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Abstract
Ontologies formalise how the concepts from a
given domain are interrelated. Despite their clear
potential as a backbone for explainable AI, existing
ontologies tend to be highly incomplete, which acts
as a significant barrier to their more widespread
adoption. To mitigate this issue, we present a mech-
anism to infer plausible missing knowledge, which
relies on reasoning by analogy. To the best of our
knowledge, this is the first paper that studies ana-
logical reasoning within the setting of description
logic ontologies. After showing that the standard
formalisation of analogical proportion has impor-
tant limitations in this setting, we introduce an al-
ternative semantics based on bijective mappings be-
tween sets of features. We then analyse the proper-
ties of analogies under the proposed semantics, and
show among others how it enables two plausible
inference patterns: rule translation and rule extrap-
olation.

1 Introduction
The last decade has witnessed an increasing interest in meth-
ods for automated knowledge base completion. While most
work has focused on predicting plausible missing facts in
knowledge graphs [Bordes et al., 2013; Yang et al., 2015;
Trouillon et al., 2017; Balazevic et al., 2019], some authors
have also looked at the problem of predicting plausible miss-
ing rules in ontologies [Beltagy et al., 2013; Bouraoui and
Schockaert, 2019]. The underlying principle of these latter
approaches is to rely on external knowledge about the sim-
ilarity structure of concepts, typically in the form of a vec-
tor space embedding of concept names. The main idea is
that knowledge about concepts can often be extended to con-
cepts with a similar representation in the given vector space.
The same principle also lies at the basis of rule-based frame-
works with a soft unification mechanism [Medina et al., 2004;
Rocktäschel and Riedel, 2017]. However, these similarity
based reasoning methods can clearly only provide us with
knowledge that is similar to what is already in the knowledge
base. Humans, on the other hand, can also infer plausible
knowledge in more creative ways, where a particularly promi-
nent role is played by the idea of reasoning by analogy. This

phenomenon has been extensively studied in cognitive sci-
ence and philosophy [Gentner, 1983; Hofstadter et al., 1995;
Holyoak and Thagard, 1997], but to the best of our knowl-
edge, the use of analogical reasoning for completing ontolo-
gies has not yet been considered1

Within Artificial Intelligence, the formalisation of ana-
logical reasoning typically builds on analogical proportions,
i.e. statements of the form “A is to B what C is to D”
[Bayoudh et al., 2007; Prade and Richard, 2014; Barbot et
al., 2019]. A key result in this area has been the develop-
ment of analogical classifiers, which are based on the prin-
ciple that whenever the features of four examples are in
an analogical proportion, then their class labels should be
in an analogical proportion as well [Bayoudh et al., 2007;
Hug et al., 2016]. The same principle can be applied to in-
fer plausible concept inclusions, i.e. concept inclusions which
are not entailed from a given TBox, but which are likely to
hold given additional background knowledge that we have
about analogical relationships between different concepts.
The resulting inference pattern, which we call rule extrap-
olation, is illustrated in the next example.

Example 1 (Rule extrapolation). Suppose we have an ontol-
ogy with the following concept inclusions:

Young u Cat v Cute (1)
Adult uWildCat v Dangerous (2)

Young u Dog v Cute (3)

Suppose we are furthermore given that “Cat is to WildCat
what Dog is to Wolf”. Trivially, we also have that “Young is
to Adult what Young is to Adult” and “Cute is to Dangerous
what Cute is to Dangerous” Using rule extrapolation, we can
then infer the following:

Adult uWolf v Dangerous (4)

Analogies can also be used to infer plausible knowledge
by allowing us to transfer knowledge from one domain to an-
other. This is illustrated in the following example.

1We note that the term “analogical reasoning” has been used in
the literature to refer to a form of similarity-based ontology com-
pletion [d’Amato et al., 2006]. In contrast, we reserve this term for
methods that require drawing parallels between different domains.



Example 2 (Rule translation). Suppose we are given the fol-
lowing knowledge:

Program v ∃specifies.Software (5)

and the fact that “Program is to Plan what Software is to
Building”. Then we can plausibly infer:

Plan v ∃specifies.Building (6)

Ontologies often use the same “templates” to encode
knowledge from different domains (e.g. knowledge about dif-
ferent professions). The strategy from Example 2 then al-
lows us to complete the ontology by introducing additional
domains.

Using analogies for identifying plausible missing knowl-
edge is appealing, because they can be learned from text quite
effectively. For instance, Turney [2006] proposed a method
for identifying similarities between pairs of words (i.e. ana-
logical proportions) using matrix factorization and ternary co-
occurrence statistics, which approximated the performance of
an average US college applicant. Moreover, the GPT-3 lan-
guage model is able to identify analogical word pairs with
even higher accuracy [Brown et al., 2020]. To a more lim-
ited extent, some types of analogical relationships can also be
obtained from word embeddings [Mikolov et al., 2013].

The main aim of this paper is to propose a semantics for
modelling analogies within the setting of description logics,
which introduces a number of unique challenges (see Section
3). We focus in particular on an extension of EL⊥. We start
from the semantics proposed by Ibáñez-Garcı́a et al. [2020],
which extends the EL semantics by assigning to each individ-
ual a set of features. Their aim was to support another form of
plausible inference, called interpolation (see Section 2). We
show that having access to these features in the semantics also
allows us to formalise analogies.2

2 Background
We start by introducing the Description Logic (DL) EL./

⊥ ,
which is a straightforward extension of the logic EL./ that
was proposed in [Ibáñez-Garcı́a et al., 2020] to formalise rule
interpolation3. Our approach to analogical reasoning in this
paper will build on EL./

⊥ . Rule interpolation is another in-
ference pattern for obtaining plausible missing concept inclu-
sions in a DL ontology. Interpolation is based on the notion
of betweenness, where a conceptB is said to be between con-
cepts A and C if B has all the natural properties that A and
C have in common. In such a case, knowledge that holds
for both A and C seems likely to hold for B as well. This
inference pattern is illustrated in the next example.

Example 3 (Rule interpolation). Suppose we have the follow-
ing concept inclusions:

Cat v X Wolf v X (7)

2An appendix with proofs of all results, as well as counterexam-
ples for some claims, is available at https://arxiv.org/abs/2105.04620

3We include ⊥ because disjointness will play an important role
in this paper.

As long as X is a “natural concept”, it seems plausible that
the following concept inclusion also holds:

Dog v X
This is because all the common (natural) properties of Cat
and Wolf are also satisfied by Dog. In such a case, we say
that the concept Dog is between the concepts Cat and Wolf.

The notion of naturalness plays an important role in most
philosophical accounts of induction. Intuitively speaking, a
natural concept or property is one that admits inductive in-
ferences. The semantics from [Ibáñez-Garcı́a et al., 2020] is
based on the common view that natural concepts are those
which can be characterised as a set of features (i.e. a conjunc-
tion of elementary properties) [Tversky, 1977].
Syntax The logic EL./

⊥ extends the standard DL EL⊥ with
in-between concepts of the form C ./D, describing the set
of objects that are between the concepts C and D. Further,
EL./
⊥ includes an infinite set of natural concept names. More

precisely, consider countably infinite but disjoint sets of con-
cept names NC and role names NR, where NC contains a dis-
tinguished infinite set of natural concept names NNat

C . The
syntax of EL ./

⊥ concepts C,D is defined by the following
grammar, where A ∈ NC, A′ ∈ NNat

C and r ∈ NR:

C,D := > | ⊥ | A | C uD | ∃r.C | N
N,N ′ := A′ | N uN ′ | N ./N ′

Concepts of the form N,N ′ are called natural concepts. An
EL ./
⊥ TBox is a finite set of concept inclusionsC v D, where

C,D are EL ./
⊥ concepts.

Semantics The semantics of EL./
⊥ is given in terms of

feature-enriched interpretations, which extend standard first-
order interpretations by also specifying a mapping π from
individuals to sets of features. Formally, a feature-enriched
interpretation is a tuple I = (I,F , π) in which I = (∆I , ·I)
is a classical DL interpretation, F is a finite set of features,
and π : ∆I → 2F , such that the following hold:

1. For each d ∈ ∆I it holds that π(d) ⊂ F ;
2. for each F ⊂ F there exists some individual d ∈ ∆I

such that π(d) = F .
For an EL./

⊥ concept C, CI is defined as a pair 〈CI , ϕ(C)〉
whereCI ⊆ ∆I and ϕ(C) is the set of all features associated
with a concept C, defined as:

ϕ(C) =
⋂
{π(d) | d ∈ CI}

Intuitively, the set of features ϕ(C) describes the concept C
at a finer-grained level that what may be possible in the lan-
guage. This makes it possible to capture knowledge about
what different concepts have in common, which is needed in
EL./
⊥ to model the semantics of in-between concepts.

For a standard EL⊥ concept C, CI is defined as
usual [Baader et al., 2017]. For in-between concepts, ·I is
defined as follows.

(N ./N ′)I = {d ∈ ∆I | ϕ(N) ∩ ϕ(N ′) ⊆ π(d)}.
Intuitively, (N ./N ′)I contains all elements from the domain
that have all the features that are common to both N and N ′.

https://arxiv.org/abs/2105.04620


A feature-enriched interpretation I = (I,F , π) satisfies a
concept inclusion C v D if CI ⊆ DI . I is a model of an
EL ./ TBox T if it satisfies all CIs in T and for every natural
concept N in T , it holds that

NI = {d ∈ ∆I |ϕ(N) ⊆ π(d)} (8)

i.e. N is fully specified by its features. It is easy to verify that
(8) is satisfied for a complex natural concept, as soon as it is
satisfied for its constituent natural concept names. A concept
C is satisfiable w.r.t. a TBox T , if there is a model I of T
such that CI 6= 〈∅,F〉.

The purpose of introducing features in the semantics of
EL./
⊥ is to make explicit what different concepts have in com-

mon, and to use this as the basis for enabling a particular
kind of inductive inference (i.e. interpolation). For instance,
in the case of Example 3, if the concept inclusions in (7) are
complemented with Dog v Cat ./ Wolf, it can be verified
that Dog v X can indeed be inferred (assuming all con-
cept names are natural). In applications, knowledge about in-
between concepts would typically be induced from a vector
space embedding. See, for instance, [Bouraoui and Schock-
aert, 2019] for a practical application of rule interpolation
based on pre-trained word embeddings. In this paper, we will
build on the feature-enriched semantics to encode correspon-
dences between analogous domains.

3 Analogical Concepts
Analogical proportions are a central notion in the formali-
sation of analogical reasoning, going back to Aristotle (see
[Barbot et al., 2019] for a historical perspective). While
they can be defined more generally, here we will focus on
analogical proportions between sets. In particular, the sets
S1, S2, S3, S4 are said to be in an analogical proportion, de-
noted as S1:S2 ::S3:S4 if S1 and S2 differ in the same way
that S3 and S4 differ. Formally, S1:S2 ::S3:S4 is satisfied if:

S1 \ S2 = S3 \ S4 S2 \ S1 = S4 \ S3 (9)

Some key properties of analogical proportions are as follows:

Reflexivity A:B ::A:B

Symmetry (A:B ::C:D)⇔ (C:D ::A:B)

Exchange of means (A:B ::C:D)⇔ (A:C ::B:D)

S-transitivity (A:B ::C:D)∧(A:B ::E:F )⇒(C:D ::E:F )

C-transitivity (A:C ::D:B)∧(A:E ::F :B)⇒(C:E ::F :D)

3.1 Analogical Proportions between DL Concepts
In this paper, we are concerned with analogies between de-
scription logic concepts. We can define analogical propor-
tions between EL./

⊥ concepts A,B,C,D as AI :BI ::CI :DI

or as ϕ(A):ϕ(B) ::ϕ(C):ϕ(D). In general these two expres-
sions are not equivalent, and there are advantages in requiring
that both of them are satisfied at the same time, which has
been studied in detail in [Barbot et al., 2019] within the set-
ting of Formal Concept Analysis. However, if A,B,C,D are
natural, then AI :BI ::CI :DI and ϕ(A):ϕ(B) ::ϕ(C):ϕ(D)
are equivalent. Moreover, for natural concepts, the semantic

constraint ϕ(A):ϕ(B) ::ϕ(C):ϕ(D) can be modelled syntac-
tically in EL./

⊥ . Indeed it holds that ϕ(A):ϕ(B) ::ϕ(C):ϕ(D)
is satisfied iff the following conditions are satisfied4:

ϕ(A) ∩ ϕ(D) = ϕ(B) ∩ ϕ(C) (10)
ϕ(A) ∪ ϕ(D) = ϕ(B) ∪ ϕ(C) (11)

The analogical proportion ϕ(A):ϕ(B) ::ϕ(C):ϕ(D) is thus
satisfied if the following concept inclusions are satisfied:

A uD v B u C B u C v A uD
A ./ D v B ./ C B ./ C v A ./ D

In the following, we will write A:B ::C:D as an abbreviation
for these four concept inclusions. The fact that we can model
A:B ::C:D within EL./

⊥ is an advantage, but as we will see
below, modelling analogies between DL concepts in this way
has a number of important limitations.

3.2 Desiderata for Modelling Analogies in DLs
Our motivation for studying analogies is to enable plausible
inferences. A clear requirement is thus that we want some
form of the rule extrapolation and rule translation inference
patterns, as illustrated in Examples 1 and 2, to be satisfied.
Another important requirement comes from the fact that we
usually only have access to information about analogical re-
lationships between concept names (e.g. obtained from a lan-
guage model). However, the aforementioned inference pat-
tern may rely on analogical relationships between complex
concepts. To enable non-trivial inferences in practice, it is
thus important that analogies between concept names can be
lifted to analogies between complex concepts.

Let us now consider the suitability of analogical propor-
tions, in light of these desiderata. First, rule translation is
satisfied for analogical proportions.
Proposition 1. Let I = (I,F , π) be a feature-enriched inter-
pretation, and let A1, A2, B1, B2 be natural concepts in I. If
ϕ(A1):ϕ(A2) ::ϕ(B1):ϕ(B2) holds and I satisfiesA1 v B1,
then I also satisfies A2 v B2.

However, rule extrapolation is not valid for analogical pro-
portions. Furthermore, analogical proportions between con-
cept names cannot be lifted to complex concepts. For in-
stance, from A1:B1 ::C1:D1 and A2:B2 ::C2:D2, in general
we cannot infer (A1uA2):(B1uB2) :: (C1uC2):(D1uD2).
Counterexamples are provided in the appendix.

4 The Logic ELana
⊥

Given the limitations of analogical proportions that were
highlighted in Section 3.2, we propose an alternative ap-
proach for modelling analogies between description logic
concepts. This approach is based on the common view that
analogies are mappings from one domain into another, which
lies among others at the basis of the seminal Structure Map-
ping framework [Gentner, 1983]. In particular, we propose
the logic ELana

⊥ , which extends EL./
⊥ with two novel ele-

ments: analogy assertions and intra-domain roles. Analogy
4This follows immediately from the characterisation of Boolean

analogical proportions in terms of conjunction and disjunction; see
[Prade and Richard, 2013] for details.



assertions are similar to analogical proportions, in that they
encode a relationship of the form “A is to B what C is to D”,
but their semantics is defined in terms of mappings between
different domains, where domains will be identified with sets
of features. Intuitively, intra-domain roles are roles which
preserve the structure of analogous domains.

4.1 Syntax
Let NC, NNat

C and NR be defined as before. We assume that
NR contains an infinite set NInt

R of distinguished intra-domain
role names. The syntax of ELana

⊥ concepts C,D is defined by
the following grammar, where A ∈ NC, A′ ∈ NNat

C , r ∈ NR

and r′ ∈ NInt
R :

C,D := > | ⊥ | A | C uD | ∃r.C | N
N,N ′ := A′ | N uN ′ | N ./N ′ | ∃r′.N

ELana
⊥ concepts extend EL./

⊥ concepts by allowing existential
restrictions over intra-domain roles as natural concepts. An
ELana
⊥ TBox is a finite set containing two types of assertions:

(i) ELana
⊥ concept inclusions, and (ii) analogy assertions of

the form C1.D1::C2.D2, where C1, C2, D1, D2 are natural
ELana
⊥ concepts.

4.2 Semantics
Analogies intuitively involve transferring knowledge from
one domain to another domain5, e.g. from software engineer-
ing to architecture in the case of Example 2. In our frame-
work, these domains will be associated with subsets of F . In
particular, we will require that interpretations specify a parti-
tion [F1, ...,Fk] of F , defining the different domains of inter-
est. Some of the partition classes will furthermore be viewed
as being analogous, in the sense that there is some kind of
structure-preserving mapping between them.

Another extension of the feature-enriched semantics is
aimed at improving how disjointess can be modelled. In the
semantics from [Ibáñez-Garcı́a et al., 2020], no individual
d ∈ ∆I is allowed to have all the features from F , but all
proper subsets F ⊂ F are witnessed in the sense that there
is some d such that π(d) = F . This limits how disjoint con-
cepts can be modelled. For instance, B cannot be satisfied
w.r.t. {B v A ./ C,A u B v ⊥, A u C v ⊥, B u C v ⊥}
using a feature-enriched interpretation. Disjointness will play
an important role in our semantics, as concepts from different
domains will be required to be disjoint (see below). For this
reason, we extend the feature-enriched semantics with sets of
forbidden feature combinations. In particular, interpretations
will specify a set X ∈ 2F such that for X ∈ X , it holds that
no individual can have all the features from X . For the ease
of presentation, we write C for the set of all consistent sets of
features, i.e. F ∈ C iff F 6⊇ X for all X ∈ X . We also write
Ci for the restriction of C to subsets of Fi.
Definition 1. Let [F1, ...,Fk] be a partition of a non-empty
finite set F . We call I = (I, [F1, ...,Fk],X , π,∼,S) a do-
main constrained interpretation if I = (∆I , .I) is a clas-
sical DL interpretation, X ⊆ 2F , F ∈ X , π : ∆I →

5In this paper, we use the term domain to refer to a particular
thematic area. This should not be confused with the set ∆I , which
is often referred to as the domain of the interpretation I.

2F , ∼ is an equivalence relation over {1, ..., k} and S =
{σ(s,t) | (s, t) ∈∼}, with each σs,t a bijection from Fs to Ft,
and we have:

1. for every d ∈ ∆I and X ∈ X it holds that X 6⊆ π(d);
2. if X ∈ C then π(d) = X for some d ∈ ∆I;

3. we have σ−1(s,t) = σ(t,s) and σ(t,u) ◦ σ(s,t) = σ(s,u) for
any (s, t), (t, u) ∈∼;

4. for F ∈ Ci and (i, j) ∈∼, we have {σ(i,j)(f) | f ∈
F} ∈ C;

5. if f ∈ Fi and g ∈ Fj then {f, g} ∈ X , for all (i, j) ∈∼
with i 6= j.

Intuitively, each of the sets Fi corresponds to a different
domain. If (s, t) ∈∼, it means that there is an analogy be-
tween the source domain Fs and the target domain Ft. In
that case, there is a one-to-one mapping σ(s,t) between the
features from Fs and those from Ft. The first two condi-
tions from Definition 1 capture the fact that a set of features
X ⊆ F is witnessed by some individual iff it is consistent, i.e.
X ∈ C. The third condition ensures that the mappings σ(i,j)
can be composed and reversed. The fourth condition encodes
that the mapping σ(i,j) maps consistent feature combinations
to consistent feature combinations. This is a natural require-
ment, given the intuition that analogous domains should have
the same structure. The last condition captures the require-
ment that individuals cannot have features from two analo-
gous domains. While analogies are normally indeed defined
between distinct domains, the reader may wonder at this point
whether this restriction is necessary. We will come back to
this question in Section 4.4.
Domain Translations Before presenting the semantics of
analogy assertions, we first study how the bijections σ(i,j) can
be combined to define mappings between the sets of features
ϕ(C), ϕ(D) associated with two concepts. First, we define a
domain assignment mapping δ, which maps each concept C
to the set of domains on which it depends:

δ(C) = {i | Fi ∩ ϕ(C) 6= ∅}
Next, we extend the mappings σ(i,j) to mappings between
sets of domains. Let U = {(s1, t1), . . . , (sl, tl)}, with
s1, . . . , sl all distinct and t1, . . . , tl all distinct. The mapping
σU is defined as follows:

σU (f) =

{
σ(si,ti)(f) if f ∈ Fsi

f otherwise

We call σU a domain translation, and write src(U) for the
set {s1, . . . , sl} of source domains and tgt(U) for the set
{t1, . . . , tl} of target domains. The source domains need to
be distinct to ensure that the domain translation is uniquely
defined. Target domains are required to be distinct to allow
domain translations to be reversible. For the ease of presenta-
tion, we will write σU (F ) to denote the set {σU (f) | f ∈ F}.

For a pair of concepts C and D, we write µ(C,D) for the
set of domain translations σU such that:

ϕ(D) = σU (ϕ(C)) (12)
src(U) ⊆ δ(C) (13)



tgt(U) ∩ (δ(C) \ src(U)) = ∅ (14)

The first condition states that the domain translations in
µ(C,D) essentially “translate” the concept C to the concept
D. The second condition ensures that µ(C,D) contains min-
imal domain translations only, in the sense that U should not
contain any redundant pairs. The third condition is needed to
ensure that domain translations are reversible. To see why
this is needed, let ϕ(C) = {f1, g2}, ϕ(D) = {g1, g2},
F1 = {f1, f2}, F2 = {g1, g2}, σ(1,2)(fi) = gi. Then
ϕ(D) = σ(1,2)(ϕ(C)), but there is no domain translation σU
s.t. ϕ(C) = σU (ϕ(D)). As the following result shows, im-
posing (14) is enough to ensure reversibility.
Proposition 2. Let U be a domain translation, and let U` =
{(t, s) | (s, t) ∈ U}. It holds that σ−1U = σU` .

As the next result shows, the composition of two domain
translations is also a valid domain translation. In particular,
if there is some domain translation σU that maps C to D and
some domain translation σV that maps D to E, then σU and
σV can be composed to define a domain translation from C
to E. Moreover, in such a case, any domain translation from
C to E can be defined as such a composition.
Proposition 3. If µ(C,D) 6= ∅ and µ(D,E) 6= ∅ we have:

µ(C,E) = {σU⊕V |σU ∈ µ(C,D), σV ∈ µ(D,E)}

where

U ⊕ V ={(i, k) | (i, j) ∈ U, (j, k) ∈ V, i 6= k}
∪ {(i, j) | (i, j) ∈ U, j /∈ src(V )}
∪ {(j, k) | (j, k) ∈ V, j /∈ tgt(U)}

Semantics of Intra-Domain Roles We will need to
put additional constraints on the interpretation of a role
r to be able to infer (∃r.A).(∃r.B)::(∃r.C).(∃r.D) or
A.B::(∃r.C).(∃r.D) from A.B::C.D. To allow such lift-
ing of analogy assertions, we will associate with each intra-
domain role r a mapping κr between sets of features, which
satisfies a number of conditions. In particular, we introduce
the following notion of intra-domain relation.
Definition 2. Let I = (I, [F1, ...,Fk],X , π,∼,S) be a do-
main constrained interpretation and let r ∈ NR. We say that r
is interpreted as an intra-domain relation if for every concept
C, we have (∃r.C)I = {d ∈ ∆I |π(d) ⊇ κr(ϕ(C)}, for a
mapping κr satisfying:

1. κr(F ) = κr(F ∩F1)∪ ...∪κr(F ∩Fk), for all F ∈ C;

2. κr(F ) ⊆ Fi, for all i ∈ {1, ..., k} and F ∈ Ci;
3. κr(σ{(i,j)}(F )) = σ{(i,j)}(κr(F )), for all (i, j) ∈∼

and F ∈ Ci;
4. κr(F ) 6= ∅, for all i ∈ {1, ..., k} and F ∈ Ci \ {∅}.
The first two conditions in Definition 2 state that the fea-

tures in κr(F ) are determined per domain. The third con-
dition captures the intuition that analogous domains should
have the same structure. The last condition essentially en-
codes that whenever C depends on some domain i then ∃r.C
should also depend on domain i, i.e. if ϕ(C) contains at
least one feature from Fi then the same should be true for

κr(ϕ(C)). Note that if r is interpreted as an intra-domain re-
lation and C is a natural concept, then ∃r.C is a natural con-
cept, whose features are determined by the features in ϕ(C).
We then have ϕ(∃r.C) = κr(ϕ(C)).

The semantics of ELana
⊥ concepts can now be defined sim-

ilarly to Section 2, but we additionally require that every
r ∈ NInt

R is interpreted as an intra-domain relation.

Semantics of TBoxes We now define the semantics of
ELana
⊥ TBoxes. We start with that of analogy assertions. We

say that a domain constrained interpretation I satisfies the
analogy assertion C1.C2::D1.D2 if:

µ(C1, C2) ∩ µ(D1, D2) 6= ∅ (15)

Clearly, C1.C2::D1.D2 is equivalent to D1.D2::C1.C2.
One may wonder whether (15) is sufficient, i.e. whether we
should not require µ(C1, C2) = µ(D1, D2). However, as the
following result shows, for non-empty concepts, µ(C1, C2)
and µ(D1, D2) can have at most one element.

Proposition 4. Let I = (I,F ,X , π,∼,S) be a domain-
constrained interpretation. If CI 6= ∅, DI 6= ∅ and
µ(C,D) 6= ∅, then |µ(C,D)| = 1.

We define the semantics of ELana
⊥ TBoxes similarly to Sec-

tion 2, but now including analogy assertions. A domain con-
strained interpretation I is a model of an ELana

⊥ TBox T if
I satisfies all CIs and analogy assertions in T ; every natural
concept N ∈ T is fully specified by its features; and every
intra-domain role is interpreted as an intra-domain relation.
For a TBox T and CI or analogy assertion φ we write T |= φ
to denote that every model of T satisfies φ. If T is a singleton
of the form {ψ}, we also write this as ψ |= φ.

4.3 Properties of Analogy Assertions
Basic Properties Before returning to the desiderata from
Section 3.2, we briefly look at the properties of analogical
proportions that were listed in Section 3. First, reflexivity is
trivially satisfied. The symmetry property also holds for anal-
ogy assertions, thanks to the reversibility of domain transla-
tions.

Proposition 5. We haveC1.C2::D1.D2 |= C2.C1::D2.D1.

Exchange of means is not satisfied. This can easily be seen
from the fact that whenever C1.C2::D1.D2 is satisfied, we
have |ϕ(C1)| = |ϕ(C2)| and |ϕ(D1)| = |ϕ(D2)| but not
necessarily |ϕ(C1)| = |ϕ(D1)|. As a result of this, there are
two variants of S-transitivity that can be considered. As the
next proposition shows, both of these variants are satisfied.

Proposition 6. It holds that:

{C1.C2::D1.D2, D1.D2::E1.E2}|=C1.C2::E1.E2 (16)
{C1.C2::D1.D2, C2.C3::D2.D3}|=C1.C3::D1.D3 (17)

We also have that C-transitivity is satisfied.

Proposition 7. It holds that:

{C1.D1::D2.C2, C1.E1::E2.C2} |= D1.E1::E2.D2



Lifting analogy assertions As the next two results show,
analogy assertions can indeed be lifted to (non-empty) con-
junctions and existentially quantified concepts.

Proposition 8. Let I = (I, [F1, ...,Fk],X , π,∼,S) be a
domain-constrained interpretation satisfying (CiuDi)

I 6= ∅
for i∈{1..4}, C1.C2::C3.C4 and D1.D2::D3.D4. Then I
also satisfies (C1 uD1).(C2 uD2)::(C3 uD3).(C4 uD4).

Proposition 9. Let r be an intra-domain role. It holds that:

C.D::E.F |= (∃r.C).(∃r.D)::(∃r.E).(∃r.F ) (18)
C.D::E.F |= C.D::(∃r.E).(∃r.F ) (19)

Analogy Based Inference Patterns We now return to the
two considered analogy based inference patterns: rule trans-
lation and rule extrapolation. First, similar as for analogical
proportions, we find that rule translation is supported.

Proposition 10. Let I be a domain constrained interpreta-
tion. If I satisfies {C1.D1::C2.D2, C1 v C2} then I also
satisfies D1 v D2.

Example 4. Suppose Program .Plan::Software .Building
holds and assume that specifies is an intra-domain role. Us-
ing Proposition 9 we can then infer:

Program .Plan::(∃specifies.Software).(∃specifies.Building)

If we are additionally given that the concept inclusion (5) is
satisfied, we can infer (6) using Proposition 10.

A version of rule extrapolation is also supported.

Proposition 11. Let I = (I, [F1, ...,Fk],X , π,∼,S) be a
domain constrained interpretation. Suppose that CI1 6= ∅
and that I satisfies the following TBox:

T = {C1.C2::C3.C4, D1.D2::D3.D4,

D1.D3::D2.D4, C1 v D1, C2 v D2, C3 v D3}

Then I also satisfies the assertion C4 v D4.

Example 5. Suppose the concept inclusions (1)–(3) are sat-
isfied, as well as the following analogy assertions6:

Young .Adult::Young .Adult
Cat .WildCat::Dog .Wolf

Cute .Dangerous::Cute .Dangerous
Cute .Cute::Dangerous .Dangerous

Assuming the intersections involved are all non-empty, us-
ing Proposition 8 we can infer (Young u Cat).(Adult u
WildCat)::(Young u Dog).(Adult u Wolf). Finally, using
Proposition 11 we can infer that (4) holds.

Note that both D1.D2::D3.D4 and D1.D3::D2.D4 are
required for the above proposition to hold (see the appendix
for a counterexample that shows this). For analogical pro-
portions, adding both conditions makes no difference, as
D1:D2 ::D3:D4 and D1:D3 ::D2:D4 are equivalent.

6Note that Cute . Cute::Dangerous . Dangerous is trivially sat-
isfied, since σ∅ ∈ µ(Cute,Cute) ∩ µ(Dangerous,Dangerous).

4.4 Alternative Semantics
As shown in Section 4.3, the proposed semantics for anal-
ogy assertions satisfies the main desiderata from Section 3.2.
We may wonder, however, whether all aspects of the seman-
tics are necessary for this to hold. We return in particu-
lar to Condition 5 from Definition 1, which is perhaps the
most restrictive condition. In particular, let us define the no-
tion of weak domain constrained interpretation as a tuple
(I, [F1, ...,Fk],X , π,∼,S) that satisfies all conditions from
Definition 1, apart from Condition 5. One immediate con-
sequence of dropping Condition 5 is that Proposition 4 is no
longer valid. As a result, in addition to analogy assertions of
the form A1.A2::B1.B2, with the semantics defined in (15),
we can now also consider strong analogy assertions, denoted
asA1IA2::B1IB2, which are satisfied if (15) is satisfied and
moreover:

µ(A1, A2) = µ(B1, B2)

Under this weak semantics, C-transitivity (i.e. Proposition 7)
is no longer satisfied, neither for the standard analogy as-
sertions nor for strong analogy assertions (see the appendix
for counterexamples). Regarding S-transitivity, the variant
in (17) remains valid and is furthermore also valid for strong
analogy assertions. However, the variant in (16) is no longer
valid for standard analogy assertions, although it is satisfied
for strong analogy assertions. In contrast, Proposition 9 re-
mains valid for standard analogy assertions, but it is not sat-
isfied for strong analogy assertions. Proposition 8 is neither
satisfied for standard analogy assertions nor for strong anal-
ogy assertions. Finally, in terms of inference patterns, Propo-
sition 10 remains valid, but Proposition 11 does not, neither
for standard nor strong analogy assertions.

5 Conclusions
We have proposed a framework for analogy assertions of the
form “A is to B what C is to D” that is suitable for analog-
ical reasoning in description logics. The underlying assump-
tion is that analogy assertions between concept names can be
learned from text, and that we can then lift these to obtain
analogy assertions between complex DL concepts. We have
shown how the resulting semantics allows us to infer concept
inclusions using two analogy based inference patterns. This
complements other types of plausible inference patterns, such
as interpolation and similarity based reasoning.

There are two important lines for immediate future work.
First, we plan to study the computational complexity of rea-
soning in ELana

⊥ . Results from [Ibáñez-Garcı́a et al., 2020]
provide a CONP lower bound for concept subsumption w.r.t.
ELana
⊥ TBoxes. For the upper bound, one key issue would be

to relate the number of domains and features of concepts oc-
curring in analogy assertions, as well of those of existential
restrictions over intra-domain roles of such concepts. One
would also need to establish a bound on the number of fea-
tures and domains. From the practical side we need mech-
anisms to deal with the noisy nature of the available knowl-
edge about betweenness and analogy assertions (which typi-
cally would be learned from data) and the inconsistencies that
may introduce. To this end, we plan to study probabilistic or
non-monotonic extensions of our framework.
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