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Reconfigurable DPD Based on ANNs for Wideband
Load Modulated Balanced Amplifiers Under
Dynamic Operation From 1.8 to 2.4 GHz

Estefanı́a Guillena, Student Member, IEEE, Wantao Li, Student Member, IEEE, Gabriel Montoro, Member, IEEE,
Roberto Quaglia, Member, IEEE, and Pere L. Gilabert, Senior Member, IEEE

Abstract—This paper proposes a methodology to ensure linear
amplification of a load modulated balanced amplifier (LMBA)
while keeping the power efficiency as high as possible over a
frequency band ranging from 1.8 to 2.4 GHz and where the trans-
mitted signals can present different bandwidth configurations.
The proposed reconfigurable linearization methodology consists
of, in a first step, tuning some free-parameters (with dependence
on the signal bandwidth and frequency of operation) of the load
modulated balanced amplifier (LMBA) to trade-off linearity and
power efficiency. In a second step, two multi-purpose adaptive
digital predistortion (DPD) linearizers are considered, properly
combined with crest factor reduction (CFR) techniques, to meet
the required linearity specifications. Either a DPD based on
artificial neural networks or a DPD based on polynomials can be
selected taking into account the compromise between computa-
tional complexity and linearization performance. Experimental
results will validate the proposed methodology to guarantee
the linearity levels (ACPR<-45 dBc and EVM<1%) with high
power efficiency in an LMBA under dynamic transmission, where
both the signal bandwidth (from 20 MHz and up to 200 MHz
instantaneous bandwidth) and frequency of operation (in the
range of 1.8 to 2.4 GHz) change.

Index Terms—artificial neural network (ANN), digital pre-
distortion (DPD), load-modulated balanced amplifiers (LMBA),
power efficiency.

I. INTRODUCTION

POWER-EFFICIENT amplification has been a hot research
topic since the introduction of non-constant envelope

digital modulations. Starting from W-CDMA in 3G, the peak-
to-average power ratio (PAPR) of signals have kept increasing
through the use of Orthogonal Frequency Division Multiplex-
ing (OFDM) in 4G (LTE, LTE-Advanced), and now cyclic
prefix OFDM in New Radio (NR) 5G. In addition, in order
to satisfy the requirements for higher transmission rates, the
signal bandwidths that the amplification architectures have to
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accommodate are always increasing (e.g., from a few MHz
in 3G, to tenths of MHz in 4G, to hundreds of MHz in NR
5G). In addition, efficient amplification is required in several
frequency bands in NR 5G with multiple numerology (i.e.,
subcarrier spacing) and channel bandwidths. This demands
providing the baseband processing with some degree of recon-
figurability to adapt to the changing transmission requirements.

When dealing with signals presenting high PAPR, the
power amplifier (PA) needs to operate at large power back-
off leading to a serious degradation of average efficiency.
To avoid wasting excessive power resources, highly efficient
amplification architectures based on dynamic load or dynamic
supply modulation have been proposed in the literature. Some
of the most popular solutions are envelope tracking PAs [1],
Doherty PAs [2], [3], load modulated balanced amplifiers
(LMBA) [4], [5] and LINC or outphasing PAs [6], [7]. In
each case, these highly efficient topologies require the use
of digital predistortion (DPD) linearization to guarantee the
stringent linearity requirements of today’s systems, especially
with the increasing signal bandwidth.

All power amplifier architectures based on active load
modulation, such as Doherty, LMBA and outphasing, rely
on the non-linear interaction between multiple transistors to
enhance the average efficiency in presence of modulated
signals with large dynamic range. While these architectures
can be designed with a single RF input to simplify their use
in a transmitter, there are benefits in maintaining separate
inputs controlled by different up-converter chains. Therefore,
the additional degrees of freedom offered by the separate
inputs can be used to optimize the performance on the
same or larger bandwidth, or to improve other performance
metrics such as linearity and average efficiency. In [8], for
example, the authors propose the use of machine learning
techniques to optimize the configuration parameters of a dual-
input Doherty PA. Particularizing for dual-input LMBAs, the
configuration of certain key free-parameters influencing the
inherent linearity versus power efficiency trade-off is explored
in [9], [10]. Among the different degrees of freedom that can
be considered to optimize the LMBA performance, in [9] the
authors proposed a method for predicting the optimum relative
phase shift between the two input modulated signals to the
LMBA that maximize linearity levels.

Some previous works published in literature addressing the
linearization of LMBAs tested the PA with OFDM-based
modulated signals but with moderate bandwidths (i.e., sev-
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Fig. 1. Block diagram of the LMBA architecture with DPD linearization.

eral tenths of MHz), where the use of memory polynomial
(MP), e.g., in [11], [12], or generalized memory polynomial
(GMP), e.g., in [13], behavioral models was enough to meet
the out-of-band linearity specifications. To the best authors
knowledge, the linearization of LMBAs taking into account
signal bandwidths of hundreds of MHz (thus, taking advantage
of the broadband nature of LMBAs), up to now has been
only addressed in [14] and [15]. On the one hand, in [14],
the authors address the linearization of a supply-modulated
LMBA when considering, among others, a NR-5G signal of
100 MHz instantaneous bandwidth. By considering a GMP-
based DPD, the out-of-band linearization specifications cannot
be met for the 100 MHz bandwidth signal. By using an ideal
indirect learning control (sic), however, they show that the
linearity specs could somehow be met. On the other hand,
in [15], the authors presented the design and linearization of
a LMBA that was tested with several OFDM-based signals
taking into account bandwidths up to 200 MHz. With this last
challenging bandwidth configuration of ten-carrier 200 MHz
OFDM signal with 10 dB of PAPR, however, the reported
adjacent channel leakage ratio (ACLR) after DPD linearization
could not reach the threshold of -45 dBc using the magnitude-
selective affine (MSA) function model for DPD. Moreover,
none of the aforementioned papers addressing the linearization
of LMBAs, provide information of the error vector magnitude
(EVM) to quantify the in-band distortion, which may be of
concern when operating PAs with broadband signals.

In this paper, a significant step forward is taken with respect
to our previous work in [9], by proposing a methodology
to ensure power efficient amplification from 1.8 GHz up
to 2.4 GHz allowing reconfigurability to meet the linearity
specifications in a dynamic environment, where the center
frequency and bandwidth of the transmitted signal change.
Consequently, in this dynamic environment, the adaptive DPD
linearizer can be reconfigured by selecting different behavioral
models according to the bandwidth of the signal. For example,
when modeling strong nonlinearities with significant memory
effects, the artificial neural network (ANN) DPD [16]–[18],
can provide robust global estimation capabilities in contrast to
the more local estimations provided by the polynomial-based
DPD. For signal bandwidths of hundreds of MHz, we show in
this paper that, given the difficulty of meeting the out-of-band
linearity specifications when considering polynomial-based

behavioral models, the use of ANNs for DPD linearization is
justified. Therefore, unlike previously reported solutions, the
ANN-based DPD proposed in this paper is capable to meet
the ACPR specs (i.e., <-45 dBc) with EVM figures lower
than 1% when considering 4 non-contiguous LTE-20 signals
of 200 MHz total bandwidth.

Accordingly, the remainder of this paper is organized as
follows. Section II presents a brief description of the LMBA
used in this paper. Section III describes the proposed method-
ology to properly configure the free-parameters involved in
the LMBA configuration to maximize linearity and power
efficiency. Section IV describes the DPD linearization strategy
followed, where both GMP and ANN-based DPDs are used.
Details on the ANN configuration and the low-complexity
adaptation strategy following a direct learning approach are
also discussed. Section V describes the experimental test bench
and shows experimental results including DPD linearization
when considering a dynamic transmission environment (i.e.,
considering different center frequencies and signal bandwidths
of the transmitted signal over a frequency band ranging from
1.8 GHz up to 2.4 GHz). Finally, the conclusion is given in
section VI.

II. LOAD MODULATED BALANCED AMPLIFIER

In this paper, the LMBA presented in [5] is used as device
under test (DUT). A simplified block diagram of the DUT and
the DPD linearizer is shown in Fig. 1. There are two separate
RF inputs; x1 controls the balanced power amplifier (BPA)
pair, based on two CGH40025F transistors from Wolfspeed,
biased in class AB with VGG,1 at -2.8 V corresponding to
80 mA of quiescent drain current; x2 controls the control
signal power (CSP) amplifier, also based on a CGH40025F,
and biased in class C, with VGG,2 left as a free parameter
within the range of DC voltages -3.5 V to -5.5 V. The matching
networks and the output hybrid couplers are based on soft-
board microstrip networks, with SMD capacitors and resistors
for the by-pass and stabilization networks. An off-the shelf
hybrid is used on the input. The circuit is mounted on an
aluminium fixture, and SMA coaxial launchers are used for
the RF ports.

The CW measurements reported in [5] showed, over the 1.7–
2.5 GHz frequency range, a maximum power larger than 63 W,
and an 8 dB back-off efficiency exceeding 39%. Modulated
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signal measurements were also performed with 5 MHz and
20 MHz channel LTE signals, showing the linearizability of
the LMBA under these conditions. Both sets of measure-
ments were performed with a manual search for the optimum
amplitude, phase and bias settings. In particular, the relative
phase was maintained at a constant offset that led to a good
compromise between output power and back-off efficiency,
while the relative amplitude was following a square relation
between the BPA and CSP inputs [5].

It is important to stress out that, when considering signals
with bandwidths of several tenths or even hundreds of MHz
with PAPRs exceeding 8 dB (e.g., typical PAPRs of carrier
aggregated signals around 10 dB or higher), the average power
efficiency shown by this particular LMBA decreases quite
abruptly. However, the tuning and linearization methodology
proposed in this paper is valid for addressing the inherent
linearity versus power efficiency trade-off, independently on
the specific power efficiency profile shown by the specific
LMBA DUT.

The methodology proposed in this paper to cope with the
LMBA linearity versus efficiency trade-off, when considering
a dynamic scenario in which the transmitted signal config-
uration can change, in terms of bandwidth and frequency of
operation in the range of 1.8 to 2.4 GHz, is depicted in the flow
chart of Fig. 2. The first part of this flow chart corresponds
to the tuning of the specific free-parameters of the LMBA
(e.g., the phase shift or the amplitude relationship between
the main and the auxiliary signal) that have an impact on
its linearity and power efficiency. As it will be discussed in
section III, the optimal value of these parameters depends
on the signal bandwidth and frequency of operation. Once
these parameters are properly tuned, in the second part of
the flow chart (see Fig. 2), crest factor reduction (CFR) and
adaptive DPD linearization techniques are applied to meet the
required linearity specifications (i.e., ACPR < -45 dB) with
the best possible power efficiency. Details on the architecture
and adaptation process of the proposed DPD linearizers and
the criteria to choose one over the other, will be discussed in
section IV.

III. CONFIGURATION OF THE LMBA FREE-PARAMETERS

Some of the free-parameters of the dual-input LMBA that
can be tuned to trade-off linearity and power efficiency are
described in the following. Taking into account the notation
in the block diagram of Fig. 1, the complex BPA signal is
defined as x1[n] = x[n], where x[n] is the signal at the output
of the DPD. The complex CSP signal x2[n] is generated using
a shaping function that controls the relative amplitude between
the BPA and CSP inputs. More specifically, the CSP signal
x2[n] is defined as

x2[n] = xsf [n]eiΨrel (1)

where Ψrel is the relative phase in radians between the
BPA and CSP signals; and where the signal after the shaping
function xsf [n] is defined as

xsf [n] = As[n]K0e
iφx (2)

Signal configuration
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Fig. 2. Flow chart for the LMBA linearization and power efficiency enhance-
ment.

where K0 = max{|x[n]|}
max{|As[n]|} , φx = phase{|x[n]|} and the

amplitude relationship between the two signals is given by
the following expression, which is a simplified version of the
shaping function used in [9], where xmin = 0 and thus,

As[n] = (|x[n]|6)
1
p (3)

with p being the degree of the root.
In order to determine the optimal value of some free-

parameters such as the relative phase (Ψrel) or delay between
the the BPA and CSP signals, or the degree of the root p; a 20
MHz bandwidth LTE signal (LTE-20) with a PAPR of 10.2 dB
was used to evaluate the linearity and power efficiency when
tuning these parameters. In addition, another free-parameter
to be tuned is the gate voltage of the CSP amplifier, VGG,2,
that can be set to operate between a deep-class C condition
that should favour efficiency, and a near-class B bias where
linearity should improve.
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A. Selection of the Baseband Delay

In a first step towards the optimal tuning, the objective is
to find a baseband time-delay between the LMBA inputs to
balance the lower-band and upper-band ACPR of the LTE-
20 test signal at the output of the LMBA. Fig. 3 shows the
NMSE and ACPR of the amplified output for different delay
samples between the LMBA inputs when considering the LTE-
20 signal at 2 GHz center frequency, the optimum phase-shift
in terms of linearity and p=3. As observed, the best NMSE
values are for delays close to 0. However, without any delay,
there is an ACPR difference of about 3 dB between the lower
and upper bands. Therefore, for the sake of linearizability, a
baseband delay of -2 samples is chosen to balance the ACPR
in the lower and upper bands.

B. Estimation of the polynomial fitting to predict the optimal
phase shift

As introduced in [9], the phase shift between the LMBA’s
main and auxiliary signals has a strong impact on its linearity.
Consequently, selecting an optimal phase shift is of crucial
importance, because with certain phase-shift configurations it
is not possible to meet the linearity requirements even by
applying DPD linearization. In addition, the optimal phase-
shift depends on the specific frequency of operation.

Considering an LTE-20 test signal and fixing the degree
of the root in (3) to p = 3, the effect on linearity of the
phase shift between the LMBA’s inputs for different center
frequencies is shown in Fig. 4 and Fig. 5 in terms of NMSE
and ACPR, respectively. However, as shown in Fig. 6, the
power efficiency, despite having a strong dependence with the
center frequency of operation (with its maximum value around
2 GHz), it is quite invariant with the phase shift between the
LMBA inputs.

In terms of ACPR and NMSE, this optimal phase shift has
a trend that can be predicted using a polynomial regression, as
reported in [9]. In this paper, we have considered polynomial
regressions of degrees 1, 3 and 5 and a piecewise regression
of degree 1. Fig. 7 shows the measured upper and lower limit

Fig. 4. NMSE value for different center frequencies and different phase shifts
between the LMBA’s input signals.

Fig. 5. Worst ACPR for different center frequencies and different phase shifts
between the LMBA’s input signals.

of the NMSE and ACPR over frequency when considering for
each center frequency the worst and best phase shift, respec-
tively. In addition, NMSE and ACPR values obtained with the
predicted optimal phase-shifts using the different regression
strategies are also shown. With all of them, the predicted
phase-shift resulted in NMSE and ACPR values close to the
lower bound for all the frequency range. However, the best
prediction was obtained with a simple linear regression or
the piecewise functions. From now on, these two regression
approaches will be used to predict the optimal phase-shift in
terms of linearity.

The polynomial regressions were extracted from data mea-
surements of an LTE-20 signal. In order to validate that the
optimal phase-shift predictions are valid when considering
other signals with different bandwidths, Fig. 8 and Fig. 9 show
the results for LTE signals with total bandwidths of 60 MHz
and 200 MHz, respectively (further details on these test signals
are given in section V). As observed, the NMSE and ACPR
values obtained with the predicted optimal phase-shifts are
very close to the optimal values (i.e., the lower bound) found
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Fig. 6. Drain efficiency for different center frequencies and different phase
shifts between the LMBA’s input signals when considering an LTE-20 test
signal with 10.2 dB of PAPR.
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from measurements into the entire frequency range.

C. Selection of the optimal ranges of p and VGG,2

The last step proposed to configure the LMBA consists of a
fine tuning of the parameter p in (3) and the auxiliary amplifier
supply voltage, VGG,2 (see Fig. 1).

As reported in [9], for values higher than p = 4 the power
efficiency starts dropping significantly, while there is a sweet
spot for linearity, in terms of NMSE and ACPR, around the
value of p = 5. With these results we can make a fine
adjustment of this parameter setting the value of p between
3 and 5.

To analyze the effect of the auxiliary PA gate voltage, we
carried out a sweep of VGG,2 exciting the LMBA with an LTE-
20 signal at 2 GHz, with an optimal phase shift of Ψrel = 260◦

and p = 3. Fig. 10 shows how the NMSE and ACPR values get
better for VGG,2 between -3.5 V and -4 V, while slightly higher
power efficiency (the maximum variation of power efficiency
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Fig. 8. NMSE and ACPR values for a NC 2×LTE-20 test signal of 60 MHz
total bandwidth.
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is only 0.5 percentage points) is observed for VGG,2 between
-3.9 V and -4.9 V.

IV. DIGITAL PREDISTORTION LINEARIZATION

Once the LMBA is properly tuned, the most suitable (in
terms of linearization performance and computational com-
plexity) linearization method is selected, as depicted in the
flow chart of Fig. 2. In the following subsections we will
describe both the polynomial-based DPD and the ANN-based
DPD, providing specific details on the adaptation required to
ensure reconfigurability to cope with dynamic environments.

A. Polynomial-Based Adaptive DPD

A common approach in literature for DPD is the use of
behavioral models in the form of simplified versions of the full
Volterra series. The generalized memory polynomial (GMP) is
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a popular candidate since it introduces bi-dimensional kernels
(considering cross-term products between the complex signal
and the lagging and leading envelope terms) which increase the
capability to compensate for the PA memory effects. Following
the notation of the block diagram in Fig. 11, the input-output
relationship at the DPD block is defined as

x[n] = u[n]− d[n] (4)

where x[n] is the signal at the output of the DPD block, u[n]
is the input signal and d[n] is an error signal that can be
described following a generic GMP structure as

d(n) =

La−1∑
l=0

u(n− l)ϕal (|u(n− l)|)

+

Lb−1∑
l=0

Mb∑
m=1

u(n− l)ϕbl,m(|u(n− l −m)|) (5)

+

Lc−1∑
l=0

Mc∑
m=1

u(n− l)ϕcl,m(|u(n− l +m)|)

where ϕ(·) are generic non-linear functions that depend on
envelope terms. These nonlinear functions can be described
by polynomials as in the case of the original GMP [19],
or by B-splines as presented in [9]. In any case, the GMP
is a parametric model that can be expressed as the linear
combination of non-linear basis functions weighted by some
parameters. In general, (4) can be rewritten in a matrix notation
as,

x = u−Uw (6)

where U is the data matrix containing the DPD basis functions
and w is the vector of parameters. By following a direct
learning approach (see Fig. 11) the vector of parameters can
be estimated iteratively as follows

wj+1 = wj + µj
(
UHU

)−1

UHe (7)

where µj is the learning ratio at iteration j and e is the DPD
error vector defined as

e =
y

G0
− u (8)

PA

[ ]u n [ ]x n [ ]y n

Coeff. 

Update

DPD

ω

-

0G

0[ ] [ ] [ ]e n y n G u n 

Fig. 11. Adaptive DPD architecture following a direct learning approach.

where G0 determines the desired linear gain of the PA, and
where y and u are the PA output and transmitted input data
vectors, respectively.

B. Adaptive DPD Based on Artificial Neural Networks

The most commonly used ANN architecture for DPD
linearization is the feedforward time-delayed neural network
(FTDNN). In order handle complex data, real-valued (RV)
FTDNN are used taking as inputs the in-phase (I) and
quadrature (Q) components of the complex signal. Moreover,
additional terms, such as envelope or phase terms, are included
as inputs to the RV-FTDNN [16], [18], [20], to improve its
linearization performance.

In order to select the different hyper-parameters of our
ANN (such as the architecture of the network, the input
variables, the number of hidden layers and the number of
neurons per layer), we ran some preliminary tests to model
the LMBA nonlinear behavior when excited with a challenging
signal composed by 4 non-contiguous LTE-20 channels over
a total bandwidth of 200 MHz. As a result, Fig. 12 shows
the proposed RV-FTDNN network, composed of 4 hidden
layers (i.e., NHL = 4) and a distribution of 20, 20, 10 and
10 neurons per hidden layer, respectively. The input values
correspond to the I and Q components of the signal (i.e, uI [n]
and uQ[n] in Fig. 12), including time-delayed components up
to a certain memory depth (e.g., 7 delay taps) and envelope
dependent terms (i.e. |u[n]|p with p = 1, · · · , 4) including also
their time-delayed values. A total of N0 = 48 inputs to the
ANN were considered. After running several tests evaluating
the performance obtained with different activation functions in
the hidden layers of the ANN, the sigmoid tangent function
was selected. It is mathematically equivalent to the hyperbolic
tangent function but its Matlab implementation runs faster.
Finally, a linear function was selected in the output layer.

Taking into account the RV-FTDNN depicted in Fig. 12 and
considering an input layer with N0 inputs, the input-output
relationship for both I and Q components is defined in (9) and
(10), respectively:

xI [n] =

N4∑
s=1

ω5
1,s f

4

(
N3∑
k=1

ω4
s,k f

3
( N2∑
j=1

ω3
k,j f

2
( N1∑
l=1

ω2
j,l

f1
( N0∑
i=1

ω1
l,i ϕi[n] + σ1

l

)
+ σ2

j

)
+ σ3

k

)
+ σ4

s

)
+ σ5

1 (9)
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Fig. 12. RV-FTDNN network composed of 4 hidden layers and a distribution of [N1, N2, N3, N4] = [20, 20, 10, 10] neurons per hidden layer.
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where ϕi[n] with (i = 1, · · · , N0) are the inputs to the
ANN (e.g., ϕ1[n] = uI [n], ϕ2[n] = uI [n−1], etc.), ωma,b (with
m = 1, · · · , NHL+1) are synaptic weights of the network, the
values of σma are the bias, fr(·) (with r = 1, · · · , NHL) are the
activation functions and Nr are the number of neurons per hid-
den layer. As explained before, in our particular ANN for DPD
purposes NHL = 4 and [N1, N2, N3, N4] = [20, 20, 10, 10].
The number of coefficients of the proposed RV-FTDNN results
from the sum of the number of weights and the number of
biases, and thus O = (N0N1 + N1N2 + N2N3 + N3N4 +
2N4) + (N1 +N2 +N3 +N4 + 2).

ANN-based DPD can be applied adaptively or non-
adaptively (i.e., in open-loop). If a non-adaptive scheme is
chosen, the ANN coefficients are configured through prior
training and remain fixed over time. However, if an adaptive
implementation is considered, the coefficients of the ANN
are updated by retraining the network over time. This im-
plementation allows us to adjust the ANN DPD to time-
varying LMBA behavior or to a dynamic environment where
the transmitted signal characteristics change over time. For
example, in systems where a general-purpose DPD has to cope
with different signal bandwidths at different center frequencies
or operating the PA with different output back-off levels,
some reconfigurability of the DPD parameters is required.
Therefore, although we start from an initial condition of the
DPD parameters obtained in an off-line training, if we want
the best DPD linearization performance for specific operating
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Fig. 13. Adaptive ANN-based DPD following a direct learning approach.

conditions (i.e., for a given signal input power, bandwidth,
center frequency, etc.), coefficients adaptation is required.

The block diagram in Fig. 13 shows the proposed adap-
tive ANN DPD implementation following a direct learning
approach. The Levenberg-Marquardt (LM) backpropagation
algorithm is used to calculate the RV-FTDNN coefficients by
minimizing the mean square error (MSE) cost function C in
(11) for each training data batch of length K samples. This
forward-backward process is repeated until the desired mod-
eling performance is met or the ANN fails in the validation
procedure [21].

C =
1

2K

K∑
n=1

(
êI [n]− eI [n]

)2
+
(
êQ[n]− eQ[n]

)2
(11)

=
1

2K

K∑
n=1

∣∣∆e[n]
∣∣2
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where K is the data batch length and ∆e is the data batch
error vector (see Fig. 13) of K samples defined as,

∆e = ê− e (12)

with e being the residual linearization error vector defined
in (8) and ê being the estimated residual linearization error
defined as follows

ê = x− x̂ (13)

where x[n] = xI [n] + jxQ[n] is the predistorted output signal
and x̂[n] = x̂I [n] + jx̂Q[n] is the output signal (I/Q pairs)
produced at the output layer of the training ANN, as depicted
in Fig. 13. The cost function C is minimized according to
the LM algorithm and with respect to the vector of coeffi-
cients α =

[
w1

11 · · ·w1
N1N0

θ1
1 · · · θ1

N1
· · ·w5

11 · · ·w5
2N4

θ5
1θ

5
2

]T
containing the weights and biases of the RV-FTDNN. When
going backwards, α is updated at every epoch j as

αj+1 = αj −
(
JTJ + λI

)−1

JT∆e (14)

where I is the identity matrix, λ is the damping factor and J
is the Jacobian matrix being calculated over the error vector
∆e with respect to α as

J =



∂∆e[1]
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11

∂∆e[1]
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. . .
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...
∂∆e[K]

∂w1
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∂∆e[K]

∂w1
12

. . .
∂∆e[K]

∂θ5
1

∂∆e[K]

∂θ5
2


(15)

Fig. 14 presents a comparison of the linearization perfor-
mance (in terms of ACPR) versus number of averages of
the measured PA output signal, when considering adaptation
and open-loop ANN DPD. The ACPR results shown with
the adaptive DPD were obtained after 3 update iterations
(independently of the number of averages considered) from
the initial configuration of parameters. This initial parameter
estimation was carried out in a preliminary off-line training
and corresponds to the parameter configuration that is perma-
nently used in the open-loop (non-adaptive) DPD. As it will
be further described in section V, the test signal used consisted
of 4 non-contiguous LTE-20 channels over a total bandwidth
of 200 MHz. It is well-known that, considering the test bench
described in section V, by averaging several captures of the
PA output signal we can reduce the noise floor and thus
enhance the DPD linearization capabilities. Consequently, a
straightforward conclusion derived from the results depicted
in Fig. 14 is that adaptive DPD, with proper averaging, can
outperform the spectral regrowth compensation obtained by
the open-loop ANN DPD by more than 4 dB.

One of the main problems of the adaptive ANN DPD,
besides the computational complexity, is the required training
time for each update. In order to reduce the retraining time be-
tween adaptations we have followed two approaches: limiting
the number of ANN training epochs and reducing the number
of training samples. Several techniques have been proposed
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Fig. 14. ACPR values for an adaptive and non-adaptive implementation of
the ANN DPD for different number of averages.

in literature to select the most relevant training data allowing
a reliable estimation without significant loss of performance
[18], [22]. In this paper we have used the mesh selecting
method proposed in [22].

V. EXPERIMENTAL TEST BENCH AND RESULTS

A. Experimental Test Bench

The dual-input PA system was experimentally evaluated
using a Matlab-controlled digital linearization test bench,
as shown in Fig. 15, interfacing waveform generation and
acquisition instruments. In order to compensate for the out-
of-band distortion, a 614.4 MSa/s DPD signal was digitally
up-converted to the 2 GHz RF frequency, and digital to analog
converted (through the AWG M8190A from Keysight, with a
clock rate of 7.9872 GHz and 14 bits) to feed the dual-input
PA. The PA output signal was attenuated, RF sampled with
the digital storage oscilloscope (DSO) Keysight 90404A at 20
GSa/s with 8-bit resolution (applying averages to reduce the
noise floor), digital down-converted and resampled for time-
alignment and DPD processing. A Keysight N9020A MXA
signal analyzer was used to characterize the spectrum at the
output of the PA.

The data set used for off-line training the ANN consisted of
307200 complex-valued data samples. The estimated parame-
ters of the ANN were later validated and eventually adapted (in
a different time-scale than real-time) in closed-loop DPD using
different batches of 307200 complex-valued data samples at
each iteration. In the case of the GMP-based DPD, no off-line
training was applied a priori. Instead, the coefficients were
directly adapted from scratch in the DPD observation loop
considering also different batches of 307200 complex-valued
data samples at each iteration.

B. GMP versus ANN DPD for Different Signal Bandwidths at
2 GHz RF Center Frequency

In a first approach, we wanted to evaluate when (or if)
it is worth using ANNs instead of simplified Volterra series
behavioral models, such as the GMP. Even though ANNs
can outperform the linearization capabilities of polynomial-
based behavioral models, the price to pay is an increase of
computational complexity, for example, stated in terms of
number of parameters. Therefore, with this objective in mind,
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TABLE I
COMPARISON OF ANN-BASED AND GMP-BASED DPD FOR DIFFERENT TEST SIGNALS AT 2 GHZ RF CENTER FREQUENCY.

DPD type Signal type Worst ACPR NMSE EVM Num. Coff.
No DPD -35.0 dB -26.4 dB 2.4 % —
GMP 64-QAM LTE-20, BW=20 MHz -51.0 dB -39.3 dB 0.7 % 248
ANN (mem. depth =7) -52.9 dB -40.4 dB 0.6 % 1742
No DPD -32.1 dB -24.1 dB 2.7 % —
GMP NC 64-QAM 2×LTE-20, BW=60 MHz -51.0 dB -39.6 dB 0.6 % 248
ANN (mem. depth =7) -49.9 dB -39.2 dB 0.6 % 1742
No DPD -28.4 dB -19.8 dB 4.7 % —
GMP NC 64-QAM 4×LTE-20, BW=200 MHz -35.4 dB -28.0 dB 2.1 % 248
ANN (mem. depth =7) -44.0 dB -35.9 dB 0.7 % 1742
ANN (mem. depth =9) -46.2 dB -36.3 dB 0.9 % 1982

DSO Keysight 90404A

AWG Keysight M8190A

Drivers Minicircuits:
 ZHL-16W-43-S+
 ZHL-30W-252-S+

LMBA DUT: 
 BPA based on 2 Wolfspeed

CGH40025F transistors 
 CSP based on Wolfspeed

CGH40025F 

Power 
supply
Power 
supply

MXA Keysight N9020A

PC + Matlab

Power 
supply

Fig. 15. Laboratory test bench including the LMBA used as DUT.

the LMBA was excited with different test signals in order
to evaluate linearization performance of both ANN-based and
GMP-based DPD linearizers. The test signals’ characteristics
as well as the LMBA delivered output power and power
efficiency achieved with these signals are described in the
following:

1) A 64-QAM LTE-20 signal of 20 MHz total bandwidth,
centered at 2 GHz and with 10.2 dB of PAPR. With this
test signal the LMBA was operated to deliver around
35.5 dBm mean output power with a power efficiency
around 28%.

2) 2 non-contiguous 64-QAM LTE-20 (NC 2×LTE-20)
signal of 60 MHz total bandwidth, centered at 2 GHz
and with 10.4 dB of PAPR. With this test signal the
LMBA was operated to deliver around 35.5 dBm mean
output power with a power efficiency around 28%.

3) 4 non-contiguous 64-QAM LTE-20 (NC 4×LTE-20)
signal of 200 MHz total bandwidth centered at 2 GHz
and with 10.6 dB of PAPR. With this test signal the
LMBA was operated to deliver around 33.3 dBm mean
output power with a power efficiency around 21.4%.

The initial configuration of parameters for both GMP and
the ANN DPD behavioral models was rich enough to be able
to cope with the worst-case scenario, i.e., the linearization
of the NC 4×LTE-20 signal. Therefore, as listed in Table
I, the same amount of coefficients were used to address the
linearization of all three type of signals. Having an initial
condition for the GMP parameters is not critical, since the
parameters identification is relatively fast. However, in the

case of ANNs, the training time can be significantly long.
Consequently, it is of crucial importance to speed up the
adaptation process to have an accurate initial condition of the
ANN parameters. For that reason, targeting an agile, versatile
operation, the ANN was initially trained considering the NC
4×LTE-20 signal of 200 MHz total bandwidth. Once the ANN
is trained, it can be used as a DPD for different signals with
different bandwidth.

The training time for ANNs depends on several factors
such as: the hyper-parameters of the ANN (number of hidden
layers, neurons, etc.), the available hardware to carry out the
computation (e.g., hardware accelerators such as GPUs or
FPGAs), the software/library used (e.g., Matlab, Pytorch), the
type of solver used, the batch size or the number of epochs.
For the off-line training of the ANN parameters (i.e., the
initial condition), we used the LM algorithm provided by
Matlab without hardware accelerators, considering a batch size
of 307200 samples and without imposing limitations on the
number of epochs. Consequently, the training time was around
6 hours. However, once the initial condition for the ANN co-
efficients was estimated, in order to reduce the retraining time
between adaptations, we followed two approaches: limiting the
number of ANN training epochs and reducing the number of
training samples using the mesh selecting method proposed in
[22]. Then, the retraining time was reduced to a few minutes.
In particular, between 2 and 5 minutes depending on the
number of selected data samples to carry out the adaptation
(there is a trade-off between computational complexity and
modeling accuracy).

Table I shows the linearization performance (in terms of
ACPR, NMSE and EVM), of both the ANN-based and GMP-
based DPD linearizers when considering the previously de-
scribed test signals. The nonlinear functions in the general
GMP behavioral model in (5) are particularized with poly-
nomials. Therefore, the metaparameters configuration of the
GMP DPD used in this paper is: nonlinear order of Pa = 7,
Pb = 5, Pc = 5 and memory depth of Ma = 9, Mb = 7,
Mc = 7, Qb = 2, Qc = 2; corresponding to a total of
248 coefficients. This configuration was selected to have two
general-purpose DPD linearizers (i.e., the GMP-based and
the ANN-based) with the same memory depth. Even if the
GMP and ANN are not specifically dimensioned (i.e., use the
minimum required number of coefficients to meet the linearity
specs) to linearize the 20 MHz or the 60 MHz total bandwidth
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signals, it is clear that GMP DPD can perfectly cope with the
compensation of the nonlinear distortion and memory effects
by meeting the targeted ACPR<-45 dB, with significantly less
computational complexity than ANNs. Taking into account the
aforementioned GMP configuration with 248 coefficients, the
time for running the coefficients estimation (1 iteration) was
less than 10 seconds considering Matlab’s backslash operation.

However, when considering the NC 4×LTE-20 signal of
200 MHz total bandwidth, the GMP DPD is not capable to
meet the required ACPR levels. By increasing the number
of coefficients of the GMP model, not only there is no
improvement in the spectral regrowth compensation, but it
also leads to an ill-conditioned and unreliable estimation of the
coefficients. In general, the bi-dimensional kernels of the GMP
architecture represent a good trade-off between computational
complexity and nonlinear dynamic modeling capabilities. But
yet, the GMP is still a simplified version of the Volterra
series covering a much more reduced area in the kernel space
than the original Volterra series. Therefore, when dealing
with wideband signals (e.g., hundreds of MHz), the inherent
limitation of the GMP architecture for covering certain cross-
memory products can prevent meeting the required ACPR
levels, regardless of whether regularization or feature selec-
tion techniques are applied. Consequently, in this particular
demanding situation, the use of ANNs is justified. Note that
the ANN with a memory depth of 7 taps still cannot meet the
targeted ACPR level, and thus, the memory depth has to be
increased up to 9 taps to go beyond the minimum -45 dB of
ACPR. Fig. 17 and Fig. 16 show the AM-AM characteristics
and output power spectra before and after DPD linearization
using GMP and ANN DPD, respectively. It is evident that the
ANN DPD clearly outperforms the GMP DPD for wide-band
signals where memory effects are critical, and the ANN can
take advantage of the internal interactions that occur in its
hidden layers.

C. Linear and Power Efficient LMBA Amplification from 1.8
to 2.4 GHz Considering Different Transmitted Signals

In order to guarantee linear and power efficient amplification
for dual-input PAs such as the DUT used in this work, we
have proposed the methodology described in the flow diagram
of Fig. 2. Therefore, assuming a dynamic environment where
the transmitted signal to be amplified by the LMBA can
present different bandwidths and operate at different center
frequencies in the range of 1.8 to 2.4 GHz, we will proceed
as follows (see Fig. 2):
• First, assuming that the delay value has been previously

determined and fixed, the optimum phase shift between
the BPA and CSP signals is calculated. For a given input
signal with a certain bandwidth and at a specific center
frequency, we will use the extracted phase-shift model to
determine the best phase-shift between the LMBA input
signals.

• Then, it is necessary to determine the values of p and
VGG,2 for trading-off linearity and power efficiency as
described in subsection III-C. For example, for the exper-
imental results presented in Table II, we have considered
p = 3.5 and VGG,2 = −4.2 V.

Fig. 16. AM-AM characteristics (top) and output power spectra (bottom)
before and after GMP-based DPD linearization, considering a NC 4×LTE-20
signal at 2 GHz RF center frequency.

• A crest factor reduction (CFR) technique is used to limit
the PAPR of the signal. A well-known strategy commonly
used in literature is to reduce the PAPR of the signal to be
able to operate the PA with less back-off and thus more
power efficiently. In this work, we have considered the
peak cancellation CFR technique as described in [23].

• Then, according to the transmitted signal characteristics
we decide the DPD strategy. For example, in our par-
ticular test case, for signals exceeding 60 MHz total
bandwidth, the linearization is carried out by means of an
ANN-based DPD. Otherwise, for signals with up to 60
MHz total bandwidth, the less computationally intensive
GMP DPD is considered. It is worth mentioning that
the ANN-based DPD would be enough to linearize any
type of the test signals considered, however, at the price
of introducing additional computational complexity (with
respect to GMP) when it is not strictly required.

• Finally, from a given initial condition (obtained in an off-
line training) the adaptive DPD periodically updates its
coefficients to meet the required linearity specifications. If
the bandwidth or the center frequency of the transmitted
signal changes (for example, because other LTE-20 chan-
nels are aggregated), then the LMBA linearization system
has to be reconfigured again, as schematically described
in Fig. 2.

In order to validate the proposed methodology, Table II
shows how the linearity specifications are met under different
transmitted signal configurations in terms of bandwidth (BW)
and center frequency (Fc) of operation. As an example, Fig.
19 and Fig. 20 show the spectra of the NC 2×LTE-20
signal of 60 MHz total bandwidth and the LTE-20 signal,
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TABLE II
LINEARITY AND POWER EFFICIENCY RESULTS OF THE LMBA OPERATED WITH TRANSMITTED SIGNALS WITH DIFFERENT BANDWIDTH

CONFIGURATIONS IN THE RF RANGE OF 1.8 TO 2.4 GHZ.

Signal configuration DPD Nº Coeff. PAPR Worst ACPR NMSE Pout Efficiency EVM
Fc = 2.2 GHz, BW = 200 MHz ANN 1982 9 dB (with CFR) -46.1 dB -32.9 dB 33.0 dBm 16.7 % 1.2 %
Fc = 1.9 GHz, BW = 20 MHz GMP 248 9 dB (with CFR) -48.0 dB -37.7 dB 38.3 dBm 38.5 % 0.8 %
Fc = 2.1 GHz, BW = 60 MHz GMP 248 10.2 dB -51.2 dB -38.3 dB 37.1 dBm 31.1 % 0.7 %
Fc = 1.8 GHz, BW = 200 MHz ANN 1982 8 dB (with CFR) -46.1 dB -27.2 dB 32.4 dBm 18.6 % 2.7 %

Fig. 17. AM-AM characteristics (top) and output power spectra (bottom)
before and after ANN-based DPD linearization, considering a NC 4×LTE-20
signal at 2 GHz RF center frequency.

respectively, before and after GMP-based DPD linearization.
When limiting the maximum PAPR of the signal (by means
of the peak cancellation CFR technique) it is possible to push
the input signal harder into compression to slightly improve
the overall drain efficiency, but at the price of introducing in-
band distortion (as reflected in the NMSE and EVM figures
in Table II). Notice that the LMBA linear mean output power
and power efficiency change not only with the bandwidth of
the transmitted signal, but also with the center frequency of
operation, as depicted in Fig. 7.

VI. CONCLUSION

In this paper, we propose a methodology to ensure linear
amplification of a dual-input PA that can operate in a dy-
namic environment over a frequency range from 1.8 to 2.4
GHz. In a first step, some parameters defining the LMBA
operation mode are properly tuned, taking into account the
center frequency of operation to ensure linearizability with
maximum power efficiency. In a second step, CFR and DPD
linearization techniques are used to meet the required linearity
specifications. An ANN-based DPD is previously trained off-
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Fig. 18. 64-QAM constellations of the NC 4×LTE-20 signal at 2 GHz RF
center frequency8 before and after ANN-based DPD linearization.

-100 -50 0 50 100

Frequency (MHz)

-150

-140

-130

-120

-110

-100

-90

-80

P
ow

er
/fr

eq
ue

nc
y 

(d
B

/H
z)

No DPD
DPD based on GMP

Fig. 19. Linearized and unlinearized output power spectra with GMP-based
DPD considering a NC 2×LTE-20 signal at 2.1 GHz RF center frequency.

line to be able to cope with different signal bandwidths. By
including adaptation, the ANN is able to meet the linearity
specifications for any signal bandwidth configuration. How-
ever, given the computational complexity introduced by the
ANN, for less challenging scenarios (e.g., in our particular
case, we considered signals with BW ≤ 60 MHz) a less
computational complex GMP-based DPD is selected.

In the path towards allowing total reconfigurability of the
amplification system, machine learning techniques will be
included in future works to allow fine tuning of the LMBA free
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Fig. 20. Linearized and unlinearized output power spectra with GMP-based
DPD considering an LTE-20 signal at 1.9 GHz RF center frequency.

parameters oriented at maximizing power efficiency for each
frequency of operation and transmitted signal characteristics.
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from Universitat Politècnica de Catalunya (UPC),
in 2020. He joined the Components and Systems
for Communications (CSC) Research Group in 2020
and he is currently pursuing his Ph.D. in the de-
partment of Signal Theory and Communications
of the UPC. His research interests include signal

processing for communication systems, power amplifier linearization and the
efficient RTL implementations in FPGA.



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, FEBRUARY 2021 13

Gabriel Montoro (Member, IEEE) received the
M.Sc. degree in telecommunication engineering and
the Ph.D. degree from the Universitat Politècnica
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