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Abstract

A new method is developed for performing sufficient dimension reduction when proba-
bilistic graphical models are being used to perform estimation of parameters. The procedure
enriches the domain of application of dimension reduction techniques to settings where (i) p
the number of variables in the model is much larger than the available sample size n, (ii) p
is much larger than the number of slices H the model uses and D the number of projection
vectors can be larger than n. The methodology is developed for the case of the sliced in-
verse regression model, but extensions to other dimension reduction techniques such as sliced
average variance estimation or other methods are straightforward.

Keywords: dimension reduction, sliced inverse regression, sliced average variance estima-
tion, penalized estimation

1 Motivation

Sufficient dimension reduction (SDR) techniques and probabilistic graphical models (PGMs)
have at their core the same objective, namely obtaining a map of the conditional independence
statements that hold in the joint distribution of a multivariate vector X = (X1, . . . , Xp)

T with
p components. The approaches that each methodological framework takes, are at first sight
quite different from each other. The PGMs framework gives importance to the identification
of (separator) nodes which, when conditioned upon, contain all the necessary information to
make other groups of nodes conditionally independent of each other. The SDR framework
gives importance to the identification of linear/nonlinear combinations of nodes which, when
conditioned upon, retain all the necessary information to make groups of nodes conditionally
independent of each other. In the SDR literature, the SIR model (Li, 1991) is one of the most
popular and used techniques to achieve dimension reduction. Even though throughout the years
many other methods have been introduced, SIR still remains one of the popular choices and a
clear competitor to benchmark against.

One common aspect between PGMs and SIR is the fact that the routinely used algorithm for
SIR uses information regarding inverse covariance matrices in order to standardize the original
variables to alleviate the effects induced by different scales of measurement. These inverse
covariance matrices can easily and accurately be obtained by using graph estimation techniques.
As such, this manuscript exploits connections that enrich the framework of dimension reduction
by making use of graphs. Our contribution is to introduce and study a new high-dimensional
SDR method that allows for the cases where:

(i) p the number of variables in the model is larger than the available sample size n,

(ii) more than H − 1 directions are to be estimated and

(iii) can be used when the slicing variable is binary.
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The method is based on graphical models and as such it also offers insight into the dependence
structure that governs the vector X. We propose as well a computational algorithm to facilitate
its implementation in practice. The proposed method improves on limitations that popular SIR
suffers from, while being easy to implement and general enough to be adapted to SAVE (Cook
and Weisberg, 1991) and other methods than those described here.

The manuscript is structured as follows. In Section 2 we briefly present sufficient dimen-
sion reduction techniques and the probabilistic graphical modeling framework. In Section 3
the proposed method and estimation aspects are presented, while theoretical properties of the
method are investigated in Section 4. A simulation study is presented in Section 5 and a real
case analysis is presented in Section 6. We finish with a discussion on the method in Section 7.

2 Introduction to Sufficient dimension reduction and Proba-
bilistic graphs

In this section we introduce briefly the two frameworks on which our procedure is based. We
highlight the common points between dimension reduction methods and graphs, with the purpose
of exploiting connections that allow one to make use of graphs when performing SDR.

2.1 Sufficient dimension reduction models

In a regression setting, one sets out to find a relationship between a response variable Y (without
loss of generality we assume it to be univariate) and a p-dimensional vector X. The larger p
gets relative to the available sample size n, the more difficult it is for traditional methods to
make meaningful statistical inference and the harder it is to visualize and interpret the results.
Thus naturally, one might be interested in achieving dimension reduction either through feature
selection (when a subset of the original variables is selected) or through feature extraction (when
functions of the original predictors are extracted).

Sufficient dimension reduction is a class of methods proposed to achieve supervised feature
extraction in a regression setting. It has been proposed for cases where one is interested in iden-
tifying D functions of the predictors without losing information for the conditional distribution
of Y |X. In other words, one is interested in estimating the p×D matrix β such that:

Y ⊥⊥X|βTX. (1)

This is known as the linear conditional independence model as the functions of the predictors
one is extracting, are linear. The space spanned by the column vectors of β is known as the
Dimension reduction subspace (DRS) which is denoted with S(β). There are multiple β’s that
satisfy model (1) and as such, the target is most often the space with the minimum dimension
D, which is known as the Central dimension reduction space or simply the Central space (CS)
and is denoted with SY |X . The CS does not always exist, but conditions of existence are mild
and therefore we assume its existence throughout this work. On a positive note, if the CS exists
it is unique and it can be shown to be the intersection of all DRS’s.

SDR started with the breakthrough work of Li (1991) that introduced Sliced Inverse Re-
gression (SIR) as a first method for SDR. A number of methods were proposed in the following
years. A small sample includes Sliced Average Variance Estimate (SAVE) by Cook and Weisberg
(1991), principal Hessian direction (pHd) by Li (1992), Minimum Average Variance Estimation
(MAVE) by Xia et al. (2002), Contour Regression (CR) by Li et al. (2005), Directional Regres-
sion (DR) by Li and Wang (2007), Principal Support Vector Machines (PSVM) by Li et al.
(2011) and many more. We refer to Ma and Zhu (2013) for a review on SDR and some of the
proposed techniques.
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Although SIR was the first method proposed in a long list of methodology, it is still the most
popular method in the SDR literature and it is still used as a benchmark for any new method
to compare to. This is due to its simplicity, since it first slices the response Y into H slices and
then uses the matrix Λ = cov(E(X|Y )) to estimate the matrix β. Note the use of the inverse
expectation E(X|Y ) rather than the usual E(Y |X), hence the name.

SIR might be simple, but it is far from perfect. There are a number of shortcomings to it.
First of all, it is routinely applied on standardized data. This implies that one has access to the
inverse of the covariance matrix ΣX = cov(X). For data where p is larger than n, the classical
estimator for a covariance matrix used in SIR, is not per se invertible. Recently, Lin et al. (2019)
proposed a SIR based procedure that avoids the need for an inverse covariance matrix.

The second problem is the dependence of the number of directions D that one can estimate,
on the number of slices H. Due to the fact that the directions are extracted from Λ, which is
estimated using the predictor means in each slice, one is restricted in estimating at most H − 1
directions. For example, in cases where Y is binary and one is restricted in taking only two slices,
one can estimate at most one direction. This implies that one will not be able to extensively
estimate the CS if it has a dimension larger than one and the response Y can be split only in
two slices. This problem was recently tackled by Shin et al. (2017) where they extended the
PSVM procedure of Li et al. (2011) by using weighted Support Vector Machines (SVM).

In recent years, sparse high-dimensional SDR methods have also been developed. We refer
to the works of Li (2007), Wang and Yin (2008), Zhu and Zhu (2009), Radchenko (2015), Lin
et al. (2018, 2019), Hilafu and Yin (2017) and Shin and Artemiou (2017) among others. What
is common to all of the above works, is falling back on performing penalized regression models
for estimation. The novelty of the method we propose in this manuscript, stems from exploring
explicit connections that link probabilistic graphs and SDR due to their focus on conditional
independence as was pointed out in Section 1.

In this paper, we address the above limitations and issues by proposing different estimators
Σ̂X and Λ̂ that have their roots in the penalized Gaussian graphical models framework. Details
on Gaussian graphical models are offered next, in Section 2.2.

2.2 Probabilistic graphical models

The first step in PGMs is to associate each component of the vector (Y,X1, . . . , Xp)
T with a

node (and only one) in a graph G(E ,V), where E denotes the set of undirected edges of the form
a− b between two nodes a and b that belong to the set of nodes V = {1, . . . , p+ 1}. We denote
the edge set as E = {(a, b)| a, b ∈ V and a and b are connected by an edge in G}.

This allows PGMs to posit conditional independence statements by identifying three disjoint
sets of nodes A, B and C for which the relation A ⊥⊥ B|C holds. Conceptually, they translate
the conditional independence statements that are encoded by a joint distribution function P , by
identifying conditional independence statements that hold for nodes in the graph G. Switching
between the graph statements and the distributional statements is allowed under a faithfulness
assumption that links G and P . The assumption implies that all the conditional independence
statements that can be read from the graph, hold as well for the joint distribution and vice-versa.
This is denoted as

A ⊥⊥G B|C ⇔ A ⊥⊥P B|C. (2)

For graphs, the global Markov property implies that for any disjoint node sets A, B and C
from the graph G, for which C separates the nodes in the set A from the nodes in the set B
(i.e. following any path formed by edges between a node in the set A and a node in the set B
necessarily passes through a node in the separator set C) the random variables included in the
set A are conditionally independent of the variables in the set B, given the random variables
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included in the set C. The toy example in Figure 1 illustrates the global Markov property that
Y ⊥⊥ X2 |X1 since the path between A = {Y } and B = {X2} passes through {X1}, meaning
that if X1 and all edges connecting it to any other node are removed, then Y and X2 would be
completely disconnected.

Y X1 X2

Figure 1: Toy example illustrating the global Markov property Y ⊥⊥ X2 |X1.

This property implies that identifying separator sets on graphs leads to conditional indepen-
dencies that hold for the joint distribution. Moreover, the faithfulness assumption implies that
these are all the conditional independence statements that hold for the joint distribution.

For the estimation of penalized sparse high-dimensional undirected graphs we refer to the
works of Friedman et al. (2008), Ravikumar et al. (2008), Bickel and Levina (2008a,b), Boyd
et al. (2011), Guo et al. (2011), Mazumder and Hastie (2012), Witten et al. (2011), Danaher
et al. (2014) and Pircalabelu et al. (2016) among many others.

Under a Gaussian assumption for the vector (Y,X1, . . . , Xp)
T, (2) is equivalent to (3) below:

(Y,X1, . . . , Xp)
T ∼ N

(
0,Σ =

[
σY ΣY X

ΣXY ΣX

])
and let Θ = Σ−1 then (a, b) ∈ E ⇔ Θab 6= 0.

(3)
Due to properties of the multivariate Gaussian distribution, the marginal model also holds:

X ∼ N(0,ΣX) and let ΘX = Σ−1X then (a, b) ∈ EX ⇔ ΘX;ab 6= 0. (4)

Moreover, conditionally on X, Y also follows a Gaussian distribution:

Y |X ∼ N(ΣY XΘXX, σY −ΣY XΘXΣXY ). (5)

3 Graph informed procedure

The conditional model in (5) is from a distributional point of view attractive, however it is
relatively restrictive, since it specifies that E(Y |X) depends linearly on X. Our method starts
from the multiple index model commonly used in the SDR literature of the form

Y = g(βT
1X,βT

2X, . . . ,βT
DX, ε) where (6)

(i) X ∈ Rp with X ∼ N(0,ΣX)

(ii) β1, . . . ,βD ∈ Rp

(iii) ε ⊥⊥ (X1, . . . , Xp)
T

(iv) E(ε) = 0

(v) g : RD+1 → R.

The link function g(·) is an unknown many-to-one function, the vectors β1, . . . ,βD are unknown
vectors of coefficients and for simplicity we assume throughout the manuscript that the dimension
D is fixed and known upfront. A number of proposals exist in the literature to estimate D if it
is unknown, see for example sequential tests in Bura and Yang (2011), a BIC-type strategy like
in Zhu et al. (2006) or the ladle plot idea in Luo and Li (2016).
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Let W denote the random vector E(X|Y ) with covariance matrix Λ = cov(W ) for which
SΛ is the space spanned by its columns. Let next β be the matrix of coefficients of dimension
p×D obtained by staking the vectors β1, . . . ,βD together. As pointed out in Section 2.1, under
the assumptions specified in (6), β is not uniquely defined. However, the space SY |X defined by
the columns of β is uniquely defined. As X follows an elliptical distribution, one also has as a
consequence that

ΣXSY |X = SΛ.

The goal is to recover consistently SY |X = ΘXSΛ using sample information when n, the number
of sample points, is smaller than p, the number of components and ΘX is sparse and graph
structured.

Assume one has at disposal n i.i.d samples from the vector (Y,XT)T denoted as (Yi,X
T
i )T

where i = 1, . . . , n. In classical low-dimensional settings where p < n, one can consistently esti-
mate ΣX using the sample covariance matrix SX = (1/n)

∑n
i=1XiX

T
i (see Lin et al., 2018), but

this no longer holds for high-dimensional settings. As such, under the assumption of normality,
we estimate directly Θ by using the graphical lasso procedure as it optimizes the penalized
negative Gaussian log-likelihood function. The optimization routine takes the form:

min
ΘX

{
trace(SXΘX)− log det ΘX + λn1

∑
a6=b
| ΘX;ab |

}
, (7)

such that ΘX � 0 (positive definite) and where λn1 is a known, positive regularization level that
is specified by the user. The role of λn1 is to determine the sparsity of ΘX as it shrinks small
entries of ΘX to 0 values. The larger λn1 is, the more sparsity is enforced in the model, as more
entries get shrunk to 0. In general, the regularization parameter is not known upfront and a
search on a grid is usually performed where the quality of the selected model is assessed either
by information criteria or cross-validation. An optimizer to (7) has been proposed in Friedman
et al. (2008) and can be obtained by using the glasso algorithm. Due to the relation in (4)
we get with no extra effort an estimated undirected graph that summarizes all the conditional
independence statements that hold for the components of X.

We note that this allows to bypass the n > p requirement, as now p can be much larger
than n and still allow for the estimated covariance matrix to be positive definite. The high-
dimensional sparse graph will provide the researcher extra information regarding the conditional
independencies for the predictors. However attractive this property might be, it is not sufficient,
since the number of directions one can extract is still bounded by H−1, where H is the number
of slices. In Sections 3.1 and 3.2 we will propose as well an `1 graph based strategy to overcome
this limitation.

Recently, Lin et al. (2019) proposed a penalized `1 framework that is able to consistently
recover the CS even when p > n. Their procedure does not tackle the estimation of the inverse
covariance matrix Θ, but rather takes a nodewise approach (see Meinshausen and Bühlmann,
2006) where they fit a penalized model for each vector βd with d = 1, . . . , D. If D is small,
then such a nodewise strategy, might result in considerable speed gains. We note that Lin et al.
(2019) assume that each vector of coefficients is sparse, whereas our method assumes that the
matrices ΘX and Ω from equation 8 in Section 3.1 are both sparse and graph structured.

We illustrate next our proposed estimation method which we denote throughout the manuscript
as ‘GraphSIR’, short for ‘graph informed slice inverse regression’. As we have mentioned in Sec-
tion 1, similar ideas can be used for other SDR techniques as well and to illustrate this we
provide also a graph based extension for the SAVE method denoted as GraphSAVE.
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3.1 The GraphSIR case

We present in this section the GraphSIR procedure as an extension of the SIR method to the
high-dimensional case. The procedure follows a similar algorithmic description as for the classical
low-dimensional case, but the extensions proposed in this section allow for the estimation of the
effective dimension reduction (edr) directions when (i) p > n and (ii) when the number of
directions is larger than H − 1. We stress that under the classical SIR methodology settings
(i)-(ii) cannot properly be dealt with. We overcome such limitations by deploying techniques
from the PGM framework, thus enriching the SDR methodology.

Step 1: Solve (7) with the graphical lasso procedure and obtain the estimated value for Θ̂X .

Step 2: Using the estimate Θ̂X (which is positive definite even if p > n) calculate Σ̂
−1/2
X .

Step 3: Standardize Xi by an affine transformation to get Ẑi = Σ̂
−1/2
X (Xi − X̄).

Step 4: Divide the range of Yi into H non-overlapping slices and calculate

(i) the ‘sample size’ of the slice as: nh =
∑n

i=1 δh(Yi) where δh(Yi) is the indicator
function taking the values 0 or 1 depending on whether the value of Yi falls in the
h-th slice or not;

(ii) the empirical mean of each slice as: m̂h = (1/nh)
∑n

i=1 Ẑiδh(Yi).

Step 5: Under the assumption m̂h ≈ N(0,Λ) ∀h = 1, . . . ,H, where Z = Σ
−1/2
X (X − E(X)),

optimize:

min
Ω

{
trace(SZΩ)− log det Ω + λn2

∑
a6=b
| Ωab |

}
, (8)

such that Ω � 0. We denote by Ω̂ the estimator obtained when optimizing (8) and the
matrix SZ = (1/n)

∑H
h=1 nhm̂hm̂

T
h denotes the empirical covariance matrix based on the

vectors m̂1, . . . , m̂H .

Step 6: Perform an eigenvalue decomposition on the estimated covariance matrix Λ̂ ≡ Ω̂
−1

(which is positive definite even if p > H) and retain the eigenvectors η̂d where d = 1, . . . , D
corresponding to the largest D eigenvalues. Transform the standardized edr directions η̂d

back to the original scale by returning the estimators β̂d = Σ̂
−1/2
X η̂d for d = 1, . . . , D.

Note that λn2 in Step 5 is a known, positive regularization level specified by the user, which
dictates the sparsity level of the Ω matrix. In practice a grid search is performed for an optimal
value. Regardless of how large p is compared to n or H, the estimator Ω̂ is always positive
definite.

Step 6 overcomes a major shortcoming of the classical SIR method where the number of
non-zero eigenvalues could not be larger than H − 1, which is problematic in case Y is binary.
Our procedure ensures that Ω̂ is full rank and thus the number of non-zero eigenvalues does not
depend on H, implying that one can identify more directions than slices, which is not possible
in the classical SIR approach. Moreover, Step 5 explicitly ensures positive definiteness which
was not guaranteed in the classical SIR as there, an eigenvalue decomposition is performed
directly on SZ , however its positive definiteness cannot be guaranteed. It is in Steps 5 and 6
that the novelty of the procedure and usefulness of the graph methods is manifested, however

we acknowledge that since in Step 6 one uses the covariance matrix obtained as Ω̂
−1

, one might
envision different strategies using other high-dimensional covariance matrix estimators.
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3.2 The GraphSAVE case

We present in this section the GraphSAVE procedure as an extension of the SAVE method to
the high-dimensional case. Since the procedural recipe for SAVE is almost identical to that of
SIR, the only difference appears in Steps 5-6, where instead of SZ , one uses S̃Z defined as the
sliced average variance estimate of Cook and Weisberg (1991):

S̃Z =

H∑
h=1

(I − cov(Z|Y ∈ slice h))(I − cov(Z|Y ∈ slice h))T,

with Z defined as previously and I being the identity matrix.

Steps 1-4: The same as for GraphSIR;

Step 5: Calculate in each slice the empirical covariance matrix of the Ẑi’s as

S̃h = (1/nh)

n∑
i=1

(Ẑiδh(Yi)− m̂h)(Ẑiδh(Yi)− m̂h)T,

and minimize in each slice:

min
Ωh

{
trace(S̃hΩh)− log det Ωh + λn2

∑
a6=b
| Ωh;ab |

}
,

such that Ωh � 0.

Step 6: Calculate the estimated pooled covariance matrix over the slices as:

Λ̂pooled = (1/n)
H∑
h=1

nh(Ω̂
−1
h − I)(Ω̂

−1
h − I)T.

Perform an eigenvalue decomposition on the estimated covariance matrix Λ̂pooled and
retain the eigenvectors η̂d where d = 1, . . . , D corresponding to the largest D eigenvalues.
Transform the standardized edr directions η̂d back to the original scale by returning the

estimators β̂d = Σ̂
−1/2
X η̂d for d = 1, . . . , D.

Note that for the GraphSAVE case, the procedure is computationally more intensive than
for GraphSIR especially for a larger number of slices, since an `1 minimization is performed for
each slice in Step 5. The consequence however is that, Λ̂pooled is always positive definite since
it involves a summation of positive definite matrices.

4 Theoretical properties

We allow the number of nodes, the sparsity of the graph and the number of slices to depend on
the sample size, and denote this by pn, sn and Hn.

Regularity conditions.

(a) there exist constants τ1 and τ2 such that

0 < τ1 ≤ eigmin(ΣX;0) ≤ eigmax(ΣX;0) ≤ τ2 <∞;
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(b) λn1 = O

(
(1 + pn/(sn1 + 1))

√
log pn/n

)
, where

sn1 =| S1 | −pn
S1 = {(a, b)|ΘX;0;ab 6= 0},

with ΘX;0;ab denoting the element on position (a, b) from the true concentration matrix
ΘX;0 ≡ Σ−1X;0 and | S1 | denoting the cardinality of the set.

(c) there exist constants τ3 and τ4 such that

0 < τ3 ≤ eigmin(Λ0) ≤ eigmax(Λ0) ≤ τ4 <∞;

(d) λn2 = O

(
(1 + pn/(sn2 + 1))

√
log pn/Hn

)
, where

sn2 =| S2 | −pn
S2 = {(c, d)|Ω0;cd 6= 0},

with Ω0;cd denoting the element on position (c, d) from the true concentration matrix
Ω0 ≡ Λ−10 and | S2 | denoting the cardinality of the set.

Proposition 1. Under regularity conditions (a)–(d) if
√

log pn/n = O(λn1) and
√

log pn/Hn =
O(λn2), then there exist global minimizers of (7) and (8) that satisfy

|| Θ̂X −ΘX;0 ||2F = Op((pn + sn1) log pn/n)

|| Ω̂−Ω0 ||2F = Op((pn + sn2) log pn/Hn).

The proof comes as a direct application of Theorem 1 from Lam and Fan (2009) and is
omitted. Under extra mild conditions as in Theorem 2 from Lam and Fan (2009), the graphs
can be shown to be also sparsistent, meaning that the estimated ‘0’ values in the matrices Θ̂X

and Ω̂ are identified with high probability on the correct positions.

Proposition 2. Under regularity conditions (a)–(d), we have that

|| Θ̂XΛ̂−ΘX;0Λ0 ||2= Op((log pn((pn + sn1)/n+ (pn + sn2)/Hn))1/2).

Proof. Using classical matrix norm properties we have that

|| Θ̂XΛ̂−ΘX;0Λ0 ||2 =|| Θ̂XΛ̂−ΘX;0Λ̂ + ΘX;0Λ̂−ΘX;0Λ0 ||2
=|| (Θ̂X −ΘX;0)Λ̂ + ΘX;0(Λ̂−Λ0) ||2
≤|| (Θ̂X −ΘX;0)Λ̂ ||2 + || ΘX;0(Λ̂−Λ0) ||2
≤|| Θ̂X −ΘX;0 ||2|| Λ̂ ||2 + || ΘX;0 ||2|| Λ̂−Λ0 ||2
≤|| Θ̂X −ΘX;0 ||F || Λ̂ ||2 + || ΘX;0 ||2|| Λ̂−Λ0 ||2

where || · ||2 and || · ||F denote the operator and Frobenius norms.
Now, due to symmetry and using the property of eigenvalues of matrix powers, we can rewrite

|| Λ̂ ||2 = eig−1min(Ω̂)

= eig−1min(Ω̂ + Ω0 −Ω0)
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≤ (eigmin(Ω0) + eigmin(Ω̂−Ω0))
−1

= (O(1) + op(1))−1

= Op(1).

Moreover,

|| Λ̂−Λ0 ||2 =|| Λ̂(Ω̂−Ω0)Λ0 ||2
≤|| Λ̂ ||2|| Ω̂−Ω0 ||2|| Λ0 ||2
≤|| Λ̂ ||2|| Ω̂−Ω0 ||F || Λ0 ||2
= Op(1)×Op(

√
(pn + sn2) log pn/Hn)×O(1)

= Op(
√

(pn + sn2) log pn/Hn).

As || ΘX;0 ||2= O(1), the claim follows directly after substitution.

Proposition 2 can be seen as an analog of Theorems 2 and 6 from Lin et al. (2018) for our
procedure. The point of departure from their results is the fact that we (i) drop the assumption
lim pn/n = 0 as n → ∞, (ii) use Θ̂X as estimator, rather than (1/n)

∑n
i=1XiX

T
i or the

thresholded covariance estimator of Bickel and Levina (2008a) and (iii) provide explicitly the
convergence rate.

5 Simulation study

The performance of the GraphSIR and GraphSAVE procedures has been investigated in a con-
trolled simulation study. The performance of each method was measured by

Loss =|| β̂(β̂
T
β̂)−1β̂

T − β0(β
T
0β0)

−1βT
0 ||F ,

where β̂ represents the estimated coefficient matrix, β0 represents the true coefficient matrix
and || · ||F is the Frobenius norm. Lower values of the Loss indicate better performance.

We simulated data from the following models:

Model 1: Y = X1 +X2 + σε where D = 1;

Model 2: Y = X1/(.5 + (X2 + 1)2) + σε where D = 2;

Model 3: Y = X2
1 +X2 + σε where D = 2;

Model 4: Y = (
√
X2

1 +X2
2 ) log(

√
X2

1 +X2
2 ) + σε where D = 2;

Model 5: Y = sin(X1) + cos(X2) +X3 +X2
4 + σε where D = 4;

Model 6: Y = X1/X2 +X3 + σε where D = 3.

In each model X = (X1, . . . , Xp)
T ∼ N(0,Σ) where Σ = (σij) with σij = ρ|i−j| and ρ ∈ {.5, .9}.

The errors ε followed ε ∼ N(0, 1) and σ ∈ {.2, .5}. From each model we sampled n = 100 iid
observations and for SIR-based methods the number of variables was set to p ∈ {10, 50, 100, 500},
while the number of slices was set to H ∈ {2, 5, 10, 20}. Due to computational complexity, for
SAVE-based methods the number of variables was set to p ∈ {10, 50, 100}.

We ran GraphSIR, SIR and LassoSIR (Lin et al., 2019) for models 1, 2, 5 and 6, while
GraphSAVE and SAVE are run using models 3, 4, 5 and 6. For models 1, 2, 3 and 4 only the
first two variables are active, whereas the remaining p − 2 components of X have no influence
on Y . For models 5 and 6, the first four and three variables are active, respectively.
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For each scenario 100 independent repetitions from the same generating process were per-
formed and all competitors know the true value of D. For GraphSIR and GraphSAVE the tuning
parameters have been selected with the extended BIC criterion (Foygel and Drton, 2010) on a
grid of 200 equally spaced values with hyper-parameter τ fixed at the value = .5. The criterion
is defined as:

BICγ = −2`n(Ψ̂(E)) + |E| log n+ 4|E|τ log p,

where `n(·) is the maximized Gaussian log-likelihood obtained using the estimated concentration
matrix generically denoted as Ψ̂(E), |E| is the cardinality of the estimated set of edges in the
corresponding graph associated with Ψ̂, τ in a penalty factor and p and n denote the number of
variables and sample size used in the estimation process. Note that when performing Step 1 of
the GraphSIR algorithm Ψ̂ ≡ Θ̂, while in Step 5 Ψ̂ ≡ Ω̂. Similarly, in Step 5 of the GraphSAVE
algorithm Ψ̂ ≡ Ω̂h for each slice h = 1, . . . H.

For fitting LassoSIR models we have used the available R-based package LassoSIR accompa-
nying the paper of Lin et al. (2019). The default k-fold cross-validation procedure was used to
select the tuning parameters in this case. In the case of the penalized LassoSIR procedure, for
some settings the procedure provides error messages and does not converge for any of the 100
repetitions and when LassoSIR did not converge, we have set its Loss index to ‘NA’. Neither
convergence issues nor error messages have been observed for GraphSIR and GraphSAVE.

Figure 2 presents the obtained results. In the plots each symbol represents the average loss
over the 100 repetitions for each scenario. For the high-dimensional scenarios where n < p, the
classical SIR and SAVE cannot be used and as such we set also their performance index to ‘NA’
for those instances.
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Figure 2: Simulation data. Frobenius loss (smaller is better) between β̂ and the true β0 for
GraphSIR and GraphSAVE (x-axis) and competitors (y-axis). Values above the main diagonal
show a better performance of GraphSIR and GraphSAVE compared to the competitors. Each
symbol represents the empirical average of 100 repetitions from a scenario. The square symbols
represent settings where SIR, LassoSIR or SAVE did not produce a numerical solution. The
results of 256 different scenarios are plotted in panels (a) and (b) and the results of 192 different
scenarios are plotted in panel (c).

When compared to the classical SIR and the LassoSIR method, see panels (a) and (b), the
GraphSIR provided similar or better results in a large majority of different scenarios, even in
the low-dimensional settings where n > p. When compared to the classical SAVE procedure in
panel (c), the GraphSAVE method provided as well very similar results in all cases.
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We zoom-in on the results obtained and present in Figures 3 and 4 the performance of the
methods for the different values of the simulation parameters. Based on Figure 3 we conclude
that increasing p is more detrimental for SIR than for GraphSIR, while at the same time the
highly non-linear model 5 is more challenging for SIR than for GraphSIR. Figure 4 indicates
that relative to the performance of GraphSIR, models 5 and 6 are challenging for LassoSIR, but
for model 1 its performance seems to be better than that of GraphSIR. Moreover, for the cases
where LassoSIR did not converge, the number of slices was always low, H = 2, pointing to the
same limitation as for classical SIR of the dependence of the number of estimated directions on
the number of slices, which is problematic when H is small and D ≥ H.

We conclude that compared to the low-dimensional methods, the newly proposed graph
informed methods provide similar or better results for cases when n > p, with the added value
that they can also handle high-dimensional cases. Compared to the high-dimensional LassoSIR
method, the graph informed SIR proved to be a worthy competitor as it provided comparable
and close results, while in many settings being more stable in terms of convergence.

6 Real case

In this section we analyze a simplified version of the gene expression data from Scheetz et al.
(2006) to illustrate the performance of the GraphSIR and GraphSAVE methods. The data
contain information about the expression level of p = 200 genes (predictors) for a total of
n = 120 rats and is provided freely in the R-based package flare. The response is represented
by the expression level of the TRIM32 gene for all rats. This was the only gene that was found
in the original study, to have a strong positive correlation with eight different genes that were
known to cause a disorder known as Bardet-Biedl syndrome (BBS) which has vision loss as one
of its major features. Upon inspection of the data, one rat displayed gene expression levels that
were much different than the rest of the sample and has been excluded from the analysis.

The final genetic data and the correlation structure between the genes is presented in Figure
5 and it indicates that some genes have expression levels consistently higher that others, but
at the same time it illustrates that some genes are highly correlated and thus summarizing this
information under the form of a conditional independence graph brings additional information.

We evaluate GraphSIR, GraphSAVE and LassoSIR with respect to in-sample mean square
error (MSE) and leave-one-out (LOO) mean square prediction error. The evaluation strategy
goes as follows. We fit first GraphSIR, GraphSAVE and LassoSIR to the data, retain the β̂d
coefficients for each direction and standardize them to have unit norm. We then define for
each case i, a set of D new features denoted as z1,i = xT

i β̂1, . . . , zD,i = xT
i β̂D which we use as

predictors in a linear regression to model the conditional expectation of the gene expression level.
From the fitted regression model we retain next the estimated vector of coefficients denoted as
γ̂ = (γ̂1, . . . , γ̂D)T and define the two evaluation criteria as:

MSE =
1

n

n∑
i=1

(yi − zTi γ̂)2,

LOO-cv =
1

n

n∑
i=1

(
yi − zT(−i)γ̂(−i)

)2
,

where yi and zi = (z1,i, . . . , zD,i)
T represent for each case the response and the vector of new

features obtained after performing SDR. The vector z(−i) = (xT
i β̂1(−i), . . . ,x

T
i β̂D(−i))

T repre-
sents the vector of values for the new features for case i obtained when the i-th case is excluded
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from the training sample when performing SDR. Similarly, the vector γ̂(−i) represents the vector
of estimated coefficients when the i-th case is excluded when fitting the regression model.
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Figure 3: Simulation data. Frobenius loss (smaller is better) between β̂ and the true β0 for 256
scenarios split by values of p, model, values of ρ, σ and H.
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Figure 4: Simulation data. Frobenius loss (smaller is better) between β̂ and the true β0 for 256
scenarios split by values of p, model, values of ρ, σ and H.
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Figure 5: Eye data. Heatmap of the predictor gene expression levels for all subjects (left panel)
and correlations between predictor genes (right panel).

Table 1 presents the obtained results when D ∈ {1, . . . , 6} and H ∈ {2, . . . , 6} and it il-
lustrates that all three techniques provide low and very similar errors for the in-sample and
out-of-sample predictions. Note that as is the case for classical SIR also LassoSIR suffers from
the inability to estimate more than directions than slices, but no such problem is encountered
for GraphSIR and GraphSAVE.

Table 1: Eye data: MSE×102 (top panels) and LOO-cv×102 (bottom panels) error for Graph-
SIR, GraphSAVE and LassoSIR for 2− 6 slices H with 1− 6 directions D.

GraphSIR GraphSAVE LassoSIR
HHH

HHHD
H 2 3 4 5 6 2 3 4 5 6 2 3 4 5 6

1 .83 .78 .73 .78 .78 .73 .73 .73 .73 .73 .59 .57 .54 .53 .53
2 .80 .73 .73 .73 .73 .73 .73 .73 .72 .73 .56 .56 .54 .54 .52
3 .56 .72 .73 .71 .72 .71 .72 .72 .72 .72 / .54 .53 .52 .50
4 .57 .56 .72 .68 .71 .70 .71 .72 .71 .72 / / .53 .52 .49
5 .54 .54 .54 .68 .70 .68 .70 .72 .71 .68 / / / .51 .49
6 .53 .53 .53 .54 .70 .62 .67 .72 .70 .65 / / / / .47

1 .91 .81 .87 .97 .90 .76 .75 .87 .75 .76 .79 .73 .81 .77 .76
2 .95 .91 .83 .92 .86 .76 .78 .77 .77 .78 .86 .73 .78 .73 .76
3 .92 .87 .88 .88 .88 .79 .78 .78 .78 .77 / .76 .83 .74 .77
4 .94 .85 .90 .90 .90 .79 .78 .79 .79 .77 / / .86 .75 .79
5 .96 .85 .92 .88 .94 .78 .80 .79 .78 .74 / / / .79 .76
6 .93 .85 .95 .89 .94 .76 .85 .79 .78 .75 / / / / .74

In Figure 6 the estimated sparse graph is plotted in panel (a) alongside scatterplots of
the observed versus fitted values in panels (b)-(f) using GraphSIR with three slices and five
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directions. This choice was made to illustrate that the proposed method produces meaningful
results even when D > H. Panel (a) suggests that the conditional independence gene graph
is relatively sparse, but identifies a group of interconnected genes that are mostly linked to a
central, ‘hub’ gene. Panels (b)-(f) indicate that all five estimated directions tend to be positively
correlated with the observed responses, thus indicating a good fit to the data. As a global
summary, we fitted next the regression model of the response, the expression level of gene
TRIM32, on the five selected directions and the obtained R2 measure was 46%. A further
residual analysis showed no serious deviations were the usual assumptions.
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Figure 6: Eye data. The estimated graph obtained from Θ̂X in panel (a) and scatterplots of
the observed values y versus predicted values from GraphSIR with H = 3 and D = 5 in panels
(b)-(f).

As we have mentioned in Section 1, the graph based procedures can be used also when the
slicing variable is binary. To this end, we analyze the breast cancer data used in Augugliaro
et al. (2013) where the purpose is to use genetic information to discriminate between subjects
having cancer or not. The sample size is 52 and the number of genetic features is 287. The
evaluation is very similar to the previous analysis: we fit GraphSIR and LassoSIR to the data,
retain the β̂d coefficients and then define for each case i, a set of D new features denoted as
z1,i = xT

i β̂1, . . . , zD,i = xT
i β̂D which we use as predictors in a logistic regression. With the fitted

model, we estimate next the probability of belonging to the cancerous group or not and evaluate
the two competitors using ROC curves. The obtained results are presented in Figure 7 and we
stress that LassoSIR cannot estimate more than one effective direction for this example, while
GraphSIR does not suffer from this shortcoming. Moreover, the figure indicates that using one
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direction in this case leads to suboptimal classification results and that the GraphSIR method
is able to pick up more signal in the data due to the possibility of estimating more directions
than available slices.
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Figure 7: Breast cancer data. Estimated ROC curves for GraphSIR with d = 1, 5 or 10 and
LassoSIR with d = 1 using a binary slicing variable. The solutions using d = 1 overlap in the
figure.

7 Discussion

We present in this manuscript a high-dimensional version of slice inverse regression and an
extension to the high-dimensional version of slice average variance estimation. Both approaches
are rooted in a graph informed context, where high-dimensional graphs are used to extend the
classical versions of SIR and SAVE.

The application on simulated data reveals that there is a substantial gain to be made by
using the graph informed versions even for low-dimensional settings, where the performance was
similar or better than that of the competitors, while the application to real data reveals once
more that the graph based SIR is a worthy competitor to the high-dimensional LassoSIR.

Other extensions to other SDR techniques are as well possible in this framework, but not
pursued here. The most obvious one would be to allow for a convex combination between the
estimated matrices needed for GraphSIR and GraphSAVE as was proposed in Zhu et al. (2007).
Instead of the `1 penalty, one could use a grouping or a fused penalty for the edge estimation
as in Danaher et al. (2014) and Pircalabelu et al. (2016). If the multivariate normality of the
vector X is considered too strong, then one can optimize the D-trace loss as in Zhang and Zou
(2014), and if sparsity is desired at the level of the directions as well, then one can use a different
constraint similar to what Molstad and Rothman (2018) propose. All of these extensions fall
into the category of graph informed SDR and are directly applicable in the current framework.
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Meinshausen, N. and Bühlmann, P. (2006). High-dimensional graphs and variable selection with

the lasso. The Annals of Statistics, 34(3):1436–1462.
Molstad, A. J. and Rothman, A. J. (2018). Shrinking characteristics of precision matrix estima-

tors. Biometrika, 105(3):563–574.
Pircalabelu, E., Claeskens, G., and Waldorp, L. J. (2016). Mixed scale joint graphical lasso.

17



Biostatistics, 17(4):793–806.
Radchenko, P. (2015). High dimensional single index models. Journal of Multivariate Analysis,

139(C):266 – 282.
Ravikumar, P. D., Raskutti, G., Wainwright, M. J., and Yu, B. (2008). Model selection in Gaus-

sian graphical models: High-dimensional consistency of l1-regularized MLE. In Proceedings
of the 22nd Annual Conference on Neural Information Processing Systems, pages 1329–1336.
(NIPS).

Scheetz, T., Kim, K.-Y., Swiderski, R., Philp, A., Braun, T., Knudtson, K., Dorrance, A.,
DiBona, G., Huang, J., Casavant, T., Sheffield, V., and Stone, E. (2006). Regulation of gene
expression in the mammalian eye and its relevance to eye disease. Proceedings of the National
Academy of Sciences, 103(39):14429–14434.

Shin, S. J. and Artemiou, A. (2017). Penalized principal logistic regression for sparse sufficient
dimension reduction. Computational Statistics & Data Analysis, 111:48 – 58.

Shin, S. J., Wu, Y., Zhang, H. H., and Liu, Y. (2017). Principal weighted support vector
machines for sufficient dimension reduction in binary classification. Biometrika, 104(1):67–81.

Wang, Q. and Yin, X. (2008). A nonlinear multi-dimensional variable selection method for high
dimensional data: Sparse mave. Computational Statistics & Data Analysis, 52(9):4512 – 4520.

Witten, D. M., Friedman, J. H., and Simon, N. (2011). New insights and faster computations
for the graphical lasso. Journal of Computational and Graphical Statistics, 20(4):892–900.

Xia, Y., Tong, H., Li, W. K., and Zhu, L.-X. (2002). An adaptive estimation of dimension
reduction space. Journal of the Royal Statistical Society: Series B, 64(3):363–410.

Zhang, T. and Zou, H. (2014). Sparse precision matrix estimation via lasso penalized d-trace
loss. Biometrika, 101(1):103–120.

Zhu, L., Miao, B., and Peng, H. (2006). On sliced inverse regression with high-dimensional
covariates. Journal of the American Statistical Association, 101(474):630–643.

Zhu, L., Ohtaki, M., and Li, Y. (2007). On hybrid methods of inverse regression-based algo-
rithms. Computational Statistics & Data Analysis, 51(5):2621 – 2635.

Zhu, L.-P. and Zhu, L. (2009). Nonconcave penalized inverse regression in single-index models
with high dimensional predictors. Journal of Multivariate Analysis, 100(5):862 – 875.

18


	Motivation
	Introduction to Sufficient dimension reduction and Probabilistic graphs
	Sufficient dimension reduction models
	Probabilistic graphical models

	Graph informed procedure
	The GraphSIR case
	The GraphSAVE case 

	Theoretical properties 
	Simulation study
	Real case
	Discussion

