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Abstract  

This thesis examines the dynamics of momentum effects in the two-regime switching 

model and momentum effects in the long-run risk model. A two-regime switching model was 

built to analyse the switching that can be controlled by the level of market risk between the 

momentum effect and return reversal. Further, the study examined the relationship between 

the three independent variables of domestic market risk, returns in the ranking period, and 

foreign financial market risk (i.e., US market risk and UK market risk). It found that the 

momentum return in both stock markets has a significant positive effect on foreign market 

risk, and a negative effect on return in the ranking period and domestic market risk in the 

momentum regime. However, the results for the US market were insignificant in the reversal 

regime when compared with those for the UK market. Further, a cross-sectional long-run risk 

model was developed at the level of individual security. The assumption of fluctuation 

economic volatility was extended to allow for the effect of economic uncertainty on the 

aggregate consumption growth and dividend growth of individual security. Theoretically, the 

model provides a more significant explanation for momentum returns. In conclusion, the 

model matches the relative portfolios’ returns, dividend growth, and valuation ratio at the 

portfolio level via its simulation.  
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Chapter 1.0 Introduction  

In recent years, one of the most controversial debates in finance have been whether the 

capital market is efficient or not, as well as whether share prices can be forecast into the future. 

According to traditional finance theory, the market is efficient in terms of financial assets 

pricing. The Efficient Market Hypothesis (EMH) was established and developed by Malkiel 

(1962), Fama (1965b) and Samuelson (1965) in the 1960s. Specifically, the EMH proposed 

that asset prices must fully and instantaneously reflect all the available relevant information. 

In general, the EMH is related to the concept of random walk, which means that there are 

random changes in stock prices that the current stock prices failed to forecast from past prices. 

Thus, the fundamental principle of a random walk means that the continuous changes in stock 

prices involves independent and identically distributed random variables. This implies that 

there are no rules about the series of changes in stock prices, and that past trends cannot be 

used to forecast the future. According to the EMH, changes in stock prices depend on new 

information regarding the economy, the market, or firms. More importantly, the adjustment in 

stock prices is immediate, and thus investors fail to trade in a timely way, so they cannot earn 

returns from the new information. However, the EMH is now facing huge challenges in the 

current financial economy, and some researchers have found that a large number of investment 

trading strategies are able to produce huge profits in different markets. 

Momentum effect, as a general financial phenomenon, implies a trend of stock returns 

based on past returns. Stocks that performed well in the past will tend to perform well in the 

future, and stocks that performed poorly in the past will tend to perform poorly in the future. 

There has been a large amount of research about momentum in different stock markets, 

including European stock markets (Rouwenhorst, 1999), Asian stock markets (Chui et al., 

2000), African stock markets (Griffin et al., 2003), and Latin American emerging markets 

(Muga and Santamaria, 2007). Furthermore, the momentum effect exists not only in the stock 

market but also in the exchange market, bond market, oil market, and in metal stocks. On the 
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other hand, the study of contrarian strategy or return reversal1  argues that stocks which 

performed well in the past will tend to perform poorly in the future, and that stocks that 

performed poorly in the past will tend to perform well in the future. Thus, the return reversal 

exhibits a tendency for shock returns, or returns to reverse in a different direction. Much 

literature has proposed that in general, a momentum strategy is more likely to work during 

periods of calm in the market when risks and volatility are low. When the market suffers a 

dramatic fluctuation, the reversal effect is more likely. Thus, when the reversal effect occurs 

in the financial market, investors could suffer enormous losses if they continue to use the 

momentum strategy. Thus, in this study I build an investment trading strategy based on a 

regime switching between momentum effect and return reversal in the stock market. More 

specifically, I use a threshold model that uses information on market risk to predict whether 

the market is in a momentum state or a return reversal state. This two-regime switching model 

is built based on market volatility. Further, it can be used to test the relationship between 

momentum return and the possible determinants of domestic market risk, ranking period 

return, and foreign market risk.  

Further, in the second main chapter, I explain whether momentum profits are produced 

as a result of exposure to systematic risk factors. I develop the long-run risk model set out by 

Bansal and Yaron (2004). These authors presented a long-run risk model (LRR) to interpret 

several critical features of asset market phenomena like equity premium, the risk-free rate, the 

volatility of the market return, the volatility of the risk-free rate, and the price-dividend ratio 

using US asset market data. Mehra and Prescott (1985) defined the equity puzzle based on the 

phenomenon that the fluctuations of observed returns on stock of approximately 6.98% during 

the studied period were as much due to higher returns on a government bond or the 

contemporaneous risk-free interest rate of roughly 0.8%. A significant body of literature fails 

to interpret that the risk premium on stocks is much riskier than that of government bonds, 

which leads to investors’ demand for compensation for the excess risk.  

However, traditional financial theories such as the Capital Asset Pricing Model (CAPM), 

 
1 Return reversal is different from price reversal. In general, price reversal only focuses on the stock price trend, but return 
reversal focuses on the stock returns trend (including stock prices and dividends). 
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the International Capital Asset Pricing Model (ICAPM), and Arbitrage pricing theory (APT) 

all measure the marginal utility of wealth by the behaviours of large portfolios of assets. For 

example, the CAPM model can estimate returns on market portfolios, while multifactor 

models can estimate returns on multiple portfolios. According to CAPM and these theories, 

the uncertainty related to returns on market portfolios is due to a single source of risk in the 

real economy, but CAPM and related theories have no theoretical and symmetrical structure 

to identify what it is that makes market portfolios risky. Thus, consumption-based CAPM 

(CCAPM) was explained by Cochrane (2000), who stated that the asset-pricing model is 

embedded in stochastic macroeconomics because the function that shows the behaviour of 

asset prices and return in the CCAPM is transferred from the consumption and asset choice 

decisions of households. There is no denying that in order to prove a relationship between the 

real economy and financial markets, the growth in the marginal utility of wealth can be 

measured by the growth in consumption, because consumption is the payoff on the market 

portfolio. However, the classic consumption-based CAPM cannot interpret the empirical low 

risk-free interest rate; also, agents have a negative time preference. Moreover, the long-run 

risk model related to security returns to macroeconomic fundamentals based on a systematic 

framework. Thus, the model has a closed relationship with the underlying economic theory. 

Further, the model can provide the impetus for exploring the underlying factors with which to 

interpret the momentum effect. To do so, firstly, I set up the core assumptions about 

preferences, the stochastic discount factor, and the economic environment. Moreover, to solve 

the equilibrium asset prices in my model, I adopt the standard approximations used by 

Campbell and Shiller (1998). Further, I match several moments from the actual data with the 

results of the simulation, basing the calibration and design of my simulation on the previous 

literature.  

The thesis is organised as follows. Chapter 2.1 summarises the effective market 

hypothesis, uncertainty, the relevant literature regarding the momentum effect and the two-

regime switching model. Chapter 2.2 expounds the data processing, portfolio construction, 

variables description, and Bayesian estimation related to the two-regime switching model. 

Chapter 2.3 reports the results of momentum effects in the US and UK markets, as well as the 
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presenting the results and discussion of the Bayesian estimation. Chapter 3.1 reviews the 

development of the long-run risk model and cross-sectional security return in the long-run 

risk model. Chapter 3.2 explains the assumptions of the long-run risk model, data processing, 

a cross-section of the model, its calibration, and the simulation design for cross-sectional long-

run risk. Chapter 3.3 describes and discusses the findings from the empirical and simulation 

results. Chapter 4 summarises this thesis and suggests directions for future research.  
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Chapter 2.0 Dynamics of Momentum Effects  

2.1 Literature Review 

2.1.1 Efficient Market Hypothesis 

There is a considerable controversy as to whether, or to what extent, the capital market 

is efficient, and further, whether the return on security can be predicted in the future or not. 

The EMH argues that stock markets are extremely efficient in reflecting new information. 

When new information arrives its transmission is quite speedy, and thus is promptly reflected 

in share prices. Therefore, the traditional EMH pointed out that regardless of which form of 

technological analysis or fundamental analysis was used, they were not able to determine the 

undervalued stocks or investment portfolio that achieve greater profits than those of randomly 

selected stocks or portfolios. Fama (1970) explained the EMH theory by pointing out that 

asset prices immediately embody all the valid, relevant information. In other words, stock 

prices should follow a random walk. Hence, stocks that will generate abnormal returns in the 

future cannot be identified, regardless of which technical and fundamental analyses are 

adopted. Malkiel and Fama (1970) also highlighted that market participants always seek 

rational profit maximisation behaviour, and that asset prices also always reflect all the 

available relevant information. Meanwhile, Malkiel (2003, 2005) more recently explained that 

random walk means that if asset prices can reflect information immediately and fully with 

unobstructed information flow, then price changes in the future will only reflect the future 

information but will not impact the current independence of the price changes. Furthermore, 

Samuelson (1965) also stated that in an efficient market, if changes in price can entirely reflect 

all market participants’ expectations and information, then such price changes must be 

unpredictable. Due to the random announcements of news, security prices must randomly 

fluctuate. Therefore, it is unlikely that any relevant information set can be used to forecast 

future changes in stock prices. The randomisation of price changes does not enable investors 
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to obtain abnormal returns which exceed the market.2  Allen, Brealey and Myers (2011) 

redefined the efficient market as one in which it is impossible to gain higher returns than the 

market return, which implies that the value of shares reflects the fair value of firms and equals 

their discounted future cash flows. Eakins and Michkin (2012) also supported the EMH view 

that there are two pillars: incorporation of the available information in share prices, and the 

inability of investors to earn risk-weighted excess returns in an efficient market.  

2.1.2 Uncertainty 

Many studies have investigated the reason for stock price drifts based on information 

uncertainty. Based on the notion of rational belief equilibrium (RBE), Kurz (1997) proposed 

that agents’ beliefs in RBE are generally wrong because they differ from the true probability 

in the process of equilibrium. In fact, these agents’ beliefs are rational. Agents anticipate 

making mistakes, which are important in the RBE theory. These mistakes can explain the 

reasons for stock returns, and the aggregation of these mistakes produces endogenous 

uncertainty that the factor underlying changes in stock prices is endogenous transmission. 

Dieci and He (2018) explained the Heterogeneous Agent Model (HAM) in finance, stating 

that agents are heterogeneous and have diverse social interactions (Kirman, 1992 and 2010). 

The HAM framework sees financial market dynamics as a result of the interaction of 

heterogeneous investors with various behavioural biases. This view is important to the 

expectation feedback mechanism in the HAM model. More precisely, agents’ decisions are 

based on forecasts for endogenous variables, and the actual value of endogenous variables are 

determined by agents’ expectations. Earlier HAMs studies built different non-linear models 

to illustrate different endogenous mechanisms of market fluctuations arising from the 

interaction of heterogeneous agents, instead of exogenous shocks or news. Thus, these models 

indicate that asset price fluctuations are generated endogenously. Such models generally 

involve two main types of beliefs (extrapolative and regressive, or chartists and 

fundamentalists). Chartists depend on the extrapolative method to predict future prices and to 

 
2 This followed a review by Kendall (1953), Cootner (1962), Fama (1965a, 1965b), Leroy (1973), Rubinstein (1976), and 
Lucas (1978).  
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establish their position in the market. Therefore, they prefer to maintain and reinforce stock 

price tendencies, and extend the difference from the fundamental price. In contrast, 

fundamentalists are more interested in the mean reversion of the stock price to its intrinsic 

price in the long term.  

Verardo (2009) revealed an empirical relationship between heterogeneity of beliefs and 

the momentum effect. Their study used the dispersion of analysts’ forecasts of earnings to 

estimate the diversity in investors’ beliefs, and controlled for stock visibility, the speed of 

information dissemination, the uncertainty of fundamentals, the accuracy of information, and 

volatility. The findings illustrated that portfolios with high heterogeneity of beliefs have high 

momentum returns. Jiang, Lee and Zhang (2005) revealed that information uncertainty 

relative to value ambiguity that knowledgeable and experienced investors estimate the 

accuracy of firm value. The result showed that companies with high information uncertainty 

not only earn low expected returns, but also have a strong relationship with price and earnings 

momentum effect. Makarov and Rytchkov (2009) used a rational expectation equilibrium 

(REE) with heterogeneously informed agents to find that in a specific condition, asymmetric 

information can produce positive autocorrelation of returns.  

Bouattour and Martinez (2019) indicated that both uncertainty and information 

asymmetry have a significant effect on the extent of market efficiency and information 

asymmetry. There is a decline in market efficiency with fluctuations of the fundamental value 

of stocks. Zhang (2006a) revealed that information uncertainty has an important impact on 

share price continuation anomalies and cross-sectional variations in stock return. Their 

hypothesis was based on two prior results from behavioural finance: the first, by Chan, 

Jegadeesh, and Lakonishok (1996), is that the reason for price continuation is a gradual stock 

market response to information; the second, by Hirshleifer (2001) and Daniel, Hirshleifer, and 

Subrahmanyam (1998, 2001), is that investors’ psychological biases are prompted by greater 

information uncertainty. Zhang (2006b) combined these two results and examined the 

subsequent hypothesis: if the market is slow in reflecting new information because of 

psychological biases, these biases will be greater, leading to slower price reflection when there 
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is more uncertainty regarding the implications of the information for the company’s value. 

Consequently, Zhang (2006b) found that if price continuation in the short run is because of 

the behavioural biases of investors (e.g. underreaction to new information), then there is a 

greater price change with greater information uncertainty. Meanwhile, the author also found 

that larger information uncertainty results in a decline in expected stock return when bad news 

arrives, and an increase in the expected stock return when good news arrives, which implies 

that uncertainty delays the stock price response to the flow of information.  

Much empirical evidence has confirmed that stock markets have a delayed reaction to 

fundamental information, and that information spreads gradually among markets. Hou and 

Moskowitz (2005) used the delay in stock prices’ responses to information to show that the 

level of market friction influences stocks. They found that the most delayed companies 

generate a high return premium, which cannot be interpreted by firm size effect, liquidity 

effect, and micro-structure effect. In HAM, the heterogeneity expectations of agents are 

shaped based on price trend, as in Chiarella et al. (2006). He and Li (2015) proposed a 

continuous-time heterogenicity agent model consisting of fundamental, momentum, and 

contrarian traders in order to examine the effect of various time intervals on the market price 

and profitability of various strategies. They pointed out that because stock prices are 

continuous, price trends are formed by the moving average of historical prices, which is 

important. More specifically, price trends are more sensitive to market shocks when 

momentum traders continue to be active. This can be described as the instability of momentum 

trading to market volatility. However, this situation offers a chance to obtain momentum 

profits in short-run. Westerhoff (2004) established an HAM in multi-asset market that allows 

fundamentalists and chartists to be active at the same time. Fundamentalists focus on 

gathering expertise in a certain market, and chartists can switch between markets, relying on 

short-term profit chances. Chartists are more likely to choose markets that manifest price 

trends but which do not deviate too much. Interactions between the traders and markets lead 

to complex dynamics in this model. Schmitt and Westerhoff (2014) proposed a model in which 

the demand of heterogeneous speculators can suffer various types of exogenous shocks (i.e., 

global shocks). Investors can switch between different markets and between different 
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strategies according to behavioural effects and market environments. The results displayed 

that traders’ behaviour can expand financial market interconnections and produce stock price 

co-movement and a cross-correlation of market volatilities.  

2.1.3 Momentum effect  

In the mid-1980s, a large amount of financial evidence exhibited that, to a large extent, 

the future stock price depends on the past return. For instance, De Bondt and Thaler (1987) 

found that the past loser portfolio in the long term tends to outperform the long-run past winner 

portfolio over 3-5 years, and that the market always tends to mean reversion in the long run. 

Moreover, Jegadeesh (1990) and Lehmann (1990) also discovered the phenomenon that there 

appears to be a short-term trend of mean reversion over 1-4 weeks. Summers (1986), Fama 

and French (1988), Lo and Mackinlay (1988), and Poterba and Summers (1988) presented 

contradictory evidence regarding the random walk theory, finding that based on psychological 

and behavioural factors, stock market returns can be forecasted to a large extent.  

The momentum strategy is widely-known and accepted in the public and academic 

arenas. Briefly, the momentum effect or strategy is the theory that investors buy those stocks 

that have performed well and sell shares that have performed poorly during a specific past 

period, and then hold this investment portfolio during a specific future period, an approach 

which can produce a significant positive return. In other words, investors buy past winners 

and sell past losers. Jegadeesh and Titman (1993) primarily put forward this strategy. More 

specifically, they selected stocks based on past returns over J months and held them for K 

months. They defined J as the raking or formation period, and K as the holding period. Further, 

they ranked all stocks based on past returns in the ranking period in the stock market and 

divided them into ten equally weighted portfolios. The portfolio with the highest return was 

called the winner portfolio, and the portfolio with the lowest yield was the loser portfolio. 

Moreover, they observed the performance of these portfolios in the holding period J. If the 

winner portfolio continuously has the highest return, and the loser portfolio continuously has 

the lowest yield, then the momentum effect has occurred. They summarised their research by 
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analysing the American stock exchange and New York stock market exchange from 1965 to 

1989, which both produced strong profitability. They also claimed that the results failed to 

explain the systematic risk and lag stock price reaction.  

Grinblatt, Titman, and Wermers (1995) examined the momentum effect in relation to 

mutual funds. They pointed out that fund managers buy stocks based on past returns, a strategy 

which can gain positive risk-adjusted excess returns. More than 70% of investors adopted the 

momentum strategy by preferring to obtain funds that performed well in the past. The authors 

also expounded that mutual funds that adopted the momentum strategy outperformed others, 

and there is no evidence to show that fund managers can buy and sell the same stocks 

simultaneously. Some early studies about momentum strategy, by Lo and Mackinlay (1990) 

and Lehmann (1990), investigated this matter and found that more than half of trading 

strategies produce significant profits when they decomposed the stock returns into two 

dimensions, cross-sectional and time-varying factors, with various ranking and holding 

periods, and tested 120 different momentum and contrarian strategies. Further, they concluded 

that the momentum strategy and contrarian strategy had similar profitability between 1927-

1947. Also, the profits of momentum and contrarian strategies can each be explained by the 

changes in mean reversion.  

Moskowitz and Grinblatt (1999) illustrated momentum effects in relation to industry 

components. They found that momentum trading strategies fail to generate significant profits 

when they controlled for industry momentum. However, the industry momentum in the short 

run is likely to be stronger than the stock momentum. A persistent momentum effect occurs 

on the medium horizon, but this effect will be eliminated after one year. They concluded that 

there is a significant effect of the industry factor on the profitability of the momentum strategy.  

Jegadeesh and Titman (2011) presented empirical evidence that stocks that performed 

well in the past 3-12 months have a higher probability of performing well in the future 3-12 

months. This pattern is consistently profitable in the current US and other developed stock 

markets. At the same time, stocks with high earnings momentum perform continuously better 

than stocks with poor past earnings momentum. Moreover, there were negative cumulative 
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returns for the momentum portfolio when they tested the returns of winner and loser portfolios 

from 13 to 60 months, which is similar to the explanation offered by behavioural finance. 

These authors claimed that some relevant evidence indicated that momentum strength 

responds to industry and market features, but the scale of profits reflect the level of 

participation in the company and market activities.  

George and Hwang (2004) utilised various patterns to examine the momentum strategy 

and a “52-week high” investment strategy. More precisely, this investment trading strategy 

was described as when investors take long winner stocks and short sell loser stocks based on 

stock prices in the last one month over the highest stock prices in the past 12 months. Further, 

compared with the investment strategies proposed by Jegadeesh and Titman (1993) and 

Moskowitz and Grinblatt (1999), they found that the “52-week high” investment strategy can 

generate higher momentum profitability. In addition, when they controlled for the size effect 

and the bid-ask bounce, and removed the January return, their investment strategy produced 

double momentum profits compared with the previous strategy.  

Ammann, Moellenbeck and Schmid (2010) examined the profitability of momentum 

strategies based on the blue-chip stocks listed in Standard and Poor’s (S&P) 100 index. They 

found that high turnover and the cost of holding a short position leads to high transition costs, 

particularly in stocks with small capitalisation. Further, they adopted a simple trading strategy 

that takes long positions on individual stocks and short sells in the stock index, which can 

produce significant excess returns. They also found that the findings were credible to different 

risk-adjustments, such as the capital asset pricing model (CAPM) and the Fama-French three 

factors model.  

Li, Brooks and Miffre (2009) explained the influence of the trading cost on the 

profitability of momentum trading strategies in the London stock exchange. They summarised 

that the trading costs in the winner portfolio are lower than in the loser portfolio. There is 

therefore an observed asymmetry regarding the trading cost in the winner portfolio and loser 

portfolio, which focuses on the high trading cost to sell the loser portfolio that is of a small 

size and a low trading volume. Thus, they adopted a low-cost relative-strength strategy by 
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choosing the overall lowest transition cost from all the stocks in the winner and loser portfolios. 

They also stated that the profitability of momentum strategies cannot be interpreted without 

adjusting for systematic risk, lagging reaction to a specific component, and serial correlation.  

Rey and Schmid (2007) used a full sample of large-capitalisation stocks in the Swiss 

market index, and only invested in single stocks. They adopted a strategy that holds only one 

winner and one loser stock at the same time, which led to a significant profit of approximately 

45%. Griffin, Ji and Martin (2005) found that the momentum strategy makes a profit though 

investors only holding a long position. Further, if investors ignored the transaction cost, they 

obtained huge profits due to the large positive price and earnings momentum effects in Europe. 

Forner and Marhuenda (2003) discovered the momentum effect and its reversal in the Spanish 

stock market. They claimed that the momentum strategy has profitability on a 12 month basis, 

and that its reversal produces profit chances, in the long run, over a 60-month period. Naranjo 

and Porter (2010) researched the sources of cross-country co-movement of momentum profits 

in developed and developing countries. As a result, country-neutral momentum profits were 

observed to be closely related across countries, as well as through a time-varying correlation. 

A failure explanation was also provided, concerning the co-movement of country-neutral 

momentum profits by using co-movement among industries. Narayan and Phan (2017) 

investigated the profitability of momentum strategies in Islamic stocks. They reported that the 

momentum strategy is effective when controlling the stock characteristics, market state, and 

seasonal mode. Furthermore, they also explained that the market volatility (up or down) could 

influence the extent of momentum returns, and that risk components can provide a better 

explanation for momentum profits. Arena, Haggard and Yan (2008) reported that momentum 

returns are high when investing in stocks with high idiosyncratic volatility, particularly loser 

stocks with high idiosyncratic volatility. They found that stocks with extreme idiosyncratic 

volatility suffer a sharp and fast reversal, which is consistent with the reason for momentum 

returns by underreaction and the limited impact of idiosyncratic volatility on the momentum 

effect. They also discovered a positive relationship between momentum profits and aggregate 

idiosyncratic volatility, which assists in interpreting the persistence of the momentum returns 

reported by Jegadeesh and Titman (1993).  
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2.1.4 Two regime-switching model  

Huang and Tsai (2014) examined whether aggressive growth fund managers adopted a 

momentum strategy or a contrarian strategy to improve performance in a previous period of 

financial crisis, as well as testing whether these trading strategies were effective or not in the 

period of financial crisis. They found that these investment strategies (momentum strategy 

and contrarian strategy) could both enhance portfolio performance before the financial crisis. 

Further, during the period of financial crisis, the momentum effect disappeared in the 

performance of aggressive growth funds. In contrast, the contrarian strategy took up a 

dominant position, which meant a significant impact on the performance of the aggressive 

growth funds. The authors therefore suggested that fund managers could switch to the 

contrarian strategy to enhance their funds’ performance when a financial crisis occurs. 

Dobrynskaya (2017) put forward a simple dynamic investment strategy, because high 

momentum profits cannot be explained by the risk components. Further, she found that a 

momentum crash occurs after 1-3 months in a market crash. This dynamic trading strategy 

means that when a market is calm, investors adopt the standard momentum strategy, but will 

switch to the contrarian strategy one month after a stock market crash and retain the contrarian 

strategy for the next three months, before finally reverting to the momentum strategy. They 

found that this dynamic investment strategy transfers the whole momentum crash into returns, 

which are roughly 1.5 times greater than returns from the standard momentum strategy.  

Wang and Xu (2015) examined the time-series predictability of the momentum strategies, 

especially the predictability of market volatility. They discovered that there is an economically 

and statistically significant relationship between market volatility and momentum profits. 

Moreover, there is a dramatic difference between the time-series predictable power of the 

momentum strategy and the total predictability of momentum profits in the overall stock 

market. Further, after a period of low market volatility, the profitability of the momentum 

strategy has a significant increase. Notably, there are quite low mean monthly returns when a 

market is down, and aggregate fluctuations are high.  



Chapter 2.0 Dynamics of Momentum Effects 

 

14 
 

Pastor and Stambaugh (2003) examined the cross-sectional relationship between the 

expected security returns and sensitivity to volatility in aggregate liquidity from 1966 to 1999. 

They set up a monthly liquidity indicator. Their hypothesis means that a higher return reversal 

occurs if there is a lower liquidity signal. They found that the return on stocks with high 

sensitivities to liquidity is greater than that for stocks with low sensitivities by approximately 

7.5% every year. Hwang and Rubesam (2015) built a regime-switching model to analyse the 

momentum premium based on Pastor and Stambaugh (2003). Their model with multiple 

structural breaks was able to recognise the correlation between the momentum returns and 

risk components. Additionally, as the regime-switching model contains multiple structural 

breaks, it is more flexible and accurate, compared with the limited number of structural breaks 

included by Hwang and Sarchell (2007).3 They found an abnormal return by momentum 

premium during two periods (the 1940s-1960s and 1970s-1990s). Further, Hwang and 

Rubesam (2015) pointed out that since the early 1990s, the process of the slow disappearance 

of momentum profits was delayed by the occurrence of the high-tech and telecom stock bubble. 

Hamilton and Susmel (1994) found that the persistence of low-frequency variation in 

volatility can be tested by a discrete Markov-switching model, which relates to discrete 

variations in business cycle stages during periods of economic expansion and recession. Some 

other researchers have also investigated the relationship between volatility regimes and 

economic conditions using the Markov-switching model.3  

Sinha (1996) used the GARCH model to study the monthly returns in the US stock 

market. The model adopted probability to measure the switching regime from a high to a low 

level of volatility, depending on the economic conditions. He found that the macroeconomic 

components can significantly impact on stock returns, and that stock returns seem to retain a 

violent volatility in an economic recession.  

Wu (2016) examined the asymmetric momentum effect during periods of UP and DOWN 

market states in the Chinese stock market. They regressed the raw momentum returns through 

 
3 Schwert (1989), Schaller and Norden (1997), Assoe (1998), Kim et al. (2001, 2004), Hess (2003) and Mayfield (2004).  
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using dummy variables, which can be followed as, 

𝑅𝑊−𝐿,𝑡 = 𝑅𝑊−𝐿,𝑈𝑃𝑈𝑃𝑡 + 𝑅𝑊−𝐿,𝐷𝑂𝑊𝑁𝐷𝑂𝑊𝑁𝑡 + 𝑒𝑡 

where 𝑅𝑊−𝐿,𝑡 represents the momentum return at time t, that is the difference between 

returns on the winner and loser portfolios due to the different momentum trading strategies. 

There are two dummy variables: 𝑈𝑃𝑡 and 𝐷𝑂𝑊𝑁𝑡. 𝑈𝑃𝑡 (𝐷𝑂𝑊𝑁𝑡) is equal to 1 when there 

is an UP (DOWN) market state, which means a positive (negative) average market return. 

𝑅𝑊−𝐿,𝑈𝑃 (𝑅𝑊−𝐿,𝐷𝑂𝑊𝑁) means the average momentum return in a UP (DOWN) market state.  

𝑅𝑊−𝐿,𝑡 = 𝛼 + 𝑅𝑊−𝐿,𝑈𝑃−𝐷𝑂𝑊𝑁𝑈𝑃𝑡 + 𝑒𝑡 

where 𝑅𝑊−𝐿,𝑈𝑃−𝐷𝑂𝑊𝑁 denotes the difference in momentum returns under two different 

market states. They found that momentum returns following UP market states underperform 

the momentum effect following DOWN market states in the Chinese stock market. Moreover, 

they also found that the reasons for the subdued asymmetry of market-state-dependent 

momentum returns are low liquidity, higher market return volatility, and the weak under-

reaction of stock prices.  

Cao (2014) proposed a threshold regression model to explain the relationship between 

the momentum effects and the volatility of stock market returns. This threshold model is a 

two regime-switching model between the momentum regime and the reversal regime, and the 

switch from one regime to other regime is based on a change in the volatility of stock market 

returns. Specifically, the two-regime switching model can be expressed as,  

𝑟𝑡
𝐻 = [1 − 𝐼[𝜏,∞)(𝑧𝑡−1

𝑅 )](𝛼1 + 𝛽1𝑧𝑡−1
𝑅 + 𝛾1𝑟𝑡−1

𝑅 ) 

+𝐼[𝜏,∞)(𝑧𝑡−1
𝑅 )(𝛼2 + 𝛽2𝑧𝑡−1

𝑅 + 𝛾2𝑟𝑡−1
𝑅 ) + 𝜀𝑡 

where 𝑟𝑡
𝐻 denotes the momentum portfolio’s holding-period return. 𝑧𝑡−1

𝑅  denotes ranking 

period market volatility. 𝑟𝑡−1
𝑅   denotes ranking period return. 𝐼[𝜏,∞)(𝑧𝑡−1

𝑅 )  denotes an 
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indicator function with 𝜏 as the threshold parameter. When 𝑧𝑡−1
𝑅   is below the threshold 

parameter, the indication function (I) is equal to 0. Then, the momentum effect is expected. In 

contrast, when 𝑧𝑡−1
𝑅  is above the threshold parameter, the indication function (I) is equal to 

1, which means the reversal occurs. Furthermore, through using Bayesian estimation, the 

threshold parameter (𝜏) can be predicted. The author found a negative relationship between 

the momentum trading return and market volatility in the momentum and reversal regimes, as 

well as a significant inverse relationship between portfolio performance in the ranking period 

and the holding return in the momentum regime. More importantly, based on the indications 

of the threshold regression model, the new trading strategies can be exploited between the 

momentum effect and the reversal effect, to produce economically significant profitability.  

Yang (2016) explored the dynamic momentum strategies in Chinese stock markets from 

1991 to 2012. He found no momentum profits in Chinese stock markets, but significant 

reversal profits across the sample period. In addition, he found that momentum strategies 

produce highly contrarian returns in UP market states compared to those in DOWN market 

states. Further, he stated that the reason for this could be that the improved performance of the 

strategy in the UP market is too extreme, going over a specific threshold value, leading to a 

price reversal instead of a price continuation (Cooper, Gutierrez Jr and Hameed, 2004).  

Abdymomunov and Morley (2011) adopted a two-state Markov-switching model to 

examine time-variations in betas in the CAPM for the BM ratio and momentum portfolio 

across market volatility regimes. The model allowed the beta and market risk premium to 

switch between low and high volatility regimes. They found statistically significant strong 

evidence of time-variations in betas across market volatility regimes under the unconditional 

CAPM. Although the regime-switching conditional CAPM could sometimes be rejected, they 

believed that the beta with time-variations can interpret returns on portfolio well, compared 

with the unconditional CAPM, particularly in conditions of high stock market volatility.  
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2.2 Data and Methodology  

This section describes the data and core methodology utilised in this research. Firstly, it 

sets out concise data specifications, including data collection, variable definitions, and the 

data analysis process. Secondly, the section turns to the momentum trading strategy, which 

follows the paper by Jegadeesh and Titman (1993). Moreover, dependent and independent 

variables are described and the two-regime switching model is established. Finally, the 

Bayesian estimation method is used to examine the switching between the momentum effect 

and its reversals.  

2.2.1 Data specifications 

The dataset adopted here is composed of the monthly data of all stocks traded on the US 

stock market and the UK stock market from January 1980 to December 2018. In total, there 

are 7704 effective stocks for the US. These comprise all the domestic and primary stocks in 

the US stock market listed on the three main markets - the New York (NYSE), American 

(AMEX) and NASDAQ stock exchanges. The data source for the US stock market is the 

Centre for Research in Security Prices (CRSP). For the UK stock market, the sample contains 

a total of 5588 companies, obtained from London Share Price Data (LSPD). The primary data 

includes holding returns, stock prices on the last trading date of the month, dividends, and 

market capitalisations. These variables are used to process the return in the stock market. For 

the critical measure of market volatility, the daily market values are used to compute the 

realised market volatility by the CRSP for the US market and by the Datastream for the UK 

market, which can measure the omitted market volatility from 1979. The formula for daily 

realised market volatility can be expressed as below: 

𝜎𝑑
2 =

∑ (𝑟𝑡 − �̅�)2𝑇
𝑡=1

𝑇 − 1
 

where 𝑟𝑡 is the daily market return in one month, �̅� is the mean of monthly market 

returns over T trading days in one month, and T is the number of trading days in one month. 
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Further, to present this volatility in monthly terms, I can multiply the daily market volatility 

by the trading days, T, which can be followed as, 

𝜎2 = 𝜎𝑑
2 ∗ 𝑇2 

where 𝜎2 denotes the monthly market volatility.  

In order to avoid missing data and survival bias, this study allowed companies in the 

sample to have incomplete records during the ranking periods and holding periods. However, 

any firm for which all the values in the holding period or ranking period were missed was 

removed. Thus, this research avoids survivorship to no small extent, and contains more 

available samples. To avoid inferior liquidity and illiquidity in the data samples, the US 

samples excluded all stocks priced below $5 (Jegadeesh and Titman, 2001; Avramov et al., 

2007), and removed the stocks of the smallest decile of market capitalisation in the NYSE, in 

line with Jagadeesh and Titman (2001). In addition, the UK samples excluded shares traded 

on the Unlisted Securities Market (USM), Third Market companies, over-the-counter (O.T.C.) 

companies, the Alternative Investment Market (AIM) and the Off-Exchange (OFEX).  

2.2.2 Momentum strategies using overlapping portfolios 

The momentum effect in stock markets stipulates that the same share price movement 

will continue in the future. More precisely, stocks that performed well in the past will go on 

performing well in the future, and stocks that performed poorly in the past will go on 

performing poorly in the future, which means investors can earn significant positive payoffs. 

According to Jegadeesh and Titman (1997), momentum strategies can be adjusted as below. 

Stocks were selected based on past returns. Thus, they ranked the stocks according to the 

return over the past J months. They also observed the following return in the future K months. 

The ranking period or formation periods J and holding periods K were 3, 6, 9 and 12 months, 

and therefore there were a total of 16 momentum strategies. Furthermore, the gap between the 

portfolios in the ranking period and holding period skipped one month, to avoid some bid-ask 

spreads, price pressure, and lagged reactions (Jegadeesh, 1990; Lehmann, 1990; Daniel and 
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Moskowitz, 2016). For example, a 6*9 momentum strategy in July 1980 means that the stocks 

were sorted over the past 6 months and held in the following 9 months, and hence the portfolio 

in the first ranking period was formed from January 1979 to June 1979 and was held from 

August 1979 to Match 1980. Jagadeesh and Titman (1995) and Galariotis, Holmes and Ma 

(2007) found that the profitability of trading strategies might be magnified due to non-

synchronous trading, the bid-ask spread, and infrequent trading if there was a failure to skip 

one month. The stocks were further divided into ten deciles, representing equally-weighted 

portfolios with equal weight. The top decile of the “Loser” portfolio has the lowest return and 

the bottom decile of the “Winner” portfolio has the highest return. In each month, the average 

return on each decile was observed. According to the description of the CRSP and the LSPD, 

the return on a delisted security in the past month is computed by its value after delisting and 

the share price on the last trading date.  

To form the momentum trading strategies and evaluate the profitability of trading 

strategies, all the companies in each of the stock markets can be sorted by past return. Thus, 

the buy-and-hold return for each company in each month during the past J ranking period was 

calculated as below, 

 𝑀𝑅𝑖,t = (𝑅𝑖,𝑡−1 + 1) ∗ … ∗ (𝑅𝑖,𝑡−𝑗 + 1)

= [∏ (𝑅𝑖,𝑡−𝑗
𝐽

j=1
+ 1)] − 1 

2.2.1 

where, 

𝑅𝑖,𝑡−𝑗 =
𝑃𝑖,𝑡−𝑗 − 𝑃𝑖,𝑡−j−1 + 𝐷𝑖,𝑡−𝑗

𝑃𝑖,𝑡−j−1
 

where 𝑀𝑅𝑖,t  denotes the momentum portfolio’s return over the past J months. 𝑅𝑖,𝑡−𝑗 

denotes the simple return on security i at time t-j. Ranking period J is only 3, 6, 9 and 12 

months in this research. 𝑃𝑖,𝑡  and 𝐷𝑖,𝑡  are security i’s price and dividend at time t, 

respectively. 𝑃𝑖,𝑡−1 is price at time t-1. According to Moskowitz and Grinblatt (1999) and 

George and Hwang (2004), a self-financing momentum portfolio is also called the momentum 
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portfolio, which means taking a long position in the winner portfolio and a short position in 

the loser portfolio. In other words, the return on the momentum portfolio or the profitability 

of momentum strategies can be observed in the stock market, which is also called the 

momentum return. Further, this study adopted the overlapping trading strategy to observe the 

profitability of the momentum trading strategy each month, meaning that the profitability of 

the momentum trading strategies can be obtained each month.  

Finally, the return on the momentum portfolio was calculated by working out the 

difference between the returns on the winner and loser portfolios at the end of the last trading 

day of the K month. Therefore, the average buy-and-hold return on each momentum strategy 

or each average momentum return can be computed as per below, 

 𝑀𝑅𝑡 = {[
1

𝑛
∑ ∏ (𝑅𝑖,𝑡,𝑊 + 1)

𝐾

𝑡=1
] − 1}

𝑛

𝑖=1

− {[
1

𝑛
∑ ∏ (𝑅𝑖,𝑡,𝐿 + 1)] − 1}

𝐾

𝑡=1

𝑛

𝑖=1
 

2.2.2 

where 𝑅𝑖,𝑡,𝑊 and 𝑅𝑖,𝑡,𝐿 are an average return on the winner portfolio and the loser portfolio 

in the holding period K respectively. 𝑛 denotes the number of firms, and K is only 3, 6, 9 

and 12 months.  

An example can be set out to understand the overlapping momentum strategy. First, the 

momentum trading strategy is set up as 3*6. The first ranking period should be 3 months, 

starting from January 1980 to March 1980. Then, all the securities’ returns are ranked in the 

ranking period to acquire the momentum portfolio (including the winner portfolio and the 

loser portfolio), and further skip one month to April 1980. This means that the momentum 

portfolio has a range of 6 months, from May 1980 to October 1980. Again, the second 

formation period should be from May 1980. Therefore, all momentum trading strategies 

should start from January 1980 plus J months to December 2018 minus K months, which 

contains a total of 468 months. In addition, the firms are removed from the portfolio if they 

have gone out of business. According to the descriptions in the LSPD database, firms losing 

all value can do so due to liquidation, quotations being cancelled for unknown reasons, 
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administration/administrative receivership, and cancelled assumed valueless. On the other 

hand, the money received, or value of stocks is reinvested in the portfolio with equal-

weighting when the company is subject to acquisition/takeover/merger, 

suspension/cancellation, the quotation is cancelled or suspended, it goes into voluntary 

liquidation, undergoes changes to foreign registration, is converted into an alternative security, 

or is subject to nationalisation (Arnold and Baker, 2007; LSPD, 2013). In terms of the CRSP 

dataset, according to the Data Descriptions Guide in 2018, the reasons for delisting may 

include mergers, exchanges, liquidations, or being delisted by the securities and exchange 

commission. Notably, the reasons for missing returns can explain valid, current prices, but not 

valid previous prices, and can include not trading on the current exchange, no data available 

to calculate returns, and missing returns due to missing prices because of a suspension in 

trading or trading on an unknown exchange. 

2.2.3 Variables description  

My model incorporates four variables: the momentum portfolio return in the holding 

period, the momentum portfolio return in the ranking period, the domestic market volatility 

in the ranking period, and foreign market volatility in the ranking period. Many studies have 

examined the relationship between independent variables (i.e. the momentum portfolio return 

in the ranking period, the domestic market volatility in the ranking period, and foreign market 

volatility in the ranking period) and the dependent variable (i.e. the momentum portfolio 

return in the ranking period, the domestic market volatility in the ranking period, and foreign 

market volatility in the ranking period). More specifically, previous research has found an 

inverse correlation between the momentum portfolio return in the holding period and the 

domestic market volatility. Barroso and Santa-Clara (2012) proposed a highly predictable 

framework between momentum returns and the risk of momentum calculated by the realised 

variance of daily returns. Wang and Xu (2010) examined whether market volatility has 

predictability in terms of the time-varying momentum payoff. They found a significant and 

robust power to predict momentum payoff if using market volatility. Moreover, when 

controlling the market stated and business cycle variables, the predictability of market 
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volatility remains strong in stock markets. Thus, compared with other variables, only the 

variable of market volatility retains a significant explanatory power in terms of predictive 

power regarding momentum profitability. And, the predictable power of momentum payoff 

comes mainly from the loser stocks, and the performance of winner stocks never deviates 

from whole market performance in aspects of prediction. Giot (2005) showed that future 

market returns could be forecast via market volatility, and found that market returns have a 

negative relationship with the regression parameter of a low volatility level, but a positive 

relationship with that of a high volatility level. Moreover, many researchers have found a 

negative relationship between momentum returns in the ranking period and momentum 

returns in the holding period. There are two possible reasons; one reasonable explanation for 

this is that when a small return occurs in the ranking period, the market is more likely to under-

react, and therefore the momentum portfolio is also more likely to produce strong profitability 

in the holding period. This is because of the momentum effect that the stock price will continue 

to move in the same direction. In contrast, when the ranking period return is quite high, the 

market is more likely to overreact. In the next period, market overreaction is corrected or 

adjusted in the holding period, leading to weak momentum effects or reversal effects.4 On the 

other hand, this financial phenomenon combines with mean reversion.5  When there is an 

upward trend in momentum portfolio returns in the ranking period that reaches a high value, 

according to mean reversion, in the next period, the holding return will be more likely to be 

low, which leads to a dominant reversal. Finally, many studies have investigated the cross-

market equity return and volatility linkages in different markets. They proposed lots of 

underlying explanations in previous research. With an increase in return correlations among 

stock markets, stock returns in one market can influence stock returns in other markets, and 

simultaneously, the market volatility transfers from one stock to another, which leads to a 

spillover effect. Engle, Ito and Lin (1990) provided two alternative interpretations of volatility 

spillovers. One is the heat wave hypothesis, that higher volatility, as an internal phenomenon, 

never spills from one market to another in any serial manner. Conversely, an alternative theory 

 
4 Daniel, Hirshleifer and Subrahmanyam, 1998; DeLong et al., 1990; Barberis, Shleifer and Vishny, 1998; Hong and Stein, 
1999; Grinblatt and Han, 2002 
5 Berk, Green and Naik, 1999; Lee and Swaminathan, 2000; Balvers and Wu, 2006 
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is the meteor shower hypothesis that higher volatility transfers from one market to another on 

the next global trading day. The authors found that for the London-New York markets, the 

evidence persuasively supports the meteor shower hypothesis. In addition, an alternative 

theory presented by King and Wadhwani (1990) showed that market contagion can transfer 

across different markets, generating evidence of varying interdependencies among stock 

markets in the world.  

Thus, the previous research has found certain empirical evidence regularities, and has 

made a reasonable and possible interpretation. The present study examines the relationship 

between one dependent variable (the momentum portfolio return in the holding period) and 

three independent variables (the momentum portfolio return in the ranking period, the 

domestic market volatility in the ranking period, and foreign market volatility in the ranking 

period) in a two-regime switching model, with regard to whether these regularities can support 

effective trading strategies.  

2.2.4 Two-regime switching model  

Many researchers have investigated the regime-switching model based on market 

volatility. Abdymomunov and Morley (2011) adopted a two-state Markov-switching process 

based on market returns and portfolio returns, with the transformation based on the beta and 

the market risk premium between LOW and HIGH volatility regimes. They found strong 

evidence of time variation in betas across volatility regimes, regardless of the unconditional 

CAPM or the conditional CAPM. Dobrynskaya (2017) proposed a simple dynamic trading 

model which follows the standard momentum strategy during the calm period, then switches 

to the contrarian strategy during the month of a market crash, before reverting again to the 

momentum position after maintaining the contrarian strategy for three months. This is entirely 

consistent with Huang and Tsai (2014), who suggested that trading investment can be switched, 

and focused on contrarian strategies when market risk is high, especially during times of 

financial crisis.  

Based on the previous research, a two-regime switching model was set up between the 
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momentum regime and its reversal regime. More specifically, each regime contains one 

dependent variable and three independent variables. The dependent variable is the momentum 

portfolio return in the holding period in both regimes. The three independent variables are the 

momentum portfolio return in the ranking period, the domestic market volatility in the ranking 

period, and foreign market volatility in the ranking period between the momentum regime and 

the reversal regime. On the other hand, the threshold model as a two-regime switching model 

is used to indicate which regime is at work in a specific period. According to the level of 

domestic market risk in the ranking period, Bayesian estimation can be used to explore the 

threshold parameter. This implies that when the threshold parameter is over (below) a specific 

value, one of the regimes will work.   

The two-regime switching model can be shown as below: 

 𝑀𝑅𝐻,𝑡 = [1 − 𝐹[0,𝜏)(𝑧𝑅,𝑡−1
𝐷 )](𝛼1 + 𝛽1𝑀𝑅𝑅,𝑡−1 + 𝛾1𝑧𝑅,𝑡−1

𝐷

+ 𝜃1𝑧𝑅,𝑡−1
𝐹 ) 

+𝐹[𝜏,∞)(𝑧𝑅,𝑡−1
𝐷 )(𝛼2 + 𝛽2𝑀𝑅𝑅,𝑡−1 + 𝛾2𝑧𝑅,𝑡−1

𝐷 + 𝜃2𝑧𝑅,𝑡−1
𝐹 ) + 𝜀𝑡 

2.2.3 

Where 𝑀𝑅𝐻,𝑡 denotes the momentum portfolio return in the holding period, and 𝑧𝑅,𝑡−1
𝐷  

denotes the domestic market volatility in the ranking period. Here, the model calculates the 

average market volatility in the past J period as the measure of market volatility in the ranking 

period. 𝑀𝑅𝑅,𝑡−1 is the momentum portfolio return in the ranking period. 𝑧𝑅,𝑡−1
𝐹  means the 

level of foreign market volatility in the ranking period, which is the same calculation as for 

domestic market volatility in the ranking period. 𝐹[𝜏,∞)(𝑧𝑡−1
𝑅 )  denotes the Dirac function 

with 𝜏 as the threshold parameter. When 𝑧𝑅,𝑡−1
𝐷  is below the threshold parameter, the Dirac 

function (F(.)) is equal to 0. Then, the first regime is at work, which means the momentum 

effect is expected. In contrast, when 𝑧𝑅,𝑡−1
𝐷   is above the threshold parameter, the Dirac 

function (F(.)) is equal to 1, which means the second regime with the reversal effect has 

occurred.  
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2.2.5 Bayesian method of estimation 

In this section, the Bayesian estimation method is adopted to estimate several values, 

including the threshold parameter, coefficients of independent variables, and the error term. 

Bayesian inference is based on posterior distribution, which in turn is based on a sound, 

reliable and principled pattern of combined prior information with actual data. It allows the 

incorporation of past information regarding coefficients and the setting up of a prior 

distribution for the data analysis. Alternatively, the previous posterior distribution can be used 

as the prior information, following the Bayesian theorem. Moreover, Bayesian estimation also 

provides inferences that are both conditional on the data and accurate.   

Initially, the two-regime switching model 2.2.3 can be rewritten as below: 

 𝑀𝑅𝐻,𝑡 = (𝛼1 + 𝛽1𝑀𝑅𝑅,𝑡−1 + 𝛾1𝑧𝑅,𝑡−1
𝐷 + 𝜃1𝑧𝑅,𝑡−1

𝐹 ) 

+𝐹[𝜏,∞)(𝑧𝑅,𝑡−1
𝐷 )(𝛼2 − 𝛼1 + (𝛽2 − 𝛽1)𝑀𝑅𝑅,𝑡−1

+ (𝛾2−𝛾1)𝑧𝑅,𝑡−1
𝐷 + (𝜃2−𝜃1)𝑧𝑅,𝑡−1

𝐹 ) + 𝜀𝑡 

2.2.6 

Then, according to Bauwens, Lubrano and Richard (2000), I can transfer the equation 

2.2.6 to the matrix form for practical computations, which can be reparametrized as below:  

 𝑦𝑡 = 𝑥𝑡
′𝛽 + 𝜀𝑡 2.2.7 

where 

 𝑦𝑡 = 𝑀𝑅𝐻,𝑡 2.2.8 

 𝑥𝑡
′ = [1, 𝑧𝑅,𝑡−1

𝐷 , 𝑀𝑅𝑅,𝑡−1, 𝑧𝑅,𝑡−1
𝐹 , 𝐹[𝜏,∞)(𝑧𝑅,𝑡−1

𝐷 ), 𝐹[𝜏,∞)(𝑧𝑅,𝑡−1
𝐷 )

∗ 𝑧𝑅,𝑡−1
𝐷 , 𝐹[𝜏,∞)(𝑧𝑅,𝑡−1

𝐷 )

∗ 𝑀𝑅𝑅,𝑡−1, 𝐹[𝜏,∞)(𝑧𝑅,𝑡−1
𝐷 ) ∗ 𝑧𝑅,𝑡−1

𝐹 ] 

2.2.9 
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 𝛽′ = [𝛼1, 𝛽1, 𝛾1, 𝜃1, (𝛼2 − 𝛼1), (𝛽2 − 𝛽1), (𝛾2 − 𝛾1), (𝜃2

− 𝜃1)] 

2.2.10 

Further, my model is a heteroscedastic model, which assumes different variances in the 

momentum regime and the reversal regime. Thus, it can be shown as, 

𝑉𝑎𝑟(𝜀𝑡) = 𝜎1
2[1 − 𝐹[𝜏,∞)(𝑧𝑅,𝑡−1

𝐷 ) + 𝛿𝐹[𝜏,∞)(𝑧𝑅,𝑡−1
𝐷 )] 

= 𝜎2ℎ𝑡(𝜏, 𝛿) 

2.2.11 

 

where  

 𝜎1
2 = 𝜎2 

𝛿 =
𝜎2
2

𝜎1
2⁄ ∈ (0,+∞) 

2.2.12 

Due to rescale the data, 𝑥𝑡 and 𝑦𝑡 can be redefined as,  

 𝑦𝑡(𝜏, 𝛿) =
𝑦𝑡

√ℎ𝑡(𝜏, 𝛿)
⁄  

𝑥𝑡(𝜏, 𝛿) =
𝑥𝑡(𝛿)

√ℎ𝑡(𝜏, 𝛿)
⁄  

2.2.13 

The likelihood function of the heteroscedastic model can be shown as, 

 𝐿(𝛽, 𝜏, 𝛿, 𝜎2; 𝑦)

∝ 𝜎−𝑇 [∏ℎ𝑡(𝜏, 𝛿)

𝑇

𝑡=1

]

−
1
2

exp{−
1

2𝜎2
∑[𝑦𝑡(𝜏, 𝛿)

𝑇

𝑡=1

− 𝑥𝑡
′(𝜏, 𝛿)𝛽]2} 

2.2.14 
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Priors,  

 𝜑(𝛿) ∝ 𝐹[𝛿𝐿,𝛿𝐻](𝛿) 2.2.15 

 𝜑(𝜏) ∝ 𝐹[𝑧𝐿,𝑧𝐻](𝜏) 2.2.16 

The conditional posterior density of 𝛽 and 𝜎2 can be shown as, 

 𝜑(𝛽|𝜏, 𝛿, 𝑦) = 𝑓𝑡(𝛽|𝛽∗(𝜏, 𝛿),𝑀∗(𝜏, 𝛿), 𝑠∗(𝜏, 𝛿), 𝑣) 2.2.17 

 𝜑(𝜎2|𝜏, 𝛿, 𝑦) = 𝑓𝐼𝐺2(𝜎
2|(𝜏, 𝛿), 𝑣) 2.2.18 

where 

 𝑀∗(𝜏, 𝛿) =∑ 𝑥𝑡
𝑇

𝑡=1
(𝜏, 𝛿)𝑥𝑡

′(𝜏, 𝛿) 2.2.19 

 𝛽∗(𝜏, 𝛿) = 𝑀∗
−1(𝜏, 𝛿)∑ 𝑥𝑡

𝑇

𝑡=1
(𝜏, 𝛿)𝑦𝑡(𝜏, 𝛿) 

2.2.20 

 𝑠∗(𝜏, 𝛿) =∑ 𝑦𝑡
𝑇

𝑡=1
(𝜏, 𝛿)2 − 𝛽∗

′(𝜏, 𝛿)𝑀∗(𝜏, 𝛿)𝛽∗(𝜏, 𝛿) 
2.2.21 

 𝑣∗ = 𝑇 − 𝐾 2.2.22 

Therefore, the joint posterior density of 𝜏  and 𝛿  can be gained from the likelihood 

function and the prior densities of 𝜏 and 𝛿, 

 𝜑(𝜏, 𝛿|𝑦)

∝ [∏ ℎ𝑡(𝜏, 𝛿)
𝑇

𝑡=1
]
−
1
2

𝑠∗(𝜏, 𝛿)
−
𝑣∗
2 |𝑀∗(𝜏, 𝛿)|

−
1
2𝜑(𝜏)𝜑(𝛿) 

2.2.23 

These can be adopted by a Markov chain Monte Carlo (Metropolis-Hasting algorithm) 

with uniform distribution. 

The marginal posterior densities of 𝜏 and 𝛿 can be followed as, 
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 𝜑(𝛽|𝑦) = ∬𝜑(𝛽|𝜏, 𝛿, 𝑦)𝜑(𝜏, 𝛿|𝑦)𝑑𝜏𝑑𝛿 2.2.24 

 𝜑(𝜎2|𝑦) = ∬𝜑(𝜎2|𝜏, 𝛿, 𝑦)𝜑(𝜏, 𝛿|𝑦)𝑑𝜏𝑑𝛿 2.2.25 

Hence, the Bayesian 90% confidence interval of all parameters’ marginal posterior 

density can be acquired.  
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2.3 Results and findings for the dynamics of momentum effects 

2.3.1 Momentum effect in the UK and the US 

Table A1.1 and Table A1.2 in Appendix A show the momentum portfolio returns from 

the sixteen different momentum strategies from 1980 to 2018. Overall, there is a significant 

momentum effect in the US market and in the UK market, which is more significant in the 

UK market than in the US market. There are also many features in common between the US 

market and the UK market. Initially, it can be found that both markets show a positive 

momentum effect, only at different magnitudes. There are significant positive momentum 

effects under the 5% significance level during the 3 months ranking period. Additionally, there 

are monotonic increases in momentum portfolio returns in the holding period given the 

constant 3 months ranking period. Further, returns in the remaining momentum trading 

strategies have dramatic fluctuations given the fixed ranking periods. However, there is the 

same distribution of the highest returns between the US market and UK market (i.e. the highest 

return is in 12 months holding period given the constant 3 months ranking period; the highest 

return is in 9 months holding period given the constant 6 months ranking period; the highest 

return is in 9 months holding period given the constant 9 months ranking period; the highest 

return is in 6 months holding period given the constant 12 months ranking period). This 

implies that in the long run, the probability of the reversal effect is more substantial. In 

addition, nine of the momentum trading strategies in the full sample in the US market, and 

four of the 16 momentum trading strategies in the UK market, produce significant profits at 

the significance level of 5%. Almost all the momentum trading strategies in the 9 months and 

12 months ranking periods are non-significant at the significance level of 5%. On the other 

hand, the most striking difference between the two markets is that all the returns for each of 

the momentum trading strategies in the UK are always higher than those in the US market. 

However, there is quite similar overall performance in both markets, which implies that there 

is a potential relationship between the two markets.  

Table A2.1 and Table A2.2 show the performance reliability of different momentum 
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trading strategies in both markets from 1980 to 2018. In total, almost all the momentum 

trading strategies have high reliability in both markets. I used the ratio of the amount of 

positive momentum return divided by the whole observation, which can measure the 

performance reliability of each of the momentum strategies. This means that there is higher 

performance reliability when the percentage is substantial. The full sample in the UK has 

stronger dependability across the 16 momentum strategies than in the US market. More 

specifically, the ratios in both markets score more than 60%, except for momentum strategy 

3*3 in the US market. However, although most of the momentum trading strategies in the UK 

market are over 70% in performance dependability, only one strategy in the US market scores 

higher than 70%. Further, it was found that the lowest ratios in both markets were for 

momentum strategy 12*12. Therefore, this underlying evidence, like the lowest momentum 

payoff and the least dependable momentum trading strategy, is potentially consistent with a 

reversal effect in the long run.  

Table A3.1 and Table A3.2 illustrate the annualised market-adjusted returns on the winner 

and loser portfolios in the US and UK markets.6 In the UK market, there are multiple negative 

returns on the loser portfolios, which are investment strategies during the ranking periods of 

three, six and nine months, which results in the potential insight that the momentum effect is 

significant in the UK market. Further, the annualised market-adjusted return on the loser 

portfolio could be positive when the formation period is nine months or more. Moreover, there 

are significant positive impacts by the winner portfolios under the 5% significance level, 

compared with the loser portfolios. In addition, I found that given the fixed formation period 

in the UK market, annualised market-adjusted returns on the winner portfolios monotonically 

decrease with the increase of the holding period. On the other hand, all the annualised market-

adjusted returns on the winner and loser portfolios are positive in the US market. Similarly, 

there is also a more significant positive impact by the winner portfolios under the 5% 

significance level, compared with loser portfolios. Although there is a monotonic increase in 

 

6 The formula for annualised market-adjusted returns is 𝑀𝑅𝑝 =
∑ ∏ 𝑅𝑖,𝑡,𝑝

𝐾
𝑡=1

𝑛
𝑖=1

𝑛
−∏ 𝑅𝑚,𝑡

𝑘
𝑡=1 , where 𝑝 = 𝑤, 𝑙 means the 

winner portfolio and loser portfolio, 𝐾 is the holding period (𝐾 = 3,6,9,12), and 𝑅𝑚,𝑡  denotes the monthly market 

return.  
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returns on the winner portfolios as the holding period lengthens, given the fixed ranking period, 

the highest returns on the winner portfolios occur in the holding period of 3 months.  

According to the profitability of different momentum trading strategies in the UK and 

US markets shown in figure A4 (A4.1-A4.16), it can be observed that the frequency and 

duration of the momentum effect will be much greater than that of its reversals in both markets. 

Given the same momentum trading strategy, the momentum effect in the US market is more 

powerful than in the UK market, but has a shorter duration than in the UK market before the 

arrival of its reversal. Simultaneously, the frequency of reversion in the US market is more 

than in the UK market. Furthermore, the reversals in the UK market are more substantial and 

stronger in each historical stage, compared with the US market. Moreover, given the constant 

ranking period (J), it can be seen that a momentum trading strategy with a longer holding 

period has a longer momentum effect duration, but also a stronger power of reversion in both 

markets. Also, when the holding period is shorter, momentum volatility is more frequent, 

leading to the capture of more information. On the other hand, given the fixed holding period 

(K), one of the findings by observation is that a momentum trading strategy with a longer 

ranking period has a weaker power of momentum effect, but a stronger power of reversal. As 

a result, an economic insight is that during the course of nearly 30 years, significant reversion 

has only happened a few times, especially with momentum trading strategies with a more 

extended ranking period and holding period.  

From figure A5 (A5.1-A5.4), it can be seen that the magnitude of market volatility in the 

US market is more significant than in the UK market, particularly during periods of increased 

market volatility. To a large extent, volatility in the US market looks like a leading indicator, 

compared with UK volatility. Overall, the two markets have a quite similar co-movement in 

terms of market volatility. From figure A6 (A6.1-A6.4), it can be found that the momentum 

portfolio returns in the ranking period in the UK market are often more than in the US market. 

And thus, the volatility of returns in the ranking period is sharper in the UK market, compared 

with the US market. Given the fixed holding period, a momentum trading strategy with a 

shorter ranking period has lower returns in the ranking period in both markets, based on 
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examining the results of sixteen momentum trading strategies.  

From the empirical evidence set out in figure A7 (A7.1-A7.4), figure A8 (A8.1-A8.4) 

and figure A9 (A9.1-A9.4), the initial relationship between returns in the holding period and 

returns in the ranking period, and domestic market volatility and foreign market volatility in 

the US and UK markets can be observed. Thus, the initial correlation among variables can be 

judged. It can be found that there is an inverse relationship between momentum portfolio 

returns in the holding period and domestic market volatility. Indeed, according to the empirical 

evidence in figure A7 (A7.1-A7.4), returns in the holding period are in an inverse correlation 

with returns in the ranking period in the 16 momentum strategies in both markets. An 

interesting finding is that given the constant ranking period, the alphas (constant in linear 

regression) with the longer holding period is following an upward trend in both markets, and 

the UK market has a larger scale than the US market under each momentum trading strategy. 

On the other hand, given the fixed holding period, there is a downward trend of alpha with 

the decline of the ranking period in the US market. In terms of beta, the UK market has a 

decreasing value with increasing holding period, given the stable ranking period, which is 

similar to the US stock market in most momentum strategies. When the holding period is 

constant, the beta is in a monotone increase in the UK market with increasing ranking period. 

Figure A8 (A8.1-A8.4) shows a total increase of alpha with rises in the holding period given 

the constant ranking period in both markets. In respect of beta, the results in both markets fall 

with the increasing holding period momentum strategy, if maintaining a fixed ranking period. 

And betas in all momentum strategies are negative, and all alphas are positive. Figure A9 

(A9.1-A9.4) illustrates that given the constant ranking period, there is an increase of the alpha 

with the increasing holding period in both stock markets. Importantly, there is a significant 

negative link between momentum portfolio returns in the holding period and foreign market 

volatility. More specifically, there is a monotonic decrease of the beta with the increasing 

holding period when keeping the constant ranking period.  
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2.3.2 Results of Bayesian estimation 

In this part, the empirical results arising from the estimations of the two-regime switching 

model are reported and interpreted in relation to 16 momentum trading strategies in the US 

and UK stock markets, respectively. According to the Bayesian inference, I used the prior 

distribution of the Tau and the Delta produced by Cao (2014). Cao (2014) used the error and 

trail method and the Independent Metropolis-Hasting algorithm to determine the prior 

distribution of the Tau and Delta in the UK market. I used the prior distribution of threshold 

parameter (τ), which is a uniform distribution with distribution support between 0.035 and 

0.045, and the prior distribution of ratio (δ), which is a uniform distribution with distribution 

support between 0.5 and 6 in the UK market. Similarly, I can use the same method to obtain 

the prior distribution of the Tau and Delta in the US market. The prior distribution of threshold 

parameter (τ), a uniform distribution with distribution support, is between 0.025 and 0.05, and 

the prior distribution of ratio (δ), as a uniform distribution with distribution support, is 

between 1 and 6.5 in the US market. More specifically, according to the distribution of the 

domestic market volatility in both markets, I set wide intervals so that the switches were 

extremely frequent in each of the momentum strategies, mainly focusing on the range [0.025, 

0.5]7. Draws for the posterior distribution of the Tau can be produced via the Independent 

Metropolis-Hasting algorithm that uses uniform distribution as the candidate density. The 

prior distribution of the Delta as a uniform distribution with distribution support is between 1 

and 6.5 for all 16 momentum strategies.8 The posterior probability distributions of the Delta 

are produced using an independent Metropolis–Hastings algorithm with uniform candidate 

density as well.  

 
7 To ensure the dependability of regression estimation in both regimes, I selected the support for prior distribution of the 
Tau so that at least 30 observations were set in each regime.  
8 Because I adopted the uniform distribution, that is a non-informative prior distribution, this distribution is adaptive only if 
it does not limit the posterior distribution. All the posterior distributions of the Delta were in the interval between 1 and 
6.5, thus this distribution was adaptive and dependable.  
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2.3.2.1 Findings and discussion of the posterior probability distribution of 

the Tau and the Delta 

Regarding the estimation of the posterior probability distribution of the Tau, there was a 

significant estimation result for most of Tau in both markets. Based on the whole sample, 

almost all of the posterior probability distribution of Tau were in common intervals between 

0.035 and 0.045 in the UK market and between 0.025 and 0.05 in the US market. Obviously, 

as figure A11 (A11.1-A11.4) shows in the US market and figure A13 (A13.1-A13.4) shows in 

the UK market, there is a significant switch between the momentum regime and the reversal 

regime in the majority of momentum trading strategies. In table A14.2 for the US market and 

table A15.2 for the UK market, this study reported the 90% Bayesian confidence interval for 

the Tau in the US and the UK markets, which provides exact intervals. For example, under 

the 12*6 momentum trading strategy, the large number of probabilities have a relatively fixed 

value for the Tau in the US market, distributed between 0.035 and 0.037. This result implies 

that in this interval, there is a robust possibility of the switch from the momentum (reversal) 

regime to the reversal (momentum) regime. In other words, when the market risk in the 

ranking period is less (more) than the threshold parameter (Tau), the momentum (reversal) 

effect occurs. Thus, when the momentum regime works, the 12*6 momentum trading strategy 

is successful or profitable during the coming six months. In contrast, the reversal effect is 

expected when the market risk in the ranking period exceeds the threshold parameter (Tau), 

which produces losses via the 12*6 momentum trading strategy in the following six months. 

To a large extent, the 90% Bayesian confidence intervals for the Tau in the US and the UK 

markets are in a small range of approximately one fixed value.  

In figure A11 (A11.1-A11.4) and figure A13 (A13.1-A13.4), I also report the Bayesian 

estimation of posterior probability distribution of the Delta in the US and UK markets. Table 

A14.2 and table A15.2 show the 90% Bayesian confidence intervals of the Delta in the US 

and UK markets. In sum, all Delta values in the different momentum strategies are more 

significant than one, which means that the variance in the reversal regime is more than that of 

the momentum regime in both markets. Moreover, the results of the posterior probability 
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distribution of the Delta also imply that the assumption of heteroskedasticity is reasonable. 

Specifically, the momentum regime shows a low variance, which means lower risk. On the 

other hand, the reversal regime has a high variance, which implies a higher risk. For example, 

in momentum trading strategy 6*6, the 90% Bayesian confidence intervals of the Delta are 

[3.053, 3.615] in the US market. As a result, the Bayesian estimation of the posterior 

probability distribution of the Tau and the Delta reveals reasonability and adaptability when 

applying the two-regime switching model in both markets.  

2.3.2.2 Findings and discussion of posterior probability distribution of the 

Alpha, Beta, Gamma and Theta in the momentum regime 

In this section, I report the results of the alpha, beta, gamma, and theta parameters in the 

momentum regime. Overall, I found more significant results in the UK market than in the US 

market. Based on the Bayesian estimation of posterior probability distribution of parameters, 

the interval of the intercept Alpha1 measures the degree of average momentum return. For 

example, in momentum trading strategy 6*6, the 90% Bayesian confidence intervals of the 

Alpha1 are [0.083, 0.128] in the US market. To a large extent, the positive Alpha1 means that 

in a calm market, the momentum investment strategy can produce momentum returns. Further, 

I find that for the total momentum strategy in the UK market, the values of the Alpha1 are 

positive, which can potentially explain the significant profitability of a momentum trading 

strategy in the UK market in the momentum regime. Further, there is a majority of positive 

Alpha1 values in the US market. In addition, compared with the UK market, the absolute 

value of the Alpha1 in the US market is smaller overall than it is in the UK market, which 

potentially means that the level of momentum returns in the US market is lower than in the 

UK market for each momentum trading strategy, as shown in Table A14.1 and Table A15.1.  

The value of Beta1 shows the relationship between domestic market risk and the strength 

of the momentum effect in the momentum regime. For example, in momentum trading 

strategy 6*9 in the UK market, the Bayesian estimation of the posterior probability 

distribution of parameter Beta1 is in the interval [-2.483, -1.285]. This means that there is a 
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negative relationship between domestic market risk and the strength of the momentum effect. 

In other words, during calm market periods, higher domestic market risk leads to a reduction 

in the strength of the momentum effect. Further, almost all the momentum trading strategies 

in the UK market also show that there is an inverse relationship between domestic market risk 

and the strength of the momentum effect. In the US market, 13 out of the 16 momentum 

strategies illustrated robust evidence of a negative correlation between domestic market risk 

and momentum returns.  

Parameter Gamma1 shows the relationship between the momentum portfolio returns in 

the formation period and in the holding period in the momentum regime. For instance, in 

momentum trading strategy 6*9 in the UK market, the Bayesian estimation of the posterior 

probability distribution of parameter Gamma1 is in the interval [-0.174, -0.148]. Further, I 

found that in the 16 momentum trading strategies, all the Bayesian estimations of the posterior 

probability distribution of parameter Gamma1 fall into the negative interval in the US market. 

One potential explanation is that there is a dramatic potential strength of momentum effect 

when returns in the formation period are low in the momentum regime in the UK market.  

The value of the Theta1 measures the effect of foreign financial market risk on the 

strength of the momentum effect in the momentum regime. For example, in the UK market, 

the Bayesian estimation of the posterior probability distribution of parameter Theta1 for 

momentum strategy 6*6 is in the interval [1.103, 1.788]. This implies that when the market is 

calm, there is a positive relationship between US market risk and the momentum return in the 

UK market in the holding period. Further, across all 16 momentum strategies in the US market, 

almost all the results are significant positive, except for momentum strategy 3*3 and 3*6.  

2.3.2.3 Findings and discussion of the posterior probability distribution of 

the Alpha, Beta, Gamma, and Theta parameters in the reversal regime 

This section reports the results for the alpha, beta, gamma, and theta parameters in the 

reversal regime, when market volatility is above the threshold parameter Tau. Overall, there 
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was a difference between the Bayesian estimation of the posterior probability distribution of 

parameter Alpha1, Beta1, Gamma1, and Theta1 in the momentum regime, and Alpha2, Beta2, 

Gamma2, and Theta2 in the reversal regime. This is because there is a higher risk exposure 

(volatility) in the reversal regime than in the momentum regime due to the posterior 

probability distribution Delta. There is a high probability of switching from the momentum 

regime to the reversal regime when market volatility is above the threshold parameter.  

The value of the Alpha2 seems to be small significant under the 90% Bayesian 

confidence interval. However, I found that under the 90% Bayesian confidence interval, all 

the Alpha2 values are positive in the UK market, and almost all of the Alpha 2 values are 

positive in the US market. This means that the initial momentum returns in the reversal regime 

could be substantial. This could be explained by the information delay that because investors 

cannot immediately reflect the high market volatility, they cannot make investment decisions 

in time. The Beta2 measures market risk in the reversal regime. The results for the 16 

momentum strategies show a significant negative relationship between market risk and 

momentum effect in the UK market. However, there is an insignificant relationship between 

market risk and momentum effect in the US market. The values of the Gamma2 measure the 

correlation between returns in the ranking period and the strength of the momentum effect. 

Across the 16 momentum strategies, there is a significant inverse relationship between returns 

in the ranking period and momentum effect in the UK market but a significant positive 

relationship in the US market. On the other hand, the value of the Theta2 measures the 

correlation between foreign market risk and the strength of the momentum effect. Further, 

there are a significant positive relationship in the UK stock market and a significant negative 

relationship in the US stock market. 
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Chapter 3.0 Momentum Effects and Long-run Risk Model 

3.1 Literature review for long-run risk model  

In this section, I will explain the long-run risk model, and review its development as well 

as providing a cross-section of security returns in the long-run risk model.  

3.1.1 Long-run risk model  

Bansal and Yaron (2004) and Hansen, Heaton and Li (2006) summarised the future of 

the long-run risk model, which is that the model focuses on the low-frequency characteristics 

of time series of dividends and aggregate consumption. Further, the model has superiority in 

accounting for time series and cross-sectional asset returns in the financial markets. Bekaert, 

Engstrom and Xing (2009) utilised an external habit model containing persistent time-varying 

uncertainty fundamentals, which can match the dynamics of dividends and consumption. 

Malloy, Moskowitz, and Vissing-Jorgensen (2004) found new empirical evidence regarding 

long-run risk in asset pricing. They believed that long-run risk shareholders’ consumption risk 

can capture cross-sectional changes better than aggregate consumption risk.  

One long-run risk model is the classical asset pricing model by Bansal and Yaron (2004). 

I will review this model’s fundamental assumptions, construction, and results in this part. 

Regarding the assumptions, Campbell and Cochrane (1999) established an asset pricing model 

based on the external habit model. Their model assumed that the processes of consumption 

and dividends are produced by time-varying risk aversion, and thus that investors prefer the 

late resolution of uncertainty that is backwards-looking. Further, historical consumption 

significantly impacts on asset pricing movement. However, Bansal and Yaron (2004) make 

entirely different assumptions. They put forward a long-run risk model which can adequately 

explain asset market phenomena such as the risk-free rate, equity premium (Mehra and 

Prescott, 1985), and volatility puzzles (Shiller, 1981). More specifically, the model includes 

two components in explaining asset pricing puzzles, such as a small, persistent, predictable 
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component showing long-run fluctuations in two expected growth processes and fluctuating 

economic uncertainty with time-variance in consumption volatility. The model is built on the 

basis of the standard Epstein and Zin (1989) preferences. This life-time utility separates out 

the intertemporal elasticity of substitution (IES) and risk aversion. Theoretically, the measure 

of risk aversion correlative to the reciprocal of the IES can be determined by whether the agent 

prefers an early resolution of uncertainty or a late one regarding the consumption process in 

the future. In the long-run risk model, it is assumed that investors prefer to resolve uncertainty 

early, and hence the parameter of risk aversion exceeds the reciprocal of the IES. It implies 

that shocks in the model to the expected growth and consumption volatility are part of the 

long-run process, and therefore, that they change investors’ expectations of future growth and 

volatility. Theoretically, the price depends on the expected return and consumption, as they 

contribute to forecast future growth and uncertainty. Thus, the long-run risk model has 

forward-looking predictability, and the core driving force of the financial market in this model 

is the volatility of the long-run economic growth expectation and the content of the economic 

uncertainty. There are also three different sources of risks in the original model: short-run risk, 

long-run risk, and consumption volatility risk. As a result, there is a closed match regarding 

risk correlated to growth expectation and fluctuating economic uncertainty with time-variance 

between the observed market data and the simulation of the model. 

3.1.2 Development of the long-run risk model  

Bansal, Khatchatrian and Yaron (2005) illustrated the significant empirical result that the 

expected magnitudes of economic uncertainty can be forecast by the valuation ratio. They also 

found that with increased economic uncertainty, asset valuation declines, which means that 

the financial market is averse to economic uncertainty. Additionally, to a large extent, changes 

in asset prices are more likely to contribute to volatility and economic uncertainty, and the 

expected growth of cash flow. Thus, they concluded that fluctuations in economic uncertainty 

and the predicted growth of cash flow are significant in explaining the asset market.  

Bansal, Kiku and Yaron (2007a) presented the long-run risk co-integrated extension. This 
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paper deployed a long-run risk model to interpret asset returns using asset pricing Euler 

equation-GMM based estimation. They found that investors care more about long-run risk, 

which along with economic uncertainty, is critical to understanding asset returns. More 

specifically, the risk component in the long-run risk model is strongly persistent and examines 

fluctuations longer than those relative to the business cycle. Importantly, it is also 

economically and statistically predictable by theoretically motivated variables. Moreover, it 

is more sensitive for assets with substantial mean returns from innovation in the long-run risk 

variable and from news about economic uncertainty. They also found that the long-run risk 

model can interpret most risk premia well, and cannot be rejected by the over-identifying 

limitation. More importantly, there was evidence that the estimation of risk aversion and the 

IES are more vulnerable to time-variance and finite sample biases. The market price of the 

long-run risk model at risk aversion and the IES value for preference parameters was more 

closed relative to that of short-run and volatility risks. Therefore, the authors summarised that 

the long-run risk model, as opposed to short-run risks, was more important for understanding 

asset prices. Similarly, Bansal, Gallant and Tauchen (2007) examined and compared two 

models; the first, with three main channels, including the long-run risk model, low-frequency 

movements, and time-varying uncertainty in aggregate consumption growth, constructed the 

empirical reasonability of the asset pricing model. The other model was by Campbell and 

Cochrane (1999), in which the significant channel was habit formation. They found that the 

two models were fitted with annual observations data from 1929 to 2001, using simulation 

estimators. Both models could trail a measurement of real annual volatility quite tightly. The 

results show that the long-run risk model could be better. Bansal, Kiku and Yaron (2009) 

estimated that the forward-looking long-run risk model was different to the backwards-

looking habit, and produced three key results. The first was that there is material evidence in 

time-varying expected growth and consumption volatility data. The second was that the long-

run risk model matched the primary asset market data characteristics. The third was that past 

consumption growth cannot forecast future asset prices, but lagged consumption could predict 

future price-dividend ratios. The new equation for dividend growth was therefore as follows: 

𝑔𝑑,𝑡+1 = 𝜇𝑑 +𝜑𝑥𝑡 + 𝜋𝜎𝑡𝜂𝑡+1 + 𝜑𝜎𝑡𝜇𝑑,𝑡+1 
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They found that although there was persistent volatility in the calibration of the model, 

the volatility of the price-dividend ratio was not large enough for the price-dividend rate to 

forecast excess returns. Bansal, Kiku and Yaron (2010) developed a generalised long-run risk 

model to test the influence of cyclical volatility and macroeconomic risk on asset prices and 

expected returns. Particularly, they sought to assess the cyclical risks, so the model contained 

a cyclical element that is stationary in the consumption growth path. The model also examined 

surges in consumption and volatility of consumption. They discovered that the measurement 

of risk compensation for cyclical risks in consumption relies to a large extent on the scale of 

the IES. Thus, they found that when the IES is above 1, there is a small risk premium for 

cyclical risk, and that when the IES is approximately 0 or more than 1, the risk compensation 

for cyclical risk is quite large, a finding consistent with Lucas (1987) and Bansal, Dittmar and 

Kiku (2009). Bansal and Shaliastovich (2013) developed and examined a long-run risk model 

with time-varying fluctuations in expected growth and inflation in the future. The model 

showed that an increase in bond risk premia leads to an increase in the uncertainty of expected 

inflation and a reduction in the uncertainty of expected growth. They also identified several 

significant factors for asset markets, such as preference for the early resolution of uncertainty, 

time-varying volatilities, and non-neutral impacts of inflation on economic growth. Bansal, 

Kiku and Shaliastovich (2014) proposed a framework based on the long-run risk model with 

a stochastic discount factor, and thus that the risk premium can be decided by cash flow risk, 

discount rate risk, and volatility risk. As a result, they presented three major findings. The first 

was that increased volatility is linked to an increasing discount rate and falling expected 

consumption. The second is that it is important for the role of volatility risk to explain the 

joint dynamics of return with human capital and equity. The last is that volatility risk with a 

significantly positive risk premium can contribute to interpreting the magnitude of, and cross-

sectional dispersion in, expected returns in the future. Ferson, Nallareddy and Xie (2012) 

developed an out-of-sample asset return sample from 1931 to 2009. They discovered that the 

long-run risk model implemented the momentum effect reasonably well, and also that a 

cointegrated version of the model was better than the classical stationary version. They 

evidenced that generally, the models’ average pricing errors were relatively small from the 

1950s to the 1990s. If the risk premium was restricted to identifying structural parameters, it 
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would lead to a larger average pricing error but smaller error variances. In addition, the 

average squared errors were not able to dramatically improve on those of the traditional 

CAPM, in addition to momentum.  

Piazzesi and Schneider (2006) introduced the role of inflation into the long-run risk 

model by using treasury inflation-protected securities data in the US. They found that inflation 

was bad news for consumption growth, that the nominal yield curve was an upwards trend, 

and that the level of nominal interest rate and term extension were high in time when inflation 

news was difficult to explain. Ai (2010) used a production-based long-run risk model to 

enhance understanding of asset pricing implications in three respects. These were the increase 

in the equilibrium equity premium, the declining volatility of consumption growth, and the 

risk-free interest rate. He found that due to the different assumptions in the production 

economy, there is a low relationship between information and high equity premiums, low 

volatility consumption growth, and the risk‐free interest rate. Additionally, he also optimised 

the long-run risk model to gain a strong improvement regarding volatility of returns on 

aggregate wealth and the wealth-consumption ratio. Sasaki (2016) extended the long-run risk 

model by bringing in stochastic jump intensity and the variance of the consumption growth 

rate, to offer an explicit representation of the skewness risk premium and the volatility risk 

premium in equilibrium. They claimed a superior predictive ability for future expected 

aggregate stock market index returns between the skewness risk premium and the variance 

risk premium. At the same time, the skewness risk premium played an independent and 

essential role in forecasting market index returns.  

Kaltenbrunner and Lochstoer (2010) examined the endogenous formation of long-run 

consumption risk with Epstein–Zin preferences. They found that optimal consumption 

smoothing generates long-run risk with highly persistent fluctuations in expected growth, 

even with the assumption of i.i.d. technology growth. Therefore, their model has the ability to 

explain the high price of risk even though both the volatility of consumption growth and 

relative risk aversion parameters are low. They argued that the endogenous long-run risk 

impact on asset pricing relies on the persistence of technology shocks, as well as agents’ 
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performance in the timing of resolution of uncertainty to a large extent. Hartzmark (2016) 

found that the long-run risk model was helpful in supporting and describing the basic 

association between economic uncertainty and the interest rate. They evidenced that this 

relation is large, which lends strong support to the basic finance theory. Colacito and Croce 

(2011) induced the exchange rate in the long-run risk model, which successfully reconciled 

international prices and quantities, and thus solved the international equity premium puzzle 

using US and UK data. As a result, a closed relationship between common long-run growth 

perspectives and exchange rate movement was identified. Hasseltoft (2012) accounted for the 

primary characteristics of equity and bond markets, and then the interactions between asset 

pricing and the macroeconomy in a long-run risk model. They discovered that shocks to future 

expected consumption growth and time-varying macroeconomic volatility could accurately 

reflect the measure of risk premia and its changes over time in both markets, using a 

simulation estimator and a wide set of moment conditions. Croce (2014) studied the 

probability of long-run productivity risk, using the original long-run risk model by Bansal and 

Yaron (2004). They found a predictable component in US productivity growth, which impacts 

not only on aggregate market prices but also on primary macroeconomic variables. Further, 

they adopted a production-based dynamic stochastic general equilibrium (DSGE) model with 

long-run productivity shocks, leading to an improved asset price explanation. Kaltenbrunner 

and Lochstoer (2010) illustrated that an endogenous production-based model can predict the 

long-run expected fluctuations in consumption growth.  

However, several potential problems in the development of the long-run risk model also 

need to be analysed and explained. First of all, there has been debate about the existence of a 

long-run risk component in future expected consumption growth. More precisely, this 

question is challenging to explore statistically using univariate methods as consumption is 

closed to the random walk. Besides, the impact on asset prices relies on investors exploring 

it, and the model counterfactually makes consumption growth predictable via the price-

dividend ratio. Furthermore, a large number of adjustments and calibrations of the long-run 

risk model are needed. For example, one study’s calibration (Bansal, Kiku and Yaron, 2007b) 

changed the weighting towards the second source of long-run risk, that is, persistent volatility 
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reducing the predictability of consumption growth. Finally, another debate focusses on the 

value of the IES greater than one. Beeler and Campbell (2009) summarized, revaluated, and 

discussed the long-run risk model, which they argued contained several crucial difficulties as 

a quantitative depiction of historical financial data in the US. Firstly, there was scarcely any 

evidence either for persistent fluctuations in consumption and dividend growth ratios, or for 

the capability of the stock market predicably reflecting these growth ratios. This implied that 

the long-run risk model could not utilise persistent variations in consumption growth to 

interpret changes in the stock market. Bansal, Kiku and Yaron (2007b) also recognised this 

issue and recalibrated the long-run risk model to highlight persistent changes in consumption. 

However, doing so produced another problem, which was that even though stock prices could 

forcefully forecast expected consumption volatility, they failed to contribute a predictable 

power to the expected volatility of returns on the stock. In addition, the authors also argued 

that aggregate consumption growth does not react to changes in the short-term real interest 

rate, which was required by the model’s assumption of an IES of larger than one.  

Bonomo et al. (2010) presented an asset-pricing model with generalised disappointment, 

aversion preferences, and long-run volatility risk. Compared with Bansal and Yaron (2004), 

the model had two features containing more predictability of excess returns by price-dividend 

ratio and less predictability of the consumption growth ratio by price-dividend ratios. More 

importantly, their results do not rely on a value of the IES of larger than one. The last argument 

was that the model results in extremely low yields and negative term premia on long-run 

inflation-indexed bonds. Bansal (2007) stated that the relative asset price can be driven by 

long-run expected growth and economic uncertainty in the future. Both channels of economic 

risk were able to explain the risk premium and the volatility of asset price. A significant result 

is that the long-run risk model is able to provide a comprehensive and systematic model for 

analysing the financial markets. Bansal, Kiku and Yaron (2009) investigated the significant 

discrepancy between the habit model and the long-run risk model. They provided empirical 

evidence for the long-run risk model for time-varying expected consumption growth and 

consumption fluctuation, as well as matching the primary asset market data. However, the 

weak explanatory aspect of the long-run risk model is that lagged consumption growth fails 
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to forecast the expected price-dividend ratio.   

3.1.3 Cross-section of security returns in the long-run risk model  

Constantinides and Ghosh (2011) proposed a new approach to testing the long-run risk 

model proposed by Bansal and Yaron (2004). This method is fundamentally based on the 

observation that the potential state variables can be found as the given function. The model 

can interpret the cross-sectional return by a higher persistence of consumption and dividend 

growth, compared with the actual data. Furthermore, the model can effectively match the real 

data for the unconditional moments of consumption and dividend growth. However, there are 

differences in the higher risk-free rate, and lower fluctuations in the price-dividend ratio, risk-

free rate, and market return, compared with the observed data. One problem with this model 

is that the conditional variance of the long-run risk variable cannot capture the considerable 

time variation in the equity premium. Kiku (2006) claimed that the long-run risk model has 

the ability to interpret cross-sectional variations in average returns. Their model is successful 

in capturing the overall transition density of stock value returns and growth returns, which 

emphasises the significance of long-run risk in explaining the behaviour of stock markets.  

Zurek (2007) estimated the cross-section of equity securities by using the long-run risk 

model in the US stock market. Their core contribution is to explain the momentum selection 

mechanism in the long-run risk model. More specifically, the mechanism is the difference 

between expected returns in different portfolios, as investors generally believe that securities 

in the winner portfolio have a higher risk than those in the loser portfolio. Thus, due to this 

systematic risk, these stocks are more likely to enter the winner portfolio. Once these securities 

are chosen for the winner portfolios, they can outperform the loser portfolios, and even the 

market portfolios, since the expected returns in the winner portfolios are still higher. Bansal, 

Dittmar and Lundblad (2005) also found that cross-sectional diversity can be interpreted well 

by long-run risk exposure in the expected returns of portfolios that are formed by the historical 

return, firms’ scale, and book-market ratio. As a consequence, Zurek (2007) pointed out that 

according to their observations, the consumption beta at the cross-sectional portfolio level can 
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effectively interpret most of the returns in the momentum portfolio. Their model can be 

simulated to generate a strong momentum effect and a comparatively large equity premium, 

and thus match relative moments like returns in the holding return, dividend growth, and 

price-dividend ratio in the momentum portfolio. However, Zurek’s model (2007) has a 

potential problem, which is that it is short of relative macroeconomic risks. This is because 

the original long-risk model by Basal and Yoran (2004) was based on fluctuations with time-

variance in periods of economic uncertainty, which is a potential merit in explaining the asset 

market. As they discovered, risks relative to varying growth expectations and fluctuations in 

economic uncertainty can be used to estimate a large number of observed characteristics of 

asset market data.  

Further, Bansal, Kiku and Yaron (2007b) also explained that fluctuations in economic 

uncertainty can directly influence the price-dividend ratio, as well as increasing the expected 

economic volatility, producing a decline in asset prices. As a result, they found that the 

consumption volatility path can effectively capture the volatility feedback impacts in a way 

that implies a negative relationship between returns and volatility. This is mainly because the 

consumption growth path includes the overall economic volatility with time-variance. On the 

other hand, the model by Zurek (2007) allowed three different risk sources: long-run risk, 

short-run risk, and consumption risk, based on the different volatility and shocks in the model. 

Zhou and Zhu (2014) extended the long-run risk model based on multiple macroeconomic 

volatilities, which allowed the coexistence of long-run and short-run volatility components. 

The assumptions of the model may be consistent with the actual volatility, and their model 

can match different modes, including the scale of the market risk premium and the 

predictability of dividend yields. Moreover, Alizadeh, Brandt and Diebold (2002), Adrian and 

Rosenberg (2008) and Chacko and Viceira (2005) have all also studied multiple volatilities in 

financial markets. Nakamura, Sergeyev and Steinsson (2012) identified many relative factors 

of consumption volatility using developed countries’ panel data. They found that the long-run 

risk model which includes multiple volatility variables can closely match predictability 

moments. Moreover, Boguth and Kuehn (2013) tested a dual-volatility process by separating 

the two factors of the aggregate consumption path. They concluded that volatility risks are 
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significant for the cross-section of securities returns.  

Bansal et al. (2009) built a dynamic asset-pricing model to evaluate the volatility risk 

relative to the dynamics of asset prices and macroeconomic fluctuations. They revealed three 

main results. The initial finding was that increased macroeconomic volatility leads to 

increased discount rates and falling expected consumption. The following finding was that the 

volatility risks can effectively explain the joint dynamics of returns to human capital and 

equity. The last outcome was that a considerable positive risk premium was observed for 

volatility risks, which contributes to interpreting the extent and cross-sectional dispersion of 

predictable returns. Further, the model with three different sources of risk (cash flow, discount 

rate, and volatility risk) can make estimations using the observed macro and financial data. 

Simultaneously, Drechsler and Yaron (2011) also established a long-run risk model with a 

volatility path. The first process can capture persistent long-run movements. The other shows 

a quickly mean-reverting and shorter-run component of consumption volatility. These 

extensions of the long-run risk model are able to enhance the predictability of consumption 

growth and abnormal returns. Chordia and Shivakumar (2002) accounted for returns in the 

momentum portfolio using lagged macroeconomic variables and the disappearance of returns 

in the momentum portfolio. Their results contained time-varying expected returns, which can 

be used to interpret momentum payoffs. 
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3.2 Data and methodology 

In this section, I will explain and discuss the methods I used to conduct the present 

research. Initially, I will set out the data collection and selection methods. Then, I will 

demonstrate the assumptions of the model, including investors’ preferences, the construction 

of stochastic discount factors, and the economic environment. Additionally, I will develop the 

long-run risk model and show the exact results of the model’s deductions. Finally, I will 

expound the process of calibration and simulation on the basis of the long-run risk model.  

3.2.1 Data collection  

There were two components to my data collection. On the one hand, I obtained monthly 

market data on individual securities from the Center for Research in Security Prices (CRSP) 

through the Wharton Research Data Services (WRDS). This monthly market data contained 

the holding return with and without dividends, and used the New York Stock Exchange and 

American Stock Exchange data from January 1970 and December 2018. Further, the per capita 

real consumption expenditure quarterly data for nondurable goods and services could be 

collected from the US Bureau of Economic Analysis. According to Hansen and Singleton 

(1983) and Bansal, Dittmar and Lundblad (2005), aggregate consumption can be computed as 

seasonally adjusted real personal consumption expenditures per capita of nondurable goods 

plus services. The present sample ranged from the first quarter in 1970 to the fourth quarter 

in 2018. The monthly Consumer Price Index (CPI) was collected as well, in order to calculate 

the inflation-adjusted return.  

3.2.1.1 Momentum portfolio using non-overlapping portfolio 

In this part, I calculate the return on each portfolio, following Jagadeesh and Titman 

(1993), similar to the above discussion. Firstly, I adjust the monthly holding period return 

(with and without dividends) to the real return:  
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 𝑟𝑟𝑒𝑎𝑙,𝑡 =
1 + 𝑟𝑛𝑜𝑚𝑖𝑛𝑎𝑙,𝑡

1 + 𝜋𝑡
 

𝜋𝑡 =
𝐶𝑃𝐼𝑡
𝐶𝑃𝐼𝑡−1

− 1 

3.2.1 

Where 𝑟𝑛𝑜𝑚𝑖𝑛𝑎𝑙,𝑡 denotes the monthly nominal holding period return, and 𝜋𝑡 indicates 

the inflation rate calculated by the CPI.  

Further, the momentum portfolio can be established based on the past adjusted inflation 

real returns with dividends over the ranking period (J), then observing the future gains in the 

holding period (K). Here, the ranking period is 6 or 12 months, and the holding period is 3, 6 

or 12 months, which is convenient in transferring the quarterly return data and in terms of the 

availability of quarterly consumption data. Moreover, due to the microstructure effects, for 

example non-synchronous trading, the bid-ask bounce, and infrequent trading, the one-month 

interval is skipped in the ranking period. Therefore, due to the construction of the non-

overlapping portfolio, there is no overlapping calculated return in the strategies holding period, 

but there could be overlapping in ranking periods longer than three months in duration. The 

whole sample is divided into the five portfolios on the basis of the past cumulative returns in 

the ranking period. Similarly, the winner portfolio has the highest payoff, and the loser 

portfolio the lowest payoff in the formation period. Future returns in the holding period are 

observed in each portfolio, but the skipped month is excluded at the start of the holding period. 

For example, for non-overlapping momentum strategy 6*3, the first formation period is from 

January 1970 to May 1970. Then, one month, June 1970, is skipped, followed by a holding 

period from July 1970 to September 1970, which is the first construction of the non-

overlapping momentum strategy 6*3.  

Following the example of Jagadeesh and Titman, I established a momentum portfolio 

with non-overlapping generation. Then, as per Bansal, Dittmar and Lundblad (2005), the 

dividend can be computed by the adjusted inflation returns with dividends (total returns, 𝑟𝑑,𝑡) 

and adjusted inflation returns without dividends (capital gains, 𝑟𝑥,𝑡). Thus, there are two-time 

series returns, including the total return and capital gains in five momentum portfolios. The 
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dividend formula can be shown as below,  

 𝐷𝐼𝑉𝑡,𝑝 = 𝑉𝑡−1,𝑝(𝑟𝑑,𝑡 − 𝑟𝑥,𝑡) 3.2.2 

Where 𝑉𝑡−1,𝑝 denotes the overall value of each momentum portfolio 𝑝. 𝑝 represents 

the five momentum portfolios, particularly the loser portfolio for 𝑝 = 1  and the winner 

portfolio for 𝑝 = 5. And 𝑅𝑑,𝑡 − 𝑅𝑥,𝑡 means the dividend yield. Further, the total value of 

each portfolio 𝑉𝑡,𝑝 is assumed by a recursive process,  

 

 𝑉𝑡,𝑝 = 𝑉𝑡−1,𝑝 ∗ (1 + 𝑟𝑥,𝑡) 3.2.3 

Obviously, the equation implies that the value of each portfolio depends on the previous 

value of the momentum portfolio and the growth in capital gains. There is no effect of dividend 

on the growth in the value of each portfolio since the dividends are extracted each month. 

Further, the monthly dividend series can be transferred to a quarterly frequency so that each 

monthly dividend can be summed in the holding period. Thus, each dividend in a non-

overlapping series represents the sum of the holding months’ dividends. Because of the strong 

seasonality in dividend yields, I followed a method used by Hodrick (1992), Heaton (1993), 

Bollerslev and Hodrick (1995), and Bansal, Dittmar and Lundblad (2005), by adopting a 

preceding four-quarter moving average between the current and past dividends, for the 

seasonally adjusted dividend. Therefore, the return with dividends (𝑅𝑇,𝑝 ), the growth of 

dividends (∆𝐷𝐼𝑉𝑇,𝑝 ) and valuation ratio (𝑉𝑅𝑇,𝑝 ) in each quarter, half-year or year can be 

represented as follows:  

 
𝑅𝑇,𝑝 =

𝑉𝑇,𝑝 + 𝐷𝑇,𝑝

𝑉𝑇−1,𝑝
 

3.2.4 

 ∆𝐷𝐼𝑉𝑇,𝑝 = 𝑙𝑜𝑔(𝐷𝐼𝑉𝑇,𝑝) − 𝑙𝑜𝑔(𝐷𝐼𝑉𝑇−1,𝑝) 3.2.5 

 𝑉𝑅𝑇,𝑝 = 𝑙𝑜𝑔(𝑉𝑇,𝑝) − 𝑙𝑜𝑔(𝐷𝑇,𝑝) 
3.2.6 
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Where 𝑇 denotes the interval of the holding period, and 𝑇 is 3, 6, or 12 months. Hence, 

𝑇 − 1 shows the last quarter, half-year, or year.  

3.2.2 Preferences, stochastic discount factor, and the environment  

In this part, I propose a new model based on Bansal and Yaron (2004) and Zurek (2007). 

The main reasons for using the long-run risk model are its two ingredients. Initially, the model 

uses the Epstein and Zin recursive preferences. These permit a separation between the 

intertemporal elasticity of substitution (IES) and risk aversion, and both parameters (IES and 

risk aversion) can be greater than 1 at the same time. When the IES is more than one, this 

means that agents require a higher equity risk premium due to their worries about expectations 

for the reduction of economic growth. Furthermore, the model contains two core components, 

a small, persistent, and predicable component in the growth rate component, and fluctuating 

volatility with time-varying economic uncertainty. More specifically, a representative agent 

relies on the Epstein and Zin recursive preferences, which satisfies below,   

 
𝐸𝑡 [𝛿

𝜃𝐺𝑡+1
−
𝜃
𝜓
𝑅𝑎,𝑡+1
−(1−𝜃)𝑅𝑥,𝑡+1] = 1 

3.2.7 

Where𝐺𝑡+1  denotes the aggregate gross growth rate of consumption. 𝑅𝑎,𝑡+1  and 

𝑅𝑥,𝑡+1denote the return on an asset with aggregate consumption as its dividends every period, 

and the asset pricing restriction on any continuous asset return, respectively. 𝛿 ∈ (0,1) is the 

time discount factor (time-preference). 𝜃 =
1−𝛾

1−𝜓−1
, where 𝛾 is the parameter of risk aversion 

(sensitivity) and 𝜓 is the parameter of the intertemporal elasticity of substitution, which are 

non-negative. So, when 𝛾  and 𝜓  are simultaneously greater than 1, 𝜃  will be negative. 

When the risk aversion is equal to the reciprocal of the IES (𝛾 =
1

𝜓
), this means that 𝜃 = 1, 

which reflects a standard case of expected utility. In other words, both the indifference 

between agents and the timing of the resolution of uncertainty are reflected. Moreover, when 

the risk aversion is more than the reciprocal of the IES (𝛾 >
1

𝜓
), agents prefer an early solution 

to the uncertainty of the consumption path. In contrast, when the risk aversion is less than the 
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reciprocal of the IES ( 𝛾 <
1

𝜓
 ), agents prefer a late solution to the uncertainty of the 

consumption path. It is vital to build the agents’ preferences into the dynamic asset-pricing 

model, which is based on an underlying assumption. As illustrated by Bansal and Yaron (2004) 

in the long-run risk model, the assumption that 𝛾 and 𝜓 are above 1 means that the agent 

prefers an early solution to the uncertainty of the consumption path. According to Lucas 

(1978), in an exchange economy without labour income, aggregate dividends are equal to the 

aggregate consumption of the representative agent. This means that the return on the aggregate 

portfolio corresponds to the return on a claimed aggregate dividend. In fact, consumption 

should not be equal to dividends, since the discrepancy can be generated by labour income. 

Thus, the original long-run risk model separates the aggregate consumption process and the 

aggregate dividend process. However, my model follows Zurek (2007) by focusing on the 

level of the individual security. This is because the assumption of infinitely lived securities 

can reveal the momentum selection mechanism, which is intrinsically consistent with 

aggregate consumption and the equity market.  

Further, the model is solved using approximate analytical solutions, following Campbell 

and Shiller (1988):  

 𝑟𝑎,𝑡+1 = 𝜅0 + 𝜅1𝑧𝑡+1 − 𝑧𝑡 + 𝑔𝑡+1 3.2.8 

Where 𝑟𝑎,𝑡+1= log 𝑅𝑎,𝑡+1  denotes the return on the claim to aggregate wealth. 

According to Campbell and Shiller (1988) and Bansal and Yaron (2004), 𝜅0 and 𝜅1, as two 

constant parameters, rely on the log price-consumption ratio, 𝑙𝑜𝑔(𝑃𝑡 𝐶𝑡⁄ ) = 𝑧𝑡.
9 One crucial 

assumption made by Campbell and Shiller (1988) and Zurek (2007) was that there is a 

stationary price-dividend ratio for individual securities. Further, under this assumption, there 

is an approximate expression for the continuously compounded returns that could be seen as 

a linear function of dividend-price ratios and log dividend growth rates. They identified a 

potential problem in that an individual firm could be influenced by the firm life cycle effect, 

 
9 Bansal, Kiku and Yaron (2009) and Zurek (2007) recognised two approximate constants, 𝜅1 = 𝑒𝑥𝑝(𝑧̅) (1 + 𝑒𝑥𝑝(𝑧̅))⁄  
and 𝜅0 = 𝑙𝑜𝑔(1 + 𝑒𝑥 𝑝(𝑧̅)) − 𝜅1𝑧̅. They believed that these can ensure that any variation in parameters that alters the 
average price-consumption ration 𝑧̅, can be contained in the approximation constants. Therefore, the endogenous solution 
for 𝑧̅ could be shown as: 𝑧̅ = 𝐴0(𝑧̅) + 𝐴2(𝑧̅)𝜎

2.  
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which implies a permanent change in their valuation ratios. Hence, Zurek (2007) pointed out 

that security 𝑖 can be seen as a representative security of a company in phase 𝑖 of the life 

cycle, as well as being transferred to distinct entities as time goes on from one period of the 

life cycle into others. Thus, it is similar to using the standard approximations for the solution 

of the corresponding total return on security 𝑖, which can be followed below, 

 𝑟𝑖,𝑡+1 = 𝜅𝑖,0 + 𝜅𝑖,1𝑧𝑖,𝑡+1 − 𝑧𝑖,𝑡 + 𝑔𝑖,𝑡+1 3.2.9 

Where 𝑟𝑖,𝑡+1= 𝑙𝑜𝑔 𝑅𝑖,𝑡+1 denotes the return on equity asset 𝑖. 𝜅𝑖,0 and 𝜅𝑖,1 are also 

constants, but different for different securities depending on the log price-dividend ratio for 

the claim on dividends, 𝑙𝑜𝑔(𝑃𝑡 𝐷𝑡⁄ ) = 𝑧𝑖,𝑡.  

The logarithm of the intertemporal marginal rate of substitution (IMRS) based on the 

Epstein and Zin (1989) preferences, can be rewritten to reflect the state variables which define 

the pricing kernel,  

 𝑚𝑡 = 𝜃 𝑙𝑛𝛿 −
𝜃

𝜓
𝑔𝑡 + (𝜃 − 1)𝑟𝑎,𝑡 

3.2.10 

Further, as shown in Appendix B, innovation in the pricing kernel depends on the 

innovation in the aggregate gross growth rate of consumption 𝑔𝑡 and innovation in return on 

an asset that delivers aggregate consumption as its dividends each period 𝑟𝑎,𝑡.  

3.2.3 Long-run risk model in cross-section 

Based on the previous work by Bansal and Yaron (2004) and Zurek (2007), I expand a 

rational equilibrium model that is a long-run risk model. Some supporters of the rational 

market have argued that returns on the momentum portfolio result from exposure to systematic 

risk factors. Further, I built a cross-section of equity securities in the long-run risk model. 

More specifically, the momentum portfolio has time-varying economic uncertainty contained 

in the consumption path and expected returns.  

The long-run risk model can be expressed as below: 
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 𝑥𝑡+1 = 𝜌𝑥𝑡 + 𝜑𝑒𝜎𝑡𝑒𝑡+1 3.2.11 

Equation 3.2.11 shows the process of long-run risk transfer, which is an autoregressive 

process (AR(1)). 𝑥𝑡+1 denotes a small but persistent predictable component, which refers to 

long-run risk. 𝜌 ∈ (−1,1) controls for the persistence of long-run risk. 𝜑𝑒 > 0 is a scaling 

parameter which identifies the relationship between the volatility of 𝑒𝑡+1 and the aggregate 

volatility process 𝜎𝑡. 𝑒𝑡+1 is a normal distribution 𝑁(0,1) and the i.i.d. shock, which is a 

factor that interprets the behaviour of the momentum portfolio on the basis of an expected 

return mechanism. 𝜎𝑡  is aggregate volatility with time-varying economic uncertainty. It 

implies risk transfer in the future that can acquire risk compensation in the long-term process.  

 𝑔𝑡+1 = 𝜇 + 𝑥𝑡 + 𝜎𝑡𝜂𝑡+1 3.2.12 

Equation 3.2.12 describes the consumption growth path. 𝑔𝑡+1 denotes the growth rate 

of log aggregate consumption, which is a logarithm form. 𝜇 is a constant, and 𝜇 + 𝑥𝑡 is the 

conditional expectation of consumption growth. Here, 𝑥𝑡 , as a persistently varying 

component, captures the long-run risk in the expected consumption growth. 𝜂𝑡+1 represents 

purely transitory shocks, with a normal distribution 𝑁(0,1) and i.i.d. shock.  

 𝑔𝑖,𝑡+1 = 𝜇𝑖 + 𝜙𝑖𝑥𝑡 + 𝜑𝑖𝜎𝑡𝑢𝑖,𝑡+1 + 𝜑𝑖,𝑚𝜎𝑡𝑣𝑡+1 3.2.13 

Equation 3.2.13 illustrates the dividend growth path in the equity market, which is linked 

to the aggregate consumption decisions of economic agents. This is because markets can 

provide risk compensation to owners of assets that can be utilised to finance consumption. 

𝑔𝑖,𝑡+1 denotes the dividend growth rate of the infinitely lived security 𝑖. 𝜇𝑖, as a constant, 

estimates a security’s average tendency to dividend growth over time. 𝜙𝑖  is the leverage 

parameter of security 𝑖, and the absolute value of 𝜙𝑖 is generally more than one. This implies 

that dividend and consumption growth rates can share the common component 𝑥𝑡 that is 

persistently predictable, adjusted by the leverage parameter 𝜙𝑖, although their correlation is 

imperfect. Abel (1999) also explained that 𝜙𝑖 , as a leverage ratio on the expected 

consumption path implies that a firm’s profits are more sensitive to fluctuating economic 
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uncertainty. Furthermore, the two scaling parameters 𝜑𝑖  and 𝜑𝑖,𝑚  are non-negative (and 

typically greater than one), which can calibrate the volatility of dividend growth relative to 

aggregate economic volatility. In addition, two shocks 𝑢𝑖,𝑡+1  and 𝑣𝑡+1  are normally 

distributed 𝑁(0,1)  and i.i.d. shocks. More precisely, the independent shock 𝑢𝑖,𝑡+1  can 

capture purely transitory and idiosyncratic shocks to the dividend growth process of the 

security 𝑖. 𝜐𝑡 denotes market uncertainty, which can be idiosyncratic at the market level. 

This means that this shock is independent and uncorrelated with 𝑒𝑡+1  and 𝜂𝑡+1 , but 

incorporates a cross-sectional correlation across securities. 

 𝜎𝑡+1
2 = 𝜎2 + 𝑣1(𝜎𝑡

2 − 𝜎2) + 𝜎𝑤𝑤𝑡+1 3.2.14 

Equation 3.2.14 shows the process of aggregate volatility with fluctuating economic 

uncertainty. 𝜎𝑡+1 denotes the conditional variance of the time-varying economic uncertainty, 

which is the AR(1) process with parameter 𝑣1 that can control the permanence of volatility 

shocks since the fluctuation of economic uncertainty is a long-term process. 𝜎2 denotes the 

unconditional mean. It implies that the current economic uncertainty has an internal 

relationship between the constant value and past economic volatility. 𝑤𝑡+1  indicates the 

shock to consumption volatility, which is a normally distributed 𝑁(0,1) and i.i.d. shock.  

3.2.4 Solution for the model  

According to the solution for my model in Appendix B, the return of security 𝑖 in excess 

of its prior period expectation can be expressed as, 

 𝑟𝑖,𝑡 − 𝐸𝑡−1[𝑟𝑖,𝑡]

≈ 𝛽𝑖,𝑒𝜎𝑡−1𝑒𝑡 + 𝜑𝑖𝜎𝑡−1𝑢𝑖,𝑡 + 𝜑𝑖,𝑚𝜎𝑡−1𝑣𝑡

+ 𝛽𝑖,𝑤𝜎𝑤𝑤𝑡 

3.2.15 

𝐴𝑖,1, 𝛽𝑖,𝑒 and 𝛽𝑖,𝑤 can be solved by the model solution in Appendix B. Four different 

sources of shocks can be found - long-run consumption expectations, firm-specific transitory 

volatility, idiosyncratic risk at the market level, and aggregate consumption volatility.  
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Further, the risk premia on asset 𝑖  can be determined by the conditional covariance 

between the return on asset 𝑖 and the innovation in the pricing kernel, as below,  

 𝐸𝑡(𝑟𝑖,𝑡+1 − 𝑟𝑓,𝑡) +
1

2
𝑣𝑎𝑟𝑡(𝑟𝑖,𝑡+1)

= −𝑐𝑜𝑣𝑡[𝑚𝑡+1 − 𝐸𝑡(𝑚𝑡+1), 𝑟𝑖,𝑡+1

− 𝐸𝑡(𝑟𝑖,𝑡+1)] 

= 𝛽𝑖,𝑒𝜆𝑚,𝑒𝜎𝑡
2 + 𝛽𝑖,𝑤𝜆𝑚,𝑤𝜎𝑤

2  

3.2.16 

Where 𝑟𝑓,𝑡 denotes the risk-free rate in time t. 𝛽𝑖,𝑒, 𝜆𝑚,𝑒, 𝛽𝑖,𝑤 and 𝜆𝑚,𝑤 are solved 

by the model solution in Appendix B. Obviously, the equity premium can be determined by 

the two sources of systematic risk - risk in expected consumption growth, and risk in 

consumption volatility. Further, compensation for stochastic volatility risk exposure depends 

on 𝜆𝑚,𝑒. The risk premium on each security is time-varying in the economy because of the 

fluctuation of 𝜎𝑡 . Moreover, 𝛽𝑖,𝑒 = 𝜅𝑖,1𝐴𝑖,1𝜑𝑒 , denotes the consumption beta for each 

security 𝑖 . And 𝜅𝑖,1  is approximately constant, following Bansal and Yaron (2004). And 

there is a fixed correlation between consumption beta and leverage parameter 𝜙𝑖. Further, 

due to the assumption of time-variance, the risk premium on risk-free assets is time-varied as 

well.  

3.2.5 Measurement of long-run risk component 

Importantly, 𝑥𝑇, as a state variable, represents the time-series data of the conditional 

mean of real aggregate per capita consumption growth (only the nondurable data and service 

consumption data). Due to the assumption that it is known by the representative agent, it is 

difficult to observe by economists. One main reason for this is that economists fail to obtain 

all the information available to representative agents when they make consumption decisions. 

However, 𝑒𝑡, as the innovation to 𝑥𝑇, can be obtained by the autoregressive model. Thus, I 

estimated the 𝑥𝑇 as �̂�𝑇 under the homogenous assumption, which implies that the aggregate 

consumption rate volatility is constant (𝜎𝑡 = 𝜎). According to Bansal, Dittmar and Lundblad 
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(2005), �̂�𝑇 can be estimated as below:  

 
�̂�𝑇−1 =

1

8
∑(𝑔𝑇−𝑘 −

1

𝑇
∑𝑔𝑇

𝑇

𝑇=1

)

8

𝑘=1

 
3.2.17 

Where 𝑇 denotes the length of the whole sample. Obviously, the estimated value, �̂�𝑇 

used the trailing eight quarters moving average of the aggregate consumption growth. Thus, 

following Zurek (2007), I suppose that the estimated value is consistent with the actual value 

( �̂�𝑇 = 𝑥𝑇 ). This implies that the true value of long-run risk components with constant 

aggregate consumption growth volatility can be measured by the estimation, �̂�𝑇, which leads 

to any measurement errors being ignored. Thus, the innovation to �̂�𝑇, �̂�𝑇 can be estimated 

as below if the time-varying economic fluctuation is constant:  

 𝜀�̂� = �̂�𝑇 − �̂��̂�𝑇−1 3.2.18 

Where 𝑥𝑇 can be estimated as the AR(1) process with the autocorrelation coefficient 𝜌.  

 �̂�𝑇 =
(�̂�𝑇 − �̂��̂�𝑇−1)

𝜎𝑇−1
 3.2.19 

Where �̂�𝑇 can be estimated through using the stochastic volatility model10. I assume the 

aggregate economic fluctuation, followed by the stochastic volatility (Bansal and Yaran, 2004). 

This is because the expected realised level of consumption volatility can be forecast by the 

current price/dividend ratio11. Consumption volatility without time-variation means a zero-

slope coefficient on the price-dividend ratio. However, in fact, Bansal, Khatchatrian and Yaron 

(2005) and Bansal and Yaran (2004) have evidenced that information about the persistent 

volatility of economic uncertainty is incorporated into asset prices.  

 
10 I used the “stochvol” package in R that adopted the Bayesian estimation of stochastic volatility using the Markov chain 

Monte Carlo (MCMC) approach, which can directly obtain the �̂�𝑇.  
11 The approximation solution for the price-dividend ratio is 𝑧𝑖,𝑡 = 𝐴𝑖,0 + 𝐴𝑖,1𝑥𝑡 + 𝐴𝑖,2𝜎𝑡

2.  
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3.2.6 Calibration  

The main aim of the calibration of the present model is to develop its powers of 

theoretical prediction, and to examine and interpret the primary empirical forecasts. In this 

section I will explain and describe the reasons for my calibration, based on the previous 

research. Moreover, it also contributes to providing a reasonable explanation for the long-run 

risk cross-sectional economy. More specifically, I built several fundamental parameters to 

match the annualised aggregate consumption growth, risk-free rate, and market return. Further, 

the constraint of the mean values of the cross-sectional parameters (𝜇𝑖, 𝜙𝑖 , 𝜑𝑖, 𝜑𝑖,𝑚) must be 

considered when I match equity market moments. Initially, I calibrated the investment 

preference and economic environment parameters, including risk aversion (𝛾), I.E.S. (𝜓) and 

the time discount factor (𝛿), based on the previous literature. As per Bansal, Kiku and Yaron 

(2007), 𝛾 and 𝜓 were set at 10 and 2 respectively. The discount factor 𝛿 and 𝜌 were set 

to 0.9988 and 0.9827, following Zurek (2007).  

The fluctuating economic uncertainty process was calibrated by Bansal and Yaron (2004), 

including the unconditional mean of volatility (𝜎 ), and parameter 𝜎𝑤 , which were set to 

0.0078 and 0.23e-5. Further, based on Zurek (2007), I calibrated the rest of the parameters of 

the volatility of consumption growth like 𝜇=0.001541, 𝜑𝑒 = 0.034404 and 𝑣 = 0.987. 

3.2.7 Simulation design  

The simulation design depends on the consumption growth path of equation 3.2.12 and 

the dividend growth path of equation 3.2.13. Initially, based on the calibration and model 

solution in the Appendix B, the parameters of consumption growth path can be obtained such 

as 𝐴0, 𝐴1, 𝐴2, 𝜅0 and 𝜅1.12 According to the equation 3.2.13, each individual security can 

be determined by the value of the parameters (𝜇𝑖 , 𝜙𝑖, 𝜑𝑖, 𝜑𝑖,𝑚 ). Further, following the 

assumption made by Zurek (2007), due to infinitely lived securities with time-varying long-

run risk exposure 𝜑𝑖, they can be seen as representative securities in various phases of the 

 
12 The value of 𝜅0 and 𝜅1 are required by the function of 𝑧̅ = 𝐴0(𝑧̅), following Zurek (2007).  
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life cycle. Further, there are changes in identification when the securities move from one phase 

into others. I assumed the existence of five basic types of securities in the market. The 

characteristics of each fundamental type were based on the calibrated cross-sectional 

coefficients (i.e. 𝜇𝑖, 𝜙𝑖 , 𝜑𝑖 , 𝜑𝑖,𝑚). Initially, all securities were different even within the same 

type via specific realisations of 𝑢𝑖,𝑡  shocks. Calibrated average dividend growth (𝜇𝑖 ) 

followed a monotonic increase trend from type1 to type5. Thus, type1 had a small average 

dividend growth or even a negative growth, and type5 had a large average dividend growth. 

The value of the long-run risk consumption beta (𝜙𝑖) followed by the monotonic increase 

from type1 to type5, matched the same pattern of unconditional dividend growth. Further, 𝜑𝑖 

followed a U-shape pattern from type1 to type5. 𝜑𝑖,𝑚 also followed a monotonic increase 

from type1 to type5. These attempts to match the empirical evidence of a U-shaped pattern in 

regression residuals followed the method used by Zurek (2007).  

On the other hand, the non-linearised equation of the model means the price/dividend 

ratio 𝑧𝑖,𝑡 depends on the intercept 𝐴𝑖,0, the coefficient of 𝑥𝑡, 𝐴𝑖,1, and the coefficient of 𝜎𝑡
2, 

𝐴𝑖,2, which is solved in Appendix B. The value of 𝜅𝑖,1 is approximately one.13 Following the 

dividend growth path in equation 3.13, I simulated the dividend growth in each security with 

five securities types, given the shock 𝑢𝑖,𝑡  and 𝑣𝑡 . Further, the price/dividend ratio were 

simulated through the process of 𝑥𝑡 and 𝜎𝑡
2. Finally, the monthly simulated series of total 

returns with dividend and capital gains were generated for each security, which can be 

expressed as follows: 

 𝑠𝑟𝑑,𝑖,𝑡 = exp(log(1 + exp(𝑧𝑖,𝑡)) − 𝑧𝑖,−1 + 𝑔𝑖,𝑡+1) − 1 

𝑠𝑟𝑥,𝑖,𝑡 = exp(𝑧𝑖,𝑡 − 𝑧𝑖,−1 + 𝑔𝑖,𝑡+1) − 1 

3.2.20 

Where 𝑠𝑟𝑑,𝑖,𝑡 denotes the total return with dividend, 𝑠𝑟𝑥,𝑖,𝑡 denotes capital gains, which 

means returns without dividend. Moreover, total return was used to produce a momentum 

portfolio that ranks all the securities from the lowest to the highest return, and allocates them 

 
13 The value of 𝐴𝑖,0, 𝐴𝑖,1, 𝐴𝑖,2, 𝜅𝑖,0 and 𝜅𝑖,1 are required by the function of 𝑧�̅� = 𝐴𝑖,0(𝑧�̅�).  
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into the five different momentum portfolios.  

 

3.3 Results and findings 

3.3.1 Findings and discussion of the empirical evidence  

3.3.1.1 Results for the momentum portfolios 

In this part, I report the empirical evidence arising from the different momentum trading 

strategies. Further, I examine the arithmetic mean returns, logarithmic dividend growth, and 

logarithmic valuation ratios based on the three dimensions of mean, standard deviation, and 

autocorrelation. According to Tables C1.1, C1.2, C1.3, and C1.4, there are many similar 

findings under the different momentum trading strategies. For example, under momentum 

trading strategy 6*3 (Table C1.1), there is a monotonic increase in returns and dividends from 

the loser portfolio to the winner portfolio. More specifically, the arithmetic average return in 

the loser portfolio (P1) is 1.16%, and in the winner portfolio (P5) it is 2.84% in the full sample. 

This finding implies a significant momentum effect due to positive returns on the momentum 

portfolio (1.68%) from 1970 to 2018, which makes it substantially profitable. Moreover, the 

standard deviation of the return from P1 to P5 follows a U-shape pattern, as well as lower 

autocorrelations in each portfolio. This means there is high volatility in both the loser portfolio 

and the winner portfolio. In addition, there is a monotonic rise in dividend growth from close 

to zero in P1 to 0.018 in P5. This can be explained with reference to Zurek (2007) in that 

although the constant dividend growth rate in the winner portfolio is claimed over time, the 

extent of the dividend rises due to the increasing amount of investment by capital gains. Thus, 

there is a higher average dividend growth rate in the winner portfolio than in the loser portfolio. 

On the other hand, the level of dividend may be lower in the loser portfolio due to a decreasing 

amount of investment by capital gains even given the fixed growth rate. This is a potential 

explanation for why there is a lower dividend growth rate in the loser portfolio. Furthermore, 
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there is a similar U-shape pattern in the standard deviation of dividend growth from P1 to P5. 

The autocorrelation of dividend growth is high since the seasonally adjusted dividend uses the 

trailing 12-month moving average. As discussed in Chapter 4.3, this approach was taken to 

eliminate the seasonal effect. However, there is a potential problem that leads to the extremely 

smooth transition of a variable. Additionally, the mean and standard deviation of log valuation 

ratio also illustrated a U-shaped mode, which implies the highest value in the loser portfolio 

and the winner portfolio. A reasonable interpretation of this is the low dividend growth in the 

loser portfolio and the high capital gains in the winner portfolio. Further, there is quite a high 

autocorrelation in the valuation ratio.  

Tables C1.2, C1.3, and C1.4 show quite similar results compared with Table C1.1. 

Initially, the arithmetic mean returns maintain the monotonic increases in these four 

investment strategies from P1 to P5. Additionally, compared with table C1.1 and C1.2, I found 

that given the constant ranking period, portfolios with longer holding periods have higher 

returns, which is consistent with tables C1.3 and C1.4. However, in the long run, comparing 

the 2.48%14 of momentum return for the three months holding period with the 3.83%15 of 

momentum for the twelve months holding period, it seems that the extent of the momentum 

effect is reduced with the longer formation period. In other words, the strength of the 

momentum strategy has a downward trend, which is consistent with the long reversals. 

Simultaneously, there is the same U-shaped mode in the standard deviation of returns in each 

of the momentum investment strategies. On the other hand, the log dividend growth in each 

strategy has a significant monotonic increase as well. Likewise, there is a higher dividend 

growth by the trading strategy with a longer holding period. For example, averagely dividend 

growth of each portfolio in momentum strategy 6*6 is quite higher than that of momentum 

strategy 6*3. Likewise, the U-shaped pattern is illustrated by the standard deviation of 

dividend growth. At the same time, the valuation ratio decreases when a momentum 

investment strategy has a longer holding period. The main reason for this is the decreasing 

 
14 In momentum strategy 12*3, the momentum return equals the return on winner portfolio (P5) minus the return on loser 
portfolio (P1), which is 3.23%-0.75%=2.48%.  
15 In momentum strategy 12*6, the momentum return equals the return on winner portfolio (P5) minus the return on loser 
portfolio (P1), which is 6.31%-2.48%=3.83%. 
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strength of the momentum effect.  

3.3.1.2 Results for time-varying risk exposure  

In equation 3.13, I estimate the unconditional dividend growth processes for different 

portfolios 𝑝 . This is in order to examine my hypothesis that the winner (loser) portfolio 

obtaining a higher profit depends on higher (lower) risk exposure. Simply, it shows a higher 

return at a higher risk. This is mainly because, with a longer ranking period, stocks with low 

expected returns (holding a low beta) are unlikely to perform as well as stocks with high 

expected returns (holding a high beta). As a result, the winner portfolio will hold fewer stocks 

with a low beta due to lower expectations. Thus, an unconditional portfolio beta can be 

estimated to use the average security beta in each portfolio. Therefore, the unconditional 

dividend growth processes can be shown as, 

 𝑔𝑇,𝑝 = 𝜇𝑝 + 𝜙𝑝𝑥𝑇−1 + 𝑒𝑟𝑟𝑜𝑟𝑇,𝑝 3.3.1 

Where 𝜙𝑝 is the unconditional average beta for each portfolio 𝑝 (𝑝 = 1,2,3,4,5). 𝑇 

denotes the quarterly data with non-overlapping generation. I reported the results of the 

regression, which are described in Table 2.1, Table 2.2, Table 2.3, and Table 2.4. Here, I will 

explain the results of Table 2.1 as an example. Initially, 𝜙𝑝 , as the slope of this linear 

regression, demonstrates a monotonic rise from -6.103 in P1 to 8.744 in P5. The main reason 

for the monotonic increase of the beta is the momentum selection mechanism, which means 

that the winner (loser) portfolio has a high (low) average beta due to the high (low) expected 

return. Further, there is an increase in the beta coefficient when the security moves from the 

loser portfolio to the winner portfolio. Moreover, the intercept also shows a monotonic 

increase from P1 to P5. Moreover, there is a U-shaped pattern of average beta’s standard 

deviation, which means significant fluctuations in the loser and winner portfolios. A 

reasonable explanation for this is the comparatively small observation in my full sample 

because of adopting quarterly data. The adjusted R-squared is quite small, which implies that 

the unexplained variance (non-model risk) plays an essential role. Eventually, there is a similar 

U-shaped mode regarding the regression residual from P1 to P5. These findings are consistent 
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with Zurek (2007).  

Further, tables C2.2, C2.3, and C2.4 expand the results of my regression. Similarly, there 

is a monotonic increase in intercept and average beta (consumption beta) from P1 to P5 in 

each momentum strategy, and a U-shaped mode of standard deviation of intercept and average 

beta and residual error. Furthermore, the sensitivity of the average beta is higher, and the 

volatility of the consumption beta and intercept is intense when the holding period is longer. 

A reasonable explanation for this is that there is an increase in risk or uncertainty when the 

holding period is longer. Moreover, the winner portfolio with the longer ranking period has a 

low beta, which means that the momentum selection mechanism is more effective in the short 

term and has a weaker performance in the long run. Additionally, there is a much larger 

residual error in each portfolio when the holding period is longer.  

I regressed the time-varying equation with the homoscedasticity of shocks to test the 

impact of the long-run risk consumption beta, which can be shown as below:  

 𝑔𝑇,𝑝 = 𝜇𝐿,𝑝 + 𝜙1𝐿,𝑝𝑥𝑇−1 + 𝜙2𝐿,𝑝(𝑥𝑇−1 ∗ 𝜀�̂�−1) + 𝑒𝑟𝑟𝑜𝑟𝐿,𝑇,𝑝 3.3.2 

Where 𝜇𝐿,𝑝 is the intercept, 𝜙1𝐿, is the average long-run risk consumption beta, and 

𝜙2𝐿,𝑝  is the conditional impact between consumption growth 𝑥𝑇−1  and the realisation of 

long-run risk component 𝜀�̂�−1. According to Zurek (2007), risk exposures for momentum 

portfolios rely on the cumulative realisation of the long-run risk component 𝜀�̂�−1  in the 

ranking period. The estimated value, 𝜀�̂�−1, depends on the duration of the ranking period. An 

example of a momentum strategy with a 6 month (2 quarter) formation period can be followed 

as,  

 𝜙𝑝 = 𝜙1𝐿,𝑝 + 𝜙2𝐿,𝑝 ∗ (𝜀𝑇−1 + 𝜀𝑇−2) 3.3.3 

Thus, 𝜙2𝐿,𝑝 can measure the realisation of long-run risk components in each portfolio. 

Theoretically, the winner portfolio with the positive 𝜙2𝐿,𝑝, holds the high portfolio beta and 

the negative 𝜙2𝐿,𝑝 , shows the low portfolio beta. In contrast, the loser portfolio with the 
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negative 𝜙2𝐿,𝑝, holds the high portfolio beta and the positive 𝜙2𝐿,𝑝, shows the low portfolio 

beta. The parameter 𝜙1𝐿,𝑝 denotes the average beta, which is similar to the 𝜙𝑝 in equation 

3.3.3.  

Table C3 reports the consumption beta which is conditional on the long-run risk 

component in different momentum strategies. According to equation 3.3.2, the regression 

shows the dividend growth rate in each portfolio’s effect on the aggregate consumption growth 

rate with time variation, and its interaction with the long-run risk component. In table C3.1, 

there is a monotonic increase in average beta from P1 to P5. To a large extent, this maintains 

the consistency of the average beta (see equation 3.3.2) due to the approximate value. Besides, 

the standard deviation of the average beta is similar to the previous results of the consumption 

beta in Table C2.1. More importantly, the long-run risk beta also exhibited reliable explanatory 

power for a different portfolio. Likewise, a monotonic relation was observed in relation to the 

long-run risk beta from the loser portfolio to the winner portfolio, as well as a U-sharped 

pattern in the standard deviation. Further, the adjusted R-squared dramatically increased 

compared with equation 3.3.3, which implies that the new equation with conditional 

information has a significant explanatory impact. To a large extent, the predictability of the 

model is also supported by the consumption beta with time-variance and constant aggregate 

volatility. Further, when combined with table C3.2 with the same ranking period, it can be 

seen that the levels of average beta and long-run risk beta are higher than in table C3.1. This 

means that the winner with the longer holding period expects higher momentum returns due 

to the higher uncertainty in the future. Similarly, portfolios with longer formation periods have 

a low long-run risk beta. Furthermore, table C3.3 demonstrates that the level of consumption 

beta and long-run risk beta are lower in the longer formation period than in table C3.1. This 

means that the momentum portfolio is expected to have a high value in the short-run since the 

short formation period captures more volatility, which is consistent when comparing table 

C3.2 for momentum trading strategy 6*6 with table C3.4 for momentum trading strategy 12*6.  

Table C4.1 which follows equation 3.2.18 shows a consumption beta conditional on the 

long-run risk component with time-varying aggregate economic fluctuations in various 
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momentum strategies. More specifically, I added the aggregate fluctuations in economic 

volatility with time-variance. Thus, the regression with time-varying aggregate economic 

fluctuation can be expressed as:   

 𝑔𝑇,𝑝 = 𝜇𝑆𝑊,𝑝 + 𝜙𝑆𝑊,𝑝𝑥𝑇−1 + 𝜙𝑆𝑊,𝑝(𝑥𝑇−1 ∗ �̂�𝑇−1)

+ 𝑒𝑟𝑟𝑜𝑟𝑆𝑊,𝑇,𝑝 

�̂�𝑇−1 =
(�̂�𝑇−1 − �̂��̂�𝑇−2)

𝜎𝑇−2
=
𝜀�̂�−1
𝜎𝑇−2

 

𝜎𝑇−2
2 = 𝜎2 + 𝑣1(𝜎𝑇−3

2 − 𝜎2) + 𝜎𝑤𝑤𝑡−2 

3.3.4 

Where, I assume the aggregate economic fluctuation followed by the stochastic volatility 

(Bansal and Yaran, 2004). As a result, the new equation with conditional impact has strong 

explanatory power in relation to the portfolio level long-run risk consumption beta, with 

fluctuating economic uncertainty. More specifically, there is a similar monotonic increase in 

average beta and consumption beta from P1 to P5, as well as the same U-shaped standard 

deviation pattern. Further, the value of average beta is quite similar between regressions with 

constant aggregate economic volatility and with fluctuating economic uncertainty. However, 

in terms of the long-run rusk beta, table C4.1 shows a higher level than table C3.1. This means 

that the long-run risk beta with fluctuating economic uncertainty has a higher requirement for 

expected momentum returns when the momentum selection mechanism discriminates 

between stocks with high or low expected returns. Moreover, the adjusted R-squared is 

basically consistent with constant consumption volatility regression, and is sometimes better 

than that. Although the residual standard errors are slightly higher than the regression with 

constant consumption volatility, these results appear in the forecast of the model regarding 

consumption betas with time-varying consumption volatility at the portfolio level. Further, 

tables C4.2, C4.3, and C4.4 expand the findings reported in Table C4.1. There are some 

common findings regarding the different durations of the formation and holding periods. More 

precisely, there is a higher level of average beta and long-run risk beta with longer holding 

periods. Again, the expected return on the winner portfolio is high with the longer holding 

period, because of the increased uncertainty with a longer duration. Similarly, the portfolio 
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level with the longer formation period has a lower long-run risk beta. In conclusion, the results 

of the model with time-varying aggregate economic fluctuations are typically consistent with 

the model with constant consumption volatility.  

In Tables C5.1, C5.2, C5.3, and C5.4, I report the predictability of momentum investment 

strategies based on the positive and negative realisation of the long-run risk component with 

time-varying economic fluctuations in the ranking period. For example, in table C5.1, the 

average momentum return following a positive realisation of the long-run risk component is 

2.6% 16 , and the negative realisation of the long-run risk component is 0.5%. Further, 

following the positive realisation of the long-run risk component, the standard deviation is 

lower. This is because the momentum investment strategy is determined to take a long position 

in the winner portfolio and a short position in the loser portfolio, which means a fairly high 

level of idiosyncratic (unsystematic) risk. Thus, following the negative realisation of the long-

run risk factor, a momentum strategy that is a long winner portfolio and short loser portfolio, 

holds a portfolio with a lower average long-run risk beta, leading to lower systematic risk. 

Thus, the source of the high volatility following the negative realisation of long-run risk is 

idiosyncratic risk (unsystematic risk). Therefore, when the realisation is negative, there is a 

rising beta in the winner portfolio and a falling beta in the loser portfolio, which narrows the 

beta gap, and further lowers long-run consumption risk. Furthermore, the t-value shows 

statistical significance based on the null hypothesis of mean zero return at the 1% significance 

level following the positive realisation of the long-run risk component, but fails following the 

positive realisation of the long-run risk component. These findings are consistent with tables 

C5.2, C5.3 and C5.4 for the different momentum trading strategies.  

3.3.2 Findings and discussion of the model solution and simulation 

results  

Table C6.1 concludes the calibration in each type of security. Following table C6.1, the 

results of the model solution and expected return implications in tables C6.2 and C6.3 are 

 
16 The momentum return equals the return on the winner portfolio (P5) minus the return on the loser portfolio (P1).  
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shown. 𝐴𝑖,0  has a U-shaped pattern and there is a monotonic increase in 𝐴𝑖,1  and a 

monotonic decrease in 𝐴𝑖,2 from Type1 to Type5. Moreover, expected returns also have a 

monotonic increase from Type1 to Type5, as does the risk premium, which is consistent with 

the empirical evidence. In addition, the valuation ratio follows a U-shaped pattern.  

Table C7.1 shows simulated return, dividend, and valuation results for momentum 

trading strategy 6*3. Given its different calibration for the different type of securities, the 

model can explain the comparative observed momentum profits. This is because there is a 

reasonable and acceptable difference in terms of expected returns for different individual 

securities. Due to the universality and size of the momentum effects, there is no single source 

of risk that accounts for this effect. Hence, in my model, I placed the overall five risks to 

explain the momentum effects, which is a reasonable and feasible approach. As a result, there 

is a monotonic increase in average return, which generates a significant momentum effect. In 

addition, the model can match the U-shaped standard deviation and negative autocorrelation 

in the loser portfolio and the positive autocorrelation in the winner portfolio, and the 

autocorrelation is insignificant. Further, there is a rising dividend growth rate from P1 to P5, 

and the U-shaped standard deviation is similar to the empirical evidence. In addition, the 

approximate magnitude of the valuation ratio is a little more than the empirical evidence on 

the same momentum strategy, as is the U-shaped standard deviation for the valuation ratio. 

On the other hand, from the results of the simulation, based on the different momentum 

strategies in Tables 7.2, 7.3 and 7.4 it can be seen that given the constant ranking period, 

portfolios with longer holding periods have higher returns and a higher standard deviation. At 

the same time, the standard deviation of the return is higher when the holding period is longer. 

Then, the log dividend growth in each strategy also has a significant monotonic increase in 

the different simulated momentum strategies. Likewise, there is higher dividend growth in 

trading strategies with longer holding periods. On the other hand, given the same holding 

period, winner and loser portfolio returns are higher when the formation period is longer.  

Moreover, the magnitudes of simulated momentum effects reduced with longer 

formation periods, and the same U-shaped mode of standard deviation of returns is present 
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for each of the simulated momentum investment strategies, which is consistent with the 

empirical evidence.  
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Chapter 4.0 Conclusion 

Momentum effects, as a common phenomenon in the financial market, have been widely 

and systematically explored. The present thesis can be divided into two dimensions: it has 

explored the dynamics of momentum effects in the two-regime switching model, and the 

momentum effect in the long-run risk model. As such, the thesis makes many contributions 

based on the work presented in both main chapters. In the first, I examined the momentum 

effects in the UK and US markets from 1980 to 2018. Further, I compared the UK and US 

markets, and found that the results of momentum returns in the UK market are more 

significant than in the US market in the total of 16 momentum trading strategies. Further, 

performance dependability in the UK market is higher than in the US market in all momentum 

trading strategies. In addition, compared to the 16 different momentum trading strategies, I 

found potential evidence of the reversal effect in the long run. When the holding period is 12 

months, there is a reduction in momentum returns, compared with the shorter holding period. 

Furthermore, the results of the Bayesian estimation verified the relationship between 

momentum return and four variables (i.e. domestic market volatility, ranking period return 

and foreign market volatility). Importantly, I found that a transition threshold parameter does 

exist to switch between the momentum regime and the reversal regime. When market 

volatility is above or below the threshold parameter, changes occur in the regime. Particularly, 

the reasonable cause that the study did not use the VIX to measure the market volatility is that 

the VIX index is asymmetrical for market volatility, meaning that it responds much more when 

market price decrease than when they increase. Thus, the study used the realised market 

volatility. In addition, I also developed Cao’s threshold model. Through adding foreign market 

volatility, I found that momentum returns in the UK and US markets have a significant positive 

effect on the average momentum return and foreign market risk, as well as a negative effect 

on the return in the ranking period and domestic market risk in the momentum regime. 

However, the results for the US market are insignificant when compared with the UK market 

in the reversal regime. This indirectly indicates that the US market has a significant impact on 

the UK market.  
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In the second section, based on the long-run risk model by Basal and Yaron (2004), I 

explained the reason for the momentum portfolios’ returns with fluctuating economic 

uncertainty. Further, I developed the cross-sectional model at the level of individual security 

by Zurek (2007). I added the assumption of fluctuating economic volatility and hence allowed 

for economic uncertainty to have an effect on the aggregate consumption and dividend growth 

of individual securities. Theoretically, my model identifies a more significant explanation for 

momentum returns. Specifically, I found that with fluctuating economic uncertainty, there is 

a monotonic increase between conditional consumption risk and momentum returns from the 

loser portfolio to the winner portfolio, a finding which is consistent with Zurek (2007). 

However, consumption beta is higher, which means there are more sensitivities between the 

growth dividend of individual securities and the consumption growth path with fluctuating 

economic uncertainty. Further, I reported that all five momentum portfolios have time 

variations in long-run risk and expected return, which is consistent with the model-implied 

component structure of momentum returns. The time-variance may be driven by the 

realisation of long-run risk factors and the aggregate consumption growth volatility in the 

ranking period. Furthermore, I operated the cross-sectional model at the level of individual 

security and then endogenously produced the return, dividend growth and valuation ratio at 

the portfolio level. Thus, my model matches portfolio return, dividend growth, and valuation 

ratio at the portfolio level in the simulation. Overall, my model is practical and realistic, and 

the results are close to the actual ones, thus explaining momentum returns effectively in each 

portfolio and matching aggregate consumption growth dynamics and equity premium well.  

I suggest future research following on from the first chapter here. Firstly, the model could 

be tested using different financial data in different countries or financial markets. Thus, the 

robust power of my model could be verified in the future. Moreover, a weak significant effect 

in the reversal regime is observed here among several variables. Thus, future research could 

be based on identifying the correlation of factors in the reversal regime. Based on the long-

run risk model of cross-sectional dynamics at the security level, there are several potential 

research directions. Currently, the long-run risk model only has empirical evidence for the US 

market. Thus, the model could also be applied to other stock markets, to test its robustness 
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and power.
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Appendix 

Appendix A 

 
3M 6M 9M 12M 

3M 0.021  0.047  0.066  0.075  

t-value 2.931  3.269  3.725  3.354  

6M 0.025  0.055  0.072  0.067  

t-value 2.609  2.244  2.394  1.804  

9M 0.026  0.053  0.056  0.048  

t-value 2.652  2.168  1.589  1.022  

12M 0.019  0.032  0.028  0.013  

t-value 1.814  1.200  0.756  0.268  

Table A1.1- Different momentum portfolio returns in terms of holding returns in the UK market: 

full sample 1980-2018  
3M 6M 9M 12M 

3M 0.009  0.019  0.039  0.040  

t-value 2.041  1.978  2.855  2.164  

6M 0.011  0.029  0.041  0.029  

t-value 1.779  1.822  1.599  0.932  

9M 0.014  0.025  0.027  0.013  

t-value 1.882  1.258  0.884  0.366  

12M 0.011  0.015  0.011  0.000  

t-value 1.281  0.695  0.350  0.006  

Table A1.2- Different momentum portfolio returns in terms of holding returns in the US market: 

full sample 1980-2018 

 

These table report the returns of the different momentum strategies (winner minus loser portfolios’ 

returns) in the US stock market (based on NYSE, AMEX and NASDQ) and the UK stock market (based 

on LSPD). Return is defined here as the geometric average monthly return as a percentage. The monthly 

sample was collected from 1980 to 2018. The momentum trading strategy J*K was implemented by ranking 

all stocks in descending order based on the past return from t-J to t-1. The first column shows the formation 

period, and the first row shows the holding period. The momentum portfolio (buy past winner and sell past 

loser) is held from t+1 to t+K, skipping month t. Thus, the formation and holding periods used four different 

horizons, such as 3, 6, 9 and 12. A total of 16 momentum trading strategies were adopted to compute the 

average monthly holding return. A two-tailed test was required for heteroscedasticity and autocorrelation 

of consistent standard error based on Newey-West with one lag. The t values that test the significance of 

momentum return are reported below for each momentum trading strategy, which corresponds to the 

significance level of critical value at 1% (2.576), 5% (1.96) and 10% (1.645).   
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3M 6M 9M 12M 

3M 0.675  0.693  0.701  0.674  

6M 0.736  0.745  0.714  0.693  

9M 0.755  0.759  0.711  0.660  

12M 0.745  0.723  0.684  0.626  

 

Table A2.1- Performance dependability of different momentum trading strategies in the UK 

market 

 

  
3M 6M 9M 12M 

3M 0.593  0.604  0.622  0.632  

6M 0.644  0.672  0.651  0.633  

9M 0.705  0.691  0.651  0.638  

12M 0.668  0.634  0.620  0.608  

 

Table A2.2- Performance dependability of different momentum trading strategies in the US 

market 
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3M 6M 9M 12M 

3M_Loser -0.016  -0.029  -0.028  -0.015  

t-value -0.358  -0.432  -0.712  -0.379  

3M_Winner 0.100  0.096  0.089  0.086  

t-value 3.729  2.376  3.443  3.902  

6M_Loser -0.011  -0.028  -0.024  -0.005  

t-value -0.215  -0.381  -0.495  -0.107  

6M_Winner 0.130  0.121  0.108  0.094  

t-value 5.031  2.527  4.004  3.613  

9M_Loser -0.010  -0.020  -0.011  0.007  

t-value -0.188  -0.270  -0.205  0.134  

9M_Winner 0.134  0.124  0.100  0.084  

t-value 5.538  2.599  3.737  3.210  

12M_Loser 0.013  0.006  0.013  0.024  

t-value 0.240  0.072  0.237  0.460  

12M_Winner 0.128  0.106  0.083  0.070  

t-value 5.827  2.111  3.099  2.798  

 

Table A3.1- Annualised market-adjusted returns of winner and loser portfolios based on the 

different momentum trading strategies in the holding period in the UK market: full sample 

1980-2018 

 

This table reports the returns from different momentum strategies for the winner and loser portfolios in 

the US stock market (based on NYSE, AMEX and NASDQ) and the UK stock market (based on LSPD). 

Return is defined here as the geometric average monthly return as a percentage. The monthly sample was 

collected from 1979 to 2018. The momentum trading strategy J*K was implemented by ranking all stocks 

in descending order based on the past return from t-J to t-1. The first column shows the formation period, 

and the first row shows the holding period. The winner portfolio and loser portfolio (buy past winner and 

sell past loser) are held from t+1 to t+K, skipping month t. Thus, the formation and holding periods used 

four different horizons, 3, 6, 9 and 12. A total of 16 momentum trading strategies were adopted to compute 

the average monthly holding return. A two-tailed test was required for heteroscedasticity and autocorrelation 

of consistent standard error based on Newey-West with one lag. The t values that test the significance of 

momentum return are reported below for each momentum trading strategy, which corresponds to the 

significance level of critical value at 1% (2.576), 5% (1.96) and 10% (1.645).  

 

 

 
 

3M 6M 9M 12M 
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3M_Loser 0.045  0.035  0.019  0.025  

t-value 2.103  1.274  0.978  1.341  

3M_Winner 0.077  0.073  0.069  0.061  

t-value 4.072  4.398  4.531  4.151  

6M_Loser 0.053  0.037  0.028  0.039  

t-value 1.874  1.008  1.144  1.746  

6M_Winner 0.098  0.094  0.080  0.066  

t-value 5.175  4.917  5.127  4.632  

9M_Loser 0.049  0.046  0.044  0.054  

t-value 1.472  1.109  1.692  2.247  

9M_Winner 0.103  0.091  0.075  0.066  

t-value 5.399  4.320  5.042  4.624  

12M_Loser 0.062  0.060  0.057  0.062  

t-value 1.818  1.412  1.986  2.341  

12M_Winner 0.093  0.083  0.068  0.062  

t-value 4.867  3.887  4.411  4.071  

Table A3.2- Annualised market-adjusted returns of winner and loser portfolios based on the 

different momentum trading strategies in the holding period in the US market: full sample 

1980-2018 

 

This table reports the returns from different momentum strategies for winner and loser portfolios in the 

US stock market (based on NYSE, AMEX and NASDQ) and the UK stock market (based on LSPD). Return 

is defined here as the geometric average monthly return as a percentage. A monthly sample was collected 

from 1979 to 2018. The momentum trading strategy J*K was implemented by ranking all stocks in 

descending order based on the past return from t-J to t-1. The first column shows the formation period, and 

the first row shows the holding period. The winner portfolio and loser portfolio (buy past winner and sell 

past loser) are held from t+1 to t+K, skipping month t. Thus, the formation and holding periods used four 

different four horizons, 3, 6, 9 and 12. A total of 16 momentum trading strategies were adopted to compute 

the average monthly holding return. A two-tailed test was required for heteroscedasticity and autocorrelation 

of consistent standard error based on Newey-West with one lag. The t values that tested the significance of 

momentum return are reported below for each momentum trading strategy, which corresponds to the 

significance level of critical value at 1% (2.576), 5% (1.96) and 10% (1.645).  
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Figure A4.1- Profitability of the momentum investment strategies (3*3) in the US and UK 

market 

 

 

Figure A4.2- Profitability of the momentum investment strategies (3*6) in the US and UK 

market 
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Figure A4.3- Profitability of the momentum investment strategies (3*9) in the US and UK 

market 

 

Figure A4.4- Profitability of the momentum investment strategies (3*12) in the US and UK 

market 
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Figure A4.5- Profitability of the momentum investment strategies (6*3) in the US and UK 

market 

 

Figure A4.6- Profitability of the momentum investment strategies (6*6) in the US and UK 

market 
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Figure A4.7- Profitability of the momentum investment strategies (6*9) in the US and UK 

market 

 

Figure A4.8- Profitability of the momentum investment strategies (6*12) in the US and UK 

market 
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Figure A4.9- Profitability of the momentum investment strategies (9*3) in the US and UK 

market 

 

 Figure A4.10- Profitability of the momentum investment strategies (9*6) in the US and UK 

market 
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Figure 4.11- Profitability of the momentum investment strategies (9*9) in the US and UK 

market 

 

Figure A4.12- Profitability of the momentum investment strategies (9*12) in the US and UK 

market 
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Figure A4.13- Profitability of the momentum investment strategies (12*3) in the US and UK 

market 

 

Figure A4.14- Profitability of the momentum investment strategies (12*6) in the US and UK 

market 
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Figure A4.15- Profitability of the momentum investment strategies (12*9) in the US and UK 

market 

 

Figure A4.16- Profitability of the momentum investment strategies (12*12) in the US and UK 

market 
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Figure A5.1- Market Volatility during the ranking period of 3 months 

Figure A5.1 shows market volatility in the US stock market and the UK stock market during 

the ranking period of 3 months. The red line shows the US stock market, and the blue line 

shows the UK stock market from 1979 to 2018.    
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Figure A5.2- Market Volatility during the ranking period of 6 months 

Figure A5.2 shows market volatility in the US stock market and the UK stock market during 

the ranking period of 6 months. The red line shows the US stock market, and the blue line 

shows the UK stock market from 1979 to 2018. 
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Figure A5.3- Market Volatility during the ranking period of 9 months 

Figure A5.3 shows market volatility in the US stock market and the UK stock market during 

the ranking period of 9 months. The red line shows the US stock market, and the blue line 

shows the UK stock market from 1979 to 2018. 
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Figure A5.4- Market Volatility during the ranking period of 12 months 

Figure A5.4 shows market volatility in the US stock market and the UK stock market during 

the ranking period of 12 months. The red line shows the US stock market, and the blue line 

shows the UK stock market from 1979 to 2018. 
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Figure A6.1 – Ranking returns during the ranking period of 3 months  
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Figure A6.2 – Ranking returns during the ranking period of 6 months  
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Figure A6.3 – Ranking returns during the ranking period of 9 months  
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Figure A6.4 – Ranking returns during the ranking period of 12 months  
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Figure A7.1 – Relationship between returns in the ranking period and the holding period when 

the ranking period is 3 months  
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Figure A7.2 – Relationship between returns in the ranking period and the holding period when 

the ranking period is 6 months  
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Figure A7.3 – Relationship between returns in the ranking period and the holding period when 

the ranking period is 9 months  
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Figure A7.4 – Relationship between returns in the ranking period and the holding period when 

the ranking period is 12 months  
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Figure A8.1 – Relationship between domestic market volatility and momentum returns when 

the ranking period is 3 months  
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Figure A8.2 – Relationship between domestic market volatility and momentum returns when 

the ranking period is 6 months  
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Figure A8.3 – Relationship between domestic market volatility and momentum returns when 

the ranking period is 9 months  
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Figure A8.4 – Relationship between domestic market volatility and momentum returns when 

the ranking period is 12 months  
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Alpha U.K.    U.S.    

 3 6 9 12 3 6 9 12 

3 0.05 0.11 0.15 0.17 0.021 0.05 0.078 0.085 

6 0.08 0.17 0.21 0.22 0.037 0.08 0.1 0.1 

9 0.085 0.17 0.2 0.2 0.044 0.078 0.094 0.085 

12 0.079 0.15 0.17 0.17 0.035 0.063 0.067 0.059 

 

 

Beta U.K.    U.S.    

 3 6 9 12 3 6 9 12 

3 -0.53 -1.20 -1.60 -2.00 -0.31 -0.73 -0.96 -1.10 

6 -1.1 -2.3 -2.9 -3.2 -0.6 -1.2 -1.6 -1.9 

9 -1.2 -2.5 -3.3 -3.4 -0.72 -1.3 -1.7 -1.9 

12 -1.3 -2.6 -3.4 -3.6 -0.69 -1.3 -1.6 -1.7 

 

Figure A8.5- Summary of value of alpha and beta for relationship between domestic market 

volatility and momentum returns 
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Figure A9.1 – Relationship between foreign market volatility and momentum returns when the 

ranking period is 3 months  
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Figure A9.2 – Relationship between foreign market volatility and momentum returns when the 

ranking period is 6 months  
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Figure A9.3 – Relationship between foreign market volatility and momentum returns when the 

ranking period is 9 months  
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Figure A9.4 – Relationship between foreign market volatility and momentum returns when the 

ranking period is 12 months  
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Alpha U.K.    U.S.    

 3 6 9 12 3 6 9 12 

3 0.045 0.098 0.13 0.15 0.024 0.056 0.086 0.095 

6 0.069 0.14 0.17 0.18 0.043 0.094 0.12 0.13 

9 0.072 0.14 0.16 0.15 0.052 0.096 0.12 0.11 

12 0.064 0.11 0.13 0.12 0.044 0.081 0.089 0.086 

 

Beta U.K.    U.S.    

 3 6 9 12 3 6 9 12 

3 -0.38 -0.89 -1.1 -1.3 -0.4 -0.94 -1.2 -1.5 

6 -0.8 -1.6 -1.9 -2.1 -0.8 -1.7 -2.2 -2.6 

9 -0.84 -1.7 -2.0 -2.1 -0.98 -1.9 -2.5 -2.6 

12 -0.85 -1.7 -2.0 -2.1 -0.96 -1.9 -2.2 -2.5 

 

Figure A9.5- Summary of value of alpha and beta for relationship between foreign market 

volatility and momentum returns 
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Figure A10.1-Posterior probability distribution of parameters Alpha, Beta, Gamma and Theta 

in the two-regime switching model during the 3 months ranking period in the US market.  
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Figure A10.2-Posterior probability distribution of parameters Alpha, Beta, Gamma and Theta 

in the two-regime switching model during the 6 months ranking period in the US market.  
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Figure A10.3-Posterior probability distribution of parameters Alpha, Beta, Gamma and Theta 

in the two-regime switching model during the 9 months ranking period in the US market.  
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Figure A10.4-Posterior probability distribution of parameters Alpha, Beta, Gamma and Theta 

in the two-regime switching model during the 12 months ranking period in the US market.  

 

 



Appendix 

 

121 
 

 

 

Figure A11.1-Posterior probability distribution of parameters Delta, Tau and Sigma in the two-

regime switching model during the 3 months ranking period in the US market.  
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Figure A11.2-Posterior probability distribution of parameters Delta, Tau and Sigma in the two-

regime switching model during the 6 months ranking period in the US market.  
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Figure A11.3-Posterior probability distribution of parameters Delta, Tau and Sigma in the two-

regime switching model during the 9 months ranking period in the US market.  
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Figure A11.4-Posterior probability distribution of parameters Delta, Tau and Sigma in the two-

regime switching model during the 12 months ranking period in the US market.  
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Figure A12.1-Posterior probability distribution of parameters Delta, Tau and Sigma in the two-

regime switching model during the 3 months ranking period in the UK market. 
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Figure A12.2-Posterior probability distribution of parameters Delta, Tau and Sigma in the two-

regime switching model during the 6 months ranking period in the UK market. 
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Figure A12.3-Posterior probability distribution of parameters Delta, Tau and Sigma in the two-

regime switching model during the 9 months ranking period in the UK market. 
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Figure A12.4-Posterior probability distribution of parameters Delta, Tau and Sigma in the two-

regime switching model during the 12 months ranking period in the UK market. 
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Figure A13.1-Posterior probability distribution of parameters Delta, Tau and Sigma in the two-

regime switching model during the 3 months ranking period in the UK market.  
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Figure A13.2-Posterior probability distribution of parameters Delta, Tau and Sigma in the two-

regime switching model during the 6 months ranking period in the UK market.  
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Figure A13.3-Posterior probability distribution of parameters Delta, Tau and Sigma in the two-

regime switching model during the 9 months ranking period in the UK market.  
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Figure A13.4-Posterior probability distribution of parameters Delta, Tau and Sigma in the two-

regime switching model during the 12 months ranking period in the UK market.  



Appendix 

 

133 
 

 
3  6  9  12 

Alpha1 
        

3 0.025  0.059  0.014  0.054  0.006  0.056  0.179  0.252  

6 0.035  0.062  0.083  0.128  0.071  0.123  0.123  0.183  

9 0.016  0.049  -0.003  0.042  -0.041  0.015  0.031  0.096  

12 0.016  0.048  0.007  0.056  -0.002  0.056  0.081  0.142  

Beta1 
        

3 0.265  0.911  -0.330  0.377  -1.276  -0.364  -3.852  -2.138  

6 -0.534  0.111  -1.885  -0.830  -3.637  -2.286  -4.759  -3.319  

9 -1.832  -1.056  -3.187  -1.938  -4.723  -3.215  -7.225  -5.568  

12 -1.868  -0.929  -3.541  -2.080  -6.151  -4.520  -7.020  -5.105  

Gamma1 
        

3 -0.103  -0.032  -0.051  0.031  -0.008  0.093  -0.380  -0.229  

6 -0.071  -0.034  -0.118  -0.058  -0.075  0.001  -0.127  -0.047  

9 -0.022  0.010  0.007  0.053  0.054  0.107  0.001  0.064  

12 -0.021  0.006  -0.005  0.033  0.018  0.062  -0.027  0.022  

Theta1 
        

3 -0.312  0.077  -0.012  0.455  0.751  1.360  1.855  2.738  

6 0.390  0.840  1.103  1.788  2.011  2.975  1.987  3.078  

9 0.874  1.447  1.646  2.510  2.897  3.918  3.269  4.503  

12 0.662  1.383  1.452  2.489  2.836  4.208  1.866  3.241  

Alpha2 
        

3 -0.052  -0.024  -0.057  -0.018  -0.057  -0.007  0.013  0.062  

6 -0.017  0.012  0.006  0.043  0.052  0.105  0.060  0.122  

9 0.021  0.052  0.051  0.094  0.065  0.115  0.049  0.109  

12 0.025  0.055  0.047  0.091  0.034  0.088  0.032  0.091  

Beta2 
        

3 -0.351  -0.180  -0.575  -0.289  -0.574  -0.282  -0.527  -0.182  

6 -0.402  -0.174  -0.474  -0.143  -0.256  0.193  -0.213  0.327  

9 -0.193  0.079  0.030  0.434  0.223  0.682  0.268  0.793  

12 -0.081  0.237  0.244  0.708  0.522  1.083  0.687  1.277  

Gamma2 
        

3 0.056  0.099  0.077  0.136  0.081  0.154  -0.007  0.072  

6 0.027  0.054  0.035  0.071  -0.008  0.046  -0.034  0.023  

9 -0.003  0.020  -0.015  0.015  -0.037  0.000  -0.042  0.000  

12 -0.012  0.006  -0.023  0.003  -0.031  0.001  -0.041  -0.010  

Theta2 
        

3 0.011  0.224  -0.132  0.171  -0.355  0.032  -0.725  -0.281  

6 -0.310  0.006  -0.908  -0.438  -1.770  -1.142  -2.082  -1.317  

9 -0.829  -0.425  -1.800  -1.214  -2.268  -1.610  -2.435  -1.653  

12 -0.978  -0.524  -2.077  -1.406  -2.569  -1.748  -2.803  -1.959  

Table A14.1- Parameters for Alpha, Beta, Gamma and Theta in the two-regime switching 

model under 90% Bayesian confidence intervals in the US market 
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3 6 9 12 

Delta 

        

3 3.365  3.968  3.694  4.472  3.143  3.738  2.573  3.170  

6 3.262  3.843  3.053  3.615  2.633  3.248  2.778  3.352  

9 2.980  3.560  3.499  4.070  3.723  4.295  3.667  4.237  

12 3.011  3.555  3.162  3.751  3.359  4.011  3.830  4.418  

Tau 

        

3 0.033  0.038  0.040  0.040  0.040  0.041  0.028  0.032  

6 0.041  0.042  0.032  0.035  0.038  0.040  0.040  0.042  

9 0.037  0.039  0.035  0.036  0.035  0.036  0.035  0.037  

12 0.035  0.036  0.035  0.037  0.035  0.037  0.035  0.037  

Sigma 

        

3 0.003  0.003  0.005  0.007  0.009  0.010  0.013  0.014  

6 0.003  0.004  0.007  0.007  0.013  0.015  0.016  0.017  

9 0.004  0.005  0.008  0.009  0.011  0.013  0.015  0.017  

12 0.004  0.005  0.009  0.010  0.013  0.016  0.016  0.018  

Table A14.2- Parameters for Delta, Tau and Sigma in the two-regime switching model under 

90% Bayesian confidence intervals in the US market 
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3 6 9 12 

Alpha1 3 
 

6 
 

9 
 

12 
 

3 0.119  0.136  0.161  0.183  0.211  0.244  0.302  0.341  

6 0.106  0.126  0.216  0.242  0.299  0.332  0.367  0.418  

9 0.133  0.155  0.253  0.288  0.327  0.372  0.429  0.483  

12 0.176  0.198  0.282  0.320  0.425  0.474  0.514  0.578  

Beta1 
        

3 -0.829  -0.215  -0.154  0.722  -0.551  0.609  -1.854  -0.409  

6 -0.595  0.091  -0.447  0.503  -2.483  -1.285  -5.439  -3.507  

9 -0.985  -0.177  -2.409  -1.167  -5.238  -3.602  -8.217  -6.260  

12 -1.683  -0.920  -4.583  -3.382  -8.273  -6.337  -11.692  -9.407  

Gamma1 
       

3 -0.117  -0.100  -0.144  -0.121  -0.195  -0.165  -0.244  -0.208  

6 -0.075  -0.060  -0.144  -0.126  -0.174  -0.148  -0.207  -0.168  

9 -0.066  -0.055  -0.113  -0.096  -0.128  -0.106  -0.166  -0.140  

12 -0.069  -0.059  -0.097  -0.082  -0.136  -0.116  -0.167  -0.143  

Theta1 
        

3 -0.180  0.225  -0.528  0.071  -0.057  0.877  -0.853  0.332  

6 0.297  0.774  0.370  1.011  1.024  1.858  1.430  2.699  

9 -0.080  0.481  0.344  1.308  1.008  2.225  1.034  2.655  

12 -0.458  0.333  0.755  1.773  0.606  2.095  1.525  3.392  

Alpha2 
        

3 0.036  0.058  0.101  0.134  0.197  0.246  0.239  0.311  

6 0.105  0.127  0.201  0.234  0.355  0.410  0.427  0.499  

9 0.123  0.150  0.224  0.302  0.349  0.414  0.515  0.600  

12 0.121  0.146  0.202  0.251  0.283  0.336  0.339  0.409  

Beta2 
        

3 -0.476  -0.244  -1.084  -0.759  -2.285  -1.767  -2.958  -2.248  

6 -1.413  -1.025  -2.899  -2.384  -5.520  -4.664  -6.840  -5.771  

9 -2.161  -1.698  -4.667  -3.470  -7.151  -5.960  -9.864  -8.442  

12 -2.393  -1.868  -4.561  -3.681  -6.914  -5.852  -8.662  -7.352  

Gamma2 
       

3 -0.027  -0.006  -0.059  -0.026  -0.121  -0.077  -0.169  -0.114  

6 -0.041  -0.030  -0.059  -0.044  -0.121  -0.096  -0.167  -0.136  

9 -0.032  -0.022  -0.056  -0.037  -0.093  -0.071  -0.144  -0.117  

12 -0.027  -0.019  -0.045  -0.030  -0.065  -0.051  -0.091  -0.069  

Theta2 
        

3 -0.025  0.133  0.041  0.265  0.477  0.825  0.757  1.159  

6 0.221  0.460  0.623  0.945  1.783  2.272  2.264  2.944  

9 0.542  0.844  1.245  1.766  2.479  3.188  3.563  4.436  

12 0.632  0.959  1.399  1.963  2.552  3.165  3.349  4.175  

Table A15.1- Parameters for Alpha, Beta, Gamma and Theta in the two-regime switching 

model under 90% Bayesian confidence intervals in the UK market 
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3 6 9 12 

Delta 
        

3 4.225  4.812  4.356  4.956  2.802  3.426  2.693  3.351  

6 4.417  4.971  4.313  4.883  3.090  3.699  2.275  2.768  

9 3.826  4.426  3.686  4.474  2.846  3.454  1.739  2.082  

12 3.288  3.855  4.023  4.603  3.092  3.674  2.427  3.048  

Tau 
        

3 0.037  0.038  0.038  0.038  0.039  0.042  0.038  0.039  

6 0.039  0.040  0.039  0.040  0.041  0.043  0.038  0.040  

9 0.039  0.040  0.040  0.042  0.040  0.042  0.041  0.042  

12 0.041  0.042  0.041  0.043  0.038  0.040  0.039  0.040  

Sigma 
        

3 0.003  0.004  0.007  0.008  0.013  0.015  0.019  0.023  

6 0.039  0.040  0.007  0.008  0.013  0.015  0.024  0.026  

9 0.005  0.005  0.010  0.014  0.019  0.022  0.032  0.036  

12 0.005  0.006  0.011  0.012  0.018  0.020  0.028  0.032  

 

Table A15.2- Parameters for Delta, Tau and Sigma in the two-regime switching model under 

90% Bayesian confidence intervals in the UK market 
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Appendix B 

A candidate assets pricing model for log-normal approximation,   

 𝐸𝑡[𝑀𝑡+1𝑅𝑥,𝑡+1] = 1 B1.1 

Where 𝑀𝑡+1 denotes the stochastic discount factor or pricing kernel in this model, and 𝑅𝑥,𝑡+1 

denotes the gross return on any assets 𝑥.  

Taking logs of asset pricing equation for equity returns,  

 0 = 𝑙𝑜𝑔[𝐸𝑡(𝑀𝑡+1𝑅𝑥,𝑡+1)] 
B1.2 

According to the log-normal distribution that if Y is a normal distribution, then the exponential 

function of Y, 𝑦 = 𝑙𝑛(𝑌), is a normal distribution. Thus, if Y follows a normal distribution 

with mean 𝐸(𝑦) = 𝜋  and variance 𝑣𝑎𝑟(𝑦) = 𝜔2 , 𝑌~𝑁(𝜋,𝜔2) , the expectation of the 

exponential function can be shown as,  

 𝐸[𝑒𝑥𝑝(𝑌)] = 𝑒𝑥𝑝(𝐸(𝑦) +
𝑣𝑎𝑟(𝑦)

2
)  

Or,  

 𝑙𝑜𝑔𝐸[𝑌] = 𝐸(𝑦) +
𝑣𝑎𝑟(𝑦)

2
 

B1.3 

Then, if 𝑌 = 𝑋𝑍, and𝑦 = 𝑙𝑜𝑔𝑌, 𝑥 = 𝑙𝑜𝑔𝑋 and 𝑧 = 𝑙𝑜𝑔𝑍 

 𝑙𝑜𝑔𝐸[𝑌] = 𝐸(log(𝑌)) +
𝑣𝑎𝑟(log(𝑌))

2
 

𝐸(log(𝑌)) = 𝐸(log(𝑋𝑍)) +
𝑣𝑎𝑟(log(𝑋𝑍))

2
 

= 𝐸(log(𝑋) + log(𝑍)) +
𝑣𝑎𝑟(log(𝑋) + log(𝑍))

2
 

B1.4 
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= 𝐸(log(𝑋)) + 𝐸(log(𝑍)) +
𝑣𝑎𝑟(log(𝑋) + log(𝑍))

2
 

= 𝐸(𝑥) + 𝐸(𝑧) +
𝑣𝑎𝑟(𝑥 + 𝑧)

2
 

Thus, taking logs of B1.2 for the risk-free rate equation, 𝑅𝑥,𝑡+1 = 𝑅𝑓,𝑡+1,  

 0 = 𝑙𝑜𝑔(𝑅𝑓,𝑡+1) + 𝑙𝑜𝑔𝐸𝑡(𝑀𝑡+1) 
 

Or,  

 𝑟𝑓,𝑡+1 = −𝑙𝑜𝑔𝐸𝑡(𝑀𝑡+1) B1.5 

If the pricing kernel is conditionally log-normal due to the B1.3, 

 𝑙𝑜𝑔𝐸𝑡(𝑀𝑡+1) = 𝐸𝑡(𝑚𝑡+1) +
1

2
𝑣𝑎𝑟𝑡(𝑚𝑡+1) 

B1.6 

Where 𝑚𝑡+1 = log(𝑀𝑡+1). And therefore,  

 𝑟𝑓,𝑡+1 = −𝐸𝑡(𝑚𝑡+1) −
1

2
𝑣𝑎𝑟𝑡(𝑚𝑡+1) 

B1.7 

Moreover, according to the B1.2 and B1.3, if equity returns and pricing kernel are jointly log-

normal, 

 𝑙𝑜𝑔𝐸𝑡(𝑀𝑡+1𝑅𝑥,𝑡+1)

= 𝐸𝑡(𝑚𝑡+1) + 𝐸𝑡(𝑟𝑥,𝑡+1) +
1

2
𝑣𝑎𝑟𝑡(𝑚𝑡+1)

+ 𝑐𝑜𝑣𝑡(𝑚𝑡+1, 𝑟𝑥,𝑡+1) +
1

2
𝑣𝑎𝑟𝑡(𝑟𝑥,𝑡+1) = 0 

B1.8 

Rearrange B1.8, and substitute B1.7,  
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 𝐸𝑡(𝑟𝑥,𝑡+1) = −𝐸𝑡(𝑚𝑡+1) −
1

2
𝑣𝑎𝑟𝑡(𝑚𝑡+1)

− 𝑐𝑜𝑣𝑡(𝑚𝑡+1, 𝑟𝑥,𝑡+1) −
1

2
𝑣𝑎𝑟𝑡(𝑟𝑥,𝑡+1) 

= 𝑟𝑓,𝑡+1 − 𝑐𝑜𝑣𝑡(𝑚𝑡+1, 𝑟𝑥,𝑡+1) −
1

2
𝑣𝑎𝑟𝑡(𝑟𝑥,𝑡+1) 

B1.9 

Thus, the risk premium for 𝑟𝑥,𝑡+1 can be written as below,   

 𝐸𝑡(𝑟𝑥,𝑡+1) − 𝑟𝑓,𝑡+1 = −𝑐𝑜𝑣𝑡(𝑚𝑡+1, 𝑟𝑥,𝑡+1) −
1

2
𝑣𝑎𝑟𝑡(𝑟𝑥,𝑡+1) 

= 𝐸𝑡(𝑟𝑥,𝑡+1 − 𝑟𝑓,𝑡+1) 

B1.10 

This section describes the long-run risk model with time-varying volatility of consumption 

growth and dividend growth, 

 𝑥𝑡+1 = 𝜌𝑥𝑡 + 𝜑𝑒𝜎𝑡𝑒𝑡+1 B2.1 

 𝑔𝑡+1 = 𝜇 + 𝑥𝑡 + 𝜎𝑡𝜂𝑡+1 B2.2 

 𝑔𝑖,𝑡+1 = 𝜇𝑖 + 𝜙𝑖𝑥𝑡 + 𝜑𝑖𝜎𝑡𝑢𝑖,𝑡+1 + 𝜑𝑖,𝑚𝜎𝑡𝑣𝑡+1 B2.3 

 𝜎𝑡+1
2 = 𝜎2 + 𝑣1(𝜎𝑡

2 − 𝜎2) + 𝜎𝑤𝑤𝑡+1 B2.4 

 𝑒𝑡+1, 𝜂𝑡+1, 𝑢𝑖,𝑡+1, 𝑣𝑡+1, 𝑤𝑡+1~𝑁. 𝑖. 𝑖. 𝑑. (0,1) B2.5 

The intertemporal marginal rate of substitution (IMRS) or pricing kernel for this economy can 

be shown as, 

 𝑙𝑛𝑀𝑡+1 = 𝑚𝑡+1 = 𝜃 𝑙𝑛 𝛿 −
𝜃

𝜓
𝑔𝑡+1+(𝜃 − 1) 𝑟𝑎,𝑡+1 B2.6 

Again, 𝜃 =
1−𝛾

1−
1

𝜓

. According to the standard asset pricing condition 𝐸𝑡[𝑀𝑡+1𝑅𝑥,𝑡+1] = 1, 
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 𝐸𝑡 [𝑒𝑥𝑝 (𝜃 𝑙𝑛 𝛿 −
𝜃

𝜓
𝑔𝑡+1 + (𝜃 − 1)𝑟𝑎,𝑡+1 + 𝑟𝑥,𝑡+1)] = 1 B2.7 

Where 𝑟𝑎,𝑡+1  denotes the return on the aggregate consumption claim, 𝑅𝑥,𝑡+1  means asset 

pricing restriction on any continuous return, and 𝑟𝑥,𝑡+1 = log𝑅𝑥,𝑡+1 = 𝑟𝑎,𝑡+1 for solving the 

special case.  

Initially, a particular method is used to solve the return on the consumption claim asset (𝑟𝑎,𝑡+1) 

with a Campbell-Shiller approximation, which can be followed as,  

 𝑟𝑎,𝑡+1 = 𝜅0 + 𝜅1𝑧𝑡+1 − 𝑧𝑡 + 𝑔𝑡+1 B2.8 

Here, 𝑧𝑡 is the log price-consumption ratio, which is the endogenous variable. As a conjecture, 

an expression form of 𝑧𝑡, 

 𝑧𝑡 = 𝐴0 + 𝐴1𝑥𝑡 + 𝐴2𝜎𝑡
2 B2.9 

Then, substitute equation B2.9 to B2.8, 

 𝑟𝑎,𝑡+1 = 𝜅0 + 𝜅1(𝐴0 + 𝐴1𝑥𝑡+1 + 𝐴2𝜎𝑡+1
2 ) − (𝐴0 + 𝐴1𝑥𝑡

+ 𝐴2𝜎𝑡
2) + 𝑔𝑡+1 

= 𝜅0 + 𝜅1𝐴0 + 𝜅1𝐴1𝑥𝑡+1 + 𝜅1𝐴2𝜎𝑡+1
2 − 𝐴0 − 𝐴1𝑥𝑡 − 𝐴2𝜎𝑡

2

+ 𝑔𝑡+1 

B2.10 

Further, substitute B2.1, B2.2 and B2.4 into B2.10,  

 𝑟𝑎,𝑡+1 = 𝜅0 + 𝜅1𝐴0 + 𝜅1𝐴1(𝜌𝑥𝑡 + 𝜑𝑒𝜎𝑡𝑒𝑡+1)

+ 𝜅1𝐴2[𝜎
2 + 𝑣1(𝜎𝑡

2 − 𝜎2) + 𝜎𝑤𝑤𝑡+1] − 𝐴0

− 𝐴1𝑥𝑡 − 𝐴2𝜎𝑡
2 + 𝜇 + 𝑥𝑡 + 𝜎𝑡𝜂𝑡+1 

B2.11 

Again, due to 𝑟𝑥,𝑡+1 = 𝑟𝑎,𝑡+1 and B2.11, B2.7 can be rewritten as follows,  
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 𝐸 {𝑒𝑥𝑝 [𝜃𝑙𝑛𝛿 −
𝜃

𝜓
(𝜇 + 𝑥𝑡 + 𝜎𝑡𝜂𝑡+1) + 𝜃𝑟𝑎,𝑡+1]} 

= 𝐸{𝑒𝑥𝑝[𝜃 𝑙𝑛 𝛿 −
𝜃

𝜓
(𝜇 + 𝑥𝑡 + 𝜎𝑡𝜂𝑡+1)

+ 𝜃[𝜅0 + 𝜅1𝐴0 + 𝜅1𝐴1(𝜌𝑥𝑡 + 𝜑𝑒𝜎𝑡𝑒𝑡+1)

+ 𝜅1𝐴2[𝜎
2 + 𝑣1(𝜎𝑡

2 − 𝜎2) + 𝜎𝑤𝑤𝑡+1] − 𝐴0

− 𝐴1𝑥𝑡 − 𝐴2𝜎𝑡
2 + 𝜇 + 𝑥𝑡 + 𝜎𝑡𝜂𝑡+1]]} 

B2.12 

To obtain the 𝐴1  and 𝐴2 , due to the B1.3, 𝑌 , 𝜋  and 𝜔2  can be obtained from equation 

B2.12, 

𝑌 = 𝜃 𝑙𝑛 𝛿 −
𝜃

𝜓
(𝜇 + 𝑥𝑡 + 𝜎𝑡𝜂𝑡+1)

+ 𝜃[𝜅0 + 𝜅1𝐴0 + 𝜅1𝐴1(𝜌𝑥𝑡 + 𝜑𝑒𝜎𝑡𝑒𝑡+1)

+ 𝜅1𝐴2[𝜎
2 + 𝑣1(𝜎𝑡

2 − 𝜎2) + 𝜎𝑤𝑤𝑡+1] − 𝐴0 − 𝐴1𝑥𝑡 − 𝐴2𝜎𝑡
2 + 𝜇 + 𝑥𝑡

+ 𝜎𝑡𝜂𝑡+1] 

𝜋 = 𝜃 𝑙𝑛 𝛿 −
𝜃

𝜓
𝜇 −

𝜃

𝜓
𝑥𝑡 + 𝜃𝜅0 + 𝜃𝜅1𝐴0 + 𝜃𝜅1𝐴1𝜌𝑥𝑡 + 𝜃𝜅1𝐴2(𝜎

2 + 𝑣1𝜎𝑡
2 − 𝑣1𝜎

2) − 𝜃𝐴0

− 𝜃𝐴1𝑥𝑡 − 𝜃𝐴2𝜎𝑡
2 + 𝜃𝜇 + 𝜃𝑥𝑡 

𝜔2 =
𝜃2

𝜓2
𝜎𝑡
2 + 𝜃2𝜅1

2𝐴1
2𝜑𝑒

2𝜎𝑡
2 + 𝜃2𝜅1

2𝐴2
2𝜎𝑤

2 + 𝜃2𝜎𝑡
2 

Since the 𝑒𝑡+1, 𝜂𝑡+1, 𝑢𝑖,𝑡+1, 𝑤𝑡+1~𝑁. 𝑖. 𝑖. 𝑑. (0,1) , 𝑤𝑡+1
2 = 𝑒𝑡+1

2 = 𝜇𝑖,𝑡+1
2 = 𝜂𝑡+1

2 = 1 . Thus, 

due to B1.3,  

𝜋 +
𝜔2

2
= 𝜃 𝑙𝑛 𝛿 −

𝜃

𝜓
𝜇 −

𝜃

𝜓
𝑥𝑡 + 𝜃𝜅0 + 𝜃𝜅1𝐴0 + 𝜃𝜅1𝐴1𝜌𝑥𝑡 + 𝜃𝜅1𝐴2(𝜎

2 + 𝑣1𝜎𝑡
2 − 𝑣1𝜎

2)

− 𝜃𝐴0 − 𝜃𝐴1𝑥𝑡 − 𝜃𝐴2𝜎𝑡
2 + 𝜃𝜇 + 𝜃𝑥𝑡 +

1

2

𝜃2

𝜓2
𝜎𝑡
2 +

1

2
𝜃2𝜅1

2𝐴1
2𝜑𝑒

2𝜎𝑡
2

+
1

2
𝜃2𝜅1

2𝐴2
2𝜎𝑤

2 +
1

2
𝜃2𝜎𝑡

2 −
𝜃2

𝜓
𝜎𝑡
2 
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= 𝜃 𝑙𝑛 𝛿 −
𝜃

𝜓
𝜇 + 𝜃𝜅0 + 𝜃𝜅1𝐴0 + 𝜃𝜅1𝐴2𝜎

2 − 𝜃𝜅1𝐴2𝑣1𝜎
2 − 𝜃𝐴0 + 𝜃𝜇 +

1

2
𝜃2𝜅1

2𝐴2
2𝜎𝑤

2

+ (−
𝜃

𝜓
+ 𝜃𝜅1𝐴1𝜌 − 𝜃𝐴1 + 𝜃)𝑥𝑡 + (𝜃𝜅1𝐴2𝑣1 − 𝜃𝐴2 +

1

2

𝜃2

𝜓2
+
1

2
𝜃2𝜅1

2𝐴1
2𝜑𝑒

2

+
1

2
𝜃2 −

𝜃2

𝜓
)𝜎𝑡

2 

𝜋 +
𝜔2

2
= 0, all terms involving 𝑥𝑡 and 𝜎𝑡

2 must be satisfied as,  

 (−
𝜃

𝜓
+ 𝜃𝜅1𝐴1𝜌 − 𝜃𝐴1 + 𝜃) 𝑥𝑡 = 0 B2.13 

 
(𝜃𝜅1𝐴2𝑣1 − 𝜃𝐴2 +

1

2

𝜃2

𝜓2
+
1

2
𝜃2𝜅1

2𝐴1
2𝜑𝑒

2 +
1

2
𝜃2 −

𝜃2

𝜓
)𝜎𝑡

2 = 0 
B2.14 

Then, equation 2.13 and 2.14 divided by 𝜃𝑥𝑡 and 𝜃𝜎𝑡
2, respectively, and rearrange both and 

𝐴0,  

 

𝐴0 =
𝑙𝑛 𝛿 + (1 −

1
𝜓)𝜇 + 𝜅0 + 𝜅1𝐴2(1 − 𝑣1)𝜎

2 +
1
2𝜃𝜅1

2𝐴2
2𝜎𝑤

2

1 − 𝜅1
 

B2.15 

 

𝐴1 =
1 −

1
𝜓

1 − 𝜅1𝜌
 

B2.16 

 

𝐴2 =
0.5[(𝜃 −

𝜃
𝜓)

2 + (𝜃𝐴1𝜅1𝜑𝑒)
2]

𝜃(1 − 𝜅1𝑣1)
 

B2.17 

Therefore, given the solution of 𝑧𝑡, the innovation to the return 𝑟𝑎,𝑡+1 can be derived by B2.11,  

 𝑟𝑎,𝑡+1 − 𝐸𝑡(𝑟𝑎,𝑡+1) = 𝜅1𝐴1𝜑𝑒𝜎𝑡𝑒𝑡+1 + 𝜅1𝐴2𝜎𝑤𝑤𝑡+1 + 𝜎𝑡𝜂𝑡+1 

= 𝐶𝜎𝑡𝑒𝑡+1 + 𝜅1𝐴2𝜎𝑤𝑤𝑡+1 + 𝜎𝑡𝜂𝑡+1 

B2.18 

Where 𝐶 = 𝜅1𝐴1𝜑𝑒. Hence, the conditional variance of 𝑟𝑎,𝑡 can be shown as,  
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 𝑣𝑎𝑟𝑡(𝑟𝑎,𝑡+1) = (1 + 𝐶2)𝜎𝑡
2 + 𝜅1

2𝐴2
2𝜎𝑤

2  B2.20 

The intertemporal marginal rate of substitute 

According to the pricing kernel B2.6, B2.2 and B2.11 are substituted,   

 𝑚𝑡+1 = 𝜃 𝑙𝑛 𝛿 −
𝜃

𝜓
(𝜇 + 𝑥𝑡 + 𝜎𝑡𝜂𝑡+1)+(𝜃 − 1) {𝜅0 + 𝜅1𝐴0

+ 𝜅1𝐴1(𝜌𝑥𝑡 + 𝜑𝑒𝜎𝑡𝑒𝑡+1)

+ 𝜅1𝐴2[𝜎
2 + 𝑣1(𝜎𝑡

2 − 𝜎2) + 𝜎𝑤𝑤𝑡+1] − 𝐴0

− 𝐴1𝑥𝑡 − 𝐴2𝜎𝑡
2 + 𝜇 + 𝑥𝑡 + 𝜎𝑡𝜂𝑡+1} 

B3.1 

Hence, the conditional mean for 𝑚𝑡 by substituting the 𝐴1 can be obtained as,  

 𝐸𝑡(𝑚𝑡+1) = 𝜃 𝑙𝑛 𝛿 −
𝜃

𝜓
(𝜇 + 𝑥𝑡)+(𝜃 − 1) {𝜅0 + 𝜅1𝐴0

+ 𝜅1𝐴1𝜌𝑥𝑡 + 𝜅1𝐴2[𝜎
2 + 𝑣1(𝜎𝑡

2 − 𝜎2)] − 𝐴0

− 𝐴1𝑥𝑡 − 𝐴2𝜎𝑡
2 + 𝜇 + 𝑥𝑡} 

= {𝜃 𝑙𝑛 𝛿 −
𝜃

𝜓
𝜇

+ (𝜃 − 1)[𝜅0 + 𝜅1𝐴0 + 𝜅1𝐴2(𝜎
2 − 𝑣1𝜎

2) − 𝐴0

+ 𝜇]} + [−
𝜃

𝜓
+ (𝜃 − 1)(𝜅1𝐴1𝜌 − 𝐴1 + 1)] 𝑥𝑡

+ (𝜃 − 1)(𝜅1𝐴2𝑣1 − 𝐴2)𝜎𝑡
2 

= 𝐶𝑚 + [−
𝜃

𝜓
+ (𝜃 − 1)(𝜅1𝜌

1 −
1
𝜓

1 − 𝜅1𝜌
−

1 −
1
𝜓

1 − 𝜅1𝜌
+ 1)] 𝑥𝑡

+ (𝜃 − 1)(𝜅1𝐴2𝑣1 − 𝐴2)𝜎𝑡
2 

= 𝐶𝑚 −
1

𝜓
𝑥𝑡 + 𝐴2(𝜃 − 1)(𝜅1𝑣1 − 1)𝜎𝑡

2 

B3.2 

Where 𝐶𝑚 denotes the constant in this equation, which equals 𝜃 𝑙𝑛 𝛿 −
𝜃

𝜓
𝜇 + (𝜃 − 1)[𝜅0 +
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𝜅1𝐴0 + 𝜅1𝐴2(𝜎
2 − 𝑣1𝜎

2) − 𝐴0 + 𝜇]. Then, the innovation to pricing kernel can be written as, 

 𝑚𝑡+1 − 𝐸𝑡(𝑚𝑡+1)

= −
𝜃

𝜓
𝜎𝑡𝜂𝑡+1 + (𝜃 − 1)(𝜅1𝐴1𝜑𝑒𝜎𝑡𝑒𝑡+1

+ 𝜅1𝐴2𝜎𝑤𝑤𝑡+1 + 𝜎𝑡𝜂𝑡+1) 

= (−
𝜃

𝜓
+ 𝜃 − 1)𝜎𝑡𝜂𝑡+1 + (𝜃 − 1)𝜅1𝐴1𝜑𝑒𝜎𝑡𝑒𝑡+1

+ (𝜃 − 1)𝜅1𝐴2𝜎𝑤𝑤𝑡+1 

= 𝜆𝑚,𝜂𝜎𝑡𝜂𝑡+1 − 𝜆𝑚,𝑒𝜎𝑡𝑒𝑡+1 − 𝜆𝑚,𝑤𝜎𝑤𝑤𝑡+1 

B3.3 

Where 𝜆𝑚,𝜂, 𝜆𝑚,𝑒 and 𝜆𝑚,𝑤 are the market prices of short-run, long-run and volatility risks,  

 𝜆𝑚,𝜂 = −
𝜃

𝜓
+ 𝜃 − 1 = −𝛾 

𝜆𝑚,𝑒 = (1 − 𝜃)𝐶 

𝜆𝑚,𝑤 = (1 − 𝜃)𝜅1𝐴2 

 

Thus, the conditional variance of 𝑚𝑡+1, can be shown as, 

 𝑉𝑎𝑟𝑡(𝑚𝑡+1) = (𝜆𝑚,𝜂
2 + 𝜆𝑚,𝑒

2 )𝜎𝑡
2 + 𝜆𝑚,𝑤

2 𝜎𝑤
2  B3.4 

Risk premium for 𝒓𝒂,𝒕+𝟏 

The risk premium for any asset can be determined by the conditional covariance between the 

return on asset, 𝑟𝑎,𝑡+1 and pricing kernel, 𝑚𝑡+1. So, due to B1.9, the risk premium for 𝑟𝑎,𝑡+1 

can be shown as,  
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 𝐸𝑡(𝑟𝑎,𝑡+1 − 𝑟𝑓,𝑡) = −𝑐𝑜𝑣𝑡(𝑚𝑡+1, 𝑟𝑎,𝑡+1) −
1

2
𝑣𝑎𝑟𝑡(𝑟𝑎,𝑡+1)

= −𝑐𝑜𝑣𝑡[𝑚𝑡+1 − 𝐸𝑡(𝑚𝑡+1), 𝑟𝑎,𝑡+1

− 𝐸𝑡(𝑟𝑎,𝑡+1)] −
1

2
𝑣𝑎𝑟𝑡(𝑟𝑎,𝑡+1) 

B4.1 

Therefore, exploiting the innovations in B2.18 and B3.3,  

 𝐸𝑡(𝑟𝑎,𝑡+1 − 𝑟𝑓,𝑡)

= −𝜆𝑚,𝜂𝜎𝑡
2 + 𝜆𝑚,𝑒𝐶𝜎𝑡

2 + 𝜆𝑚,𝑤𝜅1𝐴2𝜎𝑤
2

−
1

2
𝑣𝑎𝑟𝑡(𝑟𝑎,𝑡+1) 

B4.2 

Equity premium and volatility for 𝒓𝒊,𝒕+𝟏  

Further, the risk premium for individual security 𝑖, 𝑟𝑖,𝑡+1 can be shown as,  

 𝐸𝑡(𝑟𝑖,𝑡+1 − 𝑟𝑓,𝑡)

= −𝑐𝑜𝑣𝑡[𝑚𝑡+1 − 𝐸𝑡(𝑚𝑡+1), 𝑟𝑖,𝑡+1 − 𝐸𝑡(𝑟𝑖,𝑡+1)]

−
1

2
𝑣𝑎𝑟𝑡(𝑟𝑖,𝑡+1) 

B5.1 

 

Here, the innovation in 𝑚𝑡+1 has been obtained. Innovation to individual security needs to be 

derived. Thus, the price-dividend ratio for individual security 𝑖 is,  

 𝑧𝑖,𝑡 = 𝐴𝑖,0 + 𝐴𝑖,1𝑥𝑡 + 𝐴𝑖,2𝜎𝑡
2 B5.2 

And, substituting into the return on individual security 𝑖 by a Campbell-Shiller approximation,  

 𝑟𝑖,𝑡+1 = 𝜅𝑖,0 + 𝜅𝑖,1𝑧𝑖,𝑡+1 − 𝑧𝑖,𝑡 + 𝑔𝑖,𝑡 B5.3 
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= 𝜅𝑖,0 + 𝜅𝑖,1(𝐴𝑖,0 + 𝐴𝑖,1𝑥𝑡+1 + 𝐴𝑖,2𝜎𝑡+1
2 ) − 𝐴𝑖,0 − 𝐴𝑖,1𝑥𝑡

− 𝐴𝑖,2𝜎𝑡
2 + 𝜇𝑖 + 𝜙𝑖𝑥𝑡 + 𝜑𝑖𝜎𝑡𝑢𝑖,𝑡+1

+ 𝜑𝑖,𝑚𝜎𝑡𝑣𝑡+1 

= 𝜅𝑖,0 + 𝜅𝑖,1𝐴𝑖,0 + 𝜅𝑖,1𝐴𝑖,1(𝜌𝑥𝑡 + 𝜑𝑒𝜎𝑡𝑒𝑡+1) + 𝜅𝑖,1𝐴𝑖,2(𝜎
2 +

𝑣1(𝜎𝑡
2 − 𝜎2) + 𝜎𝑤𝑤𝑡+1) − 𝐴𝑖,0 − 𝐴𝑖,1𝑥𝑡 − 𝐴𝑖,2𝜎𝑡

2 + 𝜇𝑖 +

𝜙𝑖𝑥𝑡 + 𝜑𝑖𝜎𝑡𝑢𝑖,𝑡+1 +𝜑𝑖,𝑚𝜎𝑡𝑣𝑡+1  

= 𝜅𝑖,0 + 𝜅𝑖,1𝐴𝑖,0 + 𝜅𝑖,1𝐴𝑖,2(1 − 𝑣1)𝜎
2 − 𝐴𝑖,0 + 𝜇𝑖

+ (𝜅𝑖,1𝐴𝑖,1𝜌 − 𝐴𝑖,1 + 𝜙𝑖)𝑥𝑡 + (𝜅𝑖,1𝐴𝑖,2𝑣1

− 𝐴𝑖,2)𝜎𝑡
2 + 𝜅𝑖,1𝐴𝑖,1𝜑𝑒𝜎𝑡𝑒𝑡+1 + 𝜅𝑖,1𝐴𝑖,2𝜎𝑤𝑤𝑡+1

+ 𝜑𝑖𝜎𝑡𝑢𝑖,𝑡+1 + 𝜑𝑖,𝑚𝜎𝑡𝑣𝑡+1 

= 𝐶𝑟𝑖 + (𝜅𝑖,1𝐴𝑖,1𝜌 − 𝐴𝑖,1 + 𝜙𝑖)𝑥𝑡 + (𝜅𝑖,1𝐴𝑖,2𝑣1 − 𝐴𝑖,2)𝜎𝑡
2

+ 𝜅𝑖,1𝐴𝑖,1𝜑𝑒𝜎𝑡𝑒𝑡+1 + 𝜅𝑖,1𝐴𝑖,2𝜎𝑤𝑤𝑡+1

+ 𝜑𝑖𝜎𝑡𝑢𝑖,𝑡+1 + 𝜑𝑖,𝑚𝜎𝑡𝑣𝑡+1 

Where 𝐶𝑟𝑖 = 𝜅𝑖,0 + 𝜅𝑖,1𝐴𝑖,0 + 𝜅𝑖,1𝐴𝑖,2(1 − 𝑣1)𝜎
2 − 𝐴𝑖,0 + 𝜇𝑖 . And, conditional mean of 

𝑟𝑖,𝑡+1, can be expressed as, 

 𝐸𝑡(𝑟𝑖,𝑡+1) = 𝐶𝑟𝑖 + (𝜅𝑖,1𝐴𝑖,1𝜌 − 𝐴𝑖,1 + 𝜙𝑖)𝑥𝑡 + (𝜅𝑖,1𝐴𝑖,2𝑣1

− 𝐴𝑖,2)𝜎𝑡
2 

B5.4 

Thus, innovation to individual return 𝑟𝑖,𝑡+1 can be shown as,  

 𝑟𝑖,𝑡+1 − 𝐸𝑡(𝑟𝑖,𝑡+1)

= 𝜑𝑖𝜎𝑡𝑢𝑖,𝑡+1 + 𝜅𝑖,1𝐴𝑖,1𝜑𝑒𝜎𝑡𝑒𝑡+1

+ 𝜅𝑖,1𝐴𝑖,2𝜎𝑤𝑤𝑡+1 + 𝜑𝑖,𝑚𝜎𝑡𝑣𝑡+1 

B5.5 
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= 𝜑𝑖𝜎𝑡𝑢𝑖,𝑡+1 + 𝛽𝑖,𝑒𝜎𝑡𝑒𝑡+1 + 𝛽𝑖,𝑤𝜎𝑤𝑤𝑡+1 + 𝜑𝑖,𝑚𝜎𝑡𝑣𝑡+1 

 

Where 𝛽𝑖,𝑒 and 𝛽𝑖,𝑤 can be expressed as,  

 𝛽𝑖,𝑤 ≡ 𝜅𝑖,1𝐴𝑖,2 

𝛽𝑖,𝑒 = 𝜅𝑖,1𝐴𝑖,1𝜑𝑒 

B5.6 

Then, the variance of 𝑟𝑖,𝑡+1 can be obtained, 

 𝑣𝑎𝑟𝑡(𝑟𝑖,𝑡+1) = (𝛽𝑖,𝑒
2 + 𝜑𝑖

2 + 𝜑𝑖,𝑚
2 )𝜎𝑡

2 + 𝛽𝑖,𝑤
2 𝜎𝑤

2  B5.7 

The equity premium for individual security 𝑖 (B5.1) can be expressed to adopt the innovation 

in individual security’s return 𝑟𝑖,𝑡+1 and pricing kernel,  

 𝐸𝑡(𝑟𝑖,𝑡+1 − 𝑟𝑓,𝑡)

= −𝑐𝑜𝑣𝑡[𝑚𝑡+1 − 𝐸𝑡(𝑚𝑡+1), 𝑟𝑖,𝑡+1 − 𝐸𝑡(𝑟𝑖,𝑡+1)]

−
1

2
𝑣𝑎𝑟𝑡(𝑟𝑖,𝑡+1) 

= 𝛽𝑖,𝑒𝜆𝑚,𝑒𝜎𝑡
2 + 𝛽𝑖,𝑤𝜆𝑚,𝑤𝜎𝑤

2 −
1

2
𝑣𝑎𝑟𝑡(𝑟𝑖,𝑡+1) 

B5.8 

To solve the 𝐴𝑖,0 𝐴𝑖,1 and 𝐴𝑖,2, according to the B1.1, the Euler condition cn be obtained,   

 𝐸𝑡[𝑀𝑡+1𝑅𝑖,𝑡+1] = 1 

𝐸𝑡[exp(𝑚𝑡+1 + 𝑟𝑖,𝑡+1)] = 1 

B5.9 

Where 𝑚𝑡+1 = log(𝑀𝑡+1) and 𝑟𝑖,𝑡+1 = log(𝑅𝑖,𝑡+1), and due to the B1.4,  
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 𝐸𝑡[exp(𝑚𝑡+1 + 𝑟𝑖,𝑡+1)]

= 𝐸𝑡(𝑚𝑡+1) + 𝐸𝑡(𝑟𝑖,𝑡+1) + 0.5𝑣𝑎𝑟𝑡(𝑚𝑡+1

+ 𝑟𝑖,𝑡+1) 

= 𝐶𝑚 −
1

𝜓
𝑥𝑡 + 𝐴2(𝜃 − 1)(𝜅1𝑣1 − 1)𝜎𝑡

2 + 𝐶𝑟𝑖

+ (𝜅𝑖,1𝐴𝑖,1𝜌 − 𝐴𝑖,1 + 𝜙𝑖)𝑥𝑡

+ (𝜅𝑖,1𝐴𝑖,2𝑣1 − 𝐴𝑖,2)𝜎𝑡
2 + 0.5𝑣𝑎𝑟𝑡(𝜆𝑚,𝜂𝜎𝑡𝜂𝑡+1

− 𝜆𝑚,𝑒𝜎𝑡𝑒𝑡+1 − 𝜆𝑚,𝑤𝜎𝑤𝑤𝑡+1 + 𝜑𝑖𝜎𝑡𝑢𝑖,𝑡+1

+ 𝛽𝑖,𝑒𝜎𝑡𝑒𝑡+1 + 𝛽𝑖,𝑤𝜎𝑤𝑤𝑡+1 + 𝜑𝑖,𝑚𝜎𝑡𝑣𝑡+1) 

= 𝐶𝑚 + 𝐶𝑟𝑖 + (−
1

𝜓
+ 𝜅𝑖,1𝐴𝑖,1𝜌 − 𝐴𝑖,1 + 𝜙𝑖) 𝑥𝑡

+ [𝐴2(𝜃 − 1)(𝜅1𝑣1 − 1) + 𝜅𝑖,1𝐴𝑖,2𝑣1 − 𝐴𝑖,2]𝜎𝑡
2

+ 0.5[(𝜆𝑚,𝜂
2 + (𝛽𝑖,𝑒 − 𝜆𝑚,𝑒)

2 + 𝜑𝑖
2 + 𝜑𝑖,𝑚

2 )𝜎𝑡
2

+ (𝛽𝑖,𝑤 − 𝜆𝑚,𝑤)
2𝜎𝑤

2 ] 

= 𝐻𝑐 + (−
1

𝜓
+ 𝜅𝑖,1𝐴𝑖,1𝜌 − 𝐴𝑖,1 + 𝜙𝑖) 𝑥𝑡

+ [𝐴2(𝜃 − 1)(𝜅1𝑣1 − 1) + 𝜅𝑖,1𝐴𝑖,2𝑣1 − 𝐴𝑖,2

+ 0.5𝐻𝑣𝑎𝑟]𝜎𝑡
2 + 0.5(𝛽𝑖,𝑤 − 𝜆𝑚,𝑤)

2𝜎𝑤
2  

B5.10 

Where 𝐻𝑐 = 𝐶𝑚 + 𝜅𝑖,0 + 𝜅𝑖,1𝐴𝑖,0 + 𝜅𝑖,1𝐴𝑖,2(1 − 𝑣1)𝜎
2 − 𝐴𝑖,0 + 𝜇𝑖  and 𝐻𝑣𝑎𝑟 = 𝜆𝑚,𝜂

2 +

(𝛽𝑖,𝑒 − 𝜆𝑚,𝑒)
2 + 𝜑𝑖

2 + 𝜑𝑖,𝑚
2 , since there is a correlation between −𝜆𝑚,𝑒𝜎𝑡𝑒𝑡+1 and 𝛽𝑖,𝑒𝜎𝑡𝑒𝑡+1. 

Thus, all the 𝑥𝑡 and 𝜎𝑡
2 in the equation B5.10 can be followed as,  

 −
1

𝜓
+ 𝜅𝑖,1𝐴𝑖,1𝜌 − 𝐴𝑖,1 +𝜙𝑖 = 0 B5.11 

 𝐴2(𝜃 − 1)(𝜅1𝑣1 − 1) + 𝜅𝑖,1𝐴𝑖,2𝑣1 − 𝐴𝑖,2 + 0.5𝐻𝑣𝑎𝑟 = 0 B5.12 
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Therefore, the 𝐴𝑖,1 and 𝐴𝑖,2, can be solved and shown as,  

 𝐴𝑖,0

=
𝐶𝑚 + 𝜅𝑖,0 + 𝜅𝑖,1𝐴𝑖,2(1 − 𝑣1)𝜎

2 + 𝜇𝑖 + 0.5(𝛽𝑖,𝑤 − 𝜆𝑚,𝑤)
2𝜎𝑤

2

1 − 𝜅𝑖,1
 

 

 

𝐴𝑖,1 =
𝜙𝑖 −

1
𝜓

1 − 𝜅𝑖,1𝜌
 

B5.13 

 
𝐴𝑖,2 =

𝐴2(𝜃 − 1)(𝜅1𝑣1 − 1) + 0.5𝐻𝑣𝑎𝑟
1 − 𝜅𝑖,1𝑣1

 
B5.14 

Therefore,  the conditional variance of return on individual security can be expressed 𝑖 , 

𝑣𝑎𝑟𝑡(𝑚𝑡+1 + 𝑟𝑖,𝑡+1), 

 𝑣𝑎𝑟𝑡(𝑚𝑡+1 + 𝑟𝑖,𝑡+1)

= (𝜆𝑚,𝜂
2 + (𝛽𝑖,𝑒 − 𝜆𝑚,𝑒)

2 + 𝜑𝑖
2 +𝜑𝑖,𝑚

2 )𝜎𝑡
2

+ (−𝜆𝑚,𝑤 + 𝛽𝑖,𝑤)
2𝜎𝑤

2  

B5.15 

And, to derive the unconditional variance of return on individual security 𝑖, the unconditional 

mean of 𝑟𝑖,𝑡+1 must be obtained by equation B5.3, 

 𝐸(𝑟𝑖,𝑡+1) = 𝜅𝑖,0 + 𝜅𝑖,1(𝐴𝑖,0 + 𝐴𝑖,1𝐸(𝑥𝑡+1) + 𝐴𝑖,2𝐸(𝜎𝑡+1
2 ))

− 𝐴𝑖,0 − 𝐴𝑖,1𝐸(𝑥𝑡) − 𝐴𝑖,2𝐸(𝜎𝑡
2) + 𝜇𝑖

+ 𝜙𝑖𝐸(𝑥𝑡) + 𝜑𝑖𝐸(𝜎𝑡)𝐸(𝑢𝑖,𝑡+1)

+ 𝜑𝑖,𝑚𝐸(𝜎𝑡)𝐸(𝑣𝑡+1) 

= 𝜅𝑖,0 + 𝜅𝑖,1𝐴𝑖,0 + 𝜅𝑖,1𝐴𝑖,1𝐸(𝑥𝑡) + 𝜅𝑖,1𝐴𝑖,2𝑣1𝐸(𝜎𝑡
2) − 𝐴𝑖,0

− 𝐴𝑖,1𝐸(𝑥𝑡) − 𝐴𝑖,2𝐸(𝜎𝑡
2) + 𝜇𝑖 + 𝜙𝑖𝐸(𝑥𝑡) 

B5.16 
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= 𝐶𝑢𝑖 + (𝜅𝑖,1𝐴𝑖,1 − 𝐴𝑖,1 + 𝜙𝑖)𝐸(𝑥𝑡)

+ (𝜅𝑖,1𝐴𝑖,2 − 𝐴𝑖,2𝑣1)𝐸(𝜎𝑡
2) 

= 𝐶𝑢𝑖 + (𝜅𝑖,1𝐴𝑖,2 − 𝐴𝑖,2𝑣1)𝐸(𝜎𝑡
2) 

Where 𝐸(𝑒𝑡+1) = 𝐸(𝑤𝑡+1) = 𝐸(𝑢𝑖,𝑡+1) = 𝐸(𝑣𝑡+1) = 0  and 𝐶𝑢𝑖 = 𝜅𝑖,0 + 𝜅𝑖,1𝐴𝑖,0 − 𝐴𝑖,0 +

𝜇𝑖. And, for 𝐸(𝑥𝑡), according to the B2.1,  

 𝐸(𝑥𝑡+1) = 𝜌𝐸(𝑥𝑡) + 𝜑𝑒𝐸(𝜎𝑡)𝐸(𝑒𝑡+1) 

𝐸(𝑥𝑡) = 𝜌𝐸(𝑥𝑡) ⇒ 𝐸(𝑥𝑡) = 0 

 

And therefore, to obtain the unconditional variance of return on individual security 𝑖,  

 𝑟𝑖,𝑡+1 − 𝐸(𝑟𝑖,𝑡+1)

= (𝜅𝑖,1𝐴𝑖,1𝜌 − 𝐴𝑖,1 + 𝜙𝑖)𝑥𝑡

+ (𝜅𝑖,1𝐴𝑖,2𝑣1 − 𝐴𝑖,2)𝜎𝑡
2 + 𝜅𝑖,1𝐴𝑖,1𝜑𝑒𝜎𝑡𝑒𝑡+1

+ 𝜅𝑖,1𝐴𝑖,2𝜎𝑤𝑤𝑡+1 + 𝜑𝑖𝜎𝑡𝑢𝑖,𝑡+1 + 𝜑𝑖,𝑚𝜎𝑡𝑣𝑡+1

− (𝜅𝑖,1𝐴𝑖,2𝑣1 − 𝐴𝑖,2)𝐸(𝜎𝑡
2) 

= −
1

𝜓
𝑥𝑡 + 𝜑𝑖𝜎𝑡𝑢𝑖,𝑡+1 + 𝛽𝑖,𝑒𝜎𝑡𝑒𝑡+1 + 𝛽𝑖,𝑤𝜎𝑤𝑤𝑡+1

+ 𝜑𝑖,𝑚𝜎𝑡𝑣𝑡+1 + 𝐴𝑖,2(𝜅𝑖,1𝑣1 − 1)(𝜎𝑡
2 − 𝐸(𝜎𝑡

2) 

B5.17 

So, the unconditional variance is,  

 𝑉𝑎𝑟(𝑟𝑖) =
𝑉𝑎𝑟(𝑥)

𝜓2
+ (𝛽𝑖,𝑒

2 + 𝜑𝑖
2 + 𝜑𝑖,𝑚

2 )𝜎𝑡
2 + 𝛽𝑖,𝑤

2 𝜎𝑤
2

+ [𝐴𝑖,2(𝜅𝑖,1𝑣1 − 1)]
2
𝑣𝑎𝑟(𝜎𝑡

2) 

B5.18 

Further, the unconditional variance of 𝑧𝑖,𝑡 can be acquired via equation B5.2, 
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 𝑉𝑎𝑟(𝑧𝑖,𝑡) = 𝐴𝑖,1
2 𝑣𝑎𝑟(𝑥𝑡) + 𝐴𝑖,2

2 𝑣𝑎𝑟(𝜎𝑡
2) B5.19 

Moreover, the innovation to an individual security’s return volatility needs to be described. 

Hence, the innovation to individual security’s return in time t+1 can be rewritten via equation 

B5.5,  

 𝑟𝑖,𝑡+2 − 𝐸𝑡+1(𝑟𝑖,𝑡+2)

= 𝜑𝑖𝜎𝑡+1𝑢𝑖,𝑡+2 + 𝛽𝑖,𝑒𝜎𝑡+1𝑒𝑡+2 + 𝛽𝑖,𝑤𝜎𝑤𝑤𝑡+2

+ 𝜑𝑖,𝑚𝜎𝑡+1𝑣𝑡+2 

B5.20 

Thus, the conditional variance of an individual security’s return can be shown as,  

 𝑉𝑎𝑟𝑡+1(𝑟𝑖,𝑡+2) = 𝜑𝑖
2𝜎𝑡+1

2 + 𝛽𝑖,𝑒
2 𝜎𝑡+1

2 + 𝛽𝑖,𝑤
2 𝜎𝑤

2 + 𝜑𝑖,𝑚
2 𝜎𝑡+1

2  

= (𝜑𝑖
2 + 𝛽𝑖,𝑒

2 + 𝜑𝑖,𝑚
2 )𝜎𝑡+1

2 + 𝛽𝑖,𝑤
2 𝜎𝑤

2  

= (𝜑𝑖
2 + 𝛽𝑖,𝑒

2 + 𝜑𝑖,𝑚
2 )(𝑣1𝜎𝑡

2 + 𝜎𝑤𝑤𝑡+1) + 𝛽𝑖,𝑤
2 𝜎𝑤

2  

B5.21 

And, the expectation of variance of an individual security’s return,  

 𝐸𝑡[𝑉𝑎𝑟𝑡+1(𝑟𝑖,𝑡+2)] = (𝜑𝑖
2 + 𝛽𝑖,𝑒

2 + 𝜑𝑖,𝑚
2 )𝑣1𝐸𝑡(𝜎𝑡

2) + 𝛽𝑖,𝑤
2 𝜎𝑤

2  

= (𝜑𝑖
2 + 𝛽𝑖,𝑒

2 + 𝜑𝑖,𝑚
2 )𝑣1𝜎𝑡

2 + 𝛽𝑖,𝑤
2 𝜎𝑤

2  

B5.22 

Therefore, the innovation to an individual security’s return volatility can be shown as,  

 𝑉𝑎𝑟𝑡+1(𝑟𝑖,𝑡+2) − 𝐸𝑡[𝑉𝑎𝑟𝑡+1(𝑟𝑖,𝑡+2)]

= (𝜑𝑖
2 + 𝛽𝑖,𝑒

2 + 𝜑𝑖,𝑚
2 )𝜎𝑤𝑤𝑡+1 

B5.23 

The risk-free rate and volatility  
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According to equation B1.7, the risk-free rate, 𝐸𝑡[𝑀𝑡+1𝑅𝑓,𝑡+1] = 1 can be derived, 

 𝐸𝑡[𝑒𝑥𝑝(𝑚𝑡+1 + 𝑟𝑓,𝑡)] = 1 B6.1 

 exp[𝐸𝑡(𝑚𝑡+1) + 𝐸𝑡(𝑟𝑓,𝑡) + 0.5𝑉𝑎𝑟𝑡(𝑚𝑡+1 + 𝑟𝑓,𝑡)] = 1  

 𝐸𝑡(𝑚𝑡+1) + 𝑟𝑓,𝑡 + 0.5𝑉𝑎𝑟𝑡(𝑚𝑡+1) = 0  

 𝑟𝑓,𝑡 = −𝐸𝑡(𝑚𝑡+1) − 0.5𝑉𝑎𝑟𝑡(𝑚𝑡+1) 

= −𝜃 𝑙𝑛 𝛿 +
𝜃

𝜓
𝐸𝑡(𝑔𝑡+1)+(1 − 𝜃)𝐸𝑡(𝑟𝑎,𝑡+1)

− 0.5𝑉𝑎𝑟𝑡 (−
𝜃

𝜓
𝑔𝑡+1+(1 − 𝜃) 𝑟𝑎,𝑡+1) 

 

Then, both sides subtract (1 − 𝜃)𝑟𝑓,𝑡 and divide by 𝜃, as well as substitute equation B3.4, 

giving  

 𝑟𝑓,𝑡 = − 𝑙𝑛 𝛿 +
1

𝜓
𝐸𝑡(𝑔𝑡+1)+

1 − 𝜃

𝜃
𝐸𝑡(𝑟𝑎,𝑡+1 − 𝑟𝑓,𝑡+1)

−
1

2𝜃
𝑉𝑎𝑟𝑡 (−

𝜃

𝜓
𝑔𝑡+1+(𝜃 − 1) 𝑟𝑎,𝑡+1) 

= − 𝑙𝑛 𝛿 +
1

𝜓
𝐸𝑡(𝑔𝑡+1)+

1 − 𝜃

𝜃
𝐸𝑡(𝑟𝑎,𝑡+1 − 𝑟𝑓,𝑡+1)

−
1

2𝜃
[(𝜆𝑚,𝜂

2 + 𝜆𝑚,𝑒
2 )𝜎𝑡

2 + 𝜆𝑚,𝑤
2 𝜎𝑤

2 ] 

B6.2 

And, substituting the equation unconditional mean of 𝑟𝑓,𝑡 

 𝐸𝑡(𝑟𝑓,𝑡) = − 𝑙𝑛 𝛿 +
1

𝜓
𝐸(𝑔) +

1 − 𝜃

𝜃
𝐸(𝑟𝑎,𝑡+1 − 𝑟𝑓,𝑡+1)

−
1

2𝜃
[(𝜆𝑚,𝜂

2 + 𝜆𝑚,𝑒
2 )𝜎𝑡

2 + 𝜆𝑚,𝑤
2 𝜎𝑤

2 ] 

B6.3 

According to equation B2.2 and equation B4.2 and B2.20,  

 𝐸(𝑔) = 𝜇 + 𝑥𝑡 B6.4 
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𝐸(𝑟𝑎,𝑡+1 − 𝑟𝑓,𝑡+1)

= −𝜆𝑚,𝜂𝐸(𝜎𝑡
2) + 𝜆𝑚,𝑒𝐶𝐸(𝜎𝑡

2) + 𝜆𝑚,𝑤𝜅1𝐴2𝜎𝑤
2

−
1

2
𝐸[𝑣𝑎𝑟𝑡(𝑟𝑎,𝑡+1)] 

= −𝜆𝑚,𝜂𝐸(𝜎𝑡
2) + 𝜆𝑚,𝑒𝐶𝐸(𝜎𝑡

2) + 𝜆𝑚,𝑤𝜅1𝐴2𝜎𝑤
2 − 0.5[(1

+ 𝐶2)𝐸(𝜎𝑡
2) + 𝜅1

2𝐴2
2𝜎𝑤

2 ] 

Then, substituting the equation B6.4 into B6.3,  

 𝐸𝑡(𝑟𝑓,𝑡) = − 𝑙𝑛 𝛿 +
1

𝜓
(𝜇 + 𝐸(𝑥𝑡)) +

1 − 𝜃

𝜃
{−𝜆𝑚,𝜂𝐸(𝜎𝑡

2)

+ 𝜆𝑚,𝑒𝐶𝐸(𝜎𝑡
2) + 𝜆𝑚,𝑤𝜅1𝐴2𝜎𝑤

2 − 0.5[(1

+ 𝐶2)𝐸(𝜎𝑡
2) + 𝜅1

2𝐴2
2𝜎𝑤

2 ]}

−
1

2𝜃
[(𝜆𝑚,𝜂

2 + 𝜆𝑚,𝑒
2 )𝐸(𝜎𝑡

2) + 𝜆𝑚,𝑤
2 𝜎𝑤

2 ] 

B6.5 

Hence, unconditional variance of 𝑟𝑓,𝑡, can be  

 𝑣𝑎𝑟(𝑟𝑓,𝑡) =
1

𝜓2
𝑣𝑎𝑟(𝑥𝑡)

+ {
1 − 𝜃

𝜃
[−𝜆𝑚,𝜂 + 𝜆𝑚,𝑒𝐶 − 0.5(1 + 𝐶2)]

−
1

2𝜃
(𝜆𝑚,𝜂

2 + 𝜆𝑚,𝑒
2 )}2𝑣𝑎𝑟(𝜎𝑡

2) 

=
1

𝜓2
𝑣𝑎𝑟(𝑥𝑡) + (

1 − 𝜃

𝜃
𝐿1 −

1

2𝜃
𝐿2)𝑣𝑎𝑟(𝜎𝑡

2) 

B6.6 

Where 𝐿1 = −𝜆𝑚,𝜂 + (1 − 𝜃)𝐶2 − 0.5(1 + 𝐶2) and 𝐿2 = 𝜆𝑚,𝜂
2 + 𝜆𝑚,𝑒

2 .  
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Appendix C 

  
P1 P2 P3 P4 P5 

Return Mean 1.16%  2.26%  2.33%  2.36%  2.84%   
Stdev. 0.120  0.087  0.077  0.080  0.098   
AC(1) 0.077  0.122  0.044  -0.012  0.010         

Dividend Mean 0.000  0.011  0.011  0.012  0.018   
Stdev. 0.155  0.095  0.051  0.080  0.155   
AC(1) 0.358  0.202  0.144  0.256  0.149         

Valuation Mean 5.226  4.681  4.572  4.685  5.093   
Stdev. 0.369  0.220  0.160  0.209  0.366   
AC(1) 0.853  0.819  0.832  0.873  0.883  

 

Table C1.1- Return, dividend, and valuation in momentum trading strategy 6*3 

   
P1 P2 P3 P4 P5 

Return Mean 2.30% 4.02% 4.55% 4.91% 5.85%  
Stdev. 0.181  0.129  0.111  0.112  0.138   
AC(1) 0.055  0.004  0.039  0.078  0.057         

Dividend Mean 0.002  0.017  0.021  0.026  0.039   
Stdev. 0.289  0.159  0.085  0.133  0.244   
AC(1) 0.083  0.051  0.093  -0.008  -0.020         

Valuation Mean 4.575  3.977  3.862  3.970  4.412   
Stdev. 0.377  0.197  0.150  0.211  0.379   
AC(1) 0.640  0.552  0.615  0.702  0.761  

 

Table C1.2- Return, dividend, and valuation in momentum trading strategy 6*6 
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P1 P2 P3 P4 P5 

Return Mean 0.75% 1.90% 2.20% 2.67% 3.23%  
Stdev. 0.126  0.087  0.077  0.078  0.097   
AC(1) 0.118  0.121  0.056  -0.039  -0.013         

Dividend Mean -0.002  0.008  0.011  0.016  0.023   
Stdev. 0.155  0.094  0.049  0.077  0.142   
AC(1) 0.555  0.495  0.226  0.421  0.406         

Valuation Mean 5.294  4.698  4.543  4.668  5.094   
Stdev. 0.424  0.252  0.163  0.214  0.386   
AC(1) 0.890  0.861  0.849  0.883  0.904  

 

Table C1.3- Return, dividend, and valuation in momentum trading strategy 12*3 

   
P1 P2 P3 P4 P5 

Return Mean 2.48% 4.23% 4.76% 5.59% 6.31%  
Stdev. 0.193  0.137  0.119  0.116  0.142   
AC(1) -0.046  -0.074  -0.021  -0.049  -0.075         

Dividend Mean 0.001  0.017  0.022  0.031  0.040   
Stdev. 0.304  0.200  0.094  0.158  0.274   
AC(1) 0.218  0.114  0.173  0.148  0.089         

Valuation Mean 4.598  4.006  3.848  3.958  4.404   
Stdev. 0.451  0.266  0.170  0.216  0.347   
AC(1) 0.686  0.578  0.615  0.666  0.709  

 

Table C1.4- Return, dividend, and valuation in momentum trading strategy 12*6 
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P1 P2 P3 P4 P5 

Intercept -0.29% 0.97% 1.19% 1.37% 2.23% 

Std.Error 0.011  0.007  0.004  0.006  0.011  

Consumption 

Beta 

-6.103  -1.735  1.157  3.772  8.744  

Std.Error 4.150  2.571  1.386  2.132  4.125  

Adj. R-

squared 

0.006  -0.003  -0.002  0.011  0.018  

Residual Error 0.154  0.095  0.051  0.079  0.153  

 

Table C2.1- Unconditional long-run risk beta in momentum trading strategy 6*3 

  
P1 P2 P3 P4 P5 

Intercept -0.37% 1.38% 2.12% 2.98% 4.61% 

Std.Error 0.030  0.017  0.009  0.014  0.026  

Consumption 

Beta 

-12.577  -5.730  0.538  7.040  14.159  

Std.Error 11.013  6.078  3.255  5.063  9.255  

Adj. R-

squared 

0.003  -0.001  -0.011  0.010  0.014  

Residual Error 0.289  0.159  0.085  0.133  0.242  

 

Table C2.2- Unconditional long-run risk beta in momentum trading strategy 6*6 
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P1 P2 P3 P4 P5 

Intercept -0.48% 0.65% 1.12% 1.91% 2.62% 

Std.Error 0.012  0.007  0.004  0.006  0.011  

Consumption 

Beta 

-4.991  -2.983  0.964  5.891  7.186  

Std.Error 4.169  2.540  1.311  2.029  3.801  

Adj. R-

squared 

0.002  0.002  -0.002  0.039  0.014  

Residual Error 0.155  0.094  0.049  0.075  0.141  

 

Table C2.3- Unconditional long-run risk beta in momentum trading strategy 12*3 

  
P1 P2 P3 P4 P5 

Intercept -0.49% 1.28% 2.27% 3.59% 4.49% 

Std.Error 0.032  0.021  0.010  0.017  0.029  

Consumption 

Beta 

-11.542  -9.067  0.693  9.743  9.820  

Std.Error 11.546  7.569  3.595  5.957  10.438  

Adj. R-

squared 

0.000  0.005  -0.011  0.018  -0.001  

Residual Error 0.304  0.199  0.095  0.157  0.275  

 

Table C2.4- Unconditional long-run risk beta in momentum trading strategy 12*6 
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P1 P2 P3 P4 P5 

Intercept 0.010  0.019  0.015  0.010  0.015  

Std.Error 0.012  0.008  0.004  0.006  0.012  

Average beta -9.411  -4.158  0.400  4.747  10.601  

Std.Error 4.299  2.645  1.449  2.233  4.322  

Long run risk beta -9.379  -6.871  -2.147  2.764  5.266  

Std.Error 3.734  2.298  1.259  1.940  3.755        

Adj. R-squared 0.034  0.038  0.009  0.017  0.023  

Residual standard 

error 

0.152  0.048  0.019  0.027  0.153  

Observation  185.000  185.000  185.000  185.000  185.000  

 

Table C3.1- Consumption beta conditional on the long-run risk component in momentum 

strategy 6*3 

  
P1 P2 P3 P4 P5 

Intercept 0.020  0.035  0.030  0.026  0.026  

Std.Error 0.032  0.017  0.009  0.015  0.027  

Average beta -18.984  -11.317  -1.898  8.183  19.439  

Std.Error 11.375  6.087  3.318  5.317  9.566  

Long run risk beta -17.718  -15.453  -6.737  3.162  14.602  

Std.Error 9.359  5.008  2.729  4.375  7.871        

Adj. R-squared 0.031  0.085  0.043  0.005  0.040  

Residual standard error 0.285  0.152  0.083  0.133  0.239  

Observation  90.000  90.000  90.000  90.000  90.000  

 

Table C3.2- Consumption beta conditional on the long-run risk component in momentum 

strategy 6*6 
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P1 P2 P3 P4 P5 

Intercept 0.007  0.018  0.016  0.016  0.018  

Std.Error 0.013  0.008  0.004  0.007  0.012  

Average beta -8.167  -5.901  -0.234  6.658  9.247  

Std.Error 4.537  2.736  1.422  2.222  4.153  

Long run risk beta -3.942  -3.622  -1.487  0.951  2.559  

Std.Error 2.284  1.377  0.716  1.119  2.091        

Adj. R-squared 0.013  0.033  0.015  0.037  0.016  

Residual standard error 0.154  0.093  0.048  0.075  0.141  

Observation  183.000  183.000  183.000  183.000  183.000  

 

Table C3.3- Consumption beta conditional on the long-run risk component in momentum 

strategy 12*3 

  
P1 P2 P3 P4 P5 

Intercept 0.004  0.037  0.030  0.025  0.025  

Std.Error 0.038  0.025  0.012  0.020  0.034  

Average beta -13.690  -15.136  -1.239  12.520  14.857  

Std.Error 12.687  8.172  3.922  6.512  11.406  

Long run risk beta -2.759  -7.794  -2.480  3.566  6.469  

Std.Error 6.602  4.253  2.041  3.389  5.935        

Adj. R-squared -0.009  0.030  -0.005  0.019  0.001  

Residual standard error 0.305  0.197  0.094  0.157  0.274  

Observation  89.000  89.000  89.000  89.000  89.000  

 

Table C3.4- Consumption beta conditional on the long-run risk component in momentum 

strategy 12*6 
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P1 P2 P3 P4 P5 

Intercept 0.009  0.020  0.015  0.009  0.014  

Std.Error 0.013  0.008  0.004  0.007  0.013  

Average beta -8.493  -3.692  0.512  4.624  10.368  

Std.Error 4.256  2.612  1.428  2.200  4.259  

Long run risk beta -9.730  -7.964  -2.622  3.470  6.611  

Std.Error 4.498  2.761  1.509  2.326  4.501        

Adj. R-squared 0.025  0.035  0.009  0.018  0.024  

Residual standard 

error 

0.153  0.094  0.051  0.079  0.153  

Observation  185.000  185.000  185.000  185.000  185.000  

 

Table C4.1- Consumption beta conditional on the long-run risk component with time-varying 

economic fluctuation in momentum strategy 6*3 

  
P1 P2 P3 P4 P5 

Intercept 0.018  0.034  0.029  0.026  0.029  

Std.Error 0.033  0.018  0.010  0.015  0.028  

Average beta -18.766  -11.221  -1.750  8.230  18.989  

Std.Error 11.538  6.213  3.381  5.370  9.716  

Long run risk beta -17.867  -15.851  -6.604  3.433  13.942  

Std.Error 10.835  5.834  3.175  5.043  9.124        

Adj. R-squared 0.022  0.064  0.025  0.004  0.029  

Residual standard error 0.286  0.154  0.084  0.133  0.241  

Observation  90.000  90.000  90.000  90.000  90.000  

 

Table C4.2- Consumption beta conditional on the long-run risk component with time-varying 

economic fluctuation in momentum strategy 6*6 
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P1 P2 P3 P4 P5 

Intercept 0.008  0.018  0.015  0.018  0.019  

Std.Error 0.014  0.009  0.004  0.007  0.013  

Average beta -7.231  -5.064  0.330  6.047  8.433  

Std.Error 4.414  2.667  1.390  2.161  4.040  

Long run risk beta -7.580  -7.043  -2.145  0.526  4.220  

Std.Error 5.042  3.047  1.588  2.469  4.615        

Adj. R-squared 0.009  0.025  0.002  0.034  0.013  

Residual standard error 0.154  0.093  0.049  0.076  0.141  

Observation  183.000  183.000  183.000  183.000  183.000  

 

 

Table C4.3- Consumption beta conditional on the long-run risk component with time-varying 

economic fluctuation in momentum strategy 12*3 

  
P1 P2 P3 P4 P5 

Intercept 0.003  0.038  0.028  0.025  0.024  

Std.Error 0.039  0.025  0.012  0.020  0.035  

Average beta -13.383  -14.927  -0.488  12.200  14.547  

Std.Error 12.721  8.206  3.952  6.537  11.444  

Long run risk beta -4.490  -14.297  -2.880  5.995  11.533  

Std.Error 12.727  8.210  3.954  6.540  11.449        

Adj. R-squared -0.010  0.027  -0.016  0.016  -0.001  

Residual standard error 0.305  0.197  0.095  0.157  0.275  

Observation  89.000  89.000  89.000  89.000  89.000  

 

 

Table C4.4- Consumption beta conditional on the long-run risk component with time-varying 

economic fluctuation in momentum strategy 12*6 
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Positive Negative 

Return_Mean 0.026  0.005  

Return_Stdev. 0.065  0.071  

Risk/Return 2.444  13.837  

t_value 4.153  0.666  

Observation 103.000  85.000  

 

Table C5.1- Momentum returns conditional on the long-run risk component in momentum 

strategy 6*3 

  
Positive Negative 

Return_Mean 0.046  0.021  

Return_Stdev. 0.084  0.139  

Risk/Return 1.811  6.540  

t_value 4.019  0.967  

Observation 53.000  40.000  

 

Table C5.2- Momentum returns conditional on the long-run risk component in momentum 

strategy 6*6 

  
Positive Negative 

Return_Mean 0.033  0.016  

Return_Stdev. 0.071  0.088  

Risk/Return 2.154  5.420  

t_value 4.525  1.760  

Observation 95.000  91.000  

 

Table C5.3- Momentum returns conditional on the long-run risk component in momentum 

strategy 12*3 

  
Positive Negative 

Return_Mean 0.060  0.016  

Return_Stdev. 0.074  0.143  

Risk/Return 1.223  8.763  

t_value 5.547  0.774  

Observation 46.000  46.000  

 

Table C5.4- Momentum returns conditional on the long-run risk component in momentum 

strategy 12*6
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 Type1 Type 2 Type 3 Type 4 Type 5 

𝝁𝒊 -0.0175 -0.002 0.001 0.002 0.0045 

𝝓𝒊 -4.2 3 5.2 7.2 11 

𝝋𝒊 9 9 5 6 7 

𝝋𝒊,𝒎 6 7 8 10 12 

Weight 0.12 0.24 0.26 0.24 0.12 

 

Table C6.1- Cross-sectional calibration for five basic types of securities  

 

 Type 1 Type 2 Type 3 Type 4 Type5 

𝜿𝒊,𝟎 0.0039 0.0214 0.023 0.0198 0.0021 

𝜿𝒊,𝟏 0.9996 0.9968 0.9965 0.9971 0.9998 

𝑨𝒊,𝟎 7.7163 5.7535 5.6644 5.845 8.3997 

𝑨𝒊,𝟏 -264.97 122.51 227.1028 332.7365 599.2811 

𝑨𝒊,𝟐 2.0694e+04 901.1206 -2.9499e+03 -3.4560e+03 -3.2515e+03 

 

Table C6.2- Model solution for five basic types of securities 

 

 Type 1 Type 2 Type 3 Type 4 Type5 

𝑬[𝑹𝒕] -0.009 0.0058 0.0103 0.0146 0.0259 

𝑬[𝑹𝒕 − 𝑹𝒇,𝒕−𝟏] 
-0.01 0.0047 0.0085 0.0124 0.0234 

𝑬[𝒍𝒐𝒈(𝑷/𝑫)] 7.851 5.8097 5.4876 5.7386 8.2088 

 

Table C6.3- Expected return implication for five basic types of securities 
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P1 P2 P3 P4 P5 

Return Mean 1.84%  2.29%  2.31%  2.57%  3.21%   
Stdev. 0.142 0.118  0.115  0.118 0.169  
AC(1) -0.12 -0.04 0.042  0.075  0.14         

Dividend Mean 0.002  0.009  0.010  0.014  0.024   
Stdev. 0.172  0.105 0.091  0.152  0.232   
AC(1) -0.19 -0.14  -0.29 0.002  -0.17         

Valuation Mean 7.342 5.741 5.5124 5.687 7.924  
Stdev. 0.430 0.351 0.234 0.245 0.378  
AC(1) 0.863 0.786 0.734 0.876 0.891 

 

Table C7.1- Simulated results of return, dividend, and valuation in momentum trading strategy 

6*3 

   
P1 P2 P3 P4 P5 

Return Mean 3.27% 4.65% 4.84% 5.17% 6.52%  
Stdev. 0.269 0.204 0.192 0.212 0.272  
AC(1) -0.062 0.045 0.041 -0.024 0.062        

Dividend Mean 0.007 0.020 0.023 0.031 0.053  
Stdev. 0.234 0.170 0.103 0.224 0.312  
AC(1) 0.021 -0.061 0.054 0.001 -0.014        

Valuation Mean 6.821 5.734 5.64 5.965 6.917  
Stdev. 0.412 0.203 0.163 0.254 0.367  
AC(1) 0.744 0.542 0.614 0.721 0.768 

 

Table C7.2- Simulated results of return, dividend, and valuation in momentum trading strategy 

6*6 
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P1 P2 P3 P4 P5 

Return Mean 2.01% 2.10% 2.31% 2.72% 3.61%  
Stdev. 0.142 0.104 0.134 0.098 0.144  
AC(1) -0.124 -0.073 0.074 0.062 -0.016        

Dividend Mean 0.018 0.008 0.011 0.017 0.027  
Stdev. 0.164 0.101 0.087 0.129 0.183  
AC(1) -0.23 0.078 -0.245 0.014 -0.097        

Valuation Mean 7.412  5.841 5.510 6.024 7.894  
Stdev. 0.481 0.374 0.254 0.234 0.401   
AC(1) 0.870 0.812 0.722 0.897 0.903 

 

Table C7.3- Simulated results of return, dividend, and valuation in momentum trading strategy 

12*3 

   
P1 P2 P3 P4 P5 

Return Mean 3.43% 4.97% 5.12% 5.75% 7.28%  
Stdev. 0.213 0.147 0.124 0.134 0.151  
AC(1) -0.024 -0.042 -0.031 -0.051  -0.068         

Dividend Mean 0.007 0.021 0.024 0.034 0.048  
Stdev. 0.351 0.212 0.134 0.197 0.285  
AC(1) 0.013 0.094 -0.152 0.124 -0.101        

Valuation Mean 6.845 5.710 5.531 5.823 6.931  
Stdev. 0.502 0.447 0.241 0.312 0.421  
AC(1) 0.720 0.687 0.654 0.682 0.712 

 

Table C7.4- Simulated results of return, dividend, and valuation in momentum trading strategy 

12*6 

 

 

 

 


