal of this initiative was to create a collection of

1
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hardware, computational algorithms and databases that would enable comprehensive

large-scale brain simulations. The project was an extension of the Blue Brain Project

(BBP), founded by the Brain and Mind Institute of the École Polytechnique Fédérale

de Lausanne [259]. This model simulated the activity of an artificial cellular neocorti-

cal column consisting of 10,000 cells [177]. The BBP was one of the first attempts to

transfer a part of the brain in silico.

The above-mentioned models focus on simulating an idle cognitive state without

any specific questions or hypothesis. Instead, more often, the modellers focus on an

isolated cognitive problem due to overwhelming complexity of the brain’s anatomy

and the mind. However, in his seminal report, Allen Newell appealed that testing one

hypothesis about the brain at a time would not reveal the holistic cognitive algorithms

that govern its function [279]. He argued that hypothesis testing must be supported

by the more comprehensive models that are able to perform the cognitive tasks. The

Semantic Pointer Architecture: Unified Network (SPAUN) aims to address this issue.

The model consists of 2.3 million spiking neurons organised in hierarchical modules

inspired by brain anatomy [381]. The model is able to perform six cognitive tasks: digit

recognition, tracing from memory, serial working memory, simple question answering,

addition by counting, and symbolic pattern completion [113]. SPAUN is general enough

to switch between the tasks without any external ‘rewiring’.

Today, scientists emphasise more than ever the key points of Newell’s arguments

[228, 43, 239]. In 1980s, the cognitive science made huge advances using ‘symbolic’

and ‘connectionist’ architectures to implement task-performing cognitive models that

closely matched behavioural data [280, 265]. Rapid development of neuroimaging tech-

niques (EEG, MEG, fMRI) enabled measuring of brain activity during active informa-

tion processing. For example, it is easier now to compare biological plausibility of

neuronal models with a detailed evidence from neuroimaging data [51, 347]. Although

large-scale brain models allow for more holistic view on the brain activity, specific brain

areas or tasks are still not well understood in isolation. For example, basal ganglia is

known to play a crucial role in decision-making, but the precise algorithm that rules

its behaviour is still not fully discovered [407, 50].

Currently, hundreds of various models exist in neuroscience [228], ranging from de-
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Figure 1.1: General modelling framework. The model interacts with ex-
perimental data through the generation of new model-based predictions, and
in turn the experimental data provides new unexplained data to model. The
schematic is a simplified version of Figure 1 from [43].

tailed models of action potential propagation in single neurons [181], through neuronal

mass models [454, 140], to large-scale network models of the whole brain [114, 347].

Another branch of models consists of approaches that were only loosely inspired by

certain aspects of human cognition or biology of the brain, like high-level models of

decision making [326, 49, 470] or artificial neural networks [383].

Despite all those differences, commonalities can be found in the modelling approach.

The workflow consists of the following three steps: (1) framing the research question;

(2) implementing the model; and (3) testing the model (see Figure 1.1) [43]. All these

steps can be further broken down into even more precisely defined components. For

example, in [43], a detailed 10-step modelling guide is suggested, including framing the

question, formulating specific or theoretic hypotheses, selecting the modelling toolkit,

implementing the model, validating it, and more. The most important step, however,

is further experimental validation of the existing models. When experimental work

brings new hypotheses to a researched problem, the process is then repeated [43, 228].

In this thesis, I aim to apply this pipeline to four different types of models and prove

its utility in that context.
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The remainder of this chapter is laid out as follows. In Section 1.2, I discuss

the definition of a ‘model’ in the context of neuroscience. Next, I will review selected

common taxonomies of cognitive computational models (Sections 1.3 and 1.3.3). Then,

in Section 1.4, I will discuss examples of important modelling work at various levels of

abstraction. Next, as a few models in this thesis are informed by electrophysiological

data, the neural origin of EEG and MEG signals will be described in Section 1.5. At the

end (Section 1.6), I will briefly characterise recent developments in a decision-making

subfield of neuroscience, as the majority of research presented in this work is centred

around this topic.

1.2 Defining ‘model’

Before reviewing different aspects of modelling in neuroscience, the proper definition of

‘computational model’ is needed. Cambridge Advanced Learner’s Dictionary & The-

saurus describes a ‘model’ in the mathematical context as ‘the activity of using simple

mathematical descriptions of a system or process to make calculations or predict what

might happen’ [313].

This general definition captures the two most important properties of a model:

(a) the simplification of the description of a system, and (b) predictive power. For

example, statistical tools, like the t-test or ANOVA, can be used for testing hypotheses

about the equality of means. For a group-level analysis, this allows answering simple

questions about the group difference. Machine learning models fit parameters based

on a specific learning rule to solve classification or regression problems [42] (see also

Section 1.4.3). This allows predicting a label or a dependent variable from previously

unseen data.

On the other hand, we can distinguish neuronal models that aim to mimic aspects

of the brain’s processing of information, at a certain level of abstraction [228, 84]. For

instance, in visual neuroscience, deep-learning networks can be a good model of image

recognition [73], but poorer for learning representations. This is because during the

biological development of an intelligent species, labelled examples are not available for

learning in the environment, as they are in supervised machine learning . Another
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example includes psychophysical models that map the sensory inputs onto behavioural

accuracies or response times, but focus less on on the underlying brain activity [326, 49].

The definition of a ‘model’ does not explicitly mention the plausibility of the im-

plementation. Indeed, in Section 1.3, I will discuss various computational models at

different levels of abstraction, or scale, of the organisation of the brain.

An important aspect of a model is its ‘testability’. It must be eligible for verification

based on empirical evidence (see the pipeline from Figure 1.1) [228, 43]. A biological

realism can be sacrificed to a certain degree in order to generate a model that is easier

to understand and verify [239]. As an example, a mechanistic neuronal model does not

need to consider all AMPA, GABA and NMDA synaptic connections if it was shown

that some of them do not play a critical role in the problem under investigation [454].

Furthermore, the reliability of a computational model is also important. Of course,

certain features of such may depend on stochastic parameters, but on average these

should return robust predictions. As an example, an option chosen by a cognitive

model of decision-making (see Section 1.6 for details) may change on every trial, but

estimated values of posterior response time distributions from the whole experiment

are consistent between the runs of simulations.

1.3 Overview of modelling approaches

1.3.1 Levels of abstraction

The existing neuronal models can be categorised in a few different ways [250, 228, 261].

The most notable way is a three-level categorisation suggested by Marr [261]. He

identified three major stages for modelling a system:

1. The computational level: this says what is the overarching strategy behind the

system, or simply what is its goal.

2. The algorithmic level (also known as the representational level): this says how

this system might be implemented.
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3. The implementation level: this says how the system might be precisely imple-

mented using its substrates.

To offer an intuitive understanding of these categories, a simple example of a cash

register can be considered [261]. The goal of the cash register needs to be identified

first in a top-to-bottom modelling approach. It can be formulated generally as ‘quick

addition of prices from barcodes of products’. At the representational and algorithmic

level, there are a few choices on how to perform such task. First of all, one needs to de-

cide on Roman or Arabic numerals. The two approaches can be tested experimentally.

Arabic numerals offer a faster algorithm for addition than their Roman counterparts.

For example, Arabic numbers are easily represented as integers of ones, tens, hundreds

and so on. Starting from ones, the addition of two numbers can be performed and, if

it exceeds 9, the trailing integer is left out and one moves to the tens. The process

is repeated for the following numbers in order from right to left. This is not how a

real cash register works, but it can be a useful heuristic that helps to understand its

efficiency. For the implementation level, one can note that computational devices use

electric boards with logic gates for basic operations. For electronic chips, the binary

representation of numbers is more convenient than the decimal (i.e. flow or lack of flow

of the current). The algorithm of addition remains, however, the same. This simple

example demonstrates a typical top–bottom approach to modelling [261, 250].

These three principles were inspired by research into the human visual system

[261]. Over the years, these have been generalised to other areas of neuroscience

[239, 113, 250]. There are two common approaches to modelling: (a) looking at a

problem from the implementation perspective and building upon that (bottom–up ap-

proach), or (b) finding a high-level description of a problem first and looking for its

specific implementations in the brain (top–down approach) [43]. For example, cog-

nitive science typically starts from computational theory, decomposing cognition into

smaller subsystems (vision, senses, motor control) [271]. As an alternative, certain

computational neuroscience approaches may start from the bottom and build blocks of

representations and algorithms from biologically plausible computational units [228]. .

Marr’s scheme is the most influential categorisation of models, but it has flaws.
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The three levels are very general, which indicates its inspiration from engineering,

a field that deals with less complicated systems than neuroscience [250]. Recently,

various alternatives, not restricted to only three levels, have emerged [239]. Bechtel

and Richardon’s mechanistic approach can be characterised as a hierarchy of ‘levels of

mechanism’, which does not have a fixed number of stages [29]. For example, a car can

be seen as an object consisting of interacting components, such as an engine, steering

wheel, brakes, etc. Each component can be further decomposed into its own parts

(e.g. the braking system) and so forth. This idea is strongly aligned with the Minsky

hypothesis of a ‘society of the mind’ [271]. This theory models human cognition by

building up from the interactions of simple parts, called agents, which are themselves

mindless. The model postulates that the interactions of the agents are the fundamental

thinking entities from which intelligent behaviour arises [271].

1.3.2 Models of cognition

Another useful taxonomy of the models of cognition is related to their rooting in three

influential ideas: ‘symbolicism’, ‘connectionism’ and ‘dynamicism’ [113].

According to the Philosophy of Mind Dictionary, the term ‘symbolicism’ refers

to ‘an approach to understanding human cognition that is committed to language-

like symbolic processing as the best method of explanation.’ In that view, thinking is

postulated to be done via the manipulation of mental symbols [280]. Formally, symbols

are perceptible objects that stand for something else, for example: the alphabet, a

road sign, or a red edible fruit (i.e. an apple). This approach enables using the

advances of modern engineering and applying them to reverse-engineer the brain [127].

A widely applied cognitive architecture that was born from symbolicism is an Adaptive

Control of Thought—Rational (ACT-R) model proposed by Anderson [6]. ACT-R has

been used to model memory, attention, and executive control [6, 7, 8]. One of the

main challenges of the symbolic view of cognition is its dependence on a number of

hand-crafted representations or algorithms underlying certain cognitive processes. In

practical application, it requires laboriously pre-defining the logical relationships. In

their initial applications, the strategies of symbolicism were advantageous at formal
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and language-like tasks, but performed worse at sensory, motor and learning tasks than

alternative approaches [164]. Recently, however, methods inspired by ‘connectionism’

started showing equally good, or better performance on the linguistics tasks [96]. In

general, the areas of the brain that rely on procedural, or implicit knowledge (like the

motor cortex) are difficult to model within symbolicism framework [113].

‘Connectionism’ is also known as Parallel Distributed Processing (PDP) [265]. PDP

models are a class of neurally inspired information processing models that attempt to

model information processing the way it takes place in the brain. It suggests that

cognitive computations consist of independent processing units connected together se-

rially [265]. Connectionist models have been more successful at building models that

express broader generalisibility than symbolic approaches. With the advances in high-

performance parallel computational architectures (e.g. Graphical Processing Units

[GPU] or Tensor Processing Units [TPU]), this idea has influenced a sub-field of ma-

chine learning: deep learning [460]. Despite the superficial resemblance of artificial

neuronal architectures to biological neurons, the computational principles governing

PDP have little in common with the way the brain processes information [460, 229].

To overcome this problem, even the pioneers of ‘connectionism’ suggest calling PDP

models ‘brain-style abstract networks’ [265].

Another major approach to studying cognitive systems is ‘dynamicism’, sometimes

referred to as an ‘embedded’ approach to cognition [113]. Dynamicism considers cog-

nition as a non-representational low-dimensional dynamical system [416]. The main

argument of dynamicism is that a discretisation of the cognitive system into either

symbolic or computational units may lead to its mischaracterisation [112]. Symbolic

models are fundamentally dependent on a symbolic representation, and connectionism

theories represent concepts via distributed representation in simplified networks. In

dynamicism, a cognitive state must be linked with the external environment. Hence,

dynamicist modelling describes cognition by emphasising the ongoing real-time inter-

action with the world [112, 113]. By restricting the descriptions of a cognitive state to

a low-dimensional system of differential equations, this approach has created several

problems. There are not yet any clear ways of justifying the parameter settings, choos-

ing the equations, or creating the system boundaries within the dynamicism frame-
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work [112].

Many of the existing cognitive models are combinations of these approaches [387].

For example, the Semantic Pointers Architecture represents symbolic concepts via

a vector representation implemented with spiking neurons that respond dynamically to

the task [113]. The goal of computational cognitive science is to build a general cogni-

tive system with a detailed understanding of its components. Currently, the high-level

cognition models do not offer biologically plausible mechanisms for their implementa-

tion [378].

The study of isolated cognitive processes contributed to the greater understand-

ing of certain psychological phenomena. For instance, the Hopfield network provides

a good model of associative memory; however, the abstraction of neurons and asso-

ciation rules is far from the realistic biological cell, or plasticity process happening

in the brain [80]. The numeric research in theoretical neuroscience has characterised

the implementation issues (e.g. information transfer [334], or ‘fine-tuning’ of neural

integrators [225]) of the Hopfield network. Nevertheless, it contributes to a better

understanding of how associations are created and what might be a limitation of the

algorithmic implementations. This example shows that the focus on the isolated parts

of cognition, or neurobiological activity can substantially progress the understanding

of the information processing by the brain.

Hence, for the remainder of this thesis, I focus on the isolated cognitive systems (e.g.

brain areas accumulating evidence, as in Chapters 2 and 4), or resting-state networks

(e.g. default mode network, as in Chapter 3).

1.3.3 Levels of biological realism

This section describes the classification of neuronal models based on the level of bio-

logical plausibility. Various representations and their corresponding neural measures

(that allow validating these models) will be discussed [250, 239].

Starting from the lowest level of analysis, the ubiquitous model of a single neuron is

the Hodgkin–Huxley model [181]. This conductance-based model describes how the ac-

tion potential in a neuron is propagated along the axon. The model is formulated with
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four nonlinear, continuous in time differential equations. The equations approximate

the electrical characteristics of excitable neuronal cells [181]. The detailed mathemat-

ical formulation of this model was informed by discoveries of the ionic mechanisms,

which underly the propagation of the action potential in the squid giant axon [182].

Such conductance-based neuron models reproduce electrophysiological measurements

to a high degree of accuracy, but because of their intrinsic complexity they are difficult

to analyse at a larger scale [140]. With an increasing number of neurons in a system

(e.g. the whole cortical column of a visual cortex), numerical simulations of the spik-

ing activity are too computationally expensive, or too difficult to analyse [259, 177].

Thus, the Hodgkin–Huxley model can be reduced to just two abstract state variables.

For instance, the FitzHugh–Nagumo model, despite its simplicity, preserves selected

properties of its predecessor [126]. The model can be easily interpreted with a phase-

plane analysis by zapping between the branches of the cubic nullcline (for details, see

Section 1.4.2).

Phenomenological models consisting of masses of neurons are used for analysing

neural spike trains [140, 114]. To make them more numerically efficient, abstractions

even simpler than those of the FitzHugh–Nagumo model are used [84]. For example,

the integrate-and-fire neurons are thresholded models of neuronal firing, derived from

equivalent electrical RC circuits. Such RC circuit dynamics represents changes in

the voltage of a neuron’s soma [140]. The action potential of such a neuron shows

no difference between one spike and the next. Hence, its shape, travelling along the

axon to a postsynaptic neuron, cannot be used to transmit information [140]. Instead,

the action potential represents a binary ‘event’ (either the spike occurs or it does

not occur). The event is fully characterised by the arrival time at the synapse [84].

Therefore, standard integrate-and-fire models make no effort to simulate the actual

shape of an action potential. Spikes are treated as contributors to a firing rate of

the larger neuronal population. More complex adaptive exponential integrate-and-

fire models address this problem by introducing an additional activation term with

an exponential voltage dependence [193]. Thanks to that, the model is capable of

describing standard neuronal firing patterns, e.g. bursting, adapting, or delayed spike

initiation.
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Building on top of the single-neuron models, the mean-field models encompass

biophysical features through mathematical derivations from averaged activity of the

populations of neurons [140, 404]. Even more abstract mechanistic models, but pre-

serving some level of biological plausibility, are the neural mass-models, which are

further described in Section 1.4.2. These models are useful when studying the im-

plementation (neuronal) level, but they can also link specific neuronal actions with

cognitive phenomena [84, 140].

Finally, cognitive models describe human cognitive processes for the purposes of

comprehension and prediction [250]. These models do not need to focus on biological

plausibility [326, 301] (but they can as shown in Chapter 5, or [113, 33]). However, there

are examples of high-level models inspired by neural wiring: for example, the Hopfield

network (of recurrent artificial neurons) as a model of an associative memory [42, 80].

A higher-level analysis often involves a loss of information. On the other hand, cognitive

models offer explanatory concepts that could not be otherwise formulated at the lower

levels [250]. These abstract concepts are important for creating overarching models that

inspire more biologically plausible ones. As an example, predictive coding has emerged

as an alternative to the traditional concept that the brain integrates information from

the outside world through one-directional processes with feature detectors. Instead,

predictive coding suggests that the brain is constantly updating hypotheses about the

world and predicting sensory information by feedback mechanisms [320]. These two

high-level ideas can be instantiated as specific neuronal models and make predictions

about neurophysiological experiments.

Recently, a lot of attention has been paid to finding the links between various levels

of abstraction in the description of the brain. Yet it is difficult to strike a balance

between the model’s fidelity to the phenomenon and its neuronal plausibility [239].

For example, one should not criticise an abstract cognitive model for a lack of ion

channels, in as much as the Hodgkin–Huxley model cannot account for human visual

perception [250]. Different levels of analysis provide different viewpoints on the same

phenomena, but often are not equivalent to one another. For instance, sorting as a

computational objective can be realised by many sorting algorithms at the algorithmic

level. This shows that the many-to-one mapping from higher-level explanations to
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lower-level implementations suffers from a reduction or limitation of information [140].

Another example could be consciousness, which is called an irreducible entity [403]. As

a consequence, studying the neuronal correlates of consciousness is immensely difficult.

This may suggest that some phenomena are simply emergent and are impossible, in

principle, to explain through lower-level accounts [9].

Overall, finding the bridge between different levels of neuroscientific analysis is one

of the most difficult challenges of cognitive science [239, 109]. As an empirical field,

neuroscience relies on experimental data, which every year becomes of better quality

(increased resolution, senor coverage, etc.) [152]. The influx of new data may provide

existing models with additional information, or help to formulate new hypotheses. In

this thesis, I present models of isolated brain areas, or cognitive phenomena, with an

attempt to make links either between their levels of analysis, or with the neuroimaging

data. The high-level model of decision-making used in Chapter 2 was regressed against

evidence from EEG recordings. In Chapter 4, we show how the parameters of an ab-

stract perceptual decision model correspond to the dynamics of a biologically plausible

neural network.

1.4 The utility of modelling in neuroscience

In Section 1.3.3, I characterised the most common taxonomy of neuronal models. One

of the categorisations describes the modelling approaches by the level of biological

realism. I started from an overview of detailed models of individual neurons, to higher-

level general cognitive models. In this section, I describe several examples of studies

that motivated or directly influenced the original research reported in this thesis.

1.4.1 Spiking neuron models

Understanding the behaviour of the brain as a whole starts from understanding the

activity of a single neuron. Hence, when making a a biologically plausible simulation of

the brain or an area of the brain, it is hard to omit the spiking activity of its building

blocks. The brain’s nerve cell is electrically excitable and communicates with other
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cells via synapses. The typical neuron can be divided into three parts: the cell body

(also called the soma), the dendrites (cellular extensions with multiple branches), and

an axon wrapped in a myelin sheath (Figure 1.2) [84]. The function of a typical neuron

consists in responding to the signals received by the dendrites, which are then summed

in the soma (through an elevated membrane voltage). When a threshold is reached, an

action potential is triggered [181]. The information about this ‘event’ travels down the

axon to an axon terminal where it triggers a reaction, which releases a neurotransmitter

to the following synapse (in the case of a chemical synapse), or hits the junction (in

the case of an electrical synapse). Neurons differ in terms of their shape and size,

and can be classified by their morphology and function [236, 136]. Depending on the

location and the connections with other structures of the brain, neurons also differ in

terms of their excitability. Photosensitive ganglion cells in the retina respond to simple

visual stimuli. In the primary visual cortex, simple and complex cells display selective

activity for edges, contours, or shades of grey [84]. In the medial temporal lobe,

selective neurons respond to more abstract concepts like pictures of faces of celebrities,

relatives, or memories [315].

Detailed physiological models of the neuronal cell allow a better understanding of

the propagation of the action potential and its impact on the behaviour of the neuron

[181]. However, such a level of complexity creates practical numerical problems when a

simulation consists of thousands or millions of neurons [114, 347]. Thus, simpler models

have been suggested (such as the integrate-and-fire neuron, or the leaky integrate-and-

Figure 1.2: A schematic neuronal cell anatomy: (A) - dendrites, (B) -
nucleus, (C) - cell body (soma), (D) - axon, (E) - synaptic terminal.
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fire neuron), that merely approximate the dynamics of a biological neuron [84].

There are several computational frameworks for simulating neural spiking [65,

382]. They differ in their level of biological realism, performance, and number of

pre-implemented standard models. One of the most general approaches, the Neural

Engineering Framework (NEF), was described by Eliasmith and Adnerson in 2003

[114]. NEF does not make any assumptions about what specific function the brain

performs, nor about the specifics of its building blocks. Typically, the neuronal ensem-

bles in an NEF model consist of a large number of leaky integrate-and-fire neurons, but

these can be customised by the modeller. In the book How to Build a Brain, Eliasmith

compares the NEF to a Java compiler [113]:

“The programmer specifies a program in a high-level language like Java.

The Java compiler knows something about the low-level machine language

implemented in a given chip, and it translates that high-level description

into an appropriate low-level one.”

In this framework, one can specify hypotheses about the function of a specific brain

region, and NEF provides a way to connect the neuronal ensembles together in such

a way that they realise this function [113]. NEF does not specify what the brain

computes, but rather how. The framework is based on three core principles:

1. Representation – neural representations are defined by a combination of non-

linear encoding (for example, neuronal tuning curves or spikes) and weighted

linear decoding (in space and in time).

2. Transformation – neural transformations are functions of variables that are

represented by neural populations. Transformations are determined using an

alternately weighted linear decoding.

3. Dynamics – the dynamics is characterised by considering neural representa-

tions as control theoretic state variables. Hence, the dynamics of neurobiological

systems can be analysed using control theory.
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These three core principles are often complemented by adding noise to the system,

something that has been shown to be ubiquitous and a crucial part of neuronal pro-

cessing [113, 84]. From the above formulation, it is evident that the unit of analysis in

NEF is a population (ensemble) of neurons rather than an individual unit.

Since the formulation of the principles of NEF, the framework has been applied

to several problems. In [44], an Attentional Routing Circuit model was proposed. It

provides a mechanistic description of selective attention processing in the brain. The

model simulated three experimental paradigms of an attention mechanism in macaques

and displayed a good agreement with the behavioural data and selected aspects of the

electrophysiological data [44]. In another study, a spiking model of adaptive control of

actions was compared to the activity of the medial prefrontal cortex (mPFC) [33]. In

the experimental part of the study, subjects performed a simple task, where the reaction

times were improved by learning the expected timing of action-imperative stimuli and

preparing movements in advance. The evidence from the neuronal activity of rats’

mPFC suggested that neural integration is a key mechanism for adaptive control in

precisely timed activities. In [33], it was shown that such a system may consist of

coupled neural integrators. The proposed model captured the neural dynamics of the

experimental mPFC activity. Moreover, the NEF was used to build the previously

mentioned SPAUN model of multiple cognitive phenomena [381].

In Chapter 5, we use NEF to show how to build an anatomically motivated multi-

node system of spiking neurons that performs an inferential decision-making task sim-

ilarly to human agents.

1.4.2 Neuronal mass models

In Section 1.3.2, ‘dynamicism’ was listed as one of the models of cognition. Dynami-

cist models are derived from the branch of mathematics called the theory of dynamical

systems [84]. Here, I will describe how the theory of dynamical systems can be used

to build computational models not only of an individual neuron, but also larger neural

populations, that qualitatively exhibits biologically realistic properties. I aim to sum-

marise the key methods and tools from the theory of dynamical systems in the context
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of neuroscience [193, 84].

A dynamical system is a system that changes over time [193]. The theory of dy-

namical systems is the study of the mathematical description of temporally evolving

systems [384]. The notion of a system can be as broad as an object falling down un-

der the influence of gravity, or the pattern of the transmission of a disease during a

pandemic [277]. In neuroscience, a dynamical system can describe anything from the

membrane potential of a neuron to synchronised oscillations in local fields [193].

Dynamical systems can be categorised into continuous and discrete ones. Con-

tinuous systems are formulated by differential equations, while the discrete ones are

formulated by iterative maps of difference equations [384]. Continuous nonlinear dy-

namical systems are the core of computational neuroscience [192, 193], but the discrete

ones have applications too, e.g. by means of chaos theory in theoretical research into

epilepsy [234].

A general continuous dynamical system θ of dimension k is described by a first

order differential equation:

θ =
dxxx

dt
= f(xxx), (1.1)

where xxx ∈ Rk and f : Rk → Rk. The vector xxx consists of dynamical variables, or

state variables [193, 384]. For instance, the Hodgkin–Huxley model consists of four

dynamical variables that describe a membrane potential and three gating variables for

persistent K+ and transient Na+ currents [181]. As a result, the evolution of the system

is given by a four-dimensional system of ordinary differential equations.

Phase portraits and bifurcation graphs are common tools to analyse a system de-

scribed by Equation 1.1 [193, 384]. The analysis can be simplified by finding analytical,

or numerical solutions for fixed points [384]. Generally, a fixed point is an element of the

function’s domain that is mapped to itself by the function. A fixed point θ∗ is asymp-

totically stable if it attracts all nearby trajectories (in the definition of Poincare) [384].

For instance, for a sufficiently small perturbation near the fixed point θ∗+∆θ, we have

θ → θ∗ as t→∞. On the other hand, the fixed point is unstable if any small neighbour-

hood of the point θ∗ contains a trajectory diverging from it. A more rigorous analysis
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Figure 1.3: (A) Phase plane for the dynamical system dV
dt = V 2+ I0 – the

so-called quadratic neuron – with I0 < 0. The system has two fixed points:
one stable (black circle), one unstable (white circle). The grey arrows show
the direction of evolution of V in time. (B) The bifurcation diagram for the
same system, depending on I0. Dashed line: unstable solution. Solid line:
a stable solution.

of the local stability of fixed points (e.g. considering Lyapunov stability, asymptotic

stability, and the Hartman–Grobman Theorem) is discussed elsewhere: [384, 193].

A specific example of the application of the theory of dynamical systems to neuro-

science is a simple model of a neuron during quiescence. The model is called a quadratic

neuron and is a specific instance of the nonlinear integrate-and-fire model [117, 193].

Because this model does not include the propagation of an action potential along the

axon, it is an instance of a point model. The model serves as a didactic approximation

of an exponential integrate-and-fire model depolarised to a state close to repetitive

firing. Similar simple point neurons are used for building more complex models with

NEF (see Section 1.4.1) [114, 113].

The state variable of a quadratic neuron describes the change of the membrane

voltage (V ), depending on the external current I0:

dV

dt
= V 2 + I0. (1.2)

Note that a solution to this differential equation is the tangent function, which

‘explodes’ in finite time. For practical applications, a reset value Vr and threshold

value Vt are picked, such that when the threshold is reached V ≥ Vt, the voltage is

brought back to V (t) = Vr.
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For an external current with I0 < 0, the membrane potential V of the neuron

evolves towards a fixed value and then does not move away from this value, starting

from V0. This can be seen from a phase portrait diagram. An example of such a

diagram for the quadratic neuron (a one-dimensional system) has been depicted in

Figure 1.3A. The phase portrait contains a graphical representation of a vector field

which presents the directions and magnitudes of the changes of a dynamical variable

for given coordinates. When I0 < 0, there is a stable steady state at V ∗ = −
√
−I0 and

an unstable steady state at V ∗ =
√
−I0 (see Figure 1.3).

When I0 > 0, the situation is different, as there is no fixed points, meaning that

the quadratic neuron will start spiking periodically. The characteristic point where the

dynamics of the system changes is at I0 = 0: this is a bifurcation point [140]. More

formally, a bifurcation describes the appearance of topologically nonequivalent phase

portraits under variation of parameters [384]. In other words, a bifurcation occurs

when a small smooth change made to the parameter of the system causes a sudden

‘qualitative’ change in its behaviour (which is reflected in the phase plane). Examples

include a sudden change in stability of a steady state or in a rate of oscillation.

For the quadratic neuron, as I0 → 0 from the negative side, the steady states

(V ∗) collapse together and at the critical value of I0 = 0 collide to form a single non-

hyperbolic steady state. For I0 > 0, there are no real solutions of Equation 1.2, so

there are no steady states, see Figure 1.3B.

We distinguish between various types of bifurcations, depending on the types of

transitions between their fixed points. The quadratic neuron undergoes a saddle-node

bifurcation that can generate infinitely slow oscillations [140]. The bifurcation diagram

for the quadratic neuron (Figure 1.3B) depicts the number and stability of the systems’

solutions depending on a parameter I0. Other types of bifurcation are also used in

neuroscience [384, 84]. For example, an Andronov–Hopf bifurcation models neurons

of type II (that emerge with low amplitude but at fixed frequency). In Chapter 4, we

analyse the parameters of a dynamical system within the same bifurcation regime, i.e.

with the same number and type of fixed points.

The above example of a simple dynamical system is an abstraction of the behaviour

of a type I neuron stimulated with an external current in isolation. The brain, how-
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ever, contains millions of neurons which are organised in large connected ensembles

(called populations or pools) and often exhibit synchronised activity. A mathematical

abstraction is made by assuming that the homogeneous populations have the same

parameters and receive roughly the same input [84]. The formal assumption of homo-

geneity is formulated using the following three conditions [140]:

1. all neurons within a pool are identical;

2. all neurons receive the same external input Iext,i(t) = Iext(t);

3. the interaction strength wi,j the connection between any pair i and j of presy-

naptic and postsynaptic neurons is ‘statistically uniform’.

A method from statistical probability theory helps to reduce such a homogeneous

high-dimensional stochastic model to a reduced lower-dimensional model, which ap-

proximates the statistical properties of the original one [140]. This approach is called

mean-field reduction and was first used by Curie and Weiss to study phase transi-

tions [202].

A common neural model that takes advantage of such a simplification is the Wilson–

Cowan firing–rate model [449]. In [449], a lower dimensional system was developed

which replicated the dynamics of neural populations without directly modelling each

neuron. In the context of neuroscience, this approach is called neural mass modelling

(NMM) [140]. In the Wilson–Cowan model, the averaged firing rates of excitatory and

inhibitory pools of neurons are taken into account. Each population is modelled by

a single firing rate (a state variable of the dynamical system) bounded between zero

(no neurons firing) and one (all neurons in the population activated) [449]. The model

assumes that, with no external input, the firing rate of the populations decays to zero,

and that the input to the populations is transformed to a firing rate via a sigmoid

function.

In a similar approach, the 7200 leaky integrate-and-fire neurons of the lateral intra-

parietal area (LIP) of the brain were reduced to only two state variables [454]. In

[433] a biologically plausible model was proposed to explain – via a series of a recur-

rent connections mediated by a pool of interneurons – the single-unit recordings and
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Figure 1.4: Reduction of a biophysical neuronal decision-making model
from [454]. (A) the original model consisting of 7200 leaky integrate-and-fire
neurons, endowed with strong recurrent excitation between units and shared
inhibition. (B) mean-field approach reduction of 2000 spiking neurons to
four neural units (with a total of 11 dynamical variables). (C) final reduced
two-variable model with two neural units, endowed with self-excitation and
effective mutual inhibition. NS: nonselective excitatory ensembles of cells.
I: inhibitory cells. Lines with arrow-heads: excitatory connections. Lines
with dot-heads: inhibitory connections.

behavioural data from a perceptual decision-making experiment (Figure 1.4A). The

model agreed well with the experimental data, but, due to its complexity, was difficult

to analyse. In [454], it was first assumed that the net input to a neuron in a large

homogeneous population can be treated as a Gaussian random process. Following [59],

the synaptic currents were approximated by a constant, even though population firing

rates typically depend on input currents related to the firing rates. Next, the input–

output relation between the interneurons was linearised, based on the typical values of

the mean firing rates of inhibitory neurons (8–15 Hz). This allowed reducing the sys-

tem to 8 state variables with two neuronal pools accumulating evidence over time via

self-excitatory connections and recurrent inhibitory activity via interneurons. Finally,

it was noted that among the AMPA, NMDA and GABA(A) synapses, the NMDA ones

have the longest time constant (on the order of 100 ms) [454]. It was further assumed

that all other variables achieve steady states faster than NMDA. Since AMPA and

GABA reach steady states much faster, their gating variable becomes proportional to

the average firing rates of the presynaptic cells. This allowed replacing the interneu-

ron pool with mutual cross-inhibitory activity coming from the two populations of

neurons [454] (see Figure 1.4).
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Similar models can be used not only to analyse isolated brain areas, but also to

inform large-scale brain simulations. In models of the whole brain, anatomically or

functionally defined regions of the brain are represented by a neural mass model, and

the state variables of each node are coupled via a connectome to study brain-wide syn-

chronization. The connectivity matrix is derived from structural imaging data (often

referred to as structural connectivity, SC) [206, 349] or estimated based on functional

data using parameter optimisation techniques (so-called effective connectivity ; EC)

[349, 132]. An example of the utility of large-scale brain modelling may be exempli-

fied with the research studying the emergence of functional connectivity resembling

empirical data from dynamically shaped slow linear fluctuations [89]. In that study,

the even further simplified Wong & Wang model was used – with only a single state

variable [454]. Bifurcation diagrams depending on the coupling strength, G, between

the nodes of the simulation (representing anatomical regions of the brain) for such a

reduced model revealed two bifurcation points: transferring from a single stable firing

rate regime to a multi-stable one with a spontaneous state and then to multi-stability

with a high firing rate. More importantly though, the correlation between the simu-

lated functional connectivity and the empirical one was maximal for values of G close

to the second bifurcation. This was confirmed by the various noise levels of the signal,

but also by a simulation with spiking neurons. Overall, the study suggested that FC

arises from noise propagation and dynamical slowing down of the fluctuations in an

anatomically constrained dynamical system.

Recently, a number of similar studies have been carried out [161, 377] due to the

increased availability of software that enables incorporating neuroimaging data with the

numerical differential equation simulations for dynamical systems. For example, The

Virtual Brain (TVB) offers a platform for using SC matrices as the vertices of a graph

representing a model of the whole brain. TVB as a simulation environment enables

the model-based inference of neurophysiological mechanisms across brain scales [347].

Due to its use of predefined transfer functions, the platform may be used to generate

macroscopic neuroimaging signals such as fMRI, EEG or MEG. This allows simulating

the averaged brain responses based on the summary statistics of the population, as

well as closer personalisation of the models to the individual brain anatomy [347]. It
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facilitates an exploration of the consequences of pathological changes in the system,

much needed for instance in clinical research [199].

1.4.3 Machine learning

Another family of models commonly used in neuroscience comes from the subfield of ar-

tificial intelligence called machine learning [428, 423, 228]. These days, neuroscientists

generate enormous amounts of data, matching the complexity of real-world tasks. It

has become necessary to find efficient ways to process and analyse these datasets [423].

Machine learning models are non-mechanistic, mainly statistical models [456]. More

broadly, these approaches utilise statistics to predict trends and patterns, typically by

learning from experience provided in the form of data [423]. Thus, statistical models

(including machine learning) are bound to their calibration range and can only pre-

dict results within the data space they are calibrated from. Since they are based on

correlation and not causality, such models provide limited understanding of the under-

lying process [456]. This is opposite to the mechanistic models, which are based on

the fundamental laws of natural sciences. In these models the physical and biochem-

ical principles constitute the mathematical model description. An essential benefit of

mechanistic models is that their parameters have actual physical meaning.

Nevertheless, machine learning helps with multivariate pattern separation (between

task conditions or subject groups), which is a common objective of many experimental

studies [143], or dimensionality reduction, which is of particular interest as neuroimag-

ing data is usually high-dimensional (and often multi-modal) [423]. Although statistical

models do not attempt to directly stereotype the brain, they are useful methods for

the analysis of neuroimaging data (as shown in Chapters 2 and 3).

The term machine learning was coined by Samuel in 1959, who described it as

a ‘programming of a digital computer to behave in a way which, if done by human

beings or animals, would be described as involving the process of learning’ [345]. There

are three types of learning procedures: supervised learning, unsupervised learning, and

reinforcement learning [428]. The term learning in this context means an efficient

fitting of the parameters, rather than the cognitive learning process.
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Supervised learning

Supervised learning involves a training procedure with access to ‘labeled’ data. Suppose

that we want to build a classifier of animals’ images. This means that each picture

must have a class assigned to it, for instance, a cat or dog [42]. An example closer

to neuroscience could be neuroimaging recordings from a subject watching multiple

pictures of animals, where every image (and its associated signal) has a label: a subject

looking at a dog, or cat.

For a more specific example, in [358], a supervised classifier, in fact, a support vector

machine (SVM), was used to classify the colour of the stimuli watched by subjects

from local fMRI brain recordings. The classification was based on the activity of

multiple voxels∗ within the mPFC. A procedure that involves a large number of a

signal features (properties that affect the classification process) is often called multi-

variate pattern analysis (MVPA) [143]. Examining the accuracy of the SVM classifier

over time and between different brain regions allowed inferring where and when the

colour was represented in the brain [358].

Similar approaches are used to detect the intention of a subject during exposure

to repeated flashing stimuli on a screen [344]. This type of device is known in brain–

computer interface (BCI) research as P300-spellers [232]. A speller consists of an EEG

can with electrodes connected to a digital amplifier, which records the brain’s activity in

real time, and transmits the data to a computer. Based on the signal detected from the

scalp voltage (for example, event-related potentials, ERP), the intention of a choice can

be inferred and translated to an activity on the computer screen, e.g. writing a letter.

Typically, such spellers involve intensive training of a machine learning algorithm that

recognises patterns of brain activity for each subject separately [344, 232].

The field of machine learning has been revolutionised by the emergence of deep

neural networks, which gave rise to a new subfield: deep learning [460, 229, 353]. Deep

neural networks (DNNs) are built with artificial neurons, which are organised in lay-

ers, similarly to the cortical organisation of the visual cortex [214]. In analogy to a

typical biological neuron, an artificial neuronal unit involves a summation of informa-
∗3-dimensional pixels.
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tion (transferred from presynpatic to postsynaptic cells) with appropriate weights (the

strengths of the synaptic connections): all being thresholded by a non-linear function

(imitating the release of an action potential after reaching a certain threshold voltage)

[460]. Despite its biological inspirations, artificial neural networks have little in com-

mon with realistic neuronal models. Simplifying assumptions have been made to make

the learning procedures more numerically efficient. For example, it was suggested that

the weights between the layers of the network can be adjusted via a backpropagation

procedure [460], which computes the gradient of a predefined loss function with respect

to the weights for each training example. The weights are further adjusted in the di-

rection opposite to the gradient scaled by a constant (learning rate) [42]. Although

numerically efficient, backpropagation suffers from a series of problems. The gradient

descent procedure is not guaranteed to find a global minimum of the error function,

but only a local minimum. Moreover, such a learning process is biologically unrealistic,

as in the brain the information travels only in one direction through each neuron (from

dendrite to axon). However, the overview [442] offers a more thorough discussion of

alternative biologically plausible learning mechanisms that can be approximated by

backpropagation.

Despite these limitations, deep learning has become crucial in the advancement

of neuroscientific research [228, 165]. Deep neural networks can help with processing

large amounts of data. For example, convolutional neural networks ‘learn’ from training

data by passing its features through a multilayered network of simple modules. Such

networks progressively abstract the data and extract features, which can be applied

to analyse new data. In [214] a deep neural network that classifies images with high

accuracy was used. The levels of processing of the network were compared with the

activity of various stages of the human visual system. It was shown that the recurrent

connections in the network offer better resemblance to the biological system than a

similar but feed-forward architecture [214]. In another example, [349], deep neural

networks were used to study the structure to function mapping of the human brain.

The researchers asked the question whether the modest coupling between SC and FC

is a fundamental property of a nervous system or merely a limitation of current brain

network models [349]. A five-layer architecture with dropout connections (randomly
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removed weights to improve generalisation) was used to predict the FC matrix from the

same dimensional SC. The results pointed towards the conclusion that the structure–

function coupling in human brain networks is substantially tighter than previously

suggested. For instance, brain function predicted from an individual’s SC explained

significant inter-individual variation in cognitive performance [349].

Regression models are another subcategory of supervised machine learning. In a

regression problem, the task is to predict a continuous value based on predictors. For

example, the simplest scenario is to predict one output variable by fitting a linear

function to the data [42]. Regression models are ubiquitous in neuroscience. For

example, they help with decoding the spiking activity of neurons in animal studies

[174], or comparing experimental conditions in fMRI studies [312].

Unsupervised learning

Supervised learning often relies on the laborious work of human (or semi-automatic)

annotators [370]. For supervised deep learning networks, the order of the size of the

dataset must be around thousands of examples to achieve a satisfactory training ac-

curacy (but see also the recent advances in few-shot, or one-shot networks discussed

elsewhere: [332]). Obtaining that amount of data is not always possible due to practi-

cal limitations, such as, for example, the fatigue of human participants, or expensive

neuroimaging procedures (like fMRI). Thus, there is another family of machine learn-

ing methods, helping to analyse ‘unlabeled’ data. The goal of unsupervised learning is

to discover hidden structures in the data [42]. Usually, this is achieved by exploring a

similarity or redundancy between multivariate patterns. In neuroscience, for example,

learning a relevant encoding of stimuli by a neural system may help to represent the

parameters of an experiment. Unsupervised machine learning approaches can be used

to detect extracellular spikes in that context [174].

A ubiquitous unsupervised method in neuroscience is Principal Component Analysis

(PCA), a statistical technique to reduce the dimensionality of a problem, which ex-

ploits the redundancy in the data, using second-order statistics [42]. A PCA algorithm

creates a new representation of a dataset by means of latent variables (or principal
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components) that account for the largest variance of the original data. This allows

substantially reducing the dimensionality of the data (often to the first two or three

most important components) [42, 201]. Another unsupervised machine learning algo-

rithm is Independent Component Analysis (ICA) [188, 34]. ICA is a common M/EEG

data pre-processing technique that allows removing muscle, eye blinks, or heart rhythm

artefacts [201]. This can be done by searching for the maximally non-Gaussian com-

bination of the components, assuming that the observed data is generated via a linear

sum of independent contributors [188]. Currently, ICA has become one of the default

steps in M/EEG data cleaning pipelines [201, 162]. Both the PCA and ICA algorithms

have been used in the research for this thesis as pre-processing methods (Chapters 2

and 3).

In the context of neuroimaging, data analysis typically uses supervised and un-

supervised methods. Reinforcement learning in another machine learning procedure

that involves learning an optimal behaviour of an agent by a set of actions that could

be taken in response to a state of the system [428]. It has been heavily inspired by

behavioural psychology [367]. Reinforcement learning differs from supervised learning,

because no precise mapping between the training examples and the labels is required.

Instead, the focus is on finding a balance between exploration and exploitation of the

agent [242].

A major difference when comparing machine learning models with previous neu-

ronal modelling approaches is that they explicitly rely on the data. Additionally, most

machine learning algorithms are not specific to one type of data type. For example,

one can use SVM to predict the ERPs in the BCI setting, but also to discriminate

between the activity of brain while subjects are looking at faces and houses based on

fMRI features [428, 232]. The assumption-free character of machine learning models

can be beneficial, but sometimes problematic. For instance, the mechanistic Wong

& Wang model, presented in Section 1.4.2, relies on specific assumptions about the

neuronal process that it aims to explain (i.e. perceptual decision making) [454]. Such

a model offers not only explanatory power, but also insight into the mechanism of the

cognitive process (see also the distinction between mechanistic and statistical models

at the beginning of Section 1.4.3). The common criticism of machine learning applica-
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tions to neuroscience is the inability to provide an understanding of the process under

investigation [428]. Nevertheless, when the data gets sufficiently large and complex,

the applications of data mining and machine learning become essential.

Machine learning models interpretability

In recent years, the interpretability and explainability of machine learning models has

become a topic of particular interest [101, 168, 183]. It is easier to interpret simple

models (e.g. linear regression), whereas more complex models typically yield better

performance (e.g. deep convolutional neural networks) [228, 385]. Thus, finding an

appropriate trade-off is not a trivial task.

However, even the interpretation of linear classifiers has its pitfalls [101]. In a

simple scenario, we have only two observation channels: one that contains the source

of information with noise, x1(t) = s(t) + η(t), but the second with just noise x2(t) =

η(t). A linear combination of channels with weights can be used to extract the signal

s(t) from the data x. For example, the signal is recovered by taking the difference

x1(t)− x2(t) = wTx, where wT = [1,−1]. Such a classifier gives equal weight to both

channels. Therefore, interpreting those weights as evidence that the signal-of-interest

s(t) is present in a channel would lead to the wrong conclusions [101]. This issue

has been highlighted in [168]. The solution consists of multiplying the weights of a

linear classifier by the covariance matrix of the input data. The application of the

interpretation of a linear classifier will be presented in Chapter 2 (Figure 2.6).

Recently, great progress has been made towards explaining the predictions of more

complex models, such as deep learning networks. For example, the Layer Relevance

Propagation (LRP) method was used to interpret the architecture used for the single-

trial EEG classification problem [385]. The robustness of these approaches is often

doubted. In [102], a didactic example was constructed by attaching a small image

of a panda to the fMRI scan of the brain in only one of two available classes. Two

methods were tested: LRP and relevance maps [333]. In most cases, both methods

ignored the ‘panda’ feature as a predictor of the class. This and other studies only

strengthen concerns about the reliability of the more complex models and attempts at
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their interpretation [102, 168]. The need for explainable deep learning in, for example,

clinical applications, where the results may inform treatment and triage, cannot be

neglected. Over the years, brain research has been an inspiration for the development

of algorithmic-level implementations of the general mechanisms of human and animal

learning and pushing machine learning researchers towards relevant solutions [165, 428,

143], whereas machine learning algorithms have facilitated the analysis of large amounts

of neuronal data [165, 143].

1.4.4 Models informed by neuronal data

So far, mainly theoretical models of neuronal activity (e.g. Hodgkin–Huxeley, FitzHugh-

Nagumo) and models that help with the analysis of neuroimaging data (e.g. SVM,

PCA) have been discussed. Recently, more studies have aimed to unify the experimen-

tal evidence and a priori models [239, 228]. As an example, NMMs have been used

to determine large-scale network properties via the simulation of local neural popula-

tions integrated with long-distance functional and/or structural connectives [347, 89].

Additionally, recent years have brought about a wider use of network theory in appli-

cations to neuroscience [25, 270]. The field is evolving rapidly due to computational

developments that enable the study of connectivity in fine anatomical detail and the

simultaneous interactions between multiple regions [270]. Network theory provides an

intuitive framework for studying relationships between interconnected brain areas and

helps study their relevance to behaviour [25]. This approach bridges fine-scale and

coarse-grained information drawn from real systems to create network models as data

representations, which in turn can be used to inform theoretical work.

Chapter 3 will present a phenomenological model that combines network theory

with evidence from neuronal data, the pairwise Maximum-Entropy Model (pMEM).

The pMEM is rooted in statistical physics (where it is known as the Ising model) [60].

In its original formulation, the model describes the behaviour of a magnetic probe in an

external magnetic field under different temperature conditions [60, 389]. It consists of a

lattice with binary values −1 or +1 representing the spin orientation of an atom. This

system undergoes a bifurcation at a critical parameter (originally, the temperature)
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where the probe loses its magnetic properties due to the random orientation of spins,

which cancels the average magnetic moment of the lattice [60]. Traditionally, the model

was used in neuroscience to describe the activity of spiking neurons. The maximum

entropy approach is a simple abstraction that allows predicting, on average, up to 90%

of the available spatial correlation structure of the neurons (for a distribution of states

in an ensemble of up to 10 neurons) [390, 400].

Further studies extended the applications of pMEM to fMRI signals [389, 436, 437]

or MEG [233]. For example, [436] brought the first evidence that a pairwise interac-

tion parameter of pMEM may accurately describe the resting-state of human brain

networks. They applied the model to selected regions of interest (ROIs), as the fitting

procedure is numerically intensive. A contemporary standard computational devices

allow fitting the model for up to N = 12 nodes (although for larger N , approxi-

mate solutions are available). The blood-oxygen-level dependent (BOLD) response was

thresholded to get a binary activity (similarly to the Ising model) [436]. The model

was fitted to two resting state brain networks (i.e. networks active in the presence of

no particular task) with high accuracy and robustness. With that it was possible to

create a map of the most common brain states (immediate binary activity distributed

across the regions; for more information see Chapter 3.2.6), called an energy landscape

[389]. Furthermore, the functional interaction matrices derived from the pMEM were

similar to the anatomical connectivity matrices. These results were the first evidence

of the applicability of pMEM to macroscopic brain signals. They extended previous

findings that described activity patterns observed in a slice or small parts of the brain

[436]. The method was further used to study resting state brain networks during hu-

man bistable perception [437], age-related impairment of brain connectivity [120], and

autism related differences in node transitions [435].

The pMEM accounts for the spatial correlations in relatively small ensembles of

ROIs, but brains respond in both spatial and temporal patterns. Introducing a tem-

poral dependency for only up to the two last steps increases the complexity of the

pMEM model [390]. For example, for a system with N = 4 nodes, the dimensional-

ity of the spatial problem is 2N = 16, whereas for its temporal extension it becomes

23N = 4, 096. Another issue with the pMEM model, is that for large N , exponentially
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more data are needed to accurately estimate the model parameters. Nevertheless, the

pMEM might be a useful tool to examine changes in small resting-state brain networks

[437, 437, 233].

The pMEM (further discussed in Chapter 3) is only one example of how networks

help to combine neuroimaging data with models. The other examples include inform-

ing multivariate NMM with empirically derived SC [89] (for more, see Section 1.4.2),

studies of ‘small worldness’ [270], and Dynamic Causal Modelling [132]. However, net-

work approaches are not the only way to combine the neuronal data with models of the

brain, or cognition. Another possibility is incorporating the properties of the neuronal

data as a regressor to high-level models of behaviour [67, 288, 465].

For example, the model of decision-making, Drift Diffusion Model (DDM) (for

more, see Section 1.6), has been embraced by cognitive neuroscience as it accounts

for a variety of reaction-time experiments [49]. In [67], EEG recordings provided a

single-trial measure of brain activity, i.e., theta-band magnitude from frontal electrodes.

Instead of estimating one static threshold parameter of DDM per subject across trials,

the proposed model assumed that the threshold varied for each trial according to a

linear model (as a function of the measured theta activity). It was found that this

activity was correlated with an increased decision threshold in the selected category of

trials. The parameters differed when subjects were undergoing a deep brain stimulation

of the subthalamic nucleus. As hypothesised by the model, the subthalamic nucleus

was responsible for the increased decision threshold modulated by the increase of the

cortical theta activity.

Moreover, in [288], single-trial EEG attention measures informed DDM fitting in or-

der to explain the evidence accumulation and decision preparation in a visual decision-

making task. A singular value decomposition, similar to PCA, was used to find per-trial

estimates of the evoked responses in the EEG. The method boosts the signal to noise

ratio in the estimates of the synchronised activity of cortical neurons, but also reduces

the multivariate signal (coming from multiple electrodes) to a single latent variable.

Next, a hierarchical Bayesian version of DDM was used with a measure of attention as

regressor, which consisted of the magnitudes of the single-trial ERP components P200

and N200. This modelling approach shows how evidence from electrophysiology can
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be used to understand the influence of visual attention on the mechanisms of decision

making [288].

Similar neurocognitive models have been used to combine mathematical models of

cognition with observations of brain behaviour to explain and predict perceptual de-

cision making [301, 288, 297]. The usefulness of combining behavioural models and

neural dynamics has been motivated on theoretical grounds. Furthermore, indepen-

dent neural measures can significantly improve the explanation and prediction of the

cognitive process [301].

1.5 Neuroimaging

Modelling is often informed or tested with recordings of neuronal activity [239, 43, 288].

Depending on the model abstraction, or level of plausibility, various signal modalities

can be used (see Section 1.3.3). In this thesis, an emphasis was put on the models

of human brain activity. In contemporary neuroimaging, there are a number of non-

invasive tools to study the function of the human brain [37, 68, 308, 445, 267]. This

section summarises common non-invasive neuroimaging techniques that were employed

for the purpose of this research: MRI (in Chapter 3) and fMRI, EEG (in Chapter 2),

and MEG (in Chapter 3).

1.5.1 Magnetic Resonance Imaging

One of the most popular neuroimaging tools is the Magnetic Resonance Imaging (MRI)

scanner. MRI devices use strong magnetic fields and radio waves to generate images of

the organs in the body [200]. Structural MRI is used to uncover anatomical structures,

e.g. neurological and other soft tissues. MRI takes advantage of the different factors

within the body such as the presence of different chemical bonds, paramagnetic ions

and rate of flow of fluids that produce different magnetic resonance signals and hence

show contrast between tissues. Functional Magnetic Resonance Imaging (fMRI) focuses

on the processes in the human brain as they develop in time. This allows mapping

a cognitive function onto specific brain regions in time [37, 200]. For the past 30
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years, fMRI has dominated human brain mapping research, because it does not require

subjects to undergo any injections, surgery, or to be exposed to ionising radiation

[200]. fMRI measures BOLD contrast, which depends on the blood flow (the so-called

hemodynamic response function, HRF) related to the energy consumed by a brain

area engaged in a specific function [37]. Different magnetic properties of oxygenated

or deoxygenated blood affect the relaxation times of the spins aligned via an external

magnetic field in the scanner. Despite the good spatial resolution (the standard method

can detect changes with a precision of millimeters [308]), fMRI suffers from a poor

temporal resolution [200]. Typically, the scans allow sampling the whole brain in time

scales of from a second to a few seconds. The human brain, however, performs actions

incredibly efficiently. Very simple, perceptual decisions take no more than hundreds of

milliseconds to process and execute [470, 288].

1.5.2 Electroencephalography

In many experiments, the exact timing of a task and its neuronal synchronisation

cannot be ignored [465, 289]. Recordings of the electrical activity of neurons are much

more precise. For many years, researchers have used recordings of individual neurons

using clamping techniques, or neuronal ensembles using local field potential (LFP)

measures [84, 363]. These usually involved invasive interaction with the brain and

surrounding tissue. Unless in a clinical setting, similar techniques are used mainly in

animal studies.

Electroencephalography (EEG) provides a fast-sampled non-invasive technique for

recording the electrical activity of neurons outside the scalp. The first EEG measure-

ments were performed by Berger [35], and Beck and Cybulski [78]. EEG records the

changes of electrical potential difference from the synchronous activity of large popu-

lation of cortical pyramidal neurons [290, 219]. These neurons differ from the standard

neuronal cell. The shape of a pyramidal cell is characterised by a singe large apical

dendrite that emerges from the apex of a cell [290] (compare with Figure 1.2). The

synaptic activity of these neurons generates subtle electrical impulses called postsy-

naptic potentials [163]. EEG waveforms recorded on the scalp are formed due to a
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linear superposition of contributions from billions of such micro-current sources. Each

source can be approximated by an electrical dipole with a sink around the cell body

and a source near the apical dendrite. The primary current (post-synaptic potential)

generates a secondary extracellular dipole current. Only synchronised activity (spikes

at the same time) of large populations of micro-dipoles can be reliably detected. To

record them from a distance, the dipoles must be oriented in the same way, so that the

positive and negative charges do not cancel out in the summation [290]. The tissue in

the brain is immersed in an ionised cerebrospinal fluid. This liquid allows the electro-

magnetic field of the dipoles to propagate to the surface of the scalp. When recorded

from outside the scalp, the electrical signal is attenuated by the skull, skin, and hair

[163]. Given the distribution of dipoles within the brain, estimating the external volt-

age outside the skull is referred to as the forward problem, Figure 1.5. The inverse

problem, in contrast, aims to use the recorded scalp potential distribution to determine

the sources’ activity and location [290]. In the following formulation, the problem is

ill-posed due to the lack of a unique solution. However, with anatomical constraints

(coming typically from structural MRI or a priori anatomical knowledge), approxi-

mate numerical solutions are possible, for example, Beamforming, or Low Resolution

Electromagnetic Tomography [178, 304].

Scalp EEG activity is characterised by oscillations of various frequencies. The fre-

quencies are analysed by means of the power spectral distribution [290]. Several of these

oscillations have specific frequency ranges and spatial distributions. Various frequency

bands are also associated with the different states of a functioning brain. For example,

alpha activity (8–13 Hz) is typically linked with attention and fatigue state [35]. The

neuronal networks underlying some of these oscillations are well understood (e.g. the

thalamocortical resonance underlying sleep spindles [45], or beta waves [146]).

1.5.3 Magnetoencephalography

According to Maxwell’s laws, every electric current is accompanied by a magnetic

field. Hence, the current dipoles from the cortical pyramidal neurons generate small

magnetic fields [163, 162]. Magnetoencephalography (MEG) is a technique that allows
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Figure 1.5: LHS: A schematic of source equivalent dipoles (A) generating
M/EEG signals. Multiple dipole generators are captured by the magnetic
sensors, or electrodes (B). RHS: Resulting distribution of electric potential
or magnetic field on the scalp from a single dipole.

detecting these fields. The principle of neuronal magnetic signal generation is similar

to EEG, but the magnetic field resulting from the intracellular current flow inside the

neuronal axon is much greater than the contribution of transmembrane current and

passive-current flows [162]. Electrical currents generated by the dipole sources in the

cortex produce local changes in the magnetic field outside the scalp. The changes are

extremely small, on the order of magnitude of 10 fT [290]. Thus, MEG scanners need

to be housed in magnetically shielded rooms (also known as Faraday cages). This type

of shielding eliminates artefacts from the Earth’s magnetic field and other external

magnetic noise generators [162]. The changes in magnetic flux can be detected with

a superconducting sensor coil, which triggers a superconducting current flow. This

flux transformer is connected to an input coil which is in turn inductively coupled

to a SQUID [162]. The SQUID (superconducting quantum interference device) is a

fundamental building block of the modern MEG scanners. They allow converting the

extremely small changes in magnetic field into voltage changes [162]. To improve the

detection of artefacts, a standard flux transformer consisting of a gradiometer is built

from two coils oriented one below another, horizontally to the scalp. In the case of the

magnetic signals generated within the brain, the small magnetic field will be detected

only by the coil closest to the scalp, as the magnetic field density decreases sharply

with distance. In case of an artefact from, e.g. a magnetic field generated by a passing

car, the distortion in the magnetic field will be detected simultaneously by the two
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coils. Only asynchronous signals will be passed from the gradiometer to the amplifier

and then to the analogue to digital transformer [162, 163].

Compared with EEG, MEG devices are much bigger, require liquid helium for

cooling, and a special environment to be kept in; it follows that they are much more

expensive [163]. MEG typically consists of a large tube, placed vertically above the

head. However, recent years have seen the development of portable MEG devices based

on optically pumped magnetometers [397]. These devices, however, despite bringing

initial practical results, are still to be formally tested for scientific applicability [397].

Also, MEG scanners can detect only signals from tangentially oriented sources, because

radial dipoles give rise to no external magnetic field [163]. An EEG device allows

detecting cortical activity from both tangential and radial sources.

Unlike electrical signals, the magnetic fields originating from neural activity are

hardly affected by the conductivity of the tissues within the scalp. Hence, the signal-

to-noise ratio of MEG is much higher, which improves for instance the spatiotemporal

localisation of the signals’ sources [163]. Related to this, the time of preparation of a

participant for the scanning tends to be much shorter in MEG. EEG devices require

placement of a gel or a liquid on the participant’s scalp to improve the electrodes’

impedance [290]. This is often linked with a tedious and time-consuming removal of

skin fat and hair, to make sure that the electrode connects to the scalp.

On the other hand, both EEG and MEG suffer from poor spatial resolution. For

instance, fMRI devices allow detecting the activity of in-depth brain regions, like basal

ganglia, or insula [37]. The contribution of electrical potentials, or magnetic fields is

much weaker to M/EEG recordings. Furthermore, spatial distortion in EEG and MEG

arises from differences in the electrical resistance of the head tissue [293]. MEG sig-

nals are less affected by this and have better spatial resolution than EEG (by a factor

of around two) [162]. Both EEG and MEG allow, however, estimating an approxi-

mate location of cortical sources, but often only when additional steps are made (like

structural MRI scanning).

Despite these limitations, both EEG and MEG have been extensively used in clinical

and academic applications [163]. Typical features of magneto-encephalographic record-

ings analysed in the studies include: frequency band contributions, effective functional
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connectivity analysis, independent components, energy of the signal in time, but also

event related signals [293, 290, 163, 162]. For example, Event-Related Potentials (ERP)

in the case of EEG, or Event-Related Fields (ERF) for MEG, are fast changes of ampli-

tude triggered by an event [83]. A significant deviation (with respect to the baseline)

from a signal averaged over multiple realisations of a task can be detected when a

participant attends to a particular event in a sequence. These effects have become a

major focus of clinical and cognitive psychology experiments, but have also been used

in modern brain–computer interface implementations [232].

Recently, a number of studies have started using neural correlates detected by EEG,

or MEG, to support theoretical modelling [130, 288, 289]. For example, in [289], a model

was used to track the onset of the accumulation of evidence. It was shown that a type

of ERP, the N200 peak, tracks non-decision times estimated by cognitive models, e.g.

DDM [289]. These ERPs were found in the approximate area of the extrastriate cortex.

The results of a similar modelling approach with single-trial ERP magnitude changes

will be presented in Chapter 2 to inform a cognitive model of decision-making. As

another example, [213] showed the benefits of using rapidly sampled EEG and MEG

for a special type of generative model: the Dynamic Causal Model (DCM) [132]. The

DCM in the M/EEG setting allows inverting a full spatiotemporal model of ERPs

depending on the condition of the experiment. In this way, it is possible to invert the

generative DCM, which provides conditional densities on the model parameters. These

parameter estimates enable performing hypothesis testing under the data and model

constraints [213, 132].

1.6 The decision-making process

In this thesis (particularly, in Chapters 2, 4 and 5), I focus on the modelling of the cog-

nitive phenomenon of decision making. In this section, the most recent developments

in this area of research are briefly summarised. For a detailed overview of decision

making, one can refer to, e.g. [148].

The study of decision making is ubiquitous in many fields of research, such as psy-

chology, economics, engineering (e.g. quality control), and political science [148, 362].
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This shows how crucial is the understanding of the problem. Citing Mark Twain [411],

I must have a prodigious quantity of mind; it takes me as much as a week

sometimes to make it up.

we may identify the basic principle that a decision takes time that is needed to commit

to a choice [148].

There are several types of decision. Perceptual decisions are made at a non–delibera-

tive level and have an arbitrary criterion that defines the quality of a choice [104, 49,

470]. Value-based (or preferential) decisions are considered to be at a higher cognitive

processing state. The quality of such decisions depends on the decision maker’s subjec-

tive goals [104]. According to the [318], a decision process consists of five aspects: an

option representation, valuation, action selection, outcome evaluation, and learning.

In the projects presented in this thesis, I will focus only on the phases of valuation and

action selection. For simplicity, it is often assumed that the choice is binary, meaning

that there are only two options available [362, 276].

In Chapters 2 and 4, I focus on perceptual decision making. This field has been

influenced by the experiment performed by Newsome, Britten, and Movshon [281].

They recorded spiking activity from neurons in extrastriate area MT/V5 of rhesus

monkeys while those monkeys performed a moving dots direction discrimination task.

First, the fidelity of the single-neuron response to the motion rivalled the fidelity of

the monkey’s behavioural reports [281]. Later, they observed that the saccade evoked

by stimulation of the frontal eye field showed a systematic deviation in the direction

of a preferred choice. This provided the initial evidence that the decision process, and

not just its outcome, seems to occur in the brain circuitry that governs the movement

response [351].

Apart from the neuronal evidence, the study of decision making has benefited from

a branch of statistics known as Signal Detection Theory (SDT) [154, 49, 148], which

is a general framework for interpreting data from experiments, in which accuracy is

measured. For example, when two or more classes of stimuli are sampled repeatedly

and an observer must select a response corresponding to the class actually presented,

the accuracy in such tasks is limited by the sensitivity of the observer, which depends
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on the degree of overlap between the distributions of a decision variable produced by

the classes of stimuli [154]. In SDT, a raw representation of a piece of evidence gives

rise to a decision variable (DV), upon which the brain applies a decision rule to make

a choice. In the classic approach to SDT, the DV is a simple transformation of the

sensory data that satisfies the weak constraint of being monotonically related to a

likelihood, namely, the probability of observing this value, given a state of the world.

Then, the decision rule is effectively a comparison with a criterion [154, 362]. In a

motion detection experiment, for instance, the decision is based on the comparison of

spike counts from two pools of neurons that are the most sensitive to the two directions

of the motion [147].

However, SDT does not provide an explanation for the amount of time needed to

complete a decision [362]. Hence, SDT is often paired with a sequential sampling [148],

which finds how the evidence has been integrated over time to a threshold level, when

the decision terminates with a choice. Nonetheless, the accumulation of decision via

an integration is not the only way for a decision to emerge [148, 362].

The framework of perceptual decisions arising via the accumulation of evidence

over time is the core of many models of reaction time [351, 50, 470, 289]. Under

the SDT framework, perceptual decisions can be modelled in a number of ways that

have been shown to converge to only two: drift-diffusion models (DDM) and linear

ballistic accumulators (LBA) [414, 49]. Both approaches introduce the notion of a

decision variable that accumulates evidence towards one of the options. In the DDM

this variable represents the difference between evidences in favour of each option [325],

and in the LBA model it is represented by two (for the binary case) independent

accumulators that compete (‘race’) towards the threshold [58]. Typically, a decision

model consists of the following parameters: the non-decision time (representing sensory

information encoding and movement), drift rate or accumulation rate (indicating a

force with which a decision variable is attracted towards an option), a threshold or

boundary (representing the stopping point for the information accumulation), and bias

(or a preference for one option) [49]. It has been shown that the drift-diffusion model

behaves optimally when its processing remains in a linear range [49]. By ‘optimally’

we mean here the best theoretically possible performance in the sequential probability
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ratio test (SPRT) sense [432].

Cognitive models are used to explain the general mechanism of decision making, but

they do not answer the question of where to look in the brain for the neural correlates

of a decision variable [297]. One of the first pieces of empirical evidence suggested that

the lateral intraparietal area (LIP) might be engaged in this process [364, 362]. The

LIP is part of Brodmann area 7, heavily connected with a brain structure involved in

the control of eye movements [237]. Also, invasive recordings from the medial temporal

(MT) area (involved in motion processing) from monkeys detected neuronal activity

providing noisy evidence supporting two alternatives [53, 364]. These studies indicate

that the choice is made when the firing rate of a certain neuronal pool reaches a

decision threshold [364, 336, 160]. But are the decision variables the only parameters

impacting the decision? Recent modelling work suggests that the decision threshold

can be squeezed as an inward function of time [396]. This may be achieved by adding a

time-dependent signal to the accumulated evidence, which we refer to as an ‘urgency’

signal [75]. With the more complex models of decision and inconclusive experimental

work, currently, it is hypothesised that the LIP is one of many areas involved in decision

making [207]. Other studies have mentioned the involvement of the motor and frontal

areas of the brain [362, 160].

This short overview only touches the surface of contemporary research into decision

making, and provides a brief background for the further overviews presented in Chap-

ters 2, 4 and 5. Current research has arrived at the point where scientists are trying

to bring together the three pillars of choice: accuracy, reaction time, and confidence,

but also their neuronal correlates. This work is important, as decision making is one

of the key components of human cognition [362].

1.7 Research questions and outline

In this thesis, I combine mathematical modelling, numerical simulations, and data

analysis, to understand selected cognitive mechanisms of healthy and diseased human

brains. I start from a high-level cognitive model of decision making. In Chapter 2,

I combine EEG and cognitive models to understand the phenomenon of breaking a
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deadlock during the selection of options with the same probability of reward. In Chap-

ter 3, I use a data-driven model to find statistical differences of resting-state networks

dynamics between juvenille myoclonic epilepsy patients and healthy controls. Next,

in Chapter 4, I examine a more biologically-plausible model of perceptual decision

making that explains the human performance when deciding on the basis of multiple

information sources. Finally, in Chapter 5, I present a spiking neural network model

with theoretically motivated connections fitted with NEF. Overall, this thesis covers

a non-exhaustive but wide range of neuronal computational models. In Chapter 6, I

summarise the key findings of the presented research and discuss its limitations.



Chapter 2

High-level model of cognition informed

by EEG data: Reward certainty in the

voluntary decision-making task

This chapter is based on the work published in the Computational Brain & Behav-

ior [465] in collaboration with Wojciech Zajkowski (behavioural data analysis, mod-

elling, interpretation of the results), Jacopo Barone (data collection, data pre-processing),

Dr Lisa H. Evans (supervision of data collection and data pre-processing) and Dr Ji-

axiang Zhang (experimental design, data analysis, methodology, general supervision).

The author’s contributions to this work include EEG data pre-processing and analysis,

MVPA analysis, data visualisation, modelling and writing.

In this research, we aim to characterise the neurocognitive processes underlying

voluntary decisions, i.e. when the outcome reward between two options is the same.

We use hierarchical Bayesian parameter estimation for LBA model. We showed that

the probability and preference effects were associated with changes in the speed of

evidence accumulation, but not with visual encoding or motor execution latencies.

Furthermore, we integrate cognitive modelling of behavioural responses with single-

trial EEG features. The modelling showed that the rate of change between N100 and

P300 event-related potentials modulated accumulation rates on a trial-by-trial basis.

41
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2.1 Background

Cognitive flexibility enables decision strategies to adapt to environmental and moti-

vational needs [352]. One characteristic of this ability is that harder decisions often

take longer. Evidence from neurophysiology [147], neuroimaging [171] and modelling

[327] suggest an evidence accumulation process for decision-making: information is ac-

cumulated over time, and a decision is made when the accumulated evidence reached

a threshold [148]. This process can accommodate paradigms consisting of noisy stim-

uli (perceptual choices), as well as a rich variety of tasks with unambiguous stimuli

(value-based [308] or memory-based choices [321]). For perceptual choices, evidence

is derived from the sensory properties of the stimuli; for value or preference-based

choices, it originates from internal value evaluation and comparison [226]; while for

memory-dependent choices, from sampling memory traces [321, 363]. According to

this framework, decision difficulty, and in turn response time (RT), is proportional to

the relative difference in the evidence supporting each option, consistent with results

from perceptual [99], value-based [310, 296] and memory based decisions [325].

Recent studies propose that the nervous system does not only estimate the evidence

of options, but also multiplies it with a gradually growing ‘urgency’ signal [396]. Such

approach represents a decision policy for maximising reward rate while taking into

account the information conveyed by successive samples of the environment. It has

been shown that higher reward rates are achieved when the accumulated evidence is

novel, and the results are compared with a decreasing accuracy criterion [98]. However,

the urgency gating can be a good explanation of the deadlock break only in a temporal

dimension, but does not provide an explanation of the accuracy bias observed in this

and other studies [69].

Making difficult choices requires more evidence, and hence longer deliberation can

be an advantageous decision strategy. Scaling deliberation with difficulty is beneficial

only to a certain point. What happens if decision difficulty reaches a tipping point with

values of options being indistinguishable? In the hypothetical paradox of Buridan’s ass

[417], a donkey which cannot choose between two identical haystacks would, as a result

of its indecision, starve to death. This view is consistent with the classical DDM [325],
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which encodes the relative difference of evidence in favour of two options as a single

accumulation process between two absorbing boundaries. Such a model would predict

a deadlock or indecision between two equal alternatives, because there is zero difference

in the mean evidence supporting each choice (e.g. two identical haystacks), and the

decision process is dominated by noise accumulated over time, resulting in prolonged

RT [391] (but see [329] for a recent model modification that addresses this theoretical

limitation).

On the other hand, economic analysis suggests that choices between equal alterna-

tives should be made as fast as possible. The benefit of ‘rushing to decisions’ comes

from being able to relocate our cognitive resources elsewhere [342]. If evidence cannot

bring us closer to a better choice, deliberative thinking becomes an expensive and un-

necessary luxury. This effect can be modelled using stochastic decision models with

multiple accumulators, each encoding the accumulated evidence in favour of one choice,

such as the Linear Ballistic Accumulator (LBA) model [58] and the Leaky Competing

Accumulator (LCA) model [414, 50]. For those models, multiple accumulators compete

against each other on the basis of multiple sources of evidence inputs, which by default

eliminates the scenario of indecision between equal alternatives.

In reality, individuals can make timely choices between equally valued options [424]

and their decision speed is facilitated by the level of reward magnitude [307]. For

example, in preference-based decisions, it took under 2 seconds for one to choose be-

tween two snack food stimuli that had similar valuations [424]. In both humans and

non-human primates, higher reward magnitude facilitates RT in perceptual and value-

based decisions between equal choices [307]. Intuitively, Buridan’s donkey would be

motivated to make faster decisions if the haystacks are fresh, compared to when they

are stale. This magnitude effect is in line with ecological incentives: high rewards may

imply a resource-rich environment, for which one needs to exploit as early as possible;

low rewards may imply a resource-poor environment in which it is worth waiting for

a better option [307]. Furthermore, if choices are based purely on expected rewards,

one may choose any of the equal-valued options with the same frequency, leading to

random behavior. Nevertheless, previous studies [471, 305] showed that in a sequence

of voluntary action decisions, humans deviated from a random pattern of choice and
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exhibited low choice entropy across trials. A similar conclusion has been reached in

consumer decisions, where brand loyalties are driven by seemingly irrational prefer-

ences [440]. These findings suggest a possible preference bias between equal options,

which renders some options more likely to be chosen than others.

We focus on three issues that have been unresolved in previous research on choices

between equal alternatives. First, we aim to explore the effect of reward probability

on RT. We expect that, similar to magnitude [391, 307], higher reward probability

accelerates RTs. This prediction is not trivial, since probability and magnitude can have

different effects on behaviour. For example, [463] showed that magnitude discounting

follows a power law, while probability is discounted hyperbolically. Unlike magnitude,

probability has a upper bound at 100%, which acts in a qualitatively distinct way on

behaviour [409]. We expect this increase in speed to be non-linear, with choices between

two certain (100% probability) options being disproportionately faster compared to

choices between two uncertain ones.

Second, in the evidence accumulation framework, both the rate of the accumulation

and the non-decision time can influence a model’s prediction of reaction time, the

former encoding the strength of evidence and the latter reflecting the latencies of

visual encoding and motor execution. During perceptual learning, the accumulation

rate increases along with behavioural improvements [198], while the non-decision time

remains unchanged in the late stage of training [470]. Furthermore, the accumulation

rate is associated with the individual differences in working memory [354] and attention

[288], while the non-decision time is faster in individuals with higher diffusion MRI

derived neurite density in the corticospinal tract, the primary motor output pathway

[206]. Recent research showed that both parameters can be influenced by reward

magnitude [430], and the current study will examine further whether reward probability

and preference influence the two model parameters.

Third, we aim to describe the macroscopic pattern of brain activities associated

with differences in behaviour: it’s temporal evolution and relation to model-derived

parameters. Functional imaging studies have localised the mesocorticolimbic dopamin-

ergic network to be involved in both reward certainty and preference processing [401, 1],

but little is known about how these relate to global activations across the scalp. Pin-
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pointing when EEG activity diverges between conditions and assessing whether these

differences are transient or sustained can further inform our computational model,

giving deeper insight into the cognitive underpinnings of the decision process.

Here, we address these questions by combining advanced computational modelling

and EEG in a probabilistic reward task. Participants memorised six unambiguous

cues associated with three levels of reward probability, a certain reward level (i.e.

100%) and two levels of uncertain reward probabilities (80% and 20%). Participants

made two-alternative forced choices between cues with equal reward probability (Figure

2.1). The inclusion of the 100% reward probability condition allowed us to investigate

whether cues with definitive rewards are processed in a different manner than the un-

certain cues [118]. Additional task conditions involved binary decisions between cues

with different reward probability (unequal trials) and unitary responses to single cues

(single-option trials). This design enabled us to focus on the neurocognitive processes

underlying choices between equal options, while participants maintained a clear under-

standing of cue values for rational decisions between unequal options.

We first examine how reward probability influences behaviour and whether a pref-

erence bias between equal options is present. We then fit an accumulator model of

decision-making [58] to the behavioural performance across reward probability levels.

Posterior group parameters from hierarchical Bayesian model fitting procedure were

used to infer whether the behavioural effects were driven by evidence accumulation or

non-decisional components of the process. EEG data were analysed with time-resolved

multivariate pattern classification for decoding spatio-temporal representations of re-

ward probability and preference. To establish a link between the decision process and

its EEG signatures, we combined behavioural and EEG data into a joint hierarchical

Bayesian model and tested the hypothesis that electrophysiological activity reflects

trial-by-trial changes in the speed of evidence accumulation for decisions [412].

We demonstrate that reward probability and spontaneous preference independently

shape RTs and choices when deciding between equal alternatives. These behavioural

effects affect the decision process and evoke a distinct electrophysiological pattern. To-

gether, our findings contribute to the understanding of how decision deadlocks between

two equally probable rewards can be overcome.
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2.2 Materials and Methods

2.2.1 Participants

Twenty-three healthy participants were recruited from Cardiff University School of

Psychology participant panel (20 females; age range 19-32, mean age 22.7 years; 22

right-handed). All participants had normal or corrected-to-normal vision, and none

reported a history of neurological or psychiatric illness. Written consent was obtained

from all participants. The study was approved by the Cardiff University School of

Psychology Research Ethics Committee.

2.2.2 Apparatus

The experiment was conducted in a dedicated EEG testing room. A computer was

used to control visual stimulus delivery and record behavioural responses. Visual stim-

uli were presented on a 24-inch LED monitor (ASUS VG248) with a resolution of 1920

by 1080 pixels and a refresh rate of 60 Hz, located approximately 100 cm in front of

participants. Participants’ responses were collected from a response box (NATA tech-

nologies). The experiment was written in Matlab (Mathworks; RRID: SCR_001622)

and used the Psychophysics Toolbox Version 3 extensions [222].

2.2.3 Experimental design

All participants performed a decision-making task with probabilistic rewards during

EEG recording (Figure 2.1). Before the task, participants memorised 6 unambiguous

cues represented by different symbols and their associated probabilities of receiving a

reward (Figure 2.1B; see Section 2.2.4). All the cues had the same colour (RGB =

246, 242, 92) on a black background (100% contrast). Each cue was mapped onto one

of the three reward probability levels: high (a reward probability of 100%, i.e. always

rewarded), medium (a reward probability of 80%) and low (a reward probability of

20%), and hence there were two different cues associated with each reward probability.

Participants were instructed to maximise the total accumulated reward in the

decision-making task. The task contained three types of trials: equal, unequal and



CHAPTER 2. HIGH-LEVEL MODEL OF COGNITION 47

single-option. On an equal trial, two different cues with the same reward probability

appeared on the left and right sides of a central fixation point (e.g. 100% vs. 100%,

80% vs. 80% or 20% vs. 20%). On an unequal trial, two cues with different reward

probability levels appeared on both sides of the central fixation point (e.g. 100% vs.

20%, 100% vs. 80% or 80% vs. 20%). On a single-option trial, one of the six cues ap-

peared on either the left or right side of the fixation point. In equal and unequal trials,

participants chose the left or right cue via button presses with the right-hand index

and middle fingers. We limited a choice to the right hand in order to avoid the impact

of handedness bias. In single-option trials, participants responded to which side the

single cue was presented (i.e. left or right). In all trials, the reward was operationalised

as 10 virtual ‘game points’ that did not have any tangible value. The probability of

receiving the reward in a trial was either 100%, 80% or 20%, which was determined by

the chosen cue. It is worth noting that, in equal trials, participants’ decisions did not

actually affect the probability of receiving the reward because both options had equal

reward probability. In single-option trials, if participants chose the wrong side with

no cue presented (0.1% across all single-option trials), no reward was given. Feedback

for rewarded (a ‘10 points’ text message on the screen) or not rewarded (blank screen)

choices was given after each trial. The total game points awarded were presented at

the bottom of the screen throughout the experiment.

2.2.4 Procedure

Each experimental session comprised 640 trials, which were divided into 4 blocks of 160

trials. Participants took short breaks between blocks and after every 40 trials within a

block. The mapping between the six reward cues and three levels of reward probability

was randomised across participants. During breaks, the cues-reward mappings were

explicitly presented on the screen (Figure 2.1B), and the participants could take as

much time as they needed to memorise them. After the first two blocks, all the cues

were re-mapped to different reward probabilities. For example, for the pair of two

cues that were associated with 100% reward probability in the first and second blocks,

one of the two cues would be associated with 80% reward probability in the third
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Figure 2.1: (A) Experimental paradigm of the probabilistic reward task.
Participants were instructed to decide between two reward cues (equal and
unequal trials) or respond to a single cue (single-option trials). (B) A total
of six reward cues were randomly assigned to three levels of reward proba-
bility (100%, 80% or 20%). (C) Exemplar time course of the Linear Bal-
listic Accumulator (LBA) model for equal choices. On each trial, the LBA
assumes that evidence for two options are accumulated linearly and inde-
pendently over time in two accumulators. The accumulation rate is sampled
from a normal distribution with mean v and standard deviation S. The
starting point of the accumulation process is sampled from a uniform dis-
tribution between 0 and A. The accumulation process terminates once the
accumulated evidence first reaches a threshold B, and a corresponding deci-
sion is made by the winning accumulator.
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and fourth blocks, and the other associated with 20% reward probability. Participants

were encouraged to memorise the altered cue-probability associations prior to the third

block. This remapping procedure reduced the potential bias associated with specific

cues. No explicit memory tests were performed.

Each block contained 64 equal trials (32 for 100% vs. 100%, 16 for 80% vs. 80%

and 16 for 20% vs. 20%); 64 unequal trials (32 for 80% vs. 20%, 16 for 100% vs. 80%

and 16 for 100% vs. 20%) and 32 single-option trials (16 for 100%, 8 for 80% and 8

for 20%) at a randomised order. This design ensured the same number of trials with

and without cues with the highest reward probability (100%). Note, however, that

individual cues did not differ much in terms of frequency of occurrence: each 100% cue

appeared 56 times, compared to 48 for each non-certain cue. This makes it unlikely

that observed differences can be explained by occurrence frequency alone. Because two

cues were bound to every probability level, different cue positions and combinations

can result in the same reward probability pair (e.g. there are 4 possible combinations

for 80% vs. 20% unequal trials). These combinations were counterbalanced across

trials.

Each trial began with the presentation of a fixation point at the centre of the screen

for 500 ms. After the fixation period, in the equal and unequal trials, two reward cues

appeared on the left and right sides of the screen with a horizontal distance of 4.34◦

from the fixation point. Both cues were vertically centred. In single-option trials, only

one reward cue appeared on one side of the screen, and the side of cue appearance was

randomised and counterbalanced across trials. Cues were presented for a maximum

of 2000 ms, during which participants were instructed to make a left or right button

press. The cues disappeared as soon as a response was made, or the maximum duration

was reached. The reaction time (RT) on each trial was measured from the cue onset

to button press. Reward feedback was given 200 ms. after the reward cue offset and

lasted 800 ms, followed by a random intertrial interval uniformly distributed between

1050 and 1150 ms. As in the previous study [470], if the participant failed to respond

within 2 sec or responded within 0.1 sec, no reward was given and a warning message

‘too slow’ or ‘too fast’ was presented for 1.5 sec.
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2.3 Data analysis

2.3.1 Behavioural analysis

We excluded trials with RT faster than 200 ms (fast guesses). For each participant, tri-

als with RTs longer than 2.5 standard deviations from the mean RT were also excluded

from subsequent analysis. The discarded trials accounted for 1.5% of all trials.

We first analysed the proportion of choices in equal trials to establish the existence

of a preference bias. In the equal condition, by definition, there was no ‘correct’ or

‘incorrect’ response, since the cues had the same reward probability. For each pair of

cues with the same reward probability, we defined the preferred cue as the one chosen

more frequently than the other (non-preferred) in equal trials. The categorisation of

preferred and non-preferred cues was estimated separately between the first two and the

last two blocks, because of the cue-probability remapping after the first two blocks. At

each level of reward probability, a preference bias was then quantified as the proportion

of trials where the preferred cue was chosen. The preference bias had a lower bound of

50%, at which both cues were chosen with equal frequency.

In the unequal condition, we defined decision accuracy as the proportion of choosing

the cue with higher reward probability, separately for each combination of reward

probabilities (100% vs. 80%, 100% vs. 20% and 80% vs. 20%). Two-tailed one-sample

t-tests compared the decision accuracy in the unequal condition against a chance level

of 50%, which would indicate irrational decisions (i.e. both high and low reward cues

were chosen in 50% of trials).

To determine how reward probability, preferences and other experimental factors

influence RT, we analysed single-trial RT data with linear mixed-effects models (LMM)

using the lme4 package [26] in R (RRID: SCR_001905). The LMM is a hierarchical re-

gression method that distinguishes between fixed and random effects [156]. LMMs take

into account all single-trial data without averaging across trials and offer better control

of type 1 and type 2 errors than ANOVA [16]. Therefore, statistical inferences from

LMMs are robust to experimental designs with unbalanced trials across conditions [19],

which is an important feature suitable for the current study.
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We designed two LMMs with different dependent variables and factors (Table 2.1).

Model 1 analysed the RTs from equal and single-option trials, including choice type

(equal or single-option), reward probability (high, medium or low), cue remapping

(before and after), preference (whether the chosen cue was preferred) and right-side

bias (whether the chosen cue was on the right side of the screen) as factors. Right-side

bias was included to control for spatial bias relating to preference for stimuli presented

on the right or left side of the screen. For the unequal condition, because each trial had

two cues with different levels of reward probability that cannot be directly compared

with equal or single-option trials, the RTs were analysed separately in Model 2. Here,

we used similar predictors with exception of probability, which was captured by two

additional factors: the sum and the absolute difference of the two reward probabilities,

as they both have been shown to affect choice behaviour [393, 22, 391].

In all the LMMs, fixed effects structures included hypothesis-driven, design-relevant

factors and their interactions, and individual participants were included as the source of

random variance (random effect). We used a standard data-driven approach to identify

the random effects structure justified by the experimental design, which resulted in

good generalisation performance [24]. This approach starts with the maximal random

effects structure (i.e. including all random slopes, intercepts and interactions) and

systematically simplified it until the LMM reaches convergence. Table 2.1 lists the

simplified random effects structures. The correlation structures of each fitted LMM

was assessed to avoid overfitting [263].

2.3.2 A Cognitive Model of Voluntary Decision-Making

We further analyzed the behavioral data using the Linear Ballistic Accumulator (LBA)

model [58]. LBA model is a simplified implementation of a large family of sequential

sampling models of decision-making [327, 49, 148, 468] which assumes an indepen-

dent accumulation process for each choice option. Our model-based analysis has three

stages. First, we fit a family of LBA models with various model complexity to the be-

havioural data of individual participants in equal trials. By identifying the best-fitting

model, we infer how reward probability and preference modulated subcomponents of
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Table 2.1: The linear mixed-effects models of RT. Model 1 analysed single-
trial RT in equal and single-option trials. Model 2 analysed single-trial RT
in unequal trials. In both models, preference was a predictor indicating
whether the preferred cue was selected in each trial. Cue-remapping was a
predictor indicating whether each trial was before or after cure-probability
remapping in the second half of each session. Right-bias indicated whether
the cue on the right size of the screen was chosen in each trial, modelling a
possible response bias.

Model 1 Model 2
Dependent Variables RT RT

Main Effects reward probability sum of reward probability
preference difference of reward probability
cue-remapping preference
choice (equal of single-option) cue-remapping
right-bias right-bias

Interaction Terms probability * choice sum of reward probability * preference
probability * preference difference of reward probability preference
probability * cue-remapping sum of reward probability * cue-remapping
choice * preference difference of reward probability * cue-remapping
choice * cue-remapping preference * cue-remapping
preference * cue-remapping
probability * choice * preference
probability * choice * cue-remapping
probability * cue-remapping * preference

Random Effects reward probability preference sum of reward probability
(correlated slopes) cue-remapping difference of reward probability
and intercepts) choice preference

right-bias cue-remapping
right-bias
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the evidence accumulation process during decision-making. Next, we simulate the best

fitted LBA model and examine whether model simulations are consistent with the

experimental data in single-option and unequal conditions. This is a stringent test

of model generalisability because the experimental data in single-option and unequal

trials are unseen by the model fitting procedure. Finally, we link the cognitive pro-

cesses identified by the LBA model to brain activities by incorporating a trial-by-trial

measure of EEG activity regressors into the best-fitted model [67, 288, 289].

The LBA model assumes that the decision of when and which to choose is governed

by a ‘horse race’ competition between two accumulators i ∈ {1, 2} that accumulate

evidence over time supporting the two choice options. One accumulator is in favour of

the preferred cue and the other of the non-preferred cue. The activations of the accu-

mulators represent the accumulated evidence. At the beginning of each trial, the initial

activation of the two accumulators are independently drawn from a uniform distribu-

tion between 0 and A. The activation of each accumulator then increases linearly over

time, and the speed of accumulation (i.e. accumulation rate) varies as a Gaussian ran-

dom variable with mean vi and standard deviation Si across trials. The accumulation

process terminates when the activation of any accumulator reaches a response thresh-

old B (B > A) and the choice corresponding to the winning accumulator is selected.

The model prediction of RT (measured in seconds) is the sum of the duration of the

accumulation process and a constant non-decision time Ter, with the latter accounts

for the latency associated with other processes including stimulus encoding and action

execution [58, 289, 206].

2.3.3 Model Parameter Estimation and Model Selection

LBA model has five key parameters: mean v and standard deviation S of the ac-

cumulation rate across trials, decision threshold B, starting point variability A and

non-decision time Ter. To accommodate the empirical data, one or more model pa-

rameters need to vary between conditions. We evaluated a total of 21 variants of the

LBA model with different parameter constraints (Figure 2.3A). First, the accumula-

tion process may differ between the preferred and non-preferred options, leading v or S
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to vary between accumulators (preferred, non-preferred). Second, reward probability

could modulate the accumulation process or visuomotor latencies unrelated to deci-

sions, leading to v, S or Ter to vary between three levels of reward probability. Third,

the decision threshold B and starting point A were fixed between conditions, because

the trial order was randomised, and we do not expect the participants to systematically

vary their decision threshold before knowing the cues to be presented [327]. Fourth,

decision threshold B and starting point A were fixed across preference levels, since

participants could not predict which cue would appear on which side of the screen.

During model-fitting, the decision threshold was fixed at 3 as the scaling parameter

[58], and all the other parameters allowed to vary between participants. Theoretically,

the scaling parameter can be set to an arbitrary value, which does not influence the

parameter inference, as long as the priors of other parameters remain realistic, but

with some constraints parameter estimation is easier to converge. Finally, because the

participants showed behavioural differences between reward probability levels and be-

tween preferred/non-preferred choices, we only estimated realistic models: those with

at least one parameter varied between reward probability levels (v, S or Ter) and at

least one parameter varied between accumulators (v or S).

We use a hierarchical Bayesian model estimation procedure to fit each LBA model

variant to individual participant’s choices (the proportion of preferred and non-preferred

choices) and RT distributions in equal trials. The hierarchical model assumes that

model parameters at the individual-participant level are random samples drawn from

group-level parameter distributions. Given the observed data, Bayesian model estima-

tion uses MCMC methods to simultaneously estimate posterior parameter distributions

at both the group level and the individual-participant level. The hierarchical Bayesian

approach has been shown to be more robust in recovering model parameters than

conventional maximum likelihood estimation [195, 472].

For group-level parameters (v, S, A and Ter), similar to previous studies [10], we

used weakly informed priors for their means E(.) and standard deviations std(.):
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E(v) ∼ N(2.5, 1), std(v) ∼ γ(1, 1),

E(S) ∼ N(1, 0.75), std(S) ∼ γ(1, 1),

E(A) ∼ N(2.5, 1), std(A) ∼ γ(1, 1),

E(Ter) ∼ N(0.5, 0.2), std(A) ∼ γ(1, 1),

(2.1)

where N represents a positive normal distribution (truncated at 0) with parameters

mean and standard deviation, and γ represents a gamma distribution with parameters

mean and standard deviation.

We used the hBayesDM package [4] in R for the hierarchical implementation of the

LBA model. hBayesDM uses Stan for Bayesian inference and offers a range of hierarchi-

cal Bayesian implementations of various computational models on an array of decision-

making tasks. For each of the 21 model variants, we generated four independent chains

of 7,500 samples from the joint posterior distribution of the model parameters using

Hamiltonian Monte Carlo (HMC) sampling in Stan [66]. HMC is an efficient method

suitable for exploring high-dimensional joint probability distributions [38]. The initial

2,500 samples were discarded as burn-in. To assess the convergence of the Markov

chains, we calculated Gelman-Rubin convergence diagnostic R̂ of each model [138] and

used R̂ < 1.1 as a stringent criterion of convergence [10]. We compared the fitted LBA

model variants using Bayesian leave-one-out information criterion (LOOIC). LOOIC

evaluates the model fit while considering model complexity, with lower values of LOOIC

indicating better out-of-sample model prediction performance [420].

2.3.4 EEG data acquisition and processing

EEG data were collected using a 32-channel Biosemi ActiveTwo device (BioSemi, Am-

sterdam). Due to technical issues, EEG data collection was not successful in two

participants, and therefore all EEG data analyses were performed on the remaining

21 participants. EEG electrodes were positioned at standard scalp locations from the

International 10-20 system. Vertical and horizontal eye movements were recorded us-

ing bipolar electrooculogram (EOG) electrodes above and below the left eye as well

as from the outer canthi. Additional electrodes were placed on the mastoid processes.
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EEG recordings (range DC-419 Hz; sampling rate 2048 Hz) were referenced to linked

electrodes located midway between POz and PO3/PO4 respectively and re-referenced

off-line to linked mastoids. Additional electrodes were placed on the mastoid processes.

EEG (range DC-419 Hz; sampling rate 2048 Hz) was collected with respect to an ac-

tive electrode (CMS; common mode sense) and a passive electrode (DRL; driven right

leg), which were located midway between POz and PO3/PO4 respectively, to form a

ground-like feedback loop.

EEG data were pre-processed using EEGLab toolbox 13.4.4b [91] in Matlab 2016b.

The raw EEG data were high-pass filtered at 0.1 Hz, low-pass filtered at 100 Hz using

Butterworth filters and downsampled to 250 Hz. An additional 50 Hz notch filter

was used to remove mains interference. We applied Independent Component Analysis

(ICA) to decompose continuous EEG data into 32 spatial components, using runica

function from the EEGLab toolbox. Independent components reflecting eye movement

artefacts were identified by the linear correlation coefficients between the time courses

of independent components and vertical and horizontal EOG recordings. Additional

noise components were identified by visual inspection of the components’ activities

and scalp topographies. Artefactual components were discarded, and the remaining

components were projected back to the data space.

After artefact rejection using ICA, the EEG data were low-pass filtered at 40 Hz

and epoched from -400 ms to 1000 ms, time-locked to the onset of the stimulus (i.e.

reward cues) in each trial. Every epoch was baseline corrected by subtracting the mean

signal from -100 ms to 0 ms relative to the onset of reward cues.

2.3.5 Multivariate pattern analysis

We use time-resolved Multi-Voxel Pattern Analysis (MVPA) on pre-processed, stimulus-

locked EEG data to assess reward-specific and preference-specific information through-

out the time course of a trial. In contrast to univariate ERP analysis, MVPA combines

information represented across multiple electrodes, which has been shown to be sensi-

tive in decoding information representation from multi-channel human electrophysio-

logical data [73, 97].
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We conduct three MVPA analysis to identify the latency and spatial distribution

of the EEG multivariate information. The first to decode reward probability levels in

equal choices (e.g. equal trials with two 100% reward cues versus equal trials with two

80% cues). The second to decode preferred versus non-preferred choices in equal trials.

The third to decode between equal and single-option choices with the same reward

probability (e.g. equal trials with two 100% cues versus single-option trials with a

100% cue).

Each analysis is formed as one or multiple binary classification problems, and the

data features for classification included EEG recordings from all 32 electrodes. In each

analysis, at each sampled time point (-400 ms to 1000 ms) and for each participant, we

train linear support vector machines (SVM) [135] using the 32-channel EEG data and

calculate the mean classification accuracy following a stratified ten-fold cross-validation

procedure. In all MVPA, we include the EEG data from 400 ms before cue onset as

a sanity check, because one would not expect significant classification before the onset

of reward cues.

In each cross-validation, 90% of the data issued as a training set, and the remaining

10% as a test set. In some analysis (e.g. equal trials with 100% cues versus equal trials

with 80% cues), the number of samples belonging to the two classes is unbalanced in

the training set. We use a data-driven over-sampling approach to generate synthetic

instances for the minor class until the two classes had balanced samples [467]. The

synthetic instances are generated from Gaussian distributions with the same mean and

variance as in the original minority class data. Training set data were standardised

with z-score normalisation to have a standard normal distribution for each feature. The

normalisation parameters estimated from the training set was then applied separately

to the test set to avoid overfitting. To reduce data dimensionality, we perform principal

component analysis to the training set data and selected the number of components

that explained over 99% of the variance in the training set. The test set data are

projected to the same space with reduced dimensions by applying the eigenvectors

of the chosen principal components. We then train SVM to distinguish between the

two classes (i.e. conditions) and evaluate the classification accuracy using the test set

data. The procedure is repeated ten times with different training and test sets, and
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the classification accuracies are averaged from the ten-fold cross-validation. We use

the SVM implementation in MATLAB Machine Learning and Statistics Toolbox. The

trade-off between errors of the SVM on training data and margin maximisation is set

to 1.

To estimate the significance of the classification performance, we use two-tailed one-

sample t-test to compare classification accuracies across participants against the 50%

chance level. To account for the number of statistical tests at multiple time points, we

use cluster-based permutation [258] to control the family-wise error rate at the cluster

level from 2000 permutations.

2.3.6 Estimation of single-trial ERP components

We estimate two ERP components from single-trial EEG data in equal trials: N100

and P300, which are subsequently used to inform cognitive modelling. The visual N100

is related to visual processing [256] and the P300 is related to evidence accumulation

during decision making [209, 412].

To improve the signal-to-noise ratio of single-trial ERP estimates, we use a proce-

dure similar to previous studies [208, 303, 289]. For each participant, we first performed

singular value decomposition (SVD) to the grand averaged ERP data across all trials

from the same experimental condition. SVD decomposes the trial-averaged ERP data

Ak×p (where k is a number of channels and p is a number of time points) into in-

dependent principal components. Each component consists of a time series of that

component and a weighing function of all channels, defining the spatial distribution

(or spatial filter) of that component. Because the ERP waveform is the most dominant

feature of the trial-averaged ERP data, the time course of the first principal compo-

nent (i.e. the one that explains the most variance) represents a cleaned trial-average

ERP waveform [289], and its weight vector provides an optimal spatial filter to detect

the ERP waveforms across EEG channels. We then applied the spatial filter from the

first principal component as a channel weighting function to single-trial EEG data to

improve the signal-to-noise ratio.

The single-trial EEG data filtered with the SVD-based weighting function is then
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used to identify the peak-latency and peak-amplitude of the N100 and P300 compo-

nents. For N100, we search for the peak negative amplitude in a window centred at

the group-level N100 latency (112 ms) and started at 60 ms. The lower bound of the

search window was determined by the evidence that the visual onset latency is 60 ms

in V1 [355]. For P300, we search for a peak positive amplitude in a window centred at

the group-level P300 latency (324 ms). For both N100 and P300, the search window

has a length of 104 ms, similar to a previous study [289].

Recent studies showed that the variability of the P300 component closely relates to

the rate of evidence accumulation during decision making [412]. We therefore extend

the best fitting LBA model with EEG-informed, single-trial regressors, which esti-

mates the effect of trial-by-trial variability in EEG activity on the mean accumulation

rate [169, 288].

The main regressor of interest is the slope of change between the N100 and P300

components, which is defined as the ratio of the P300-N100 peak-amplitude difference

and the P300-N100 peak-latency difference in each equal trial. We also test four ad-

ditional regressors from individual ERP components: P300 amplitude, P300 latency,

N100 amplitude and N100 latency. All the EEG regressors are obtained from the

estimations of single-trial ERP components in equal choice trials. To obtain a mean-

ingful intercept, the regressors are mean-centered and rescaled to have a unit standard

deviation.

Each EEG regressor is tested in a linear regression model, using the same Bayesian

hierarchical model estimation procedure as in the behavioural modelling analyses. For

each regression model, we assume that the mean accumulation rates of both accumu-

lators v1(t) and v2(t) (i.e. the one in favor of the preferred option and the other one in

favor of the non-preferred option) are influenced by the EEG regressor of interest on a

trial-by-trial basis:

v1(t) = ṽ1 + β × EEG(t), v2(t) = ṽ2 + β × EEG(t), (2.2)

where t = 1, 2, 3, . . . represents the equal choice trials, and ṽ1 and ṽ2 are the inter-

cepts. The regression coefficient β represents the effect of EEG regressor on the mean
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accumulation rates.

The rationale of estimating an EEG regressor to the mean drift rate is twofold.

First, this approach allows quantifying the trial-by-trial change over the intercept (i.e.

the mean drift rate), independent of its trial-by-trial variability (parameter S). Second,

one would not expect the sensor level EEG signal has sufficient spatial resolution to dis-

tinguish between the two accumulators encoding two options. Therefore, we estimated

a single EEG regressor across both accumulators.

2.3.7 Open data and scripts

We have made the data (https://figshare.com/articles/dataset/9989552), and

all analyses scripts (for modelling and EEG analysis) openly available (https://

github.com/ccbrain/voluntary-decision-eeg).

2.4 Results

2.4.1 Behavioural results

For each pair of cues with the same reward probability, we defined the preferred

cue as the one chosen more frequently than the other (non-preferred) in the equal

choice trials (see behavioural Analysis in Methods). We found a strong preference bias

(>50%) for choosing one reward cue over the other at each level of reward probabil-

ity (Figure 2.2C; high: 95%CI = [0.682, 0.765]; medium: 95%CI = [0.679, 0.759]; low:

95%CI = [0.669, 0.745]). A repeated-measures ANOVA showed no significant difference

in preference between reward probability levels (F (2, 44) = 0.2, p = 0.81). Therefore,

although the two options were associated with the same level of reward probability, par-

ticipants did not make their choices randomly. We further used a LMM to evaluate the

preference bias as a function of cue remapping (i.e. before vs. after the cue remapping

halfway through each session) and trial order in each testing block. The preference bias

was smaller after cue remapping (β = −0.181, 95%CI = [−0.01,−0.348], p < 0.03),

but was not influenced by trial order (β = 0.037, 95%CI = [−0.170, 0.243], p = 0.73).

These results imply that, for a given set of cue-probability associations, the extent

https://figshare.com/articles/dataset/9989552
https://github.com/ccbrain/voluntary-decision-eeg
https://github.com/ccbrain/voluntary-decision-eeg
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Figure 2.2: (A) Reaction times between the conditions of the experiment.
(B) Decision accuracy across reward probability levels in unequal trials. (C)
Preference bias towards selected symbol.

of preference bias did not significantly vary over time. Because the cue-probability

mapping was randomised across participants and re-mapped within each session, the

observed preference bias is unlikely to be explained by a group-level preference towards

any specific cue, but rather a spontaneous preference at the individual level. Addition-

ally, to check if preference from first half of the experiment affected preference after

remapping, we calculated the proportion of any cue being preferred in both sessions

on a subject level. We found that preference was consistent only in 51.5% of cases,

rendering no support for preference transfer after remapping (one-sided binomial-test;

p = 0.5, 95%CI = [0.361, 1]).

Response Times

We used a LMM to quantify the influence of experimental factors on RTs in equal

and single-option choices. The fixed effects included reward probability, choice type

(equal vs. single-option), preference (choosing the preferred vs. the non-preferred

option), cue remapping and their meaningful interactions. Participants were faster

when choosing the preferred than the non-preferred option (β = −0.063, 95%CI =

[−0.027,−0.991], p < 0.05) and RTs decreased as the reward probability increased

(β = −0.101, 95%CI = [−0.067,−0.135], p < 0.001). The RT in equal choice trials

were longer than that in single-option trials (β = −0.292, 95%CI = [−0.201,−0.384],
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p < 0.001). The effect of reward probability on RT was stronger in equal compared

to single-option choices, supported by a significant interaction between the two main

effects (β = 0.045, 95%CI = [0.025, 0.066], p < 0.001).

Participants had slower responses after memorising a new set of cue-probability

associations, indicated by a significant main effect in RT before and after cue remap-

ping (β = 0.149, 95%CI = [0.096, 0.201], p < 0.001). The significant interaction

between cue remapping and reward probability suggested that the increase in RT

was more pronounced in trials with lower reward probability (β = −0.039, 95%CI =

[−0.051,−0.026], p < 0.001). The interaction between cue remapping and choice type

(β = −0.247, 95%CI = [−0.192,−0.302], p < 0.001) indicated that this pattern was

mainly associated with equal trials. Because evaluating reward probability of a cue

was likely associated with additional cognitive load after cue remapping, the observed

RT difference before and after cue remapping implies that participants evaluated both

cues throughout the experimental session.

2.4.2 Cognitive modelling of behavioural data

To identify the cognitive processes that led to the observed behavioural differences, we

compared 21 variants of the LBA model. The model variants differed systematically in

their constraints on whether the rate of evidence accumulation and non-decision time

could change between reward probability levels or preferred/non-preferred options. For

each model variant, we used hierarchical Bayesian modelling with Markov chain Monte

Carlo (MCMC) parameter estimation routine to estimate the posterior distributions of

the model parameters, given the observed choice and RT distribution from individual

participants (see Section 2.3.3). To identify the model with the best fit, we calculated

the Bayesian LOOIC score for each model [420].

MCMC chains representing posterior parameter estimates in all the 21 model vari-

ants reached high levels of convergence (Gelman-Rubin convergence diagnostic R̂≤ 1.02

for all parameters in all models). The LOOIC scores suggested that the models with

the mean accumulation rate varying between reward probability levels and between

preference levels fitted the data better than others model variants. The best-fitting
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Figure 2.3: Model comparisons, model fits and model simulations. (A)
LOOIC scores of 21 LBA model variants. The LOOIC score differences be-
tween all models and the best model are plotted against corresponding model
structures, which were illustrated on the left of the figure. The model struc-
ture specified how the mean accumulation rate v, the standard deviation S
of the accumulation rate and the non-decision time Ter could vary between
conditions. A black filled square indicated that the corresponding parameter
could vary between reward probability levels and preferred/non-preferred op-
tions. An orange or purple filled square indicated that the corresponding pa-
rameter could only vary between reward probability levels or preferred/non-
preferred options, respectively. Unfilled (white) squares indicated that the
parameter remained fixed between conditions. Bar colour indicates whether
the difference in LOOIC scores is considered substantial (over 10): white
part of the bar corresponds to score up to 10, orange to the amount exceed-
ing 10. The best model was shown with a LOOIC score difference of zero
(indicated by the red arrow). (B) Simulations of RTs in equal choices, gen-
erated from the posterior distribution of the best fitted model for high (left),
medium (middle) and low (right) reward probability levels. Grey histograms
represent experimental data and solid coloured lines represent model simu-
lations from 100 iterations for high (blue), medium (red) and low (green)
conditions. Negative values represent RTs for non-preferred choices. (C)
Testing the model on the unseen conditions. Simulated RTs in single-option
condition (left) and unequal choices (right) from 100 iterations. Error bars
represent standard errors across participants.
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model (i.e. the one with the lowest LOOIC score, Figure 2.3A) had fixed group-level

non-decision time with the standard deviation of the accumulation rate varying be-

tween reward probability levels and preferred/non-preferred options. To evaluate the

model fit to the empirical data in equal trials, we calculate the posterior prediction

of the best fitting model by averaging 100 iterations of model simulation using poste-

rior parameter estimates. Averaging across multiple iterations reduces potential biases

when sampling from posterior parameter estimates. Each of the 100 iterations gener-

ates simulated behavioural responses (i.e. RTs and choices) of individual participants,

with the same number of trials per condition as in the actual experiment. There was

a good agreement between the observed data and the model simulations across reward

probability levels and choice preferences (Figure 2.3B).

We use Bayesian inference to analyse the posterior distributions of group-level model

parameters [27]. To evaluate if a parameter varies substantially between any two

conditions, we calculate the proportion of posterior samples in which the parameter

value for one condition was greater than the other. To test if a parameter differs from

a threshold value, we calculate the proportion of the posteriors greater or smaller than

the threshold. To avoid confusion, we use p to refer to classical frequentist p-values,

and Pp|D to refer to Bayesian inference results based on the proportion of posteriors

supporting the testing hypothesis, given the observed data.

For the best fitting model (Figure 2.4A), we compared the posterior estimates of

the group-level parameters between conditions (Figure 2.4B and Figure 2.4C ). We

found strong evidence for choices with high reward probability to have higher mean

(v) and standard deviation (S ) of the accumulation rate than choices with medium

(vhigh > vmedium : Pp|D = 0.999; Shigh > Smedium : Pp|D = 0.954) or low medium

(vhigh > vlow : Pp|D = 1; Shigh > Slow : Pp|D > 0.999) reward probability. The mean and

standard deviation of accumulation rates between choices with medium and low reward

probabilities were inconclusive (vmedium > vlow : Pp|D = 0.839; Smedium > Slow : Pp|D =

0.877). Furthermore, there was also strong evidence for a higher mean accumulation

rate for the preferred than the non-preferred options (Pp|D = 0.999), and no evidence for

a difference in the standard deviation of the accumulation rate (Pp|D = 0.532). These

results supported the claim that preferred and certain (100%) cues were recalled and
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Figure 2.4: Posterior model parameters and inferences. (A) Group-level
LBA model parameters of the best fitting model: means of accumulation
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processed faster than non-preferred cues. Certain cues were also associated with more

variable accumulation rate. Model comparisons further suggested that the latencies of

early visual encoding and motor execution were not influenced by reward probability

nor preference as the models with varying non-decision time parameter did not fit the

data as well.

We also evaluated whether the best fitting model could reproduce qualitative RT

patterns in the single-option and unequal choices, which were unseen by the parameter

estimation procedure. For unequal trials, the simulated RT showed similar patterns to

the observed data, in which choosing between medium and low probability cues led to

the longest RT (Figure 2.3C). On the right hand-side of Figure 2.3C, one might notice

that high and low reward condition has - according to our model - just intermediate

RTs, which is inconsistent with high accuracy of this condition (compare Figure 2.2)

by means of the speed-accuracy trade-off. However, both modelling and experimental

evidence suggest that the discrimination between certain cues (high reward probability)

and the others (medium and low) was much easier task then comparison between

the two uncertain ones. Therefore, in the light of the remaining results the model

predictions seem to be consistent. For single-option choices, similar to the observed

data, higher reward probability and preferred cues were associated with faster RT

in simulation. However, simulated RT in single-option choices was longer than the

experimental data, suggesting that simple reactions to a single cue may engage distinct

cognitive processes beyond the current model.

2.4.3 EEG Results

We focused our EEG analysis on equal trials (with additional control analysis on EEG

data from single-option trials), because both reward probability and preference bias

played major roles in shaping the behavioural performance of that condition.

Event-Related Potentials

We examine univariate differences in evoked responses between conditions in single

EEG electrodes. For each participant, trial-averaged ERPs are calculated from epochs
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of equal or single-option choices, with epochs time-locked to reward cue onset. For

both equal and single-option conditions, we test for differences in ERPs between three

levels of reward probability using a one-way repeated-measures ANOVA. Furthermore,

we test for differences in ERPs between preferred and non-preferred choices in equal

trials using a paired t-test. We perform statistical tests on all electrodes and all time

points. Cluster-based permutation tests (2000 iterations with maximum statistics) are

used to correct for multiple comparisons across electrodes and time points [258].

Different reward probability levels produced similar grand-average ERP waveforms

during equal (Figure 2.5A) and single-option (Figure 2.5B) choices, with a negative

peak in the 100 – 150 ms time window (the N100 component) and a positive peak in

the 300 – 400 ms time window (the P300 component).

When assessing the effect of reward probability on ERPs, we found no univariate

differences survived the correction for multiple comparisons in equal (p > 0.552 at all

time points, cluster-level permutation test across electrodes and time points) or single-

option trials (p > 0.175, cluster-level permutation test). For equal trials, we found

no significant difference in ERPs between preferred and non-preferred choices (Fig-

ure 2.5C, p > 0.208, cluster-level permutation test). Therefore, in the current study,

univariate ERPs were not sensitive to reward probability or preferred/non-preferred

choices.

Multivariate patterns in equal choices

To decode multivariate information representing reward probability in equal choice tri-

als, we applied the linear SVM on multivariate EEG patterns across all electrodes (see

Section 2.3.5). Binary classification between high and medium reward probability was

significantly above chance (p < 0.01, cluster permutation correction, non-parametric

Wilcoxon test) from 144 ms after cue onset (Figure 2.6A). Similarly, the information

between high and low reward probability was decodable above chance from 192 ms

after cue onset (p < 0.05, cluster permutation correction). We found no significant

classification accuracy between medium and low reward probability (p > 0.16 in all

time points, uncorrected). Therefore, choices associated with certain (100%) rewards
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Figure 2.5: Grand-average stimulus-locked ERPs across all EEG elec-
trodes. (A) ERPs from high (100%), medium (80%) and low (20%) reward
probability in equal trials. (B) ERPs from high (100%), medium (80%) and
low (20%) reward probability in single-option trials. (C) ERPs from equal
trials in which the preferred or non-preferred cue was chosen. In all panels,
the dashed lines represent standard errors across participants.
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were distinguishable from those with uncertain reward probabilities.

We applied a similar classification procedure to decode the information between

equal trials in which the participants chose their preferred or non-preferred choices

across reward probability levels. The information about preferred versus non-preferred

choices was decodable from 316 ms to 472 ms after cue onset (p < 0.009, cluster

permutation correction).

To evaluate the relative importance of each feature (i.e. EEG electrode) to the

classification performance, we calculated the weight vector of SVMs. For each classi-

fication problem, we retrained the SVM at each time point with all the data included

in the training set and obtained the SVM weight vector. The weight vectors were then

transformed into interpretable spatial patterns by multiplying the data covariance ma-

trix [168]. The group spatial patterns were calculated by averaging across participants

and from all time points which had significant classification accuracy. Relevance spa-

tial patterns based on SVM’s weight vector showed that mid-line central and posterior

electrodes contained the most information for significant classification (Figure 2.6).

2.4.4 EEG-informed cognitive modelling

P300 component is a strong candidate for a marker of evidence accumulation. Its

amplitude has been associated with attention [82], working memory [223] and with

task difficulty [223]. Prominent models propose that it reflects build-to-threshold of

the decision variable [412, 209] or marks the conclusion of internal decision-making

process [284]. Considering that the latency of early visual processing is a part of non-

decision time [289], we further hypothesised that the evidence accumulation process

initiates at N100 peak latency. This led to a theoretical prediction that the slope

of the rise in EEG activity between N100 and P300 peak amplitudes reflected the

accumulation rate on a trial-by-trial basis. To validate this prediction, we estimated

the N100 and P300 components from single trials of equal choices (Figure 2.7A), using

an SVD-based spatial filter to improve the signal-to-noise ratio of single-trial ERPs

(see Estimation of single-trial ERP components). This single-trial EEG estimate was

then added as a linear regressor (Equation 2.2) of the mean accumulation rate to the
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Figure 2.6: MVPA results.(A) Classification accuracies across time-points
between equal choices with different levels of reward probability. (B) Clas-
sification accuracies across time-points between equal trials with preferred
and non-preferred choices. (C) Classification accuracies across time-points
between equal and single-option choices with the same level of reward prob-
ability. In all panels, the black lines denote classification accuracies from a
stratified 10-fold cross-validation and the gray areas denote standard errors.
Significant decoding time windows (green horizontal bars) were determined
from cluster-level permutation tests (p < 0.05, corrected). Topographic maps
represent activation patterns from classification weights, which indicate the
contribution of different EEG channels to overall classification accuracies.
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LBA model variant with the best fit to behavioural data.

We used the same MCMC procedure to fit the extended LBA model with the

EEG-informed regressor to the equal trial data. The extended LBA model showed

good convergence (R̂ ≤ 1.02 for all parameters) and provided a better fit, with a lower

LOOIC score 2687 than the model without the EEG-informed regressor (LOOIC score

2796), suggesting that the rising slope of N100-P300 indeed affected the decision pro-

cess. The posterior estimate of the regression coefficient β provided strong evidence

for a positive single-trial effect (Figure 2.7B, Pp|D = 0.983), indicating that a bigger

N100-300 slope is associated with faster accumulation rate.
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Figure 2.7: EEG-informed modelling. (A) The schematic diagram of ex-
tracting single-trial ERP components. 32-channel EEG signals from a single
trial were multiplied by the weights of the first SVD component, calculated
from the grand-averaged ERP. Next, the N100 and P300 components in
that trial were identified by searching for the peak amplitude in a time of
60-164 ms for the N100 component, and 272-376 ms for the P300 compo-
nent, respectively. ERP marks in three representative trials were illustrated
in the right column of the panel. The ratio between N100-P300 peak am-
plitude difference and N100-P300 peak latency difference was calculated as
a single-trial regressor for modelling. (B) Posterior estimates of the coeffi-
cient between the EEG-informed single-trial regressor (i.e. the rising slope
of N100-P300 components) and changes in the accumulation rate.
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2.5 Discussion

We provide novel evidence that reward probability and spontaneous preference in-

fluence choices between equally probable alternatives and their electrophysiological

signatures. We observed two patterns that were consistently distinct at behavioural,

cognitive and neural levels: a certainty effect, distinguishing choices between cues with

100% reward probability and cues with uncertain reward probabilities (80% or 20%),

and a preference effect, differentiating between equally valued options. At the be-

havioural level, reward certainty (i.e. 100% reward vs. non 100% rewards) resulted

in disproportionately faster reaction times, while preference biased both choice fre-

quency and RT, resulting in more frequent and faster responses for preferred cues.

Using hierarchical Bayesian implementation of a cognitive model, we showed that re-

ward certainty and preference bias were associated with changes in the accumulation

rate, a model-derived parameter to account for the speed of evidence accumulation

during decision-making. At the electrophysiological level, the information of certainty

and preference could be reliably decoded from multivariate ERP patterns early during

decisions, but not from univariate EEG activities. The accumulation rate was further

affected by the slope of the rise in ERPs between the N100 and P300 components on

a trial by trial basis. Together, the current study provides insight into neurocognitive

mechanisms driving choices in a deadlock situation, where there is no clear advantage

in choosing one option over the other.

The certainty effect implies a monotonic but nonlinear relationship between re-

ward probability and RT in equal choices: the difference between certain (100%) and

uncertain (80% and 20%) reward was greater than that between the two uncertain

conditions. This points to a special status of the 100% reward certainty distinct from

lower reward probabilities, as the latter always carries a non-zero risk of no reward. The

salient representation of the 100% reward certainty is further highlighted by the lack of

significant EEG pattern classification between the two uncertain reward probabilities

(i.e. 80% vs. 20%, Figure 2.6A). Here, the certainty effect in rapid voluntary deci-

sions resembles risk-averse behaviour in economic decisions [409], which overweights

outcomes with 100% certainty relative to probable ones.
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Interestingly, reward probability affected RTs across all trial types. It persisted from

equal choices to simple reactions to cue locations in single-option trials. In unequal

choices, there was also a negative association between RT and the sum of reward

probability of the two choices. Therefore, even though the reward was not contingent

upon RT in the current study, we observed a general tendency of accelerating ones’

responses in the presence of more certain reward. These results are akin to the effect of

reward magnitude, which also demonstrates a facilitating effect on RT [360, 70]. In non-

human primates, the phasic activation of dopamine neurons in the ventral midbrain

has similar response profiles to changes in reward probability and magnitude [124],

suggesting a common mesolimbic dopaminergic pathway underlying different facets of

reward processing that affect decision-making.

Bayesian model comparison identified specific effects of reward probability on accu-

mulation rates, highlighting two possible cognitive origins of the certainty effect. First,

in equal choices, cues with 100% reward resulted in larger mean accumulation rates

than those with uncertain reward probabilities (Figure 2.4A). Accumulation rate has

been linked to the allocation of attention on the task [354]. Because reward plays a

key role in setting both voluntary (top-down) and stimulus-driven (bottom-up) atten-

tional priority [245, 330, 227, 453], high reward probability may boost the attentional

resources allocated to sensory processing for more rapid decisions. Second, reward

probability affected the variability of accumulation rates across trials (Figure 2.4A).

Higher accumulation rate variability has been associated with better-memorised items

[376, 295, 398]. It is possible that stimuli associated with 100% reward were memorised

more strongly [268], a hypothesis to be confirmed in future studies.

Furthermore, MVPA of stimulus-locked ERPs showed multivariate EEG patterns

distinguishing between cues with 100% reward and other uncertain reward probabil-

ities as early as 150 ms after stimulus onset (Figure 2.7, see also [394]), and model

comparisons found no evidence to support for non-decision time to vary between re-

ward probability levels. Considering the average RT of 600 ∼ 900 ms in equal choices,

our results did not support the latency of post-decision motor preparation, which con-

stitutes a part of the non-decision time [206], to be the source of the certainty effect.

This result is consistent with the view that motor action implementation is indepen-
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dent of the stimulus value [262]. Instead, the certainty effect possibly originates from

evidence accumulation during the decision process, as supported by the changes in the

accumulation rate.

When choosing between equally valued options, classical evidence accumulation

theories predict a deadlock scenario with a prolonged decision process [49]. This was

not supported by recent experimental findings in value-based decisions [307, 391], in-

cluding the current study, in which equal choices took no longer than unequal ones.

Our behavioural, modelling and EEG analyses indicated a preference bias which could

effectively serve as a cognitive mechanism to break the decision deadlock. Compared

with non-preferred options, preferred decisions facilitated RTs, were associated with

larger accumulation rates and evoked distinct EEG multivariate patterns. Here, we

did not aim to provide a mechanistic interpretation of preference (i.e. why or how the

preference bias originated). Instead, our results demonstrated a consistent presence

of preference bias before and after cue-probability re-mapping, independently across

reward probabilities and maintained in single-option trials (Figure 2.2C), which we

considered as a novel finding in the literature of voluntary choice.

What can induce a preference bias? Because the cue-probability association was

initially randomised and later changed within each session, and no differences in shape

preference were found, this bias was not due to stimulus salience but established spon-

taneously [424]. Multiple factors may contribute to the establishment of preferred

options. Preference might arise as a function of early choices and outcome frequencies

[194, 21], which shape future beliefs or alter the memory trace of certain cue-probability

bindings. This interpretation is consistent with an irrationality bias, which favours

previously rewarded stimuli, even when controlling for their value [357]. Alternatively,

some cue-value associations might be remembered more reliably due to a deliberate

cognitive strategy of memory resource allocation.

Our results provide little evidence to either support or refute these hypotheses.

However, memory strength alone cannot explain the full set of results in the current

study. First, it is worth noting that the stimulus-reward mapping was presented a total

of 16 times throughout each session (at the beginning of each block and after every 40

trials), and participants took as much time as they needed before the next set of trials.
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Second, the linear mixed-effect models found significant effects of preference on RT

only in equal and single-option trials, but not in unequal trials. If we were to believe

memorisation of items to be different between two cues of the same reward probability,

we would expect this to be reflected also in the unequal condition, which was not

the case. Future studies could validate these hypotheses by employing more frequent

cue-probability remapping throughout experiments and controlling for memory effects.

Furthermore, all trials in the current studies were randomised and participants did not

have prior knowledge of upcoming stimuli. One future extension would be to evaluate

whether presenting prior information of reward probability in an upcoming trial would

modulate boundary separation in voluntary decisions, similar to the effect of prior bias

on perceptual decisions [274].

The current study considered a simplified form of decision, in which the amount of

reward was fixed (i.e. 10 game points). In traditional value-based decisions assumed

by the prospect theory, a decision-maker needs to integrate the value and probability

of gain or loss to obtain an expected utility for each option [410]. Together, our results

here and previous studies [430] provide converging evidence that both reward value and

probability can influence RT in equal choices. This raises the intriguing possibility of

our results to be generalized to choices with the same expected utility but the different

combinatory of value and probability. Interestingly, the multiattribute extension of

the LBA model [408] has been fitted to RTs from such tasks [79], suggesting that

our modelling and EEG approaches could also be extended to explore more complex

decision problems.

Our study highlights the advantages of EEG-informed cognitive modelling to in-

form behavioural data. Hierarchical Bayesian parameter estimation of the LBA model

provides a robust fit to an individual’s behavioural performance with less experimental

data needed than other model-fitting methods [419, 448, 472]. By integrating single-

trial EEG regressors with the cognitive model, we identified the accumulation rate to

be affected by the rate of EEG activity changes between visual N100 and P300 com-

ponents. This result contributes to a growing literature of EEG markers of evidence

accumulation processes, including ERP components [412, 249, 288], readiness poten-

tial [252] and oscillatory power [418]. It further consolidates the validity of evidence
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accumulation as a common computational mechanism leading to voluntary choices of

rewarding stimuli [386, 2, 257], beyond its common applications to perceptually difficult

and temporally extended paradigms.

The EEG-informed modelling builds upon the known functional link between the

P300 component and evidence accumulation for decisions [311, 421, 412]. A new exten-

sion in the current study was to consider the accumulation process begins at the peak

latency of the visual N100 component. Theoretically, the delayed initiation of the deci-

sion process accounts for information transmission time of 60 ∼ 80 ms from the retina

[355]. Single-unit recording concur with this pre-decision delay, as neurons in putative

evidence accumulation regions exhibit a transient dip and recovery activity indepen-

dent of decisions approximately 90 ms after stimulus onset [336]. Practically, our EEG

data has a clear N100 component, and time-resolved MVPA identified significant pat-

tern differentiating between task conditions at a similar latency. The relatively early

start of the accumulation process in our experiment might be explained by the easily

discriminable nature of the cues, consisting of basic shapes with no perceptual noise.

Longer visual processing stage has been reported in an experiment involving more

complex processing of visual information [289]. Further research could dissect the non-

decision time [441, 402] and compare latencies of visual encoding across decision tasks

with stimuli at different levels of complexity.

Several issues require further consideration. First, our cognitive modelling was not

meant to reproduce all the rich behavioural features in the data. To include sufficient

observations for model-fitting, we combined the data before and after cue-probability

remapping. As a result, our model did not account for behavioural changes related to

cue remapping. Future studies could employ a multi-session design to investigate how

learning new cue-probability associations influence model parameters [470].

Second, we focused on the certainty and preference effects by fitting the LBA model

only to the data from equal choices. Although simulations indicated that the fitted

model provided similar behavioural patterns as in the empirical data in unequal and

single-option choices, it was not fitted directly to the experiment data in those two

choice conditions. A more parsimonious model for all three types of choices would

require additional assumptions, which is beyond the scope of the current study. For
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example, to incorporate the large RT discrepancy between equal and single-option

choices, one could assume that the urgency signal [46, 395] plays a more dominant role

in accelerating RT when no apparent comparisons are needed in single-option choices.

This might be a representation of Hick’s law - a psychological phenomenon where

increasing the number of choices increases the decision time logarithmically [176].

Third, our model selection procedure does not encompass all conceivable model

types that might account for this data. Independent accumulation is consistent with

findings on brain mechanisms of probability-based choices in humans [224, 357], as

well as choice behaviour in rats [292]. Alternative explanations of certainty and pref-

erence effects can be provided by urgency gating [396], collapsing threshold [324] or

cross-inhibition [298, 414]. Depending on the parametrization, interpretations based

on these models could slightly vary. It is also important to note that there may be

no straightforward way to disentangle the interpretations provided by these different

models [269]. However, more detailed neuroimaging recordings (i.e. with higher tem-

poral or spatial resolution) might help to address this issue [288, 289]. Alternatively,

the experimental designs with an additional perturbation push affect the decision time

in the perceptual decision-making setting [455, 474]. It has been shown that this can

help to distinguish among integrate-to-threshold models [474]. Future extensions of

the presented experiment could implement these suggestions to address some of the

remaining issues. Nevertheless, these potential limitations, although important, would

not challenge the main conclusions of this research.

Finally, our model-based analysis is unavoidably constrained by the choice of model,

and one needs to be cautious when extending findings to different models. There is an

ongoing debate on how accurately different models can mimic each other when esti-

mating the non-decision time [100, 149, 238]. The DDM, for example, tends to predict

longer non-decision times than LBA [105], as well as might be more susceptible to ur-

gency manipulations [119]. Although an extended DDM has been shown to account for

magnitude effects [329], the drift rate of a DDM represents the relative signal difference

between the two options. As a result, without fitting a new DDM to each condition,

the DDM cannot directly describe all conditions in our current study (i.e. the unequal

and single-option trials). LBA, on the other hand, assumes an independent accumula-
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tor for each option (i.e. each reward cue), offering a parsimonious account to our task

and the capacity to produce the qualitative features of responses in all conditions, as

demonstrated in our model simulations. It is worth noting that this feature of LBA is

shared by other models with multiple accumulators (e.g. the LCA model and the race

model). Among those, the LBA model has the simplest form and analytic solutions

to the first-passage time, enabling efficient MCMC sampling in Bayesian hierarchical

modelling.

In conclusion, when choosing between equally probable reward outcomes, proba-

bility and preference selectively modulate the decision processes and their electrophys-

iological signatures, providing a mechanism for breaking a decision deadlock. These

findings extend and substantiate the computational framework of evidence accumula-

tion for voluntary decisions. Our results further highlight the intricate nature of human

behaviour, as susceptible to external factors as well as endogenous heuristics.



Chapter 3

Data-driven model: Energy landscape

method for MEG data

This chapter is based on the work published in the Network Neuroscience [233] in col-

laboration with Dr Naoki Masuda (conceptualisation, methodology, software, supervi-

sion), Dr Khalid Hamandi (data curation, interpretation of the results), Prof. Krish D.

Singh (methodology, supervision), Dr Bethany Routley (data curation) and Dr Jiax-

iang Zhang (conceptualisation, formal analysis, methodology, project administration

and supervision). The author’s contribution to this work include conceptualisation,

data analysis, methodology, software implementation, data visualisation and writing.

Here, I present a statistical model of interactions between the instantaneous brain

states. We use, derived from thermodynamics, pairwise Maximum Entropy Model to

determine the occurrence probability of network states in MEG oscillatory power. En-

ergy landscape assigns energy value to each pattern of activations across brain regions.

The energy is inversely proportional to the probability of occurrence. We apply this

method to the cohort of JME patients and healthy controls matching age and gender.

The model provided a good fit to the binarized MEG data in both groups. Patients

with JME exhibited fewer local minima of the energy and elevated energy values than

controls, predominately in the fronto-parietal network across multiple frequency bands.

Furthermore, multivariate features constructed from energy landscapes allowed signif-

icant single-patient classification.

79



CHAPTER 3. DATA-DRIVEN MODEL 80

3.1 Background

Juvenile myoclonic epilepsy (JME) is the most common syndrome of the wider group

of idiopathic generalized epilepsies [451]. Patients with JME often exhibit three main

types of seizures: myoclonic, absence and generalized tonic-clonic seizures [452]. Typ-

ical JME characteristics are normal or close to normal clinical MRI of the brain and

interictal EEG with irregular spike-waves or polyspike-waves with frontal predomi-

nance [64]. JME patients are susceptible to seizure precipitation after sleep deprivation,

alcohol usage, excise or demanding cognitive processing [90, 458]. JME is a lifelong

condition and treatment with antiepileptic drugs is usually necessary.

Although the pathogenetic mechanisms of JME is still not fully understood [36],

JME has been recognised as a network disorder affecting brain activity and connec-

tivity that leads to cognitive impairments [72, 452] and personality traits similar to

patients with frontal lobe lesions [116]. BOLD functional MRI (fMRI) and diffusion

weighted imaging showed hyper-connectivity in the frontal lobe in JME [425, 63]. Elec-

trophysiological data suggests that JME has an impact on multiple functional networks,

including the fronto-parietal network (FPN) [452], the default mode network (DMN)

[266], and the sensorimotor network (SMN) [76], which may be driven by dysfunctional

thalamocortical circuitry [153, 158, 39, 216].

Several sensitive markers from resting EEG and MEG recordings have been iden-

tified for classifying patients with epilepsy and predicting seizure onsets, including

information entropy [205, 369], Lyapunov exponent [17, 189] and phase plane portraits

[189]. These methods describe statistical regularities of electrophysiological signals

from a dynamical system perspective, in line with the theoretical account of epileptic

seizures as bifurcations from stable states [81]. In JME, however, it is yet unclear

whether atypical statistical properties of network activation is present during rest, and

if so, whether the changes are frequency specific.

This study addressed these problems by applying a pairwise maximum entropy

model (pMEM) approach [462] to source-localised, frequency-specific MEG resting-sate

oscillatory activity (Figure 3.2). The pMEM is a statistical model of the occurrence

probability of network states, with its parameters being constrained by the network’s
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Table 3.1: Demographics of patients with JME and and healthy con-
trol participants. (MJ - myoclonic jerks, GTCS - generalised tonic clonic
seizures, LEV - leveiracetam, VPA - sodium valproate, LTG - lamotrigine,
TPM - topiramate, ZNM - zonisamide.)

Patients Controls
Number of participants 26 (8 males) 26 (7 males)

Age median 27 27
Age range 19 - 45 18 - 48

Seizure type
(number of patients)

MJ (26)
Absences (15)
GTCS (26)

-

Anti-epileptic drugs
(Number of patients taking the drug)

LEV (13), VPA (12),
LTG (5), TPM (4),

ZNM (4)
-

regional activity and pairwise regional co-activation from empirical data. According to

the principle of maximum entropy, the pMEM is the most parsimonious second-order

model of a system with minimum assumptions [197], and it permits multi-stability in a

system with meta-stability states [74, 88]. The pMEM has been successfully applied to

the collective behaviour of spiking neural networks [400, 356, 390, 40] and BOLD fMRI

responses [436, 437, 13, 120]. Here, we extended this theoretical framework to MEG

oscillatory activity in three functional networks: FPN, DMN and SMN. Furthermore,

based on the fitted pMEM to individual participants, we depicted an energy landscape

for each of the networks at theta (4-7 Hz), alpha (8-13 Hz), beta (15-25 Hz) and gamma

(30-60 Hz) bands. The energy landscape is a graphical representation of all network

states and their energy values [389]. We then compared several quantitative measures

obtained from the energy landscapes between JME patients and controls.

3.2 Methods

3.2.1 Participants

Fifty-two subjects participated in the experiment. Demographic and clinical features

of the participants are summarized in Table 3.1. Twenty-six patients with JME were
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recruited from a specialist clinic for epilepsy at University Hospital of Wales in Cardiff.

Consensus clinical diagnostic criteria for JME were used by an experienced neurologist

[405]. Inclusion criteria were: (1) seizure onset in late childhood or adolescence with

myoclonic jerks, with or without absence seizures, (2) generalised tonic-clonic seizures,

(3) normal childhood development as assessed on clinical history and (4) generalised

spike wave on EEG and normal structural MRI. Twenty-six healthy control partici-

pants with no history of significant neurological or psychiatric disorders were recruited

from the regional volunteer panel. All testing was performed with participants’ taking

their usual medication. The study was approved by the South East Wales NHS ethics

committee, Cardiff and Vale Research and Development committees, and Cardiff Uni-

versity School of Psychology Research Ethics Committee. Written informed consent

was obtained from all participants.

3.2.2 MEG and MRI data acquisition

All participants underwent separate MEG and MRI sessions. Whole-head MEG record-

ings were made using a 275-channel CTF radial gradiometer system (CTF Systems,

Canada) at a sampling rate of 600 Hz. An additional 29 reference channels were

recorded for noise cancellation purposes and the primary sensors were analysed as

synthetic third-order gradiometers [427]. Up to three sensors were turned off during

recording due to excessive sensor noise. Subjects were instructed to sit comfortably in

the MEG chair while their head was supported with a chin rest and with eyes open

focus on a red dot on a grey background. For MEG/MRI co-registration, fiduciary

markers that are identifiable on the subject’s anatomical MRI were placed at fixed

distances from three anatomical landmarks (nasion, left and right preauricular) prior

to the MEG recording, and their locations were further verified using high-resolution

digital photographs. The locations of the fiduciary markers were monitored before and

after MEG recording. To ensure that the movement artefacts did not dominate the

recording, the average Euclidean distance between fiducials was computed for every

participant. There was no significant difference between head movements of the JME

and control group (t(25) = −1.27, p = 0.22) with the mean head shift 0.55 cm. Each
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recording session lasted approximately 5 minutes.

Whole-brain T1-weighted MRI data were acquired using a General Electric HDx

3T MRI scanner and a 8-channel receiver head coil (GE Healthcare, Waukesha, WI)

at the Cardiff University Brain Research Imaging Centre with an axial 3D fast spoiled

gradient recalled sequence (echo time 3 ms; repetition time 8 ms; inversion time 450

ms; flip angle 20◦; acquisition matrix 256×192×172; voxel size 1×1×1 mm).

Results presented in this chapter are based upon patient scans. These are confi-

dential and may not be made freely available.

3.2.3 Data pre-processing

Continuous MEG data was first segmented into 2 s epochs. Before segmentation,

MEG data was filtered with a 1 Hz high-pass and a 150 Hz low-pass filter to avoid DC

step changes between epochs. Every epoch was visually inspected. Those containing

major motion, muscle or eye-blink artefact, or interictal spike wave discharges were

excluded from subsequent analysis. The artefact-free epochs were then re-concatenated.

This artefact rejection procedure resulted in cleaned MEG data with variable lengths

between 204 s and 300 s across participants, and the data lengths were comparable

between JME patients and controls (t(50) = 1.38, p = 0.17). The 200 s of cleaned

MEG data was used in subsequent analysis. For participants with longer than 200 s

cleaned MEG data, a continuous segment of 200 s during the middle of recording

session was used.

3.2.4 Source localization of oscillatory activity in resting-state

networks

We analysed the MEG oscillatory activity using an established source localisation

method for resting-state networks [57, 157, 278].

For each participant, the structural MRI scan was co-registered to MEG sensor

space using the locations of the fiducial coils and the CTF software (MRIViewer and

MRIConverter). The structural MRI scan was segmented and a volume conduction
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model was computed using the semi-realistic model [287].

The preprocessed MEG data was band-passed filtered with a fourth-order zero phase

lag Butterworth filter into four frequency bands: theta 4-8 Hz, alpha 8-12 Hz, beta 13-

30 Hz, and low-gamma 35-60 Hz [283]. For each frequency band, we downsampled the

data to 250 Hz and computed the inverse source reconstruction using an LCMV beam-

former on a 6-mm template with a local spheres forward model in Fieldtrip (version

20161101, http://www.fieldtriptoolbox.org).

The atlas-based source reconstruction was used to derive virtual sensors for every

voxel in each of the 90 regions of the Automated Anatomical Label (AAL) atlas [180].

Each virtual sensor’s time course was then reconstructed.

orbitofrontal cortex

precuneus

posterior cingulate cortex

anterior cingulate cortex

angular gyrus

middle frontal gyrus

pars triangularis

inferior parietal gyrus

superior parietal gyrus

angular gyrus

SMN
supplementary motor area

precentral gyrus

postcentral gyrus

FPN
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Figure 3.1: The regions of interest (ROIs) of three resting state networks:
the frontoparietal network (FPN), the default mode network (DMN) and the
sensori-motor network (SMN). The ROIs were obtained from the 90 AAL
atlas [180].

We focused our analysis on three resting-state networks (Figure 3.1): the fron-

toparietal network (FPN), the default mode network (DMN), and the sensorimotor

network (SMN) in which electrophysiological changes had been reported in patients

with epilepsy [266, 76, 452]. Each resting-state network comprised of bilateral regions

of interest (ROIs) from the AAL atlas identified in previous studies [392, 339]. The

FPN included 10 ROIs: middle frontal gyrus (MFG), pars triangularis (PTr), inferior

http://www.fieldtriptoolbox.org
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parietal gyrus (IPG), superior parietal gyrus (SPG) and angular gyrus (AG). The DMN

included 10 ROIs: orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), poste-

rior cingulate cortex (PCC), precuneus (pCUN) and AG. The SMN included 6 ROIs:

precentral gyrus (preCG), postcentral gyrus (postCG) and supplementary motor area

(SMA). For each ROI, its representative time course was obtained from the voxel in

that ROI with the highest temporal standard-deviation. The mean MEG activities of

the ROIs of each network were not significantly different between JME patients and

controls (FPN: F (1, 50) = 0.75, p = 0.39; DMN: F (1, 50) = 0.21, p = 0.65; SMN:

F (1, 50) = 0.15, p = 0.70).

To calculate the oscillatory activity, we applied Hilbert transformation to each

ROI’s time course, and computed the absolute value of the analytical representation of

the signal to generate an amplitude envelope of the oscillatory signals in each frequency

band.

3.2.5 Pairwise maximum entropy model of MEG oscillatory ac-

tivity

During rest, different brain regions exhibit pairwise co-occurrence of oscillatory activity

[185] and rapid changes of brain network states [372]. To obtain an estimate of network

state transitions and their probabilities, we fitted a pMEM to individual participant’s

MEG data, separately for each resting-state network and each frequency band.

According to the principle of maximum entropy, among all probabilistic models

describing empirical data, one should choose the one with the largest uncertainty (i.e.

entropy), because it makes the minimum assumptions of additional information that

would otherwise lower the uncertainty [462]. The pMEM estimates the state probability

of a network, with its regional activity and regional co-occurrence to be constrained

by empirical data. It is equivalent to the Ising model in statistical mechanics [40]. In

neuroscience, the pMEM was firstly used in a seminal study for fitting the distribution

of neuronal spiking activity across cells [356, 400]. More recently, the same method

was used in fMRI study where it was shown that the model is capable of estimating

the underlying functional connectivity with a higher accuracy than other functional
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connectivity methods [436]. Later studies using the pMEM for fMRI have identified

key characteristics of brain state transition [204], perceptual metastability [438], and

the effects of ageing [120]. A further advantage of using the pMEM is that various

statistical physics theory of the model is available, potentially contributing to the

understanding of multivariate data when they are fitted with the pMEM [40]. The

current study used this approach to unveil differences between the JME patients and

controls in large-scale brain networks (Figure 3.2). Below we outlined the theoretical

background and the fitting procedure. A more detailed description of the pMEM

modelling and subsequent energy landscape analysis is available elsewhere [389].

Consider a resting-state network consisting of N ROIs. For each real-valued ROI’s

signal, we thresholded the ROI’s Hilbert envelope according to the median of the

amplitude. Data points above the threshold were denoted as high oscillatory power

(+1), and data points below the threshold were denoted as low oscillatory power (−1).

The oscillatory activity in ROI i (i = 1, ..., N) at time t was transformed to a binary

time series ri(t), with ri(t) = +1 for high oscillatory activity and ri(t) = −1 for low

oscillatory activity. The activity pattern of a N -dimensional binary vector s(t) =

[r1(t), r2(t), ..., rN(t)], representing the state of the network at time t.

The N -ROI network has a total of 2N possible states sk (k = 1, ..., 2N). From

the binarized oscillatory activity, we calculated the probability of occurrence of each

network state, denoted by Pemp(sk). We further calculated the empirical average acti-

vation rate for each ROI 〈ri〉emp and the pairwise co-occurrence between any two ROIs

〈rirj〉emp:

〈ri〉emp =
1

T

T∑
t=1

ri(t), (3.1)

〈rirj〉emp =
1

T

T∑
t=1

ri(t)rj(t), (3.2)

where T denotes the number of timepoints in the data. The fitting procedure aimed

to identify a pMEM model that preserves the constraints in Equations (3.1) and (3.2)

and reproduces the empirical state probability Pemp(sk) with the maximum entropy. It
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Figure 3.2: Illustration of the energy landscape analysis on a network of
4 ROIs. (A) Selection of ROIs from the source-space signals. (B) Sig-
nal filtering in frequency bands of interest. (C) Envelope extraction using
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is known that the pMEM follows the Boltzman distribution [462], given by

PpMEM(sk|h,J) =
exp (−E(sk))∑2N

k′=1 exp (−E(sk′))
, (3.3)

where E(sk) represents the energy of the network state sk, defined by

E(sk) = −
N∑
i=1

hiri(sk)−
1

2

N∑
i=1

N∑
j=1
j 6=i

Jijri(sk)rj(sk), (3.4)

and ri(sk) refers to the ith element of the network state sk. h and J are the model

parameters to be estimated from the data: h = [h1, h2, ..., hN ] represents the bias in

the intensity of the oscillatory activity in each ROI; J = [J11, J12, ..., JNN ] represents

the coupling strength between two ROIs. The average of the activation rate 〈ri〉mod

and pairwise co-occurrence 〈rirj〉mod expected by the pMEM are given by:

〈ri〉mod =
2N∑
k=1

ri(sk)PpMEM(sk|h,J), (3.5)

〈rirj〉mod =
2N∑
k=1

ri(sk)rj(sk)PpMEM(sk|h,J). (3.6)

We used a gradient ascent algorithm to iteratively update h and J, until 〈ri〉mod

and 〈rirj〉mod match 〈ri〉emp and 〈rirj〉emp from the observed data, with a stop criterion

of 5 × 106 steps. In each iteration, the updates of the parameters were given by

hnew
i = hold

i + ε(〈ri〉emp − 〈ri〉mod) and Jnew
ij = Jold

ij + ε(〈rirj〉emp − 〈rirj〉mod). The

learning rate ε was set to 10−8.

As in previous studies [437, 389, 120], we used an accuracy index:

d = (D1 −D2)/D1 (3.7)



CHAPTER 3. DATA-DRIVEN MODEL 89

to quantify the goodness of fit of the pMEM (Figure 3.3), where

D2 =
2N∑
k=1

Pemp(sk) log2(Pemp(sk)/PpMEM(sk)) (3.8)

is the Kullback-Leibler divergence between the probability distribution of the pMEM

and the empirical distribution of the network state. D1 represents the Kullback-Leibler

divergence between the independent MEM and data. By definition, the independent

MEM is restricted to have no pairwise interaction (i.e. J = 0). Therefore, d represents

the surplus of the fit of the pMEM over the fit of the independent model. The index

d = 1 when the pMEM reproduces the empirical distribution of activity patterns and

interactions without errors, and d = 0 when the pairwise interactions do not contribute

to the description of the empirical distribution.

3.2.6 Energy landscape of resting-state network dynamics

The pMEM parameters h and J determine the energy E(sk) of each network state sk

(k = 1, ..., 2N), given by Equation (3.4). It is worth noting that, the current study used

pMEM as a statistical model to be constructed from the MEG data, not as its literal

notion from statistical physics. We did not claim that E(sk) represents the metabolic or

physical energy of a biological system. Instead, the concept of the energy of a resting-

state network stems from the information theory [389]. Here, E(sk) indicates the model

prediction of the inverse appearance probability of the state sk under the empirical

constraints of regional activity (parameter h) and regional interactions (parameter J).

For instance, if E(si) < E(sj), the pMEM predicts that the network activity pattern

is more likely to be at the state si than sj.

For each resting-state network and each frequency band, we depicted an energy

landscape as a graph of the energy function across the 2N possible network states sk,

characterising state probabilities and state transitions from the perspective of attractor

dynamics [437]. Because the computational cost increases dramatically with the size of

a network, we estimated an energy landscape separately for each resting-state network.

The energy landscape of a network was defined by two factors: the energy E(sk)
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of each network state, and an adjacency matrix defining the connectivity between

network states. Two states were defined to be adjacent, or directly connected, if and

only if just one ROI of the network had different binarized oscillatory activity (high

vs. low). In other words, two states are adjacent when they have a Hamming distance

of 1 between their binary activity vectors. For example, for a network with 4 ROIs,

states [−1,−1,−1,+1] and [−1,−1,+1,+1] are adjacent, and states [−1,−1,−1,+1]

and [−1,−1,+1,−1] are not.

3.2.7 Quantitative measures of energy landscape

We used three measures to understand the differences in the energy landscape between

JME patients and healthy controls: (1) the number of local energy minima of within

network dynamics, (2) the relative energy of the local minima, and (3) the generative

basin duration at significant minima.

Number of local energy minima

A local energy minimum was defined as the network state with a lower energy value

than all its adjacent neighbouring states. Because lower energy corresponds to a higher

probability of occurrence, network states of local minima can be likened as attractors

in attractor dynamics. For each participant, we exhaustively searched through the 2N

network states to identify all the local minima of the participant’s energy landscape.

We then compared the number of local energy minima between JME and control groups

(Figure 3.4).

Relative energy of the local minima

The number of local minima is determined by the energy difference between network

states and their adjacent neighbours (i.e. a minimum has a lower energy level than all

its neighbours). On the other hand, the energy value of a specific state is determined by

its occurrence probability (Equation 3.3). Therefore, theoretically, the two measures

had no direct dependency. The energy values of local minima on aggregated energy

landscapes indicate the ease of transition from one stable state to another [389, 204].
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We calculated the mean energy E(sk) of each network state sk averaged across all

participants. Then, we used the mean energy to depict an aggregated landscape, which

allowed us to identify common energy minima shared between JME patient and control

groups. To test whether each local minimum in the aggregated energy landscape is

a characteristic feature of the observed data, we conducted non-parametric permutation

tests on the mean energy values. For each resting-state network and each frequency

band, we conducted 1000 permutations. In each permutation, we randomly shuffle

the pMEM parameters h and J (between ROIs and ROI pairs, respectively) that were

fitted to individual participants. We then calculated an averaged energy landscape

across all participants based on the shuffled parameters. This gave us a sampling

distribution of the energy of each network state, under the null hypothesis that the

energy values are not related to the observed oscillatory activities or observed pairwise

regional co-occurrence. For each local minimum of the aggregated landscape, the level

of significance (p-value) of that local minimum’s energy was estimated by the fraction of

the permutation samples that were higher than the mean energy E(sk) of that network

state in the empirical data without shuffling. To account for the multiple statistical

tests that were performed for all the local minima of each network, we evaluated the

results using a Bonferroni-corrected threshold (p < 0.05) for significance.

Because the shape of an energy landscape was partly determined by the global

minimum [437, 120], for each participant, we calculated the energy difference between

a significant local minimum and the global energy minimum (i.e. the state with the

lowest energy value on the landscape). We then compared this relative energy of

the within-network local minima between JME patients and healthy controls. From

the networks with significant alternations of relative energy values in JME patients,

we constructed a disconnectivity graph to describe clusters of local minima and the

relationships between them [30], where a cluster represents a group of local minima

with high probabilities of subsequent occurrences [389].
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Basin duration at significant minima

On the aggregated energy landscape, the energy basin for each significant local mini-

mum was identified using an existing method [437]. We started at an arbitrary network

state and moved downhill on the energy landscape to one of its neighbouring state with

the lowest energy, until a local minimum was reached. The starting state is then as-

signed to the basin of the resulting local minimum. We repeated this procedure for all

network states as the starting state.

We used the fitted pMEM as a generative model to simulate the dynamical changes

in each resting-state network, and estimated the duration of the basin of each local

minimum in the simulated dynamics. Similar to previous studies, we employed the

Metropolis-Hastings algorithm to simulate time courses of network activity [166]. Each

simulation started with a random network state sk. On each time step, one of the

current state’s N neighbouring state sk′ was selected with a probability of 1/N as the

potential target of state transition, and the state transition occurred with a probability

of exp [E(sk)− E(sk′)] when E(sk′) > E(sk) or 1 otherwise. For each participant, each

network, and each frequency band, we simulated 20,000 time steps, and discarded the

first 1000 time steps to minimise the effect of initial condition. From the remaining

19000 time steps, we calculated the proportion of duration of the network states that

belongs to each energy basin.

3.2.8 Classification of individual patients based on energy val-

ues

To investigate the predictive power of pMEM energy measures, we used a support

vector machine (SVM) classifier with a radial basis function (RBF) kernel and a leave-

one-out cross-validation procedure to classify individual JME patients and controls.

The trade-off between errors of the SVM on training data and margin maximization

was set to 1. For each resting-state network and each frequency band, the feature

space for classification included the energy values of all the significant local minima.

In each cross-validation fold, one participant was first removed and the remaining par-

ticipants’ data were used as a training set to train the classifier. To avoid over-fitting,
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the feature space (i.e. the local minima) was identified from the aggregated energy

landscape constructed from the participants in the training set. The participant left

out was then classified into one of the two groups (patients or controls). Classification

performance was evaluated by the proportion of correctly classified participants over

all cross-validations.

We used permutation tests to evaluate the classification results. The significance

of each classification was determined by comparing the observed classification accu-

racy with its null distribution under the assumption of no difference between patients

and controls. The null distribution was generated by 1000 random permutations of

leave-one-out classification results, with group labels shuffled in each permutation. We

obtained a permutation p-value by calculating the fraction of the permuted samples

exceeding the observed classification accuracy.

3.3 Analysis

A summary of participant demographics and clinical characteristics is given in Ta-

ble 3.1. The JME and control groups were well matched for age (F (1, 51) = 0.13,

p = 0.72) and gender (p = 0.31, χ2 test). For each participant, we performed source

localization of pre-processed MEG resting-state data and estimated oscillatory activity

(i.e. Hilbert envelope) in each of the 90 ROIs from the AAL atlas, separately in the

theta (4-8 Hz), alpha (8-12 Hz), beta (13-30 Hz), and low-gamma (35-60 Hz) bands.

We focused our analysis on the differences between JME patients and controls in three

resting-state networks (Figure 3.1): the fronto-parietal network (FPN), the default

mode network (DMN), and the sensorimotor network (SMN).

3.3.1 Fitting of pairwise maximum entropy models (pMEM) to

MEG oscillatory activity

We thresholded an ROI’s oscillatory amplitude at each time point t to assign the binary

states of ‘high’ (+1) or ‘low’ (−1) activity. The state of a network at time t was then

represented by a binary vector, consisting of the binarized activity of all the ROIs in
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the network. We fitted a pMEM to the series of binarized network oscillatory activities,

separately for each participant, each resting-state network, and each frequency band

(Equation 3.3, and see Section 3.2 for details). For a network of N ROIs, there are

a total of 2N possible states. The pMEM provides a statistical model of the occurrence

probabilities of the 2N network states, while it satisfies the empirical constraints of

mean regional activities at each ROI and pairwise co-occurrence between each pair of

ROIs within the network.

To evaluate the model fit, we compared the predicted and observed occurrence

probabilities of the 2N possible network state, averaged across the participants in each

group. There was a good agreement between the model predictions and observed data

across networks in the JME (R2 > 0.90 in all networks and frequency bands, based

on a log-log regression, Figure 3.3) and control groups (R2 > 0.89). We further used

an accuracy index to quantify the goodness of fit of the pMEM (Equation (3.7)). The

accuracy index was calculated as the percentage of improvement of the pMEM fit to the

empirical data compared with a null model, which assumed no pairwise co-occurrence

between ROIs (i.e. an independent maximum entropy model). The pMEM achieved

high accuracy indices in both JME patients and controls (Figure 3.3). A Mann-Whitney

U -test on accuracy indices showed no significant main effect of group (JME vs. controls:

U = 266.0, p = 0.19), suggesting the robustness of the pMEM on MEG oscillatory

activities in both patients and controls. As determined by non-parametric repeated

measures Friedman test, there were main effects of the networks (χ2 = 87.5, p <

0.00001) and the frequency bands (χ2 = 46.27, p < 0.00001), suggesting that the

distinct properties of the networks and information carried by the frequency bands

affected the goodness of fit.

3.3.2 Inferences from pMEM energy landscape

Fitted pMEM yielded an energy value for each network state (Equation 3.4). We used

energy values from the pMEM to depict an energy landscape of the network. The

energy landscape is a graph representation of energy values from all possible network

states (Figure 3.2F). We defined two network states being adjacent if there is one and
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Figure 3.3: The pMEM fitting. (A) The occurrence probability of each
network state of the FPN from the fitted pMEM (Pmod) was plotted against
that from the empirical data (Pemp). Each data point was averaged across
JME patients (red) and controls (blue). (B) The averaged accuracy index d
in the JME and control groups for each network and frequency band. Error
bars denote the standard errors across participants.

only one ROI whose binarized activity (i.e. +1 or −1) is the opposite between the two

states. According to the pMEM (Equations (3.3) and (3.4)), network states with a

higher energy would occur less frequently than those with a lower energy. As a result,

transitions from high to low energy states would more likely to occur than that from

low to high states. Here, we examined the differences in three quantitative measures of

energy landscape between patients with JME and controls: (1) the number of energy

minima, (2) the relative energy values at the local minima, and (3) the generative basin

duration at significant minima.

Number of energy minima

We located local minima on the energy landscape, defined as the network states with

lower energy than all their adjacent states. Because a local minimum state would

have a higher occurrence probability than all of its neighbouring states, transitions

of network states near an energy minimum is akin to a fixed point attractor in a

deterministic dynamical system, and the number of energy minima quantifies the degree
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Figure 3.4: The averaged number of local minima in the JME and control
groups. Error bars denote the standard errors across participants.

of multi-stability of a network.

We calculated the number of local minima for each participant (Figure 3.4) and com-

pared it between groups, resting-state networks, and frequency bands with a repeated-

measures ANOVA. Compared with controls, JME patients had significantly less local

energy minima (F (1, 50) = 7.602, p = 0.008). Across all participants, there were sig-

nificant main effects of the resting-state network (F (1.52, 76.25) = 99.89, p < 0.00001,

Greenhouse corrected) and frequency band (F (2.83, 141.57) = 21.08, p < 0.00001). No

significant network by group (F (1.52, 76.25) = 3.15, p = 0.07) or frequency band by

group (F (2.83, 141.57) = 2.12, p = 0.11) interaction was observed. These results sug-

gested that MEG oscillatory activities in JME patients had altered multi-stability in

some networks and frequency bands. The numbers of local minima in beta and gamma

bands were more substantially elevated in FPN. The dependence between frequency

band and shape of the energy landscape needs to be further investigated.

Relative energy values of the local minima

To identify common energy minima at the group level, we averaged across all partici-

pants the energy value of each network state and identified the energy minima on the

aggregated energy landscape. In all the three resting-state networks (FPN, DMN and

SMN) and all frequency bands, permutation tests showed that the energy values of

two network states, ‘all off’ (i.e. all ROIs had low oscillatory activities [−1,−1, ...,−1])

and ‘all on’ (i.e. all ROIs had high oscillatory activities [+1,+1, ...,+1] ), did not

differ significantly from those from a randomly shuffled energy landscape (p > 0.88,
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ipants. The end of each branch on the disconnectivity graph represents a
local minimum. The middle of each panel shows the network states of the
corresponding local minima. White boxes denote high oscillatory activity
(i.e. a binary value of +1) and grey box denote low oscillatory activity (i.e.
a binary value of −1). The bottom of each panel shows the t-values from two
sample t-tests (JME patients vs. controls) on the relative energy values of
each local minimum. Asterisks indicate significant difference between JME
patient and control groups (p < 0.05, FDR corrected).
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Bonferroni corrected). That is, the observed energy values at these two minima were

not significantly sensitive to regional activation and pairwise coactivation in empirical

data (see Section 3.2 for details). In addition, the ‘all off’ state was also the global

minimum of the energy landscape at both group and individual levels, which had the

lowest energy value in all network states.

For each significant local minimum state that survived the permutation test, we

calculated the relative energy difference between the local minimum and the ‘all off’

state (i.e. the global minimum) for the individual participants. Then, we compared the

obtained relative energy values between the JME and control groups. This subtraction

step controlled for the individual variability in the occurrence probability of the global

minimum state [437].

In the FPN, the relative energy values at the local minima were significantly higher

in JME patients than in controls in the theta-band (Figure 3.5A, F (1, 50) = 18.90, p <

0.0001), beta-band (Figure 3.5B, F (1, 50) = 15.43, p = 0.0002), and gamma band

(Figure 3.5C, F (1, 50) = 7.2558, p = 0.009), but not in the alpha band (F (1, 50) = 0.80,

p = 0.37). The aggregated energy landscapes in the beta and gamma bands contained

the same set of 14 local minima. Post-hoc tests showed that all the 14 local minima

states had higher relative energy values in JME patients than controls in the beta band,

and 5 of the 14 local minima states showed significant group differences in the gamma

band (p < 0.05, Šidák correction). The theta-band energy landscape contained 6 local

minima states, which were a subset of the 14 local minima in the higher frequency

bands, and all had higher relative energy values in JME patients than controls.

In the DMN, there were trends of higher relative energy values in the JME pa-

tients than controls in the beta-band (F (1, 50) = 3.68, p = 0.06) and gamma-band

(F (1, 50) = 3.81, p = 0.06), and no significant difference in the theta-band (F (1, 50) =

0.01, p = 0.92) or alpha-band (F (1, 50) = 0.82, p = 0.37). One local-minima in

the beta-band, comprised of co-activation in bilateral mPFC and ACC (Figure 3.5D),

showed a group difference in post-hoc tests at an uncorrected threshold (t(50) = 2.34,

p = 0.03). In the SMN, there was no significant group difference in the relative energy

values (theta: F (1, 50) = 1.26, p = 0.27; alpha: F (1, 50) = 0.06, p = 0.81; beta:

F (1, 50) = 0.002, p = 0.97; gamma: F (1, 50) = 0.12, p = 0.73).
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Overall, JME patients had higher relative energy values than controls in selective

resting-state networks and frequency bands. This result indicates that some local

minima on the aggregated energy landscape were less stable (i.e. having a higher

energy level) in JME patients than controls.

Basin duration at significant minima

Each local minimum of an energy landscape is accompanied by a basin, which includes

the local minimum itself and its neighbouring states from which the local minimum

is relatively easily reached [389]. Therefore, the proportion of time for which each

basin is visited gives a granular description of network dynamics. For each of the

group-level significant minima on the the aggregated energy landscape, we identified

all the network states belonging to the same basin. For each participant, we then

used the fitted pMEM to numerically simulate network dynamics, and calculated the

proportion of time for which the simulated network activities visit each basin. The

rationale to simulate basin durations is twofold. First, our simulation demonstrated

the feasibility of the derived energy landscape to be used as a generative model of

network dynamics. Second, because we removed MEG epochs strongly affected by

artefacts, the source reconstructed data was not fully continuous in time, and hence

basin duration estimated directly from the empirical data would be less accurate.

In the FPN, simulations showed that network dynamics in JME patients contained

shorter basin duration at those significant local minima than controls in the theta

(F (1, 50) = 42.72, p < 0.000001), beta (F (1, 50) = 10.49, p = 0.002) and gamma

(F (1, 50) = 6.18, p = 0.016) bands, but not in the alpha band (F (1, 50) = 3.92,

p = 0.053). There was no significant group difference in the basin duration in the DMN

(theta: F (1, 50) = 0.015, p = 0.90; alpha: F (1, 50) = 2.67, p = 0.11; beta: F (1, 50) =

2.76, p = 0.10; gamma: F (1, 50) = 3.12, p = 0.08) or SMN (theta: F (1, 50) = 0.09,

p = 0.76; alpha: F (1, 50) = 0.31, p = 0.58; beta: F (1, 50) = 1.59, p = 0.21; gamma:

F (1, 50) = 1.25, p = 0.27).



CHAPTER 3. DATA-DRIVEN MODEL 100

3.3.3 Classification of patients

We used a leave-one-out cross validation procedure for a binary classification of partic-

ipant groups (JME patients and healthy controls), using the relative energy values of

local minima as features. Consistent with the group comparisons (Figure 3.5), the rela-

tive energy values obtained from the fitted pMEM showed significant predictive power,

with high classification accuracies from theta-band FPN (92.3%, p < 0.001, permuta-

tion test) and gamma-band FPN (67.3%, p = 0.012) (Figure 3.6). The classification

based on the energy values from theta-band FPN achieved high specificity (89.3%)

and sensitivity (94.8%). For the classification based on gamma-band FPN features,

the specificity and sensitivity were 71.4% and 64.5%, respectively. The classification

accuracy in the SMN, DMN and other frequency bands of the FPN was not significant

(p > 0.26, permutation test).
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Figure 3.6: SVM leave-one-out binary classification accuracy of JME pa-
tients versus controls. The energy values of the local minima were used
as features for classifiers. Blue data points denote the mean classification
accuracy. Black lines denote the 95% confidence level under the null hy-
pothesis of no difference between the groups, based on 1000 permutations of
randomly shuffled labels of the data.

3.4 Discussion

We proposed a pMEM approach to quantify the dynamics of MEG oscillatory activity

and applied this method to derive energy landscape measures, quantifying the abnor-
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mal statistical characteristics of resting-state networks in JME patients. The number

of within-network local minima from individual participant’s energy landscape indicate

the degree of multistability from an attractor network perspective [210] on MEG oscil-

latory power. The local minima are defined here, and should always be interpreted, in

the context of a specific resting-state brain network. The energy values of minima on

aggregated energy landscapes indicate the ease of transition from one stable state to

another [389, 204], and its effects on network dynamics was demonstrated in the simu-

lation of basin duration. Furthermore, the activation profiles of local minima provided

key anatomical insights into functional configurations of cortical networks that differ

between JME patients and controls. Our approach described network abnormalities in

multivariate data from a statistical account. This extended previous research on the

temporal evolution of system dynamics leading to seizures, which measures chaoticity

[189] or entropy [369] in single or combined channels.

In this study, we found that patients with JME showed altered pMEM-derived

energy landscapes in selective resting-state networks and frequency bands (Figure 3.7).

For the energy landscapes estimated at the individual level, JME patients exhibited

lower numbers of local minima than controls (Figure 3.4). For the aggregated energy

landscapes estimated across participants, JME elevated relative energy values at the

local minima of the FPN (theta, beta, and gamma bands) oscillatory activities (Figure

3.5). Our results confirmed the abnormalities of electrophysiological signals in JME

[5], and provided new insights into JME pathophysiology affecting selective functional

network configurations.

The fitted pMEM defined the energy values of all activity states of a network, from

which an energy landscape of the network was depicted [389]. Because a local mini-

mum of the energy refers to a network state with higher occurrence probability than its

neighbouring states, the fewer number of local minima and elevated energy values in

JME suggested alterations in the multi-stable dynamics of the brain networks that may

be prone to perturbation and ictogenesis, in line with the dynamical disease account for

epilepsy [111, 81, 373]. The energy landscape further allowed to characterise clusters of

energy minima and their hierarchies in terms of the disconnectivity graphs (Figure 3.5).

The disconnectivity graphs represent the ease of transition between local minima, i.e.
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Figure 3.7: A schematic diagram of altered energy landscape of MEG
oscillatory power in JME patients (left) compared with controls (right). In
selective functional networks and frequency bands, JME patients exhibited
less local energy minima and elevated energy values (e.g. in theta-band
FPN), suggesting that resting-state networks exhibit changes in the degree
of multi-stability and in the ease of state transitions.

energy barrier between the basins - the higher, the less probable is the switch between

the states from these basins. In the FPN, the energy minima with bilateral high acti-

vation in the frontal or parietal regions were clustered separately and interleaved with

lateralized energy minima (i.e. high activation in unilateral ROIs). This may indicate

that network states with lateralized high activation represent transition states between

frontal and parietal dominant states. In contrast, the DMN energy minima contained

co-activation in bilateral ROIs, consistent with the evidence of strong interhemispheric

and long-range connectivity in the DMN during awake [343, 20].

Our results highlighted JME as a distributed network disorder involving frontal

and parietal lobes [285, 123, 452]. JME patients commonly exhibit impaired frontal

cognitive functions [306], including working memory [388], decision making [466], re-

sponse inhibition [218] and verbal fluency [294]. Demanding cognitive efforts during

visuomotor coordination and decision-making can provoke myoclonic seizures in JME

patients [458], and the degree of cognitive dysfunctions were associated with frontopari-

etal BOLD fMRI activity and connectivity [426]. Cortical and sub-cortical pathology

may underlie the cognitive phenotype in JME. Activities in the lateral parietal cortex

and precuneus have a dominant role in initiating and sustaining characteristic spike-
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and-wave discharges in JME [235]. MR spectroscopy imaging of JME patients has

identified reduced N-Acetyl aspartate concentrations in the frontal lobe and the thala-

mus [350, 473], which, together with widespread cortical morphological abnormalities

[338], indicates dysfunctions in the corticothalamic loops in JME [167]. Further re-

search should extend our results to associate specific abnormal energy minima to JME

patients’ cognitive and behavioural phenotypes.

We further demonstrated that the pMEM and energy landscapes can be used as

a generative model to simulate the duration of the network activity in each energy

basins (Figure 3.2) and as a predictive model for single-patient classification (Fig-

ure 3.6) beyond simple descriptive modelling [366]: it allowed us to combine measures

from multiple energy minima to make inferences at an individual level. Such anal-

ysis, as demonstrated in the current study, would be useful in clinical applications

for identifying patients from controls, or for detecting changes in electrophysiological

data prior to seizure onset in future studies [369]. In addition, because classification-

based analysis makes no assumption about data variances or distributions, it is a more

stringent test than conventional statistical methods and provides accurate estimates

of between-group differences [215]. The normalised energies of the theta-band FPN

minima achieved the best classification results (>90%), comparable with other stud-

ies [145] and consistent with our hypothesis of selective abnormalities of oscillatory

activity in JME. Indeed, pathological theta oscillation were reported as a hallmark of

idiopathic generalised epilepsy [77], possibly owning to the involvement of the thalamus

in initiating or facilitating theta oscillations through thalamocortical coherence [348].

The energy landscape measures for the SMN did not significantly differ between

JME patients and controls. This result might seem counter-intuitive, given that motor

cortex hyperexcitability has been reported in JME [18]. Nevertheless, previous research

on resting-state functional connectivity also showed the lack of altered connectivity in

the motor cortex in JME [244, 241, 115]. Our results suggested that the network states

(i.e. patterns of co-activation) in the SMN, comprising pre- and post-central gyri as

well as SMA, were not affected by JME during rest. However, this result does not rule

out the possibility of network dysfunction in the motor circuit under stimulation or

perturbation [426].
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Our study provides new methods for studying the dynamics of MEG oscillatory

activity. We showed that MEG oscillatory activity in resting-state networks was accu-

rately described by the pMEM (Figure 3.3) and that the model fits were comparable

between JME patients and controls. The pMEM was originally developed in the field

of statistical mechanics and has been applied to population of spiking neurons [462].

More recently, it has been applied to quantify the dynamics of BOLD fMRI data

[437, 436, 120, 13, 155]. However, achieving satisfactory pMEM fitting requires a large

number of data samples [254, 389]. Because of the low temporal resolution of the

BOLD signal, the applications of the pMEM to fMRI signals often need long scanning

time that may be unrealistic for clinical populations, or to concatenate data across

participants that limits the possibility of individual-level inferences [437, 13]. Here, we

highlighted the feasibility and benefits of fitting the pMEM to MEG oscillatory power,

which provided anatomically-specific and frequency-dependent results. Capitalizing on

the high sampling rate of MEG, we showed that one can make inferences on energy

landscapes at the individual level from a short recording session that was well toler-

ated by patients. Future studies could use longer recording sessions to systematically

examine the effect of data length on pMEM fitting to MEG data.

Other methods are available to describe transient network dynamics. Microstate

analysis from scalp EEG has identified successive short time periods during which

the configuration of the scalp potential field remains semi-stable [20], and the spatial

patterns of EEG microstates have been mapped onto distinct mental states [56, 267].

Recent studies using hidden-Markov models (HMM) characterized whole-brain sponta-

neous activity and identified hidden states with spatiotemporal patterns at durations

of 100-200 ms [314]. Both microstate and HMM analyses are based on time-windowed

approach and provide abstractions of the interactions within large-scale networks. In

the current study, we defined the state of a network as an instantaneous snapshot of

regional activities, and the pMEM provided a probabilistic model of the network states

with minimum assumptions.

There are several limitations of this study. First, to quantify network dynamics as

the occurrence probability of a finite number of network states, the oscillatory power

in each ROI needed to be binarized (i.e. high vs. low activity), similar to other func-



CHAPTER 3. DATA-DRIVEN MODEL 105

tional connectivity studies [243]. The binarization procedure for applying pMEM in

neuroscience differs between data modalities. For single unit recording and local field

potentials (LFPs) [390, 462, 464], a threshold based on signal variance was applied to

continuous data to identify active states (spikes in single units or negative deflections

in LPFs). For resting-state fMRI data, a threshold based on the mean of BOLD re-

sponses was used [438, 204]. Unlike spiking trains or LFPs that have a clear definition

of neuronal activity status, MEG oscillatory power reflects the level of synchronised

activity in macroscopic neural populations, which, as a continuous measure, does not

impose an a priori threshold for active/inactive binarization. The current study used

the median of the oscillatory power envelope from each ROI as the threshold to bi-

narize MEG source reconstructed data. The use of a median split is robust to signal

outliers. Furthermore, our approach allows a common statistical criterion adaptive

across regions and participants, appropriate for a potentially heterogeneous ensem-

ble [88]. Future research could consider more complex quantification scheme such as

ternary quantization that reduces oscillatory power to ternary values [475].

Second, the model fitting procedure for pMEM is computationally intensive. Cur-

rently, it is practically possible to fit the pMEM to a network of approximately 15 ROIs,

because the number of network states increases exponentially with more ROIs. As a

result, the current study focused on the dynamics within well-established large-scale

resting-state networks, rather than a whole-brain network comprising all the regions.

Other approximate model fitting procedures may allow us to extend our approach

to larger networks with more ROIs [389], which is beyond the scope of the current

study. Furthermore, the pMEM assumes the pairwise interaction between the brain

states [389]. Although the previous studies showed successful applications of pairwise

dynamics to the macroscopic networks [436, 120, 438], more and more evidence sug-

gests that an interaction between brain areas might be asymmetric [187]. Yet, in order

to reduce the complexity of the analysed system, it has been shown theoretically that

reliable statistical models can be built without including all the interactions in a sys-

tem; instead, pairwise interactions suffice [462, 389]. However, see also [340], where a

criterion is derived for pairwise model generalisability to the realistic systems. Rather

than focusing on dynamical changes of the epileptic system [247], this study analyses
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resting state networks across JME patients and healthy controls. A question remains

whether the bifurcation points or phase transition points in the pMEM method can

predict the ‘boundaries’ between the two groups. Recently, an extension of the energy

landscape framework was applied to study fluid intelligence. It was shown that human

participants with higher IQ scores are closer to a critical state, i.e., the boundary be-

tween the paramagnetic phase and the spin-glass phase in Ising model [121]. Future

research could inspect this question in the epilepsy setting. Moreover, to facilitate the

new analyses, we have made our pMEM fitting procedure and analysis scripts open

source and freely available (https://github.com/dokato/energy_landscape).

Third, the current study chose, a-priori, the AAL template for cortical parcellation.

The AAL atlas is based on anatomical landmarks [413, 337] and commonly used in

MEG resting-state analysis [302, 179, 341]. Previous studies have defined resting-state

networks, including the ones used in our study, with the ROIs from the AAL atlas

[339, 392]. It is worth noting that there is an abundant group of atlases for cortical

parcellation with various levels of granularity [93, 95, 221, 151], and energy landscape

measures from a network may change with different ROI definitions from an alternative

atlas. Future research employing the pMEM for MEG need to make similar informed

decisions on the choice of parcellation scheme based on specific research questions and

intended networks. Also, the recent studies incorporate more data-driven splits of the

brain’s anatomy, e.g. by using hierarchical clustering [434], or cluster-permutation

statistical methods [346].

Fourth, the sample size in the current study is sufficient for comparing and clas-

sifying between JME patient and control groups. However, JME often exhibits as

a disease with a phenotypical spectrum, with variations among seizure frequencies,

epileptic traits, and treatment response [28]. A larger clinical cohort with compre-

hensive neuropsychological assessments is necessary to investigate whether our energy

landscape approach is sensitive to the quantitative spectrum of JME. For example,

the impact of various drugs could be a confounding factor in this analysis. Hopefully,

future studies with higher and more balanced sample of JME patients can help to

address this issue. Moreover, the scanning protocol of this experiment did not enable

continuous movement tracking. As a result, we could not directly compare the exact

https://github.com/dokato/energy_landscape
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level of movements between groups. Nevertheless, even if the residual movement arte-

facts in MEG data did differ between patients and controls, they would affect multiple

networks and hence could not readily explain the network-specific group differences in

energy landscape measures.

In conclusion, by fitting a pMEM to MEG oscillatory activity, we showed that JME

patients exhibited atypical energy landscapes in selective brain networks and frequency

bands, with a smaller number of local minima of the energy and elevated energy levels

leading to altered multi-stable network dynamics. We further demonstrated that the

pMEM and energy landscape offered generative and predictive power for discriminating

between JME patients and controls. These results have the potential to be exploited

in future diagnostic and pharmacological studies for a mechanistic understanding of

ictogenesis in JME, for example by means of the large-scale simulations with neural-

mass models [199], or DCM [220].



Chapter 4

Modelling neuronal populations:

Integration of information in a

perceptual decision-making task

In this Chapter two models are presented to characterise the neurocognitive process

underlying perceptual decision-making with single or double information sources. We

combined cognitive modelling and neural-mass modelling to explain the behavioural

data from meticulously designed online experiment. Our modelling results showed that

the addition of the second information source led to a lower signal-to-noise ratio of ev-

idence accumulation with two congruent information sources, and a change in the de-

cision strategy of speed-accuracy trade-off with two incongruent sources. Our findings

support a robust behavioural change in relation to multiple information sources, which

have congruency-dependent impacts on selective decision-making subcomponents.

4.1 Introduction

Making rapid decisions on the basis of noisy information is a hallmark of voluntary

behaviour. Converging evidence from humans [170] and non-human primates [336]

have supported an evidence accumulation framework governing the decision making

process: the information is integrated over time until the accumulated information in

108
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favour of one option reaches a response threshold. This integration process reduces

the noise in the accumulated information and facilitates optimal behaviour in terms of

accuracy and speed [47]. A large family of sequential sampling models [49] can describe

adequately the cognitive [325] and neural [433] processes during decision making.

Much of research to date on simple decisions has focused on evidence accumulation

from a single information source [148]. Understanding how a decision-maker integrates

information from multiple sources is equally important. In preferential decisions with

multiple attributes, such as buying a car based on its colour and price, sequential sam-

pling models can effectively account for various biases and heuristics [62], supporting

evidence accumulation as a parsimonious decision-making framework for distributed

information sources.

The current study focused on another common scenario: making decisions by inte-

grating the same type of information originated from multiple sources. For example,

when approaching a T junction, a car driver has to consider incoming traffic from both

left and right sides of the main road; while entering a roundabout, the driver only

need to attend to one side because all vehicles circulate in one direction. An intrigu-

ing issue is: how does the presence of multiple information sources affect behavioural

performance.

The progress of the understanding the decision making mechanism has been accel-

erated by the neuronal recordings from animal studies [273, 53, 148]. Typically they

involve the paradigms from psychophysics, seeking the relation between sensory input

and behaviour of the animal [159]. For example, a rhesus monkey is trained to indicate

the dominant direction of movement of the dots visible on the screen - typically called

random dot kinetogram (RDK). Typically - to simplify the problem - only two direc-

tions of the dots are considered. In a given trial, the coherence of dots can be controlled

by the experimenter, who makes the task easier or mote difficult [282, 53]. The rhesus

monkey responds to the stimuli with saccade eyes movement in the direction of choice

in order to receive a reward. Selective cortical brain areas respond with increasing firing

rates over time of recorded neurons before the decision is made. Current evidence sug-

gests that the major areas engaged in the evidence accumulation are middle temporal

visual area (MT) [282], superior colliculus (SC) [186], premotor cortex [175], caudate
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nucleus [461] or lateral intra-parietal area (LIP) [217] (but see [207] where a behaviour

of the monkey was intact after the inactivation of LIP), but also frontal areas of the

brain: dorsolateral prefrontal cortex (dlPFC) [317, 170], frontal eye fields [41]. The

animal studies were supported by the evidence from human research. For example, in

[209] the amplitude of the centro-parietal positivity signal from the EEG recordings

(in the medial parietal part of the scalp) was identified to correlate with the coherence

strength of the dots movement. Several studies report involvement of a frontal-parietal

network in the general process of perceptual decision making, which is complemented

by the activity of deeper brain structures (in particular the basal ganglia) [211]. Also,

fMRI research provided even more evidence that the activity within the left dlPFC is

greater during easy decisions than during difficult decisions in the image categorization

task [170, 171].

Apart from the source localisation of the neuronal decision correlates, several cog-

nitive models emerged aiming to propose an algorithmic view on perceptual decision

making. The majority of the models rely on the sequential ratio analysis procedure

from the signal detection field. In the original setting, the log of ratio of probabilities

of the observed evidence towards option 1 or 2 is collected with a commitment towards

one of two hypothesis [431]. Thus, the procedure helps to convert a number of observa-

tions from the noisy sensory environment into a categorical choice [148]. In psychology,

this test may be implemented in several ways, that have been shown to converge to

just two: drift-diffusion models (DDM) [322, 325] and race models [414, 49]. Both in-

troduce the notion of a decision variable that accumulates evidence towards one of the

options. In the DDM this variable represents the difference between evidence towards

each option [322]. In linear ballistic accumulator (LBA) model, which is a special case

of a race model (other examples include a race diffusion model [399]), it is represented

by two (for binary case) independent accumulators that race towards the threshold

[58]. Typically, a decision model consists of the following parameters: non-decision

time (representing sensory information encoding and movement), drift-rate (indicating

a force with which a decision variable is attracted towards option), decision thresh-

old (representing information accumulation stopping point), and bias (or preference

towards one option) [49]. It has been shown that DDM shows an optimal behaviour
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when its processing remains in a linear range [49]. The above models, even though,

useful and conceptually simple do not tell much about the neuronal implementation of

the underlying process.

Research on visual search provide circumstantial evidence to imply an imperfect

integration of multiple sources, because of the limited capacity of the attentional sys-

tem. When locating a target among similar distractors or filtering out task irrelevant

information, there is a robust behavioural [299] and neural [331] cost in relation to

selective attention on multiple sources. However, two important questions are yet

to be addressed. First, when the total amount of information remains unchanged,

does separating information into multiple congruent and incongruent sources have the

same impact on behaviour? Second, does making decisions with additional information

sources lead to a change in the speed of evidence accumulation, the decision threshold,

or both?

Here, we addressed these questions in a pre-registered, carefully calibrated online

experiment of perceptual decision in two independent groups. Human participants

were instructed to decide the average motion direction of random-dot kinematogram

from two tilted apertures (Figure 4.1). Coherent dot motion was presented in both

apertures, with their moving directions to be congruent (both leftwards or rightwards)

or incongruent (e.g. one leftwards and the other rightwards). In corresponding baseline

conditions, coherent motion was presented in a single aperture, with the other aper-

ture containing no coherent motion. Between the two groups, we varied the angular

separation of the two apertures, allowing us to evaluate the repeatability of all within-

subject effects and assess the between-group effect of aperture angles on behaviour.

We fitted a cognitive model, DDM, to behavioural data and inferred the effects of

motion congruency and sensory sources on model parameters. Furthermore, we ex-

tended a mean-field model (derived from biophysical model) [454] to demonstrate how

the observed behavioural changes can be implemented by a biologically realistic neural

network. Together, our study illustrated the neurocognitive mechanisms of perceptual

decisions from multiple sources.
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Table 4.1: Statistical information about participants. NA - data not avail-
able.

Category Value
gender female (25), male(67), NA(1)
handness right(85), left(6), both(2)
age (years) median: 25, mean: 27.3, std: 8.3
web browser type Chrome(69), Internet Explorer(14), Firefox(4), Safari(5), NA(2)

nationality

United Kingdom(25), Poland(13), Portugal(11), United States(7),
Spain(5), Italy(4), Mexico(3), Czech Republic(3), Denmark(2),

Ireland(2), Hungary(2), France(2), Lithuania(1),
Germany(1), Belgium(1), Sweden(1), Colombia(1),

Estonia(1), Finland(1), Netherlands(1), Chile(1), Canada(1),
Australia(1), South Africa(1), China(1), NA(1)

4.2 Methods

4.2.1 Participants and pre-registration

A total of 94 participants were recruited from an online recruitment portal (Prolific,

prolific.co) and took part in the experiment online (age range 18-68 years old, me-

dian age 25 years old, 25 females, 85 right-handed). Table 4.1 summaries demographic

features of the participants. All participants received monetary payments for their par-

ticipation. Consent was obtained from all participants. We considered the recruitment

from an online portal as a sample of convenience. The study was approved by the

Cardiff University School of Psychology Research Ethics Committee.

Power analyses, exclusion criteria, experiment procedures and analysis plans were

pre-registered prior to data collection (https://osf.io/4dn65). A sample size of

N > 44 provides > 90% power to detect a medium within-group effect (d = 0.5) at

α = 0.05. We randomly assigned participants into two independent groups. Group

1 (N = 49) performed the perceptual decision task with two sources of visual inputs

presented along θ = ±20◦, and Group 2 (N = 45) performed the task with visual

inputs presented along θ = ±45◦ (see Procedure for details).

prolific.co
https://osf.io/4dn65
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4.2.2 Apparatus

The experiment was conducted online. Experimental scripts for stimulus presentation

and response collection were written in HTML with a JavaScript library jsPsych

6.0.5 [85] and the jspsych-rdk plugin [316]. The online experiment was hosted on

a web server Pavlovia (pavlovia.org), and participants performed the experiment in

web browsers on their computers (see Table 4.1). It has been shown that online exper-

iments in modern web-browsers can serve as a suitable tool for measuring behavioural

responses and reaction times with sufficient precision [86, 361, 11].

4.2.3 Stimuli

The visual stimuli contained two independent sets of random-dot kinematograms [54,

364, 264] displayed within two invisible rectangular apertures (140 pixels width, 550

pixels length) on a grey background (RGB=128, 128, 128). Both rectangular apertures

located at the centre of the screen, with one tilted +θ from the horizontal plane and

the other tilted −θ. Hence, the two apertures formed an ‘×’ shape, with θ = 20◦

in Group 1 and θ = 45◦ in Group 2. To facilitate the integration of leftwards and

rightward motion across apertures, four motion target indicators were presented at the

end of the short edges of the two apertures. On each side of the screen (left or right),

the two target indicators had the same colour (red or blue), and the colour assignment

of those motion indicators was randomised across participants.

Each rectangular aperture contained 100 dots (i.e. 200 dots in total). Each dot

had a radius of 3 pixels. We introduced coherent motion information along the long

edge of each aperture (leftwards or rightwards). In each frame, a proportion of dots

(namely the motion coherence) was replotted at an appropriate spatial displacement in

the direction of motion (2 pixels/frame velocity), relative to their positions in the last

frame, and the rest of the dots were replotted at random locations within the aperture.

To minimise the impact of local motion information from individual dots, all dots were

replotted at random locations after every 7 frames [316].

pavlovia.org
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A B

θ

Figure 4.1: The diagram of the RDK in two rectangular apertures used
in (A) the staircase procedure and (B) the main experiment. θ denotes
the angle between the aperture and the horizontal plane, which was ±20◦ in
Group 1 and ±45◦ in Group 2. During the staircase procedure, one aperture
contained block dots with 0% motion coherence. In the main experiment,
both apertures contained white dots. Green arrow denotes the motion of the
dots.

4.2.4 Task and procedure

After informed consent and task instructions, the experiment included two parts: (1)

a staircase procedure to identify two perceptual thresholds, and (2) the main perceptual

decision-making task. In both parts, participants performed a two-alternative forced-

choice (2AFC) task, deciding whether the coherent motion direction of the random-

dot stimulus is leftward or rightward, either from a single information source (i.e. one

aperture in Part 1, Figure 4.1A) or combined from double information sources (i.e. two

apertures in Part 2, Figure 4.1B). Participants responded by pressing the ‘k’ key (for

leftward decisions) or the ‘p’ key (for rightward decisions) on a keyboard with their

right index and middle fingers. Participants took self-paced breaks after each part.

Part 1: staircase procedure

To allow participants to familiarise with stimuli and the task, participants underwent a

short practise. The practise part consisted a single block of 32 trials. On each trial, one

aperture contained black dots (RGB = 255, 255, 255) with 0% motion coherence, and

the other aperture contained white dots (RGB = 0, 0, 0) at one of the four coherence
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levels (5%, 10%, 20%, and 40%, 8 trials of each level). Participants were instructed to

pay attention only to white dots (i.e. the informative aperture) and decide the direction

of coherent motion. The coherent motion direction, the order of coherence levels and

the informative aperture (i.e. the one at +θ◦ or the one at −θ◦) were randomised across

trials. On each trial, the random-dot stimulus disappeared as soon as a response was

made, or a maximum duration of 3500 ms was reached. The inter-trial interval was

randomised between 900 and 1100 ms.

For online experiments, participants’ hardware settings and their perceptual perfor-

mance could vary substantially. Therefore, we measured motion discrimination thresh-

olds using the same visual stimulus and the 2AFC task structure as in the practise:

one aperture contained black moving dots with 0% (i.e. uninformative) coherence, and

the other contained white dots with motion coherence set according to the staircase

routine. The direction of coherent motion was randomised across trials. At the end

of each trial, visual feedback in text was presented for 500 ms to indicate whether

participant’s response was correct or incorrect.

The staircase routine combined two parallel staircase procedures with fixed step

sizes: one used a two-down/one-up rule and the other used a three-down/one-up rule.

The two staircase procedures are independent and interleaved with each other. In

both staircase procedures, the initial motion coherence was set to a supra-threshold

value of 31.6%, the ‘up’ step size was 0.1 (log unit) and the ‘down’ step size was

0.074 [133]. Therefore, the two-down/one-up procedure converges to the coherence

threshold of ∼71% accuracy (hereafter referred to as the low coherence clow, and the

three-down/one-up procedure converges to a coherence threshold of ∼83% accuracy

(hereafter referred to as the high coherence chigh) [240, 134]. Each of the two staircase

procedures terminated after ten staircase reversals and the corresponding threshold

was calculated as the mean of the motion coherence levels for the last nine reversals.

Part 2: perceptual decisions from double sources

Part 2 is the main experiment, in which both apertures contained white dots (Fig-

ure 4.1B). Participants were instructed to attend to both apertures and decide whether
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the coherent motion direction of all (white) dots was leftwards or rightwards.

After task instruction and a brief practise, the main experiment comprised 432

trials, which were divided into 6 blocks of 72 trials. Participants took self-paced breaks

between blocks. Decision accuracy (proportion of correct responses) was measured

after every two consecutive blocks. If a participant had the accuracy lower than 60%,

the experiment ended prematurely and the dataset was discarded from further analysis.

Each block contained 50% of leftwards motion trials and 50% of rightwards motion

trials. In each block, 64 main task trials and 8 control trials were presented in a ran-

domised order. The task trials followed a 2 by 2 factorial design with two levels of

motion coherence (high and low) and two levels of information sources (single source

and double sources).

In the high coherence conditions, trials with double information sources had the

low motion coherence clow in one aperture and chigh − clow in the other. The coherent

motion directions were congruent in the two apertures (i.e. both leftwards or both

rightwards). Trials with single information source had the high motion coherence chigh

in one aperture and 0% in the other.

In the low coherence conditions, trials with double information sources had the

high motion coherence chigh in one aperture and chigh − clow in the other. Importantly,

the coherent motion directions were incongruent (i.e. opposite) in the two apertures.

Trials with single information source had the low motion coherence clow in one aperture

and 0% in the other. Therefore, for both double and single information sources, the

net motion coherence was always chigh in high coherence conditions and clow in low

coherence conditions. In control trials, the motion coherence levels in two apertures

was set to 60% and 0%. These easy control trials were served as attention check and

excluded from subsequent data analyses.

Each trial started with a 250 ms fixation period, during which a black cross pre-

sented in the central of the screen. RDK stimuli in two apertures were then presented

for a maximum period of 4000 ms, and the stimuli disappeared as soon as a choice was

made. The visual stimulus was followed by an inter-trial interval randomised between

400 and 600 ms.

The example of the stimuli from both parts of the experiment is demonstrated in
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the following video: https://youtu.be/mhvpiYLXHag.

4.2.5 Data analysis

For the staircase procedure, the non-parametric Mann-Whitney U -test was used to

compare the high and low coherence levels (chigh and clow) between the two aperture

angles (θ = 45◦ and θ = 20◦). 95% confidence intervals (CI) were obtained using

bootstrap procedure with 1000 resamples of simulated distributions.

For the main experiment, we quantified response time (RT) of each trial as the

latency between the RDK stimulus onset and behavioural response. To eliminate fast

guesses, trials with RT faster than 250 ms were removed. Trials without a valid response

were also removed. The discarded trials accounted for 0.26% of all trials. We used

mixed frequentist and Bayesian ANOVAs to make group inferences on mean decision

accuracy and RT, with the coherence level and the number of information source as

within-subject factors. Assumptions of variance equality were checked with Levene’s

test. We performed post-hoc comparisons using JASP (jasp-stats.org) and used

Bayes Factors (BFincl, BF10) to characterise the strength of evidence [429].

4.2.6 Cognitive modelling of behavioural data

We used the hierarchical DDM toolbox [447] to fit DDMs to individual participant’s

response time distribution and decision accuracy. The hierarchical DDM assumes that

the model parameters of individual participants are sampled from group-level distri-

butions, and the Bayesian fitting procedure estimates the posterior distributions of all

model parameters at both individual and group levels, given the observed data.

The basic form of the DDM contained three core parameters [325]: (1) the drift-rate

(v), (2) the decision threshold (a), and (3) the non-decision time (Ter). For each trial,

the model assumes that noisy information is accumulated over time at an averaged rate

of v and a starting point of a/2, until the accumulated information reaches the upper

or the lower decision boundary (a or 0) that indicates a correct or incorrect binary

response, respectively. The model prediction of RT is the sum of the duration of the

accumulation process and the non-decision time, with the latter accounting for delays

https://youtu.be/mhvpiYLXHag
jasp-stats.org
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in sensory encoding and motor execution [206].

To accommodate changes in behavioural performance between conditions, we esti-

mated four variants of the DDM with different parameter constraints. The first three

variants allow two of the three parameters (v, a, Ter) to vary between conditions, and

the last variant allows all three parameters to vary. All parameters are allowed to vary

between participants in all variants.

For each variant, we generated 20,000 samples from the joint posterior distribution

of all model parameters by using Markov chain Monte Carlo sampling. The initial 4000

samples were discarded for the sake of obtaining stable posterior estimates [447]. To

improve the model’s robustness to outliers, we estimated mixture models, in that 95%

of the data are explained by the DDM, and 5% of the data are expected to be outliers

generated from a uniform distribution [328].

Model fits were assessed by comparing each model’s deviance information criterion

(DIC) value [371], which takes into account both the log-likelihood function of observed

data and the complexity of the model. For the best fitting variant, we used Bayesian

hypothesis testing [139] to make inferences between conditions from the parameters’

group-level posterior distributions. For consistency, we use p to refer to frequentist

p-values, and Pp|D to refer to the proportion of posteriors supporting the testing hy-

pothesis at the group level from Bayesian hypothesis testing.

4.2.7 Recurrent neural mass model

We further used a mean-field model [454] to qualitatively demonstrate the effects of mo-

tion coherence and the number of information source on behavioural performance. The

model considered here is simplified from a recurrent spiking neural network model [433]

via the mean-field approximation (as described in Section 1.4.2). Specifically, the

neural-mass model includes two neural populations (i.e. accumulators) supporting two

alternatives in a decision-making task. The neural accumulators have self-excitatory

and mutual inhibitory connections. Each accumulator receives selective external in-

puts (Iin,L and Iin,R) as momentary evidence supporting each alternative (e.g. leftwards

vs rightwards motion), as well as a common, non-selective background input I0 (Fig-
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ure 4.7A). During decision making, two accumulators compete against each other, and

the first accumulator that reaches a decision threshold renders the corresponding re-

sponse. It has been shown that this biologically realistic neural mass model can explain

behavioural and single-unit recording data from perceptual decision experiments [454].

Moreover, within a certain parameter range, the dynamics of the model can mathe-

matically approximate that of the DDM [454, 49].

Here, we extended the original neural-mass model to take into account the presence

of the two information sources in the current study (for modelling details see Supple-

mentary methods in Appendix B). The deterministic input currents (Iin,L and Iin,R) to

the two neural accumulators are given byIin,L = Jext[αµ(1 + c1) + (1− α)µ(1 + c2)] + βI0,

Iin,R = Jext[αµ(1− c1) + (1− α)µ(1− c2)] + βI0,
(4.1)

where the first term is the selective input current and the second represents the non-

selective background input current. Here, c1 and c2 denote the motion coherence levels

in the two independent apertures. For simplicity, hereafter we assign c1 to represent

the stronger coherence between the two (|c1| > |c2|). Other parameters were set in line

with previous studies [454, 375]: Jext = 5.2 · 10−4 nA·Hz−1 is the the average synaptic

coupling parameter, I0 = 0.321 nA represents the baseline of the background input

current, and µ = 35 Hz is the baseline of input strength of the evidence.

The two scaling parameters α and β control to what extent task conditions affect

model inputs. First, in trials with double informative sources, participants need to

combine the evidence from two apertures for optimal decisions. The parameter α

determines how a decision maker splits the weight of sensory evidence from two sources.

α = 0.5 implies that a participant weight two sources equally, while 0.5 < α < 1 or

0 < α < 0.5 implies that the dominate source is weighted more or less, respectively.

Second, previous studies suggest that a change in the baseline input I0 results in

speed-accuracy trade-off [375, 173]. Compared with the single source condition, the

double source condition with incongruent motion directions had lower accuracy and

faster RT, suggesting that participants may trade accuracy for speed in the presence of
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conflict information. Therefore, we assumed that the non-selective background input

current is modulated by a factor of β in that condition, which changes the model

dynamics and in turn affects both the accuracy and RT relative to the condition with

a single information source. For other conditions, we set β = 1 such that the non-

selective input is at its baseline level.

To identify the parameter regime where the neural mass model can produce quali-

tatively the behavioural pattern observed in the experiment, we ran model simulations

with different values of α and β. For each parameter set, we ran 8,000 simulations

of the four experimental conditions with representative coherence levels (chigh = 20%

and clow = 15%). For example, in the incongruent condition with double information

sources, c1 = 20% and c2 = −5% for leftward motion; and c1 = −20% and c2 = 5% for

rightward motion. Mean accuracy and RT of each condition was then calculated from

all simulations.

4.2.8 Open data and scripts

We have made the data (https://figshare.com/articles/dataset/13567916), all

analyses scripts and experimental materials (https://github.com/dokato/2drdk) open

access.

4.3 Results

4.3.1 Behavioural results

Two groups of participants performed a coherent motion discrimination task, with in-

dependent RDK stimuli in two apertures at an angle of 20◦ (Group 1) or 45◦ (Group 2)

(Figure 4.1A). Prior to the main experiment, all participants underwent a fixed-size

staircase procedure to estimate two motion coherence thresholds: clow from a two-

down/one-up rule and chigh from a three-down/one-up rule (Figure 4.2 and Supple-

mentary Figure B.1). A Mann Whitney U test showed no significant difference in

coherence thresholds between the two groups with different aperture angles (clow:

U(45, 49) = 983, p = 0.18, 95%CI = [−2.7, 0.9]%; chigh: U(45, 49) = 952, p = 0.13,

https://figshare.com/articles/dataset/13567916
https://github.com/dokato/2drdk
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Figure 4.2: Staircase procedure results. Two motion coherence thresholds
obtained from a parallel staircase routine: clow from the two-down/one-up
rule and chigh from the three-down/one-up rule. There were no significant
(ns) differences between coherence values for the aperture angles θ = 20◦

and θ = 45◦.

95%CI = [−5.4, 1.3]%). As expected, the coherence threshold chigh was significantly

larger than clow (U(94) = 1534, p < 0.0001, 95%CI = [−9.1,−5.1]%). These results

suggest that participants achieved reliable performance in the motion discrimination

task online.

In the main experiment, participants in both groups decided the combined coherent

motion direction (leftwards vs. rightwards) in a 2-by-2 factorial design: either single

or double apertures contained non-zero motion coherence, and the combined coher-

ence level in the two apertures was either clow or chigh (Figure 4.1B). We quantified

participant’s performance in mean decision accuracy (proportion of correct) and RT.

The two groups with different angles of stimulus apertures achieved similar perfor-

mance. A two-way mixed ANOVA showed no significant group effect on behavioural

performance (accuracy: F (1, 92) = 0.009, p = 0.92, η2p < 0.001, BFincl = 0.29; RT:

F (1, 92) = 0.05, p = 0.30, η2p < 0.001, BFincl = 0.24). The participant’s grouping in-

teracted with combined coherence levels for accuracy: (F (1, 92) = 4.27, p = 0.04,

η2p = 0.04, BFincl = 4.20), but not RT: F (1, 92) = 1.04, p = 0.31, η2p = 0.01,

BFincl = 0.19), nor the number of information sources (accuracy: F (1, 92) = 0.02,

p = 0.88, η2p < 0.001, BFincl = 0.17; RT: F (1, 92) = 0.01, p = 0.93, η2p < 0.001,
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BFincl = 0.15).

Across both groups, the high combined coherence chigh led to better accuracy (Fig-

ure 4.3, F (1, 92) = 269.25, p < 0.001, η2p = 0.745, BFincl = 2.3 · 1055) and faster RT

(Figure 4.4, F (1, 92) = 53.70, p < 0.001, η2p = 0.37, BFincl = 3.73) than the low com-

bined coherence clow. Compared with conditions of single information source, splitting

motion information into two apertures resulted in lower accuracy (F (1, 92) = 47.50,

p < 0.001, η2p = 0.34, BFincl = 1.7 · 104) without a significant main effect on RT

(F (1, 92) = 0.14, p = 0.71, η2p = 0.002, BFincl = 0.12).

There was no interaction in accuracy between combined coherence levels and the

number of information sources (F (1, 92) = 0.01, p = 0.92, η2p < 0.001, BFincl = 0.17).

For RT, the interaction between the two factors was significant (F (1, 92) = 208.38,

p < 0.001, η2p = 0.69, BFincl = 1.2 · 1013), suggesting that presenting motion infor-

mation in double apertures elicited different changes in response speed between the

two combined coherence levels (Figure 4.4). It is worth noting that in chigh conditions,

motion directions in two apertures were congruent in the case of double information

sources (i.e. both leftwards or both rightwards). A post-hoc test showed that com-

pared with single source conditions, congruent double source conditions had slower RT

(BF10 = 8014.01, Bayesian t-test). Conversely, in clow conditions, motion directions in

two apertures were incongruent (e.g. one leftwards and the other rightwards) and led

to faster RT (BF10 = 1.21 · 104).

4.3.2 Cognitive modelling results

We used a hierarchical Bayesian implementation [447, 419] of the DDM [322, 49] to de-

compose individual participant’s accuracy and RT into model parameters that quantify

latent cognitive processes. We considered four model variants, which allow the drift-

rate v, the non-decision time Ter and the decision threshold a to be fixed or vary

between task conditions.

For each model variant, the Gelman-Rubin R̂ convergence criterion [137] was used to

assess the convergence of the last 16,000 MCMC samples from 5 independent Markov

chains. The maximum value of the statistic from all parameters was R̂ = 1.0012,
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Figure 4.3: Accuracy (proportion of correct responses) in the main exper-
iment for high (red) and low (purple) combined evidence condition. Bars
represent the averaged accuracy in (A) Group 1 (aperture angle θ = ±20◦)
and (B) Group 2 (θ = ±45◦). Grey dots represent individual participants’
accuracy. Each solid line links the performance between double and sin-
gle source conditions from the same participant. Solid horizontal line with
asterisk indicate the significant pairwise comparison. Solid vertical lines
represent the standard error.
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Figure 4.4: Reaction time (RT) in the main experiment for high (red)
and low (purple) combined evidence condition. Bars represent the aver-
aged accuracy in (A) Group 1 (aperture angle θ = ±20◦) and (B) Group
2 (θ = ±45◦). Grey dots represent individual participants’ accuracy. Each
solid line links the performance between double and single source conditions
from the same participant. Solid horizontal line with asterisk indicate the
significant pairwise comparison. Solid vertical lines represent the standard
error.
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Figure 4.5: Drift-Diffusion Model (DDM) fitting results. (A) Examples
of evidence accumulation trajectories depicted by the DDM. The decision
threshold a represents the distance between the correct and incorrect deci-
sion thresholds. The drift-rate v describes the average speed of evidence
accumulation. The non-decision time Ter represents the latency of other
processes not included in the evidence accumulation. The diffusion contin-
ues until the accumulated evidence reaches one of the two thresholds (solid
black lines). If the accumulated evidence reaches the correct (upper) thresh-
old (blue trajectory), the model predicts a correct response. Because of noise,
the accumulated evidence may reach the incorrect (lower) threshold (red tra-
jectory). (B) The deviance information criterion (DIC) value differences
between the four variants of the DDM and the best fit. The black square
indicates that the corresponding parameter can vary between the conditions,
and the white square indicates that the parameter is invariant. The best
model had variable a, v and Ter between conditions. (C) The posterior dis-
tributions of parameter values of the best fit model (top: Group 1 with 20◦

aperture angle; bottom: Group 2 with 45◦ aperture angle).
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Table 4.2: Posterior comparisons of model parameters. The table listed
the proportion of non-overlap between two posterior parameter estimates x
and y, which is equivalent to a Bayesian test of the hypothesis Pp|D(x > y).
Experimental conditions: I1 and I2 refer to single or double informative
sources with a combined coherence of chigh; C1 and C2 refer to single or
double informative sources with a combined coherence of clow. The DDM
model parameters: v drift-rate, a decision threshold and Ter non-decision
time. Two angular distances in two groups: θ1 = 20◦, θ2 = 45◦.

v a Ter
θ1 θ2 θ1 θ2 θ1 θ2

x = I1; y = I2 0.662 0.671 0.997 0.998 0.708 0.744
x = C1; y = I2 1.000 1.000 0.958 0.984 0.173 0.339
x = C2; y = I2 1.000 1.000 0.999 0.999 0.250 0.402
x = C1; y = I1 1.000 1.000 0.113 0.233 0.067 0.145
x = C2; y = I1 0.999 1.000 0.770 0.734 0.118 0.186
x = C1; y = C2 0.998 0.989 0.025 0.087 0.392 0.430

which is lower than the criterion of convergence 1.1 [137], suggesting that all parameter

estimates converged after 20,000 steps.

The model variant that described the data best (i.e. the one with the lowest DIC

value) allows all three parameters (v, Ter and a) to vary between conditions. To eval-

uate the model fit, we generated model predictions by simulations with the posterior

estimates of the model parameters. There was a good agreement between the observed

data and the model simulations in all conditions (Figure 4.6 and Supplementary Fig-

ures B.2 and B.3).

Figure 4.5C shows the posterior parameter estimates for the two participant groups.

We used Bayesian statistics [139, 231] to quantify the proportion of parameters’ pos-

terior distributions that did not overlap between groups and conditions (Table 4.2).

There was no evidence to support a difference in model parameters between groups

(Pp|D < 0.93 in all parameters). For the drift-rate, there were strong evidence to sup-

port differences between all conditions (Group 1: Pp|D > 0.998; Group 2: Pp|D > 0.989,

Table 4.2), except between the single and double source (i.e. the incongruent con-

dition) conditions with the low coherence level (Group 1: Pp|D = 0.662; Group 2:

Pp|D = 0.671). The incongruent condition with double information sources had a lower

decision threshold than the other three conditions (Group 1: Pp|D > 0.958; Group 2:
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Pp|D > 0.984). We did not observe strong evidence in supporting a difference in the

non-decision time between conditions (Group 1: Pp|D < 0.71; Group 2: Pp|D < 0.74).

High combined

coherence

Low combined

coherence

reaction time [s]

Figure 4.6: Posterior predictive response time (RT) distributions from the
fitted DDM. Each panel shows normalised histogram of the observed data
(red for high combined coherence and blue for low combined coherence con-
ditions) and the model predictions (black lines) across participants. The RT
distribution of correct responses is shown along the positive horizontal axis.
The RT distribution of error responses is shown along the negative horizon-
tal axis. The posterior predictions of the model were generated by averaging
5000 simulations of the same amount of observed data. Top row shows re-
sults from Group 1 (with 20◦ angle between apertures) and the bottom row
for Group 2 (45◦).

4.3.3 Neural-mass modelling results

Our cognitive modelling results suggested that splitting coherent motion information

into two apertures led to a decrease of drift-rate in the congruent condition, and a

decrease of decision threshold in the incongruent condition. How could these changes be

incorporated in a biologically realistic model? To address this question, we introduced

two extensions (Figure 4.7A) to a neural-mass model of perceptual decision [454], which

implements an evidence accumulation process akin to that of the DDM [49]. First, for

conditions with double information sources, we assumed that the sensory input selective
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to motion coherence is a weighted sum of the two sources. The two weights (αµ and

(1 − α)µ; see Equation 4.1) sum up to the constant baseline weight µ that is applied

to the conditions with single information source. Second, we assumed that the non-

selective sensory input I0 is changed at the rate of β in the double source condition

with incongruent inputs, which has been shown to be a realistic neural mechanism in

modulating decision threshold [173, 374].

We parametrically modulated the two scaling parameters α and β. For each pa-

rameter set, we simulated the extended neural-mass model 20,000 trials (5,000 simu-

lations for each experimental condition) and estimated the decision accuracy as well

as mean RT. Figures 4.7B and 4.7C show the behavioural performance from simula-

tions. We further identified parameter regimes that qualitatively satisfy the observed

performance difference between double (both congruent and incongruent) and single

information sources conditions. Based on model simulations, the scaling parameter α

on input weights needs to be larger than 0.5, suggesting that the dominate, or more

informative, sensory input of the two apertures is weighted more than the other. The

parameter β needs to be larger than 1, suggesting that incongruent double information

sources are associated with an elevated non-selective sensory input.

4.4 Discussion

Integration of information across multiple channels by human decision makers has been

shown to be imperfect in many experimental settings [365]. Traditional theories link

such limitations to an information bottleneck, which gates entry into central decision

systems (eg. basal ganglia) [55]. Early evidence from psychology of sensation posited

that multiple information sources affect the judgement [196]. This was hypothesised

to be related to the attention mechanism, affecting the coding stage of the decision

making process [365]. More recent studies, confirmed the neuronal correlations of

such explanation [331]. In [331], the authors showed that qualitatively different firing

rates (from single-unit recordings of macaque’s brain) depend on whether a stimulus

appeared alone or accompanied by distractors.

The current study examined, in two independent groups, how the presence of a sec-
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ond source of sensory information affects the behavioural performance of perceptual

decision as well as its underlying neurocognitive mechanisms. When motion directions

are congruent between the two sources, decisions on the global motion direction were

less accurate and slower than that in the single-source condition with the same amount

of total information (i.e. combined motion coherence). In contrast, when two infor-

mation sources are incongruent, decisions were less accurate but faster than that in

the single-source condition. Therefore, the change in task performance depends on the

congruency between multiple sources of sensory evidence.

Using a Bayesian DDM, our cognitive modelling provided novel evidence on the

decision-making process with multiple information sources. First, information congru-

ency has selective influence on different decision making subcomponents. The congru-

ent, double-source condition had a lower drift-rate than its corresponding single-source

condition (i.e. with a combined motion coherence of chigh in both). The drift-rate of

the DDM represents the signal-to-noise ratio of the information [325] and has been

linked to the allocation of attention [354]. The presence of congruent information in

two apertures may modulate the divided attention towards the stimuli that in turn

lowers the averaged rate of evidence accumulation. Human electrophysiological data

support this proposition. For two peripheral visual patches presented simultaneously,

the early-visual ERP component is characteristic to the attended location, as its ampli-

tude is maximal over posterior electrodes contralateral to the attending side [108, 251].

Recent studies showed that this EEG marker of selective attention modulates the rate

of evidence accumulation in perceptual decision [249], and the dynamics of selective

attention can influence evidence accumulation throughout the decision process [319].

Second, splitting motion information into two incongruent apertures did not vary

the drift-rate. Instead, there was a substantial reduction in the decision threshold, re-

flecting the behavioural change that participants traded accuracy for speed in this con-

dition. The speed-accuracy trade-off (SAT) is widely observed across decision making

tasks [446, 172, 31]. In experiments with humans, the SAT is often induced explicitly

via verbal instructions [469] or response deadlines [459]. Such manipulations can effi-

ciently switch between accuracy-seeking and speed-seeking behaviour every few trials

[275] or in consecutive trials [128]. Modelling studies on explicit SAT demands have



CHAPTER 4. NEURONAL POPULATION MODELLING 131

been consistently associated with the change of decision threshold [300, 323]: a smaller

decision threshold leads to faster and more error-prone decisions. Nevertheless, the

SAT can also be triggered endogenously without explicit demands [92]. The incongru-

ency of the information might affect a certainty of choice. Recent mean-field modelling

studies suggested that the level of certainty modulates the response times [15]. In the

proposed model, an uncertainty-monitoring module receives excitatory input from the

sensorimotor module, similar to the model proposed in this study, and provides to in

an excitatory feedback with an intermediate inhibitory connections. The uncertainty-

encoding population receives a constant tonic excitatory input that varies across trials

in specific cases. This module was based on transient neural dynamics observed in

animal and human studies [15]. In the current study, the two apertures in the incon-

gruent condition contained contradictory information, presenting a decision dilemma.

Our results showed that, in such difficult scenario, participants adapted their deci-

sion strategy to be more speed-seeking, allowing them to complete the current decision

sooner. Future research could examine this conflict avoidance bias further, by changing

the relative difference between multiple incongruent information sources.

Third, it is worth comparing between single- and double-source conditions which

had equal motion coherence in the dominate aperture. Compared with the single-

source condition with high coherence (chigh in one aperture and 0% in the other), the

incongruent double-source condition (chigh in one aperture and chigh− clow in the other)

condition had a smaller drift-rate. The congruent double-source condition had a larger

drift-rate than the single-source condition with low coherence. That is, introducing

additional incongruent (or congruent) information led to a reduction (or increase) in

the rate of evidence accumulation. These results agree with two robust behavioural

effects consistently reported in the literature of visual search: the presence of distractors

in hindering the search performance [299], as well as the facilitating role of task relevant

information [230]. Our findings further support that participants did not only attend

the dominate aperture, but attempt to integrate motion information across apertures to

form decisions, albeit the integration of multiple information sources was not optimal,

as discussed above and reported elsewhere [457].

Fourth, the Ter is considered as the latency external to the evidence accumulation
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process [325]. Recent electrophysiological and imaging studies suggest that the Ter
accounts for delays in early sensory processing [289] or motor preparation [206]. The

current study did not observe a change in the Ter between task conditions in either

participant group. Hence, our results are unlikely originated from potential changes in

early visual processing or motor execution in response to multiple information sources.

Based on our cognitive modelling, we proposed two extensions to a neural-mass

model of decision making [454]. The first extension is to vary the baseline weights

between sensory inputs from two independent apertures, and the second is to vary

the non-selective background inputs in the incongruent double source condition. From

an exhaustive search of the parameter space, we identified the parameter regime that

can qualitatively account for the observed behavioural changes in the presence of two

information sources. It is worth noting that the neural-mass model is not meant to

fit to experimental data, but provides a biologically plausible interpretation of their

neural implementations.

We showed that, to accommodate experimental results, the sensory input from

the dominant source needs to be weighted higher than the input from the additional

source (α > 0.5). When this ratio becomes too high, the contribution of the additional

source diminishes, resulting in the model unable to integrate information from the

non-dominant source. Therefore, perceptual decisions with two information sources

involve an unbalanced integration that is biased towards the more informative source.

Although this study does not attempt to cover the neuronal mechanism of attentional

effects, the previous modelling work showed that neuronal correlates of attention can

be achieved by simultaneously increasing the gains of both excitatory and inhibitory

neurons [286]. This agrees with the experimental evidence that gain modulation of

neuronal firing rates - dependent on behavioural context and attention - is found in

the parietal and extrastriate cortical areas [406].

Additionally, the non-selective background input needs to be elevated in the in-

congruent double-source condition (β > 1). An increased baseline activity effectively

decreases the amount of evidence required to reach a decision threshold [374], leading

to speed-seeking behaviour at the cost of less accurate decisions that was observed in

the current study. Both brain imaging [191] and single-unit recording [173] studies
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showed that the baseline change underlies the SAT, consistent with our model simula-

tion results.

Interestingly, although participants were instructed to decide leftwards vs. right-

wards coherent motion from two tilted apertures, the angular distance between the

apertures did not affect behaviour nor DDM parameters. This may seem counterintu-

itive, because a larger angular distance results in less coherent motion information to

be projected onto the horizontal plane. Future studies could examine whether there is

a significant behavioural difference at larger aperture angles, because, in an extreme

condition of two vertical apertures (θ = ±90◦), there is zero horizontal motion and

the decision accuracy will be at chance. One plausible account for the lack of group

difference is that participants decided the coherent motion direction with a reference

of individual apertures (i.e. along their long edges), not the horizontal plane. One

could validate this hypothesis by presenting multiple independent sources of motion

information within a single aperture (e.g. [439]).

There are several limitations of this study. First, as in all online experiments,

the current study faced practical constraints that could affect the millisecond-level

precision of stimulus timing [11]. To mitigate the impact of variable testing environ-

ments between participants, we pre-registered the experiment, applied rigorous inclu-

sion/exclusion criteria, conducted staircase procedures to calibrate stimuli for individ-

ual participants, and focused on within-subject effects in most analyses. Our study

and research practises contribute to the growing trend of online psychological, or even

psychophysical experiments, confirming the feasibility and reproducibility (i.e. in two

independent groups) of online experiments to investigate task-specific effects in the

context of perceptual decision making [361, 86].

Second, owing to the potential variability of online testing environments between

participants, we designed our experiment to be completed in one testing session. Per-

ceptual learning studies showed that behavioural performance of coherent motion

discrimination improves steadily over multiple testing sessions across several days

[470, 246]. It would be of interest to examine if repetitive training modulates the

behavioural change between single and multiple information sources.

In conclusion, when sensory information is separated into independent apertures,
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perceptual decisions are less accurate. Our cognitive and neural-mass modelling showed

two selective neurocognitive mechanisms underlying the behavioural effect, a change

in the signal-to-noise ratio of the accumulation process and the speed-accuracy trade-

off, depending on the congruency of multiple sensory sources. These findings suggest

that both attentional demands and endogenous response strategies influence flexible

decision making in humans.



Chapter 5

Spiking neural network model:

Inferential decision making

This chapter is based on the work published in the Proceedings of the 42nd Cognitive

Science Annual Conference [103] in collaboration with Peter Duggins (conceptuali-

sation, methodology, software), Prof. Chris Eliasmith (methodology, supervision of

modelling), Dr Szymon Wichary (conceptualisation, data collection, interpretation of

the results, supervision). The author’s contribution to this work include methodology,

software implementation, modelling, parameters hyper-optimisation and writing.

Decision-making requires the coordination of anatomically and functionally distinct

cortical and subcortical areas. While previous computational models have studied

these sub-systems in isolation, few models explore how decision holistically arises from

their interaction. The model of inferential decision-making presented in this Chapter

exemplifies the application of NEF. NEF offers a systematic method for performing

hypothesis testing in the context of neurally realistic models [113]. Here, we propose

a spiking neuron model that unifies various components of decision-making. We show

that the model performs an inferential decision task in a human-like manner, exhibiting

two typical strategies of choice.

135
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5.1 Background

In inferential decision-making (IDM), an agent must gather evidence about the value

of possible actions then choose between them. IDM tasks pervade natural and artificial

environments, presenting a unique set of cognitive challenges related to the acquisition

and processing of information [309]. Notably, these tasks are dynamic and stochastic:

observing and processing sensory data takes time, and data are often sampled randomly

from underlying probability distributions.

To effectively solve IDM tasks like appraising a potential mate or diagnosing an ill-

ness, animals must deploy cognitive processes that deal with time and uncertainty [443];

they must accumulate the probabilistic evidence for each potential choice, continually

compare those choices until some decision criteria are reached, and finally implement

the preferred option. Although most humans perform these steps intuitively, the un-

derlying cognitive operations are far from trivial: an agent must internally represent

the sampled evidence, judge the quality of that information, remember evidence for

multiple choices, and choose when to make a decision. All of this must be done flexibly

to meet task demands and account for the environmental context [443].

We are interested in the neural and cognitive processes that underlie decision mak-

ing on IDM tasks, specifically how brains manage trade-offs between speed and accu-

racy. It makes evolutionary sense that, in environments where an agent must move

towards desirable outcomes expediently, IDM should proceed quickly and accurately

[125]. Unfortunately, either speed (time taken before making a choice) or accuracy

(about the value/validity of the choice) is often sacrificed in dynamic and uncertain

environments. We believe that brains use biasing to flexibly adapt IDM processes to

favour either speed or accuracy, and that individuals may adopt different strategies,

either contextually or habitually, on these tasks [443, 444]. This problem is heightened

by the limited capacity of cognitive systems running on physical hardware that limits

the precision of numerical representations and the speed of information transfer.

Consider an IDM task in which an interviewer must decide which of four job candi-

dates would be the most productive worker. The interviewer may call a candidate into

her office, ask them a question, and numerically score their response. By repeatedly
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calling different candidates and asking different questions, the interviewer dynamically

collects evidence about individuals’ potential productivity. Each of the interviewer’s

questions probes one of several attributes, such as intelligence, initiative, or creativity.

Because the interview process is imperfect, the score assigned by the interviewer to,

say, a candidate’s intelligence may not reflect their true intelligence: the value assigned

to that attribute is sampled stochastically. Each attribute has an associated validity,

which indicates the partial information it conveys about productivity and the confi-

dence that the scoring is accurate. To decide which candidate is the most productive,

the interviewer repeatedly measures one candidate’s value for one attribute, multiplies

this score by the attribute’s validity, and integrates the result with existing evidence

for the candidate. Once the interviewer has asked each candidate each question, she

can select the individual with the greatest evidence; assuming that the validities are

appropriate and the interviewer can do arithmetic, this process will lead to the correct

selection. Although this algorithm is effective, it may be unnecessarily slow; for exam-

ple, if one candidate receives a perfect score, there is no need to continue interviewing.

Various heuristics could similarly improve speed, but many come at the expense of

no longer guaranteeing the correct selection [443, 375]. Our goal is to study how the

cognitive biases that realise these heuristics affect IDM in humans.

In this study, we present an anatomically mapped, spiking neuron model of the

cognitive processes underlying IDM. The model performs a simplified version of the task

for which human behavioural data is available [444]. We show that manipulating model

parameters governing the dynamic threshold for decision making leads to heterogeneous

agent behaviour and reproduces a diversity of strategies used by humans on the task.

Specifically, the distribution of cues requested before making a decision is comparable

in model agents and human participants. Furthermore, we observe losses in accuracy

associated with faster decisions at similar levels in the model and in humans. We

conclude by discussing extensions of the model to expand its cognitive realism and to

account for emotional bias.
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5.1.1 Cognition

Inferential decision making with multiple cues requires many interrelated cognitive op-

erations. Normative theories of choice rooted in economics postulate that before mak-

ing a decision, humans should process all available information and carefully weigh

the cues: that is, multiply validities with the cue values and add the results [52, 125].

Descriptive theories of choice, on the other hand, postulate that people frequently use

heuristics to simplify decision problems [141]. Although generally successful, heuristics

trade off choice accuracy for speed, particularly in situations that require integrating

many pieces of information. Recent studies summarised these approaches in a uni-

fied framework called Bottom-Up Model of Strategy Selection [443]. The model assumes

that the use of the rational Weighted Additive strategy and the heuristic Take The Best

can be explained by one unifying, neurophysiologically plausible mechanism. Accord-

ing to this hypothesis, there are three processes that form the bottom-up mechanism

of decision strategy selection and lead to the final choice: cue weight computation,

gain modulation, and also weighted additive evaluation of alternatives. Overall, many

other heuristics were proposed as plausible models of choice, particularly under time

pressure [335] and stress [444]. Current evidence suggests that these factors bias deci-

sion making, such that choices are made earlier and with less information, in order to

adapt to urgent or demanding situations.

5.1.2 Neuroanatomy

Decision strategies are composed of distinct cognitive operations associated with ac-

tivity in distinct brain structures. In accordance with growing literature, we assume

that the following areas are responsible for the various operations required by our

computational model. Ventromedial prefrontal cortex, orbitofrontal cortex (OFC),

and dorsolateral prefrontal cortex (dlPFC) perform cue evaluation (weighting) [317].

dlPFC is additionally responsible for temporary retention of cue weights in working

memory and performs weighted evidence accumulation [94]. Option selection is exe-

cuted by the basal ganglia (BG) and its recurrent connections to cortex [48]. Within

these loops, presupplementary motor area (pSMA) and the right inferior frontal cortex
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Figure 5.1: Demonstration of the experimental paradigm. Every cue is
presented for 1 s, then the choice is made participants respond by pressing
one of three buttons, indicating their selection of an option A, B, or request
for more information.

(rIFC) act as gates to the striatal input nuclei of the basal ganglia [129], allowing ac-

tion selection only once an evidence threshold has been passed [12]. Finally, biases of

predecisional information processing due to time pressure or stress can arise through

the action of the brainstem locus coeruleus norepinephrine system (LC-NE) and its

bidirectional connections with the prefrontal cortex, particularly the anterior cingulate

cortex (ACC) and OFC [14]. LC neurons exhibit two modes of activity: phasic and

tonic. Phasic LC–NE modulation was shown to affect neuronal dynamics and to en-

hance performance in terms of reward rate in perceptual decision making [106, 107].

LC neurons exhibit also a tonic activity mode associated with disengagement from the

current task and exploration [14]. Empirical results generally support the role of all

aforementioned these structures in complex decision making with fast choices and little

information [291].

5.2 Experimental task

The participants of this task were 17 adult volunteers (9 women, age (years) M = 23,

SD = 2.54). Participants provided written informed consent in accordance with the

Declaration of Helsinki, under a protocol approved by the Ethics Committee of the

Faculty of Psychology, University of Warsaw.

In our IDM task [445], participants begin by memorising validities associated with

six cue attributes. Specifically, a computerised probabilistic inference task consisted

of making decisions about, which of two diamonds was more expensive. The diamonds
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were described with the following cues: size, overall proportions of the diamond, crown

proportions, pavilion proportions, size of table and colour. The validities in this task,

which range from 0.706 to 0.600, are compensatory: they do not differ significantly

from one another, encouraging participants to pay attention to all cue information

rather than (heuristically) considering only the top few attributes. During the task,

participants are simultaneously shown the values (0 or 1) of objects A and B for one

attribute (see Figure 5.1). The participants respond by pressing one of three buttons,

indicating their selection of A, selection of B, or a request for more information. If they

choose the latter, the current display is replaced by another pair of values for the next

attribute. This is repeated until the participant makes a choice or until all attributes

have been exhausted, at which point a choice is forced. Attributes are presented in

order of highest-to-lowest validity. Participants are not provided feedback on whether

their final choice was correct. This task is repeated 48 times; behaviour on each trial

is quantified by the number of cues requested before the final decision and whether the

choice corresponded to the highest-value option.

5.3 Spiking neural network model

5.3.1 Neural Engineering Framework

The NEF [114] describes how spiking neural activity may represent a time-varying,

vector-valued signal x(t) such as value, validity, or evidence. A neuron spikes most

frequently when presented with its particular ‘preferred stimulus’ and responds less

strongly to increasingly dissimilar stimuli (i.e. values of x(t)). In the NEF, each

neuron i is accordingly assigned a preferred direction vector, or encoder, ei [113]. To

produce a variety of tuning curves and firing rates that match electrophysiological

variance within the brain, each neuron is also assigned a unique gain αi and bias βi.

These quantities determine how strongly an incident vector x(t) drives the neuron:

Iin(t) = αi ∗ (ei · x(t)) + βi (5.1)
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where Iin(t) is the current flowing into the neuron and (·) is the dot product between

the encoder and input vector. So long as there is a well-defined relationship between

input current and resulting firing rate, the neuron’s activity can be said to encode the

vector x(t). A distributed encoding extends this notion: if x(t) is fed into multiple

neurons, each with a unique tuning curve defined by e, α, and β, then each neuron will

respond with a unique spiking pattern ai(t), and the collection of all neural activities

will robustly encode the signal.

Spike generated by a neuron are smoothed using a post-synaptic filter h(t) [113],

an operation that approximates the biophysical processes in which incident spikes are

translated to post-synaptic current

ai(t) =
∑
s

h(t) ∗ δi(t− ts) (5.2)

where the summation is over the neuron’s spikes s, each represented as a delta-function

δi(t− ts), and (∗) denotes convolution with the low-pass filter.

For neural encoding to be meaningful, there must be methods to recover, or de-

code, the original vector from the neurons’ activities; together, encoding and decoding

constitute neural representation. The NEF identifies neural decoders di that either

perform this recovery or compute arbitrary functions, f(x), of the represented vector.

A functional decoding with dfi allows networks of neurons to transform the signal into

a new state, which is essential for performing operations such as value-validity multipli-

cation. To compute these transformations, a linear decoding is applied to the activities

of the neural population:

f̂(x(t)) =
n∑
i=0

ai(t) ∗ dfi , (5.3)

where n is the number of neurons and the hat notation indicates that the computed

function is an estimate. To find decoders dfi that compute the desired function, we

use least-squares optimisation to minimise the error between the target value f(x(t))

and the decoded estimate f̂(x(t)) [113]. The general-purpose Nengo neural simulator

[33] includes methods to optimise these decoders for the specified transformations.

Connection weights between each presynaptic neuron i and each postsynaptic neuron j
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combine encoders and decoders into a single value used during simulation:

wij = αjej · dfi . (5.4)

Finally, the NEF specifies methods to build neural networks that implement any

dynamical system, including linear systems of the form ẋ(t) = Ax(t) + Bu(t). To

do so, the matrices A and B must be modified to account for the dynamics that

naturally occur when using neurons with non-instantaneous synapses. Nengo performs

this optimisation for the specified target dynamics; this is essential for constructing

networks that include the recurrent connections required for working memory, evidence

accumulation, and choice competition [114, 113].

5.3.2 Details of the model

Simulated spiking neuron activity was generated with the Nengo simulator [32]. For

our simulations, we used a simplified leaky integrate-and-fire (LIF) model of a neuron

to reduce the computation time of the simulation [193]. The subthreshold evolution of

LIF neruon voltage V is described by

dV (t)

dt
= − 1

τm
(V − I(t)R)

where τm is the membrane time constant, R is a passive membrane resistance and I(t)

is the input current. When the membrane crosses a threshold Vthr a spike is emitted

and cell is reset to its resting state Vres. Additionally refractory time constant τref
(where a neuron is locked in resting state after emitting a spike) is set to 4 ms. All

the spikes emitted by a neuronal ensemble to a different region are filtered with a

100 ms post-synaptic filter (apart from rIFC to pSMA inhibitory connections with

faster 10 ms post-synaptic time constant). Tuning curves controlled by Vthr and τm

were fitted using NEF (see Section 5.3.1).

The anatomy mapping of the model architecture is summarised in Figure 5.2 and

outlined here, with detailed descriptions of key components in the following paragraphs.

A two-dimensional vector representing the values of A and B for the currently
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Figure 5.2: Model schematic. Green diamonds are external inputs, blue
circles are spiking neuron populations, and the red box is the BG network.
Red connections are inhibitory. See text for details on represented quantities
and cognitive operations.

displayed attribute is provided as external input to a population labelled OFC. This

population also receives the ‘remembered’ cue validities; we choose to model this recall

process as a noisy perturbation of externally-supplied validities∗. Neurons inOFC thus

represent both the perceived cue value and the remembered validity for the current

attribute. Connection weights between OFC and dlPFC multiply values by validities

and send the result to the two-dimensional dlPFC population. Recurrent connections

within dlPFC implement integration, leading to the accumulation of evidence from

OFC as additional cues are presented. When the difference between accumulated

evidence for A and B exceeds a dynamic threshold, neurons in rIFC disinhibit the

pSMA population. This allows information to flow from dlPFC to the BG network,

where mutual inhibitory competition selects the option with the greatest evidence as

a final output. If BG does not output a selection after one second of value/validity

input, then the next cue is presented for one second, and so on.

The dlPFC population is a neural integrator, a system which maintains its cur-

rently represented value while additively incorporating any inputs. This network has

previously been used in neural models of working memory, where it has reproduced

activity in PFC and behaviour on several working memory tasks [113]. The system

is described by the target dynamics ẋ = Bu; notice that changes in the represented
∗Imperfect recall was realised by adding a smoothed 10 Hz bandpass-limited white noise signal

with RMS = 0.05
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value ẋ do not depend on the represented value x itself, but only on the input u. This

implies that the integrator will remember the current evidence perfectly, and steadily

add any input evidence to arrive at a new value. However, because the integrator

is implemented in noisy spiking neurons, the feedforward and recurrent connections

do not perfectly implement these dynamics: added evidence is slightly distorted, and

memory will decay given enough time. The evidence population includes 2000 LIF

neurons with firing rates up to 400 Hz; see Figure 5.3 in Section 5.4 for an accuracy

comparison to optimal integration [71, 368].

The rIFC population determines when the accumulated evidence (E) is sufficient

to make a decision. Functional connections between dlPFC and rIFC deliver the

input

uevidence(t) = |EA − EB|, (5.5)

the absolute difference in accumulated evidence for A vs B, into the latter population.

Neurons in rIFC are initialised such that all tuning curves have (a) negative slope

(larger inputs u produces less firing) and (b) intercepts fixed at Tint (inputs larger than

u = Tint are rectified, producing zero activity). Together, these constraints ensure that

neural activities remain positive for u < Tint and go silent for u > Tint. rIFC connects

to pSMA with strong inhibitory connections†, such that any activity in rIFC dampens

all activity in pSMA, restricting the flow of information to BG. When u surpasses

the threshold, disinhibition lifts this gating, and a decision follows shortly thereafter.

Large Tint thus implies that the difference in accumulated evidence for A and B must

be large before a selection is made.

To simulate time pressures and heuristics that favour speed over accuracy, we model

an additional input udecay to rIFC. This input is additive with uevidence and grows

linearly during the course of the trial

udecay(t) = Tdecay ∗ t, (5.6)

effectively decreasing Tint as more cues are presented. Large Tdecay thus implies that

†The pSMA population is a gated communication channel that performs no transformations on
its own.
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the decision threshold shrinks more quickly as time progresses. udecay is also set to a

large positive value when t > 5.5 s, which removes gating at the end of the trial and

forces a selection.

The BG population is based off an anatomical reconstruction the basal ganglia and

implements winner-take-all competition between action alternatives [380]. As with the

neural integrator, this network has been used in numerous functional brain models as

part of the action selection system [113]. Here, it is simply used to select the action

with the greater evidence value, effectively amplifying differences between EA and EB
to produce a clear distinction for downstream systems. We sample the outputs of BG

and mathematically determine which of the three action options (choose A, choose

B, request more) is greater, assuming their difference surpasses a noise threshold of

Tnoise = 0.1 [379].

Each model agent is initialised with unique Tint, Tdecay, and random seed for gen-

erating neurons parameters e, α, and β. As with human participants, model agents

repeat the task 48 times, and the number of cues and correctness on each trial are

recorded.

5.3.3 Open data and scripts

We have made all analysis scripts and behavioural data publicly available: https:

//github.com/psipeter/decision_strategies.

5.4 Simulation results

To clarify the dynamics of the model and investigate the causes of correct and incorrect

choices, we begin by looking at time series for the state variables represented in neural

populations. Figure 5.3 shows three trials from different agents, including one successful

choice and two failures. In the first trial (top), choice B has positive values for the

first three cues, while choice A has zero value. The difference in accumulated evidence

steadily grows (blue vs. red line) until the dynamic decision threshold is reached

around t = 2 s. According to [14], the relationship between LC-NE tonic activity

https://github.com/psipeter/decision_strategies
https://github.com/psipeter/decision_strategies
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and phasic gain takes the form of an inverted ‘U’. When the LC-NE tonic activity

is low, LC-NE phasic response to cues is weak (gain increase is small). When the

tonic LC activity is moderate, its phasic response is strong (gain increase is high),

and again when the tonic activity is high, the phasic response is low (gain increase

is small). The current models postulate the following: when the initial tonic LC

activity is low, then ACC drive will increase it to the moderate level, which will then

lead to increased phasic responses to incoming decision cues. This will also lead to

better gating of these cues into the rIFC and, on the psychological level, their higher

impact on the option evaluation [443]. In our simplified model, from t = 2 s an

inhibition from LC begins quieting the tonically active threshold population rIFC

(black line). Once this activity decays to zero (t = 2.5 s), the pSMA gate (dot-dash

line) becomes disinhibited, and information flows from dlPFC to BG, which quickly

selects the dominant choice. At the end of the third cue (t = 3 s), an external check

registers that BG has made a selection, and the agent is said to have chosen after three

cues. A demonstration of this choice strategy is presented on the simulation video clip:

https://www.youtube.com/watch?v=Ksm1hZbzBbs.

In the second trial (middle), both A and B have positive values, making the two

choices barely distinguishable. The difference in accumulated evidence never exceeds

the agent’s large threshold. At t = 5.5 s, rIFC is externally inhibited, opening the gate

and effectively forcing a decision. By this point, noise-induced errors have accumulated

in the dlPFC representation; when this evidence is fed to theBG, the agent incorrectly

estimates that A’s evidence exceeds B ’s, and it selects the wrong choice. In the third

trial, the evidence initially favours B ; because this agent has a small threshold, its deci-

sion criteria is met by t = 3 s, leading to selection of B. However, the remaining evidence

from cues four through six tip the balance in favour of A, making the agent’s early choice

ultimately incorrect. A demonstration of this ‘impatient’ choice strategy is presented

on the following video clip: https://www.youtube.com/watch?v=Rckz5sEIoPM.

On the third trial, the agent’s small threshold is exceeded during the third cue,

leading to selection of B ; however, the remaining evidence from cues four through six

tip the balance in favor of A, making the agent’s choice ultimately incorrect. By this

point, small noise-induced discrepancies between representations in evidence (solid line)

https://www.youtube.com/watch?v=Ksm1hZbzBbs
https://www.youtube.com/watch?v=Rckz5sEIoPM
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and the mathematically computed sum (dashed line) have accumulated, so the agent

incorrectly estimates that A’s evidence exceeds B ’s, and chooses the wrong option.

What is an appropriate decision threshold to ensure both accuracy and speed? To

answer this question, we examine individuals (both humans and agents) who strongly

favour either speed or accuracy. We initialised a population of agents with random

default thresholds, threshold decays, and neuron parameters, then had them perform 48

trials of our IDM task. Figure 5.4 compares the behaviour of fast, inaccurate decision

makers and slow, accurate decision makers; behaviour is quantified by plotting the

number of cues inspected before a decision across all trials. As expected, an agent with

small default threshold (Tint = 1.41) and large threshold decay (Tdecay = 0.41) typically

makes selections after two or three cues, but has lower accuracy (77%) than a large

default, small decay agent (Tint = 3.00, Tdecay = 0.33), who views four or more cues

before making a choice (accuracy 94%). The behavioural distributions and accuracies

of both agents are closely aligned with relevant human participants.

The relationship between speed and accuracy is readily apparent in Figure 5.5,

which plots individuals’ mean accuracies as a function of their mean cue requests.

The trend is clear and intuitive: spending more time gathering information and per-

forming active inference leads to more correct choices. The highest accuracies are

obtained by individuals who wait for five or six cues before making a choice, although

performance rarely surpasses 90% due to the difficulty of remembering and summing

non-compensatory cues to high accuracy. Still, even the hastiest decision makers, who

choose before the fourth cue, have accuracies above 70%, making these strategies a

viable alternative when faced with strong time pressures. As before, trends in the

simulated data agree with the empirical data.

5.5 Discussion

In this research we use a spiking neuron model for simulating the two most common

decision strategies in the IDM task [443]. We take advantage of the NEF - a mathemat-

ical theory of how biological neural systems can implement a wide range of dynamic

functions. Previously, NEF has been applied to both low-level systems (e.g. involved
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threshold
reached

threshold
reached

decision
forced

choice made
(t=3)

choice made (t=6)

choice made
(t=3)

Figure 5.3: Time series of neural representations x̂(t) in three model
agents. Solid lines represent accumulated evidence computed by dlPFC
neurons in the model, while dashed lines represent the ideal accumulation
(which means a perfect accumulation of the evidence from weighted cues).
Dot-dash lines represent information flowing through the pSMA gate, which
opens when the thresholding population rIFC (black line) has been inhibited.
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in stabilising eye position), but also higher-level cognitive phenomena (e.g. working

memory) [113, 44, 33]. For the purpose of this task, several different modelling frame-

works could have been used. For example, the Brian2 Python package offers an easy

programming interface for creating models of spiking neurons [382]. Due to the closer

level of biological realism, the use of Brian2 for large networks (in our case: 7200

neurons) leads to longer simulation times. This could be reduced, however, by us-

ing mean-field approach. Another modelling option was to use the DCM to infer the

causal architecture of distributed dynamical systems. DCM was developed for esti-

mating coupling among macroscopic brain regions based on the comparison with the

functional data (i.e. fMRI, or M/EEG) [132]. In our study, however, we compare the

model performance only with behavioural data. Furthermore, NEF allows for better

between levels analysis (from spiking activity of cells within specific subcortical regions

to an inferential decision) giving a room for an additional experimental verification with

extracellular recordings of neuronal activity.

Our IDM model was designed to recreate the anatomy and cognitive function of the

human decision making system using populations of spiking neurons. Although the hu-
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Figure 5.4: Behavioural distributions of steps needed to make a decision
for humans and agents.
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Figure 5.5: Average decision accuracy as a function of average cues re-
quested.

man decision making system is too complex to capture in a simple network, we believe

that our computational model distils many of its core features into a functionally-

clear circuit. OFC receives inputs from sensory and memory systems and passes it to

dlPFC, which performs multiplication. The result is incorporated into actively main-

tained representations of the evidence for various choice alternatives; such a working

memory is also realised in dlPFC. Connections between dlPFC and BG are respon-

sible for forwarding the utility of action alternatives to an action selection system,

but these connections are gated by intermediate cortical-subcortical structures like the

pSMA, ensuring that the individual waits until an appropriate moment to enact a be-

haviour. Only once a controllable threshold, represented in cortical areas like the rIFC,

has been exceeded will BG be freed to make a final decision and implement a motor

response. This thresholding may be affected by subcortical modulation, including no-

radrenergic projections from LC, which assess environmental context, time pressures,

and the individual’s emotional state before deciding whether to bias decision making

towards speed or accuracy. Although the particular functions computed on neural con-

nections in our model are specific to this IDM task, we believe that this architecture
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may be utilised for a variety of decision making tasks involving dynamic inference on

stochastic evidence.

Even though anatomical realism was key in this research, for simplicity, our model

omits several important anatomical structures. This is most notably the dopaminergic

system, which is implicated in coding of positive utility, reward, and arousal, as well as

in working memory processes [359]. Another important region that has been ignored in

this modelling is the nucleus accumbens, which is associated with reward mechanism

and stimuli reinforcement circuits [190].

We showed that our model agents reproduced two measures of human behaviour:

the number of cues examined before making a decision, and the relationship between

accuracy and number of examined cues. We found that agents with smaller dynamic

thresholds chose quickly but inaccurately, while agents with larger thresholds chose

slowly but with higher accuracy. The distributions of simulated choices among model

agents matched both extremes of human behaviour, and the trendline of speed versus

accuracy across a variety of agents matched behaviours from a small human dataset.

These successes suggest that the model may capture key functional aspects of the

decision making apparatus in humans, especially how biases towards speed or accuracy,

either situational or ingrained, may change behaviour.

Future work can profitably proceed in several directions. To increase the model’s

cognitive realism, an associative memory system could be trained by pairing ‘keys’

for the input attributes (unique high-dimensional vectors representing each verbally-

defined attribute) with sensory inputs describing the cues’ validities (one-dimensional

values). This pre-training would utilise an encoder-based learning rule that has pre-

viously been used in Nengo models of associative memory [422]. After training, pre-

sentation of the cue would elicit noisy recall of the associated validities, which would

then be routed to OFC as in the current model. We are also interested in extending

the model to more complex IDM tasks, including the ‘job interview’ task described in

the introduction. This task involves more choice alternatives and a wider range of cue

validities; it also requires participants to view values/validities for one option at a time,

and allows them to chose which option/attribute to query. This freedom introduces an

extra dimension of exploration, in which the decision about which ‘questions to ask’
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may interact in interesting ways with the current evidence for various options. Finally,

experimental data is available for a variant of this task in which participants were

shown neutral or aversive images before performing the task, priming them with an

emotional state that affected their decision making [444]. We would like to investigate

whether shifts in the dynamic threshold can capture this emotional biasing, specifically

whether valenced arousal states bias individuals towards faster, less accurate decision

processes.



Chapter 6

Discussion

All models are wrong, but some are

useful.

George Box

6.1 Summary of the results

In this thesis, I presented four examples of how models and computer simulations

contribute to generating and testing hypotheses at various levels of the brain hierarchy:

from macroscopic resting-state brain networks to the spiking activity of neural masses.

The key findings are summarised below.

In the experimentation described in Chapter 2, the behavioural data (accuracy

and response times) and EEG signals were recorded while participants performed a

voluntary decision-making task. Classical decision theories predict longer response

times for settings where the outcome of a binary decision is the same [325, 391]. This

contrasts, however, with the notion of an optimal decision maker who should make fast

and random choices. In our experiment, we observed that a higher reward probability

accelerated the responses. We also found an effect of a preference towards one option,

which helps solve the ambiguous choice problem under time pressure [465]. By using

hierarchical Bayesian parameter estimation for an accumulator model, we showed that

the probability of reward and preference were independently associated with changes in

153
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the speed of accumulation of evidence, but not with visual encoding or motor execution

latencies [198]. EEG-informed modelling revealed that the rates of changes between

N100 and P300 ERPs are modulated by the accumulation rates on a trial-by-trial

basis. Overall, our findings suggest that reward probability and spontaneous preference

collectively shape voluntary decisions between equal options and provide a mechanism

to prevent indecision or random behaviour [465].

In Chapter 3, a different kind of model was used. We characterised the statistical

regularities among selected resting-state networks and compared them between patients

suffering from JME and a healthy control group. We used the energy landscape method

for macroscopic brain signals [40, 437, 389]. The pMEM was fitted to the instantaneous

MEG oscillatory power. It provided a good estimation of the occurrence probability

of network states from only 6 minutes of recordings, due to the high sampling rate of

MEG [233]. Then, we used the energy values derived from the pMEM to construct

the energy landscape, describing the probability of occurrence of transitions between

the states. The landscapes of JME patients displayed fewer local energy minima than

the landscapes of the controls, and had elevated energy values for the FPN within

the theta, beta, and gamma frequency bands. Furthermore, simulations of state tran-

sitions showed that the proportion of time the FPN was occupied within the basins

of energy minima was shortened for JME patients. These network alterations were

underscored by significant classification of individual participants employing energy

values as multivariate features. All in all, our analyses suggested that JME patients

had altered multistability in selective functional networks and frequency bands in the

fronto-parietal cortices (i.e. theta FPN) [233]. Furthermore, they confirmed that the

pMEM is a descriptive, generative, and predictive model for characterising atypical

network properties in the brain [437, 389].

In Chapter 4, we combined the experimental work with cognitive modelling, which

led to the generation of a hypothesis based on an NMM of decision making. A typi-

cal perceptual decision-making experiment involves choosing one of two options from

only single source of evidence (e.g. a single stream of dots) [362]. In reality, decisions

involve combining the evidence from multiple information sources. Thus, the effect of

cognitively linking that information has not been yet thoroughly investigated. In this
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project, we designed a new experiment based on the classic random-dot motion dis-

crimination task [54] and recorded the behavioural responses (accuracy of choice and

reaction times) using an on-line platform for behavioural experiments. We observed

imperfect integration of information from two information sources in both the cases

of congruent and incongruent evidence displayed on the screen. We propose that this

can be explained by means of changes in the drift rate and threshold of hierarchical

DDM. Based on the cognitive model, we hypothesised about the neuronal implemen-

tation, suggesting a modification of a previously reported biologically-plausible NMM

of decision making under time constraints [454]. Our new NMM reproduced all four

conditions of the task.

Finally, in Chapter 5, we proposed the spiking neural network model, informed by

brain anatomy, for inferential decision making. Previous computational models have

studied the coordination of functionally distinct cortical and subcortical areas in iso-

lation [335]. Only a few models have explored how decisions arise holistically from the

interaction of the areas of the brain [380]. We proposed a model that unifies various

components of the decision-making system and showed that it performs an inferential

decision task in a human-like manner [444, 103]. Our model includes neuronal popu-

lations corresponding to the dorsolateral prefrontal cortex, orbitofrontal cortex, right

inferiorfrontal cortex, pre-supplementary motor area, and basal ganglia. It consists

of 8000 leaky-integrate-and-fire neurons making in all around 7 million connections.

The model realises dedicated cognitive operations such as weighted valuation of in-

puts, accumulation of evidence for multiple choice alternatives, competition between

potential actions, dynamic thresholding of behaviour, and urgency-mediated modula-

tion. We proved that the model was able to reproduce reaction time distributions and

speed–accuracy trade-offs similarly to the human subjects performing the task [103].

6.2 Limitations and future directions

Here, I briefly summarise general limitations and future directions of the work discussed

in this thesis. The specific comments regarding particular projects are included in the

respective Chapters (2, 3, 4, and 5).
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Neuronal and cognitive models have a rich variety of hierarchies and parameters.

In this thesis, I presented only a small fraction of all the models that are used in neu-

roscience. For example, Bayesian modelling has gained a lot of attention in cognitive

science recently [212, 415]. Bayesian models rely on the assumption that the brain ap-

proximates statistically optimal solutions of the performed tasks. More formally, they

can be viewed as generative models of the joint distribution p(D, I) (where D denotes

the data represented in the brain, and I the sensory input). The joint distribution

is equal to the product of the prior p(I) over all possible configurations of the input

and the likelihood p(D|I), which is the probability that the data occurs given the sen-

sory input [415]. Another important line of work is a framework for specifying, fitting

and comparing models: Dynamic Causal Modelling (DCM) [132]. DCM is designed to

investigate the influence between different areas of the brain using multivariate time se-

ries (like M/EEG or fMRI) [272]. The approach consists of fitting various models to the

time-varying data, and selecting one of the models with a Bayesian model comparison.

This thesis, however, does not include any work related to Bayesian brain modelling or

DCM, although together they make up an important part of contemporary modelling

in neuroscience.

In this thesis, most of the models have focused on isolated components of neural ac-

tivity. In Chapter 2, we showed the EEG-informed DDM improves the predictive power

in voluntary decision task during a deadlock. We used the slope between N100 and

P300 ERP components from the central part of the scalp [465]. However, the averaged

EEG signal is much richer and the impact of other ERPs on evidence accumulation is

not yet known. In Chapter 3, we used a macroscopic model which considered the brain

as a graph with 90 nodes (after source reconstruction and parcellation). Yet, due to the

numerical limitations of the energy landscape method, we investigated only differences

between selected resting state networks: DMN, FPN and SMN [233]. In Chapter 4,

we focused on the LIP area of the brain, which has been suggested as being engaged

in perceptual decision-making [364, 362]. Nonetheless, in Chapter 5, we provided a

more inclusive view of the decision system in the brain. Still, the model is far from

complete. Some brain structures were omitted (e.g. nucleus accumbens), or simplified

to improve the interpretation of the model with respect to the task [103]. The possible
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extension of the study from Chapter 2 could validate the formulated hypotheses by

controlling for memory effects originating from other brain areas, not considered in

this study [253]. The effects of brain areas ignored in the model from Chapter 5 should

be further confirmed by experimental work, e.g. fMRI experiments.

Furthermore, all the projects in this thesis focused on selected aspects of behavioural

or electrophysiological recordings. Multi-modal research can give greater mechanis-

tic insight than uni-modal approaches [3, 150]. For example, in perceptual decision

making, fMRI can help with localising the brain regions engaged in the decision pro-

cess [203], whereas M/EEG recordings can help to understand the role of timing in

fast-paced evidence accumulation [288, 289]. Currently, even more studies employ

multi-modal research for broadening the perspective of the modelling work [3, 150].

An extension of the energy landscape project from Chapter 3 could investigate how

the fast-sampled state dynamics of MEG data is related to the low-sampled but more

spatially focused landscapes of fMRI recordings [233, 437].

Chapter 4 and Chapter 5 presented computational models of low-level neuronal

dynamics. The modelling results can be used to inform the design of future experi-

ments. For example, we could compare the model outcomes with the local-field poten-

tial recordings from an experiment using a similar perceptual decision task. The re-

sulting neuronal recordings could test our model-driven hypothesis of increased spiking

activity of spatially non-selective neurons for a condition with two visual streams and

incongruent information available (Chapter 4, Figure 4.1). Additionally, we plan to ex-

tend the study from Chapter 5 to compare the neuronal activity predicted by the NEF

with fMRI recordings during inferential decision making in a similar setup [445, 103].

fMRI recordings offer a window into the activity of deep-brain structures that were

hypothesised to be involved in this task, e.g. the striatal input nuclei of the basal

ganglia.

6.3 Discussion

The human brain is an immensely complicated system. Neurons produce complex

activity within anatomical regions, but at the same time no single region works in
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isolation [136]. In Chapter 5, we laid out an attempt to build a comprehensive model

of inferential decision making, but even this model omitted some critical brain struc-

tures (like the nucleus accumbens, known to be engaged in reward and reinforcement

circuits [190]).

The complexity of the human brain calls for a reductionist approach, which studies

simplified and isolated models of brain circuits, or selected higher-level cognitive pro-

cesses [239]. Such models are, however, helpful at directing future experimental work

towards specific problems or hypotheses [250]. Although models are a simplification

of reality, they aim to capture the primary factors of an underlying system. Finding

the right model is a complicated task. It requires striking a balance between the plau-

sibility and the interpretability of the model [239]. For example, a model of an LIP

area consisting of 10,000 neurons might be closer to the actual implementation than

an abstract DSM with two state variables. Nonetheless, it might be more difficult to

understand [454]. The ideal model’s task is not merely to reproduce all components

of the system. A simplified version (i.e. omitting parts of the system not involved

in a task or considered activity) proves useful by capturing the true properties of the

system or by making reliable predictions [239].

The initial promises of the Human Brain Project (HBP) led to a lot of controver-

sies in the field of neuroscience. On July 7, 2014, an open letter, signed by around

750 researchers involved in the project, was sent to the European Commission [131].

The neuroscientists pointed out that large-scale simulations make little sense unless

constrained by data, or specific research questions. At the initial stage of the project,

a detailed ‘connectome’ of a human brain was not yet known [260, 23]. More impor-

tantly, there were no precise biological or cognitive hypotheses formulated for these

simulations to test [131]. A recently published overview of the current status of the

HBP summarised the reviewed objectives of the project [109]. The researchers high-

light the latest developments in large-scale brain simulations, the integration of various

data modalities, and define specific cognitive applications for the simulation [109].

Another debatable topic is whether one should use more data-driven or more theory-

driven approaches [428]. In the traditional theory-driven scenario, mathematically

formulated hypotheses are proposed and falsifiable given observed experimental data
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[250, 239]. On the other hand, data-based models, such as machine learning, may

help to find unknown relationships in the collected data [428]. Although these two

approaches are being pitted against each other, they can be complementary [165]. For

instance, by revealing hidden structures in the data, a machine learning model could

yield a better understanding of a signal generation process and new NMM models with

testable hypotheses could then be formulated [142]. One of the aims of this thesis was

to stress the benefits of both data-driven approaches and theory-driven approaches, as

presented, for example, in Chapter 3 and Chapter 4.

Due to the recent advances of brain imaging techniques, scientists have begun to

create ever-increasing amounts of data. This gives rise to another layer of difficulty, as

the new datasets are often hard to manually analyse. Indeed, recent years have seen an

exponential growth in the applications of machine-learning to neuroscience [142]. Di-

mensionality reduction techniques, such as ICA or PCA, help to reduce the complexity

of the data [428]. However, the role of machine learning is not limited to multivari-

ate data simplification. Machine learning helps to identify predictive variables, or

sets benchmarks for simple models of the brain [142]. Specific models can be used as

abstract models of a brain function [142].

Given the variety of existing models, finding a robust and general criterion for the

utility of a model is difficult. Several components of a good model can be, nonetheless,

formulated. A model should be

• realistic: this means that it is based on true observations, or a verified theory;

• precise: it should be specific in its predictions and at the right level of the

analysis;

• simple: it should improve our understanding of a process, so if there is a simpler

solution to the problem that gives the same results, one should opt for that one

(unless doing this would contradict the two previous points);

• testable: it should be possible to verify its predictions via further experiments

(see also Figure 1.1).
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The last point is probably the most important. This is emphasised by the fact

that psychology was reported to have undergone a ‘reproducibility crisis’, where it was

impossible to replicate 50% of the experimental paradigms [122, 450]. The remedy

for this problem can be found in different fields. In machine learning, the accuracy

of a model is tested on a validation set, which is a subset of the data that has not

been used for training the model; one must also avoid any hyper-optimisation of the

parameters [428, 232]. Thus, experimental work could record not only the data needed

to achieve the desired effect size, but also a smaller sample for self-replication [212].

The verification of some models might be in practice more challenging. For example,

a model can produce verifiable predictions, but they might be out of reach for existing

technology.

Another challenge of modelling in neuroscience is more practical. The unification of

the computational modelling tools is a pressing need [144]. Currently, research groups

use custom numerical tools, which makes the work difficult to reproduce, compare and

verify. Recently, open-source libraries have started to emerge, e.g. Neuron [65], Nengo

[113], Brian [382], and The Virtual Brain [347]. The development of crowd-sourced

programming projects can benefit the field, as it improves the reliability of the code,

helps avoid numerical mistakes, and diversifies the access to the knowledge [110]. For

all the projects presented in this thesis, I have accompanied the numerical experiments

and analyses with code repositories that contain the computational pipeline and make

it easy to re-evaluate the results.

Overall, understating the functioning of the brain begs for developing complemen-

tary theories and experimental work. Hence, this requires a closer integration of data-

driven bottom–up approaches with more theory-driven top–down studies that start

with a behaviour or a cognitive phenomenon to be explained [228]. Only then can the

four key components of the ideal model identified in this section be fulfilled. As an

example, the emergence of large-scale brain modelling tools [113, 347] could help to

integrate NMMs with network approaches to study macroscopic brain behaviour [248].

Additionally, these days, more emphasis is put on improving the reproducibility of

computational and experimental work by using pre-registrations and registered re-

ports, publishing the code and data associated with a study, public code reviews, or
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replication attempts [255].

6.4 Conclusions

In this thesis, I presented four projects that exemplify the applications of different

modelling types at various levels of brain organisation. This is coherent with the

contemporary state of the research, where modelling work looks at the brain through

the lenses of a particular scale or a cognitive phenomenon. However, brain research

is entering a new phase. With the emergence of novel computational tools, as well as

new data and theoretical work, a trend for combining different levels of analysis can

be noticed. This may allow building comprehensive models that are able to explain

cognition with neurobiologically plausible components.
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of P300 Component Using a Riemannian Ensemble Approach. Proceedings of

MEDICON 2019 conference. Cham: Springer International Publishing. (pp.

1885-1889) Coimbra, Portugal.

A.2 Pre-prints and pre-registered reports

• Krzemiński D, Zhang J (2021) Imperfect integration: sensory congruency be-

tween multiple sources modulates selective decision making processes. bioArXiv ;

Experiment pre-registered: https://osf.io/4dn65.

• Thomas KA, Krzemiński D, Kidziński Ł, Paul R, Rubin EB, Halilaj E, Black

MS, Chaudhari A, Gold GE, Delp SL (2021) Open source software for automatic

subregional assessment of knee cartilage degradation using quantitative T2 re-

laxometry and deep learning. ArXiv

A.3 Talks and Presentations

• Poster presentation: ‘Sensory Congruency Between Multiple Sources Modulates

Perceptual Decision-Making’ at 10th Symposium on the Biology of Decision-

Making on-line conference, 2021

• Poster presentation: ‘U-Net for Automated Segmentation of Knee Cartilage

Imaging’ at MLinPL on-line conference, 2020

• Oral presentation: ‘Integration of Information in the Perceptual Decision Making

Task’ at Neuromatch 3 on-line conference, 2020

https://osf.io/4dn65
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• Poster presentation: ‘Selective network dynamic abnormalities in juvenile my-

oclinic epilepsy revealed by MEG energy landscape’ at Neuroscience conference

in Chicago, 2019

• Poster presentation: ‘Supervised text classification for cohort selection in clinical

trials’ at Healtac conference in Cardiff, 2019

• Oral presentation: ‘Energy landscapes of spontaneous brain activity of juvenile

myoclonic epilepsy patients’ at MEG UK conference in Cardiff, 2019

• Poster presentation: ‘Variability of MEG signals in epilepsy’ at Science Polish

Perspectives conference in Oxford, 2018

• Poster presentation: ‘The effects of reward certainty on voluntary choices: an

EEG study’ at Organisation for Human Brain Mapping conference in Singapore,

2018

• Poster presentation: ‘Energy landscape analysis of MEG resting state data’ at

MEG UK conference in Londonderry/Derry, 2018



Appendix B

Supplementary Material to Chapter 4

Supplementary methods

The neural-mass model of perceptual decision

We used the two-state neural-mass model [454] in the following form:

dSi
dt

= −Si
τS

+ (1− Si)γr(Isyn,i) , (B.1)

r(Isyn,i) =
aIsyn,i − b

1− exp(−d(aIsyn,i − b))
, (B.2)

Isyn,L = JL,LSL + JL,RSR + Iin,L + Iη,L

Isyn,R = JR,RSR + JR,LSL + Iin,R + Iη,R ,
(B.3)

τη
dIη,i
dt

= −Iη,i + ηt
√
τηση , (B.4)

where the index i = L,R refers to two neural populations selective for leftwards and

rightwards choices. The state variable S describes the NMDA gating variable (fraction

of open gates). It can be shown that S has a bijection mapping on pre-synaptic firing

rates [454]. r describes the population firing rate function that depends on the synaptic

input current Isyn,i. The following values of the parameters were used: a = 270(VnC)−1,
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b = 108 Hz, d = 0.154 s, γ = 0.641 · 10−3 , τS = 100 ms.

The synaptic input current Isyn,i combines recurrent inputs, mutual inputs, external

inputs that relate to sensory information (Iin,i, Equation 1 in the main text) and the

noise current Iη,i. The following symmetric synaptic coupling parameters were used:

JA,A = JB,B = 0.2601 nA and JA,B = JB,A = 0.0497 nA, Jext = 5.2 · 10−4 nA·Hz−1.

The noise current Iη,i is integrated with τη = 2 ms (time decay of AMPA receptor

activation) and random variable sample from Normal distribution η. The variance of

the noise factor is kept constant ση = 0.01972.

For simulations, we use standard Euler’s integration method with a time step of

1 ms.

Supplementary figures

trials

Figure B.1: Steps of the staircase procedure for the two staircase rules
(top: two-up/one-down rule; bottom: three-up/one-down rule). Each line
represents one participant.
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High combined evidence Low combined evidence

single         double single         double

reaction time [s]

Figure B.2: Posterior predictive data distributions of 10 participants in
Group 1 (θ = ±20◦). Each row shows data distributions (histograms) as
well as Posterior model predictions (black lines) from the best fitted model
from one of ten representative participants. The distributions along the pos-
itive x-axis indicate normalised correct response times, and the distributions
along the negative x-axis indicate normalised error response times. Model
predictions was generated in the same procedure as in Figure 4.7.
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High combined evidence Low combined evidence

single         double single         double

reaction time [s]

Figure B.3: Posterior predictive data distributions of 10 participants in
Group 2 (θ = ±45◦). Each row shows data distributions (histograms) as
well as Posterior model predictions (black lines) from the best fitted model
from one of ten representative participants. The distributions along the pos-
itive x-axis indicate normalised correct response times, and the distributions
along the negative x-axis indicate normalised error response times. Model
predictions was generated in the same procedure as in Figure 4.7
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