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Abstract:  14 

 15 

River flow characterizes the integrated response from watersheds, so it is essential to quantify to 16 

understand the changing water cycle and underpin the sustainable management of freshwaters. 17 

However, river gauging stations are in decline with ground-based observation networks shrinking. 18 

This study proposes a novel approach of estimating river flows using the Planet CubeSats 19 

constellation with the possibility to monitor on a daily basis at the sub-catchment scale through 20 

remote sensing. The methodology relates the river discharge to the water area that is extracted 21 

from the satellite image analysis. As a testbed, a series of Surface Reflectance PlanetScope images 22 

and observed streamflow data in Araguaia River (Brazil) were selected to develop and validate 23 

the methodology. The study involved the following steps: (1) survey of measurements of water 24 

level and river discharge using in-situ data from gauge-based Conventional Station (CS) and 25 

measurements of altimetry using remote data from JASON-2 Virtual Station (JVS); (2) survey of 26 

Planet CubeSat images for dates in step 1 and without cloud cover; (3) image preparation 27 

including clipping based on different buffer areas and calculation of the Normalized Difference  28 
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Vegetation Index (NDVI) per image; (4) water bodies areas calculation inside buffers in the Planet 29 

CubeSat images; and (5) correlation analysis of CubeSat water bodies areas with JVS and CS 30 

data. Significant correlations between the water bodies areas with JVS (R² = 88.83%) and CS (R² 31 

= 96.49%) were found, indicating that CubeSat images can be used as a CubeSat Virtual Station 32 

(CVS) to estimate the river flow. This newly proposed methodology using CubeSats allows for 33 

more accurate results than the JVS-based method used by the Brazilian National Water Agency 34 

(ANA) at present. Moreover, CVS requires small areas of remote sensing data to estimate with 35 

high accuracy the river flow and the height variation of the water in different timeframes. This 36 

method can be used to monitor sub-basin scale discharge and to improve water management, 37 

particularly in developing countries where the presence of conventional stations is often very 38 

limited. 39 

 40 

Highlights: 41 

 42 

• Use of remote sensing information from Planet CubeSats constellation to build and assess a 43 

methodology to river flow estimation; 44 

• This method has significant opportunity for river flow estimation at ungauged sites at the daily 45 

and sub-basin scales; 46 

• The improvement of river flow measurements is essential to understand the changing water 47 

cycle and underpin the sustainable management of freshwaters. 48 

 49 

Keywords: River flow; CubeSat; Remote Sensing; Cerrado (Savannah); Change Detection; 50 

Spatiotemporal Resolution. 51 

 52 

53 



 3 

1 Introduction 54 

 55 

Freshwater is a basic requirement for life but the knowledge of river flow rates is scarce 56 

(Gleason and Smith, 2014). A better understanding of the large-scale water cycle process is 57 

essential to underpin socio-economic development and sustainably manage water-dependent 58 

ecosystems (Döll et al., 2014; Hannah et al., 2011; Kingston et al., 2020). River flow characterizes 59 

the integrated hydrological response and water yield from watersheds. Nowadays, there is a clear 60 

decline of river gauging stations and a shrinking of ground-based observation networks (Dixon et 61 

al., 2020; Hannah et al., 2011). 62 

Conventional gauging stations are well developed and have contributed to quantify the 63 

movement of water in river channels. However, conventional stations are not enough to determine 64 

more complex riverine environments that involve the movement of water over wetlands and 65 

floodplains in multiple channel types (Lettenmaier, 2007), requiring new multidisciplinary 66 

approaches to improve the observation networks. 67 

The advances in remote sensing hydrology, particularly over the past 10 years, have 68 

demonstrated that hydraulic variables can be measured reliably from orbiting satellite platforms 69 

(Huang et al., 2018). As the deluge of big data continues to impact practically every commercial 70 

and scientific domain, geosciences have also witnessed a major revolution from being a data-poor 71 

field to a data-rich field (Karpatne et al., 2019; Reichstein et al., 2019). The use of remote sensing 72 

by satellite for streamflow analyses can be categorized into techniques based on satellite altimetry, 73 

Synthetic Aperture Radar (SAR), and optical images (Ahmad and Kim, 2019). 74 

To accurately detect river flow regimes at a field scale from space, a new high spatial and 75 

temporal resolution remote sensing source is necessary to improve water‐ level time series 76 

(Bogning et al., 2018). While satellites such as Sentinel-2 and Landsat may have an adequate 77 

spatial resolution for different applications (Sadeh et al., 2019), their temporal resolution (5 and 78 

16 days revisit time, respectively) is not ideal for detection of flow regimes changes, as there may 79 

be weeks between the acquisition of two clear-sky images (Houborg and McCabe, 2018a). 80 
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Applications of satellite remote sensing in hydrological surface water modelling, mapping, 81 

and parameter estimation were reported in some reviews based on Earth Observing Systems 82 

(Huang et al., 2018; Joshi et al., 2016; Musa et al., 2015; Wagner et al., 2018) mainly using SAR, 83 

optical, altimetry and DEM data. Focusing flow river estimation, different techniques were 84 

applied to estimate the river width by averaging multiple cross-sections over an area (Gleason 85 

and Smith, 2014), use the Synthetic Aperture Radar (SAR) to calculate water area (Ahmad and 86 

Kim, 2019), and fusion topography dataset (Anh and Aires, 2019; Moramarco et al., 2019). The 87 

spatiotemporal restrictions for using remote sensing satellite data have been partly overcome via 88 

multisensor data fusion (Houborg and McCabe, 2018b) but all solutions proposed can not be 89 

replicated for daily measurements at a high spatial resolution. 90 

Thus, remote sensing has the potential of conducting rapid, cost-effective, and continuous 91 

surveys of river management practices over large scales. Notably, the constellations of micro or 92 

nano-satellites, known as CubeSats, are revolutionizing the high spatiotemporal resolution 93 

possibilities in remote sensing and can potentially be used to capture many observations over time 94 

(Sadeh et al., 2019) and monitor dynamics surface water changes (Cooley et al., 2019, 2017). The 95 

repetitive observation mechanism of multiples CubeSats enables studying the river dynamics and 96 

observe different physical properties (Marinho et al., 2020). Among the different Cubsats on orbit, 97 

the CubeSat constellation provided by Planet Labs Inc. has the advantage of providing a near-98 

daily revisit time globally at 3-meter orthorectified spatial resolution. It is also worth noting that 99 

Remote Sensing (RS) has several methods and techniques to identify land and water areas 100 

considering bands variation of different multi-spectral images (Acharya et al., 2018). Index 101 

methods are mostly used to estimate surface water that separates the water from the background 102 

based on a threshold value. Among these indexes, Normalized Difference Vegetation Index 103 

(NDVI) and Normalized Difference Water Index (NDWI) are frequently adopted as they include 104 

visible and Near Infrared (NIR) bands provided by satellite optical images (Elsahabi et al., 2016). 105 

The aims of this study were (1) to develop an innovative methodology for semi-automated 106 

river flow estimation using visible and NIR from Planet CubeSats bands to detect changes in the 107 

surface of flood area and (2) to compare Planet CubeSats derived river flow with Conventional 108 



 5 

flow meters Station (CS) and JASON (Joint Altimetry Satellite Oceanography Network) Virtual 109 

gauging Sation (JVS). The Araguaia River, in the Cerrado biome of Brazil, was selected as the 110 

research area. 111 

 112 

2. Description of the study area 113 

 114 

The Tocantins-Araguaia hydrographic region, with a total area of 920,087 km² and 13,779 115 

m³/s of average discharge (Brasil/ANA, 2015), is the most important fluvial system draining the 116 

tropical savannah ecoregion of Brazil (Cerrado biome). Some areas of this region have been 117 

affected by severe water scarcity events since 2012 (Naturatins, 2017). In general terms, the 118 

hydrologic regime depends on the dominant climate (tropical wet-dry) with floods from January 119 

to May (rain period) and low water between June to September. This region is the confluence of 120 

two major rivers: the Tocantins River (~1,960 km extension) and the Araguaia River (~2,600 km 121 

extension). The Araguaia sub-basin (around 386,765 km²) represents around 42% of the 122 

hydrographic region and along its path, is placed the largest river island in the world, Bananal 123 

Island (Figure 1). 124 

 125 

Figure 1 126 

 127 

The Araguaia River is one of the priority areas for conservation of the aquatic biodiversity of 128 

the Cerrado biome and has been the target of political and environmental debates due to the 129 

intense and indiscriminate expansion of agricultural activities, with a greater degradation of the 130 

natural environment during the last four decades (Latrubesse and Stevaux, 2006). The entire sub-131 

basin has just 166 conventional river gauging stations for an area of 386,765 km² and more than 132 

6,000 river stretches mapped. 133 

This region needs to be better monitored due to the increase in intensive agriculture and the 134 

use of water (Althoff et al., 2020). Especially in the Araguaia River, the irrigated area increased 135 
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more than 116% between 2006 and 2012, and the cultivated area increased by about 20% in the 136 

same period (ANA, 2015). In the last decade, the Araguaia sub-basin has been suffering from 137 

water scarcity in several tributaries of the Araguaia river, obliging managers to take actions for 138 

rationing the water use in agriculture to prioritize human and animal supply (Lauris, 2019; 139 

Naturatins, 2017). 140 

As a testbed to develop and validate the proposed methodology, two river gauging stations 141 

that are calibrated by ANA and used as an official instrument for public policies in this region 142 

were selected. One of the rivers gauging stations was the in-situ Conventional Station (CS) ID 143 

26350000 (http://gestorpcd.ana.gov.br) managed by ANA, located in São Felix do Araguaia – 144 

MT (11°37’8.6” S; 50°39’75.0” W – WGS84 Datum). This station employs an instrument for 145 

monitoring the river flow for 24/7 hours with records registered every 15 minutes. The other river 146 

gauging station was the JASON-2 Virtual Station (JVS) ID 1055S05036WO 147 

(http://hidrosat.ana.gov.br), which is monitored by ANA in cooperation with Institut de 148 

Recherche pour le Développement (IRD) with barycenter data at 10°54’42.0” S; 50°36’48.6” W 149 

– WGS84 Datum. This station acquires altimetry information by satellite to monitor the water 150 

level and derived river flow, with no equipment locally installed. The JVS dataset is related to the 151 

average altitude of all available altimetry data, along the JASON-2 track, over the river area in 152 

each satellite cycle. JVS observations occur every 9.9 days from the JASON-2 satellite in the 153 

same ground track within a margin of ±1 km (CNES; NASA, 2011). 154 

The detailed characteristics of both selected stations are shown in Figure 2. The distance 155 

between the CS and JVS is relatively close with 78 km (Euclidean distance) allowing their 156 

comparison with the proposed methodology. 157 

 158 

Figure 2 159 

 160 

  161 
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3. Data and Methods 162 

 163 

For this study, the available Planet CubeSat data was explored to establish an innovative 164 

method for estimating river flow based on daily remote sensing images. 165 

 166 

3.1. CubeSat data 167 

 168 

This study used Planet images to develop a flow estimation model. These images are captured 169 

by Planet using an approach based on ‘fast design’ to launch satellites, mission control and 170 

operations systems, and the development of a web-based platform for imagery processing and 171 

delivery (www.planet.com). Planet is a commercial satellite operator that enhanced observation 172 

capacity offered by constellations of small and standardized satellites and employs an “always-173 

on” image-capturing method (Planet Team, 2020). 174 

This CubeSat constellation consists of 130 small-satellites at an altitude of approximately 475 175 

km, following each other on two near-polar orbits of roughly 8° (descendent orbit) and 98° 176 

(ascendent orbit) inclination respectively, imaging the Earth at local morning time (Planet Team, 177 

2020). The distance along the orbit between the CubeSats is constructed such that the longitudinal 178 

progression between them over the rotating Earth leads to the scan of the surface. Thus, the full 179 

constellation provides daily sun-synchronous coverage of the entire Earth (except the polar hole) 180 

with the resolution of 3.7 meters at nadir (Ground Sample Distance), 12-bit radiometric 181 

resolution, and 4 spectral bands (Blue [455 - 515 nm], Green [500 - 590 nm], Red [590 - 670 nm] 182 

and Near-InfraRed [780 - 860 nm]) (Planet Team, 2020). 183 

The CubeSat across-track off-nadir viewing angle used for imaging usually to be lower than 184 

5° (Planet Team, 2020) reducing the complexity to evaluate bands’ variation of different multi-185 

spectral images arising from environmental noise such as shadow, however, these CubeSat do not 186 

present any spectral bands as Middle Infrared (MIR) and Shortwave Infrared (SWIR), used in 187 

different indexes applied to water such as TCW, MNDWI, NDWI, AWEI (Elsahabi et al., 2016). 188 
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The images can be downloaded from the Planet portal (https://www.planet.com/explorer) and 189 

include three types of raster images: (a) digital number (DN) commonly represented by an 190 

uncalibrated image into physically meaningful units; (b) top of atmosphere reflectance (TOA) 191 

that is the reflectance measured by a space-based sensor flying higher than the earth's atmosphere 192 

(calibrated to a radiance image), and (c) surface reflectance (SR) that is the radiance image 193 

atmospherically corrected and ready to be used to extract quantitative information about features 194 

on the Earth surface. As SR reflects the difference among land covers more accurately than other 195 

remotely sensed measurements (Huang et al., 2018). In this study, it was used the SR image 196 

products, orthorectified with 3 meters spatial resolution, positional accuracy with less than 10-197 

meters Root Mean Square Error (RMSE) suitable for analytic and visual applications. 198 

 199 

3.2. A method for estimating river flows using CubeSats 200 

 201 

This study was divided into five steps: (1) survey of measurements of water level and 202 

river discharge using in-situ data from gauge-based Conventional Station (CS) and measurements 203 

of altimetry using remote data from JASON-2 Virtual Station (JVS); (2) preparation of river 204 

section and buffers and survey of CubeSat images for selected dates (correlated with step 1 and 205 

without cloud cover); (3) image preparation, including clipping based on different buffer areas 206 

followed by NDVI calculation per image, and data processing over CS and JVS stations using 207 

Extract-Transform-Load (ETL); (4) water bodies areas calculation inside buffer for river flow 208 

estimation in the Planet CubeSat images; and (5) correlation analysis of CubeSat water bodies 209 

areas with JVS and CS data (Figure 3). 210 

 211 

Figure 3 212 

 213 

Firstly, the CS and JVS measurements were collected in the period of 01/01/2018 to 214 

30/07/2018, a period that historically includes the greatest variation in the flow of this river over 215 

the years. The dataset for CS included the water level and river flow every 15 minutes. The JVS 216 
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were collected altimetry data in repetitive periods of 10 days according to the measures provided 217 

by the altimetry missions satellite. The use of JVS data was independent of the time of collection 218 

and resulted in a median of 11:03 a.m. local time. 219 

In the second step, a cross-section of the river was used as a reference for creating side buffers 220 

with 50, 250, 500, and 1000 meters. This cross-section was determined nearby to the JASON´s 221 

tracking to provide better conditions of comparison between the virtual stations and these buffers 222 

sections were created to reduce the satellite image processing area in the water surface calculation. 223 

Using the location of these buffers, Planet CubeSat images were searched for all dates with JVS 224 

data. The CubeSat images search also included the completed cover of buffer areas, the absence 225 

of clouds, and the possibility of using the surface reflectance product (SR) as input (Table 1). 226 

In the third step, each image downloaded from the Planet portal was clipped on the buffer 227 

areas and processed to calculate the Normalized Difference Vegetation Index (NDVI) with a scale 228 

ranging from -1 to 1. The NDVI was calculated using the Red and Near-InfraRed regions of the 229 

electromagnetic spectrum with Equation 1 since these satellites do not have yet more specific 230 

spectral bands for the development of more sophisticated methods. For each image analyzed, the 231 

river flood areas were classified with NDVI values lower than 0.15. 232 

 233 

ࡵࢂࡰࡺ = (ࢊ࢔ࢇ࡮ ࢊࢋࡾିࢊ࢔ࢇ࡮ ࡾࡵࡺ) 
ࢋࡾାࢊ࢔ࢇ࡮ ࡾࡵࡺ)  234 (1)    (ࢊ࢔ࢇ࡮ 

 235 

In the fourth step, the water bodies' areas were calculated for all clipped buffers in the dates 236 

analyzed, resulting in a temporal table of flooding areas. Then, in the fifth step, we performed the 237 

regression curves (exponential, linear, logarithmic, polynomial, power-law, and moving 238 

averages) between the water bodies areas for 4 different buffers (50, 250, 500, and 1000 m) and 239 

the 3 sets of reference data (JVS - altimetry, CS - water level, CS - flow). After that, 12 different 240 

Pearson coefficients (R²) were determined according to the best-fitted regression curves. The 241 

relationship between R² and the four buffer areas were analyzed for each set of reference data, 242 
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determining the equation used to predict the river flow from the CubeSat image flood area, which 243 

represented the CubeSat Virtual Station (CVS). 244 

 245 

4 Results 246 

 247 

The data collected from CS showed a river flow ranging from 868 to  4,739 m³/s and a water 248 

level varying from 328 to 710 cm for the entire monitoring period in the Araguaia basin. A 249 

significant relationship between the river flow and the water level measurements (R²=1) was 250 

found (Figure 4a). Concerning the JVS data, altimetry values between 177.9 to 181.1 m were 251 

observed, with a good correlation to CS water level (R²= 0.85) (Figure 4b). 252 

 253 

Figure 4 254 

 255 

In the survey of Planet CubeSat images, 8 image dates were selected with CS and JVS 256 

correspondent data, completed cover the buffer areas, absence of clouds, and available surface 257 

reflectance product (SR) (Table 1). 258 

 259 

Table 1 260 

 261 

In these 8 images, water bodies areas ranging from 39,924 to 54,846 m² for buffer 50 m, from 262 

173,313 to 276,984 m² for buffer 250 m, from 320,805 to 557,586 m² for buffer 500 m, and from 263 

563,895 to 1,097,469 m² for buffer 1000 m were determined (Table 2). Considering the maximum 264 

values of water bodies in each buffer, it was verified that the flood area corresponds to 77.3%, 265 

63.9%, 52.5%, and 37.7%, respectively, for the 50 m, 250 m, 500 m, and 1000 m buffer areas. 266 

 267 

Table 2 268 

 269 
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Based on the water bodies areas determined in each buffer area, the regression models were 270 

performed as demonstrated in Figure 5. Due to the obtained data values and its measure of 271 

greatness, the river flow equation was adjusted to the power-law regression model, while the 272 

water level and altimetry equations were adjusted to linear regression models. 273 

 274 

Figure 5 275 

 276 

Considering the results obtained in the regression models, it was found that the buffer of 500 277 

m was the lowest buffer area capable of providing a high Pearson´s coefficient that remained 278 

stable even with the increase of buffer area (Figure 6). Therefore, the buffer of 500 m was selected 279 

to be the CVS and to estimate the river flow. 280 

 281 

Figure 6 282 

 283 

To estimate the river flow (Qe), water level (Le) and altimetry (Ae) were determined the 284 

Equations 2 (R² = 96.49%), 3 (R² = 94.38%) and 4 (R² = 88.83%) respectively; in which Af500r 285 

is the flooding area (m²) in the 500 m buffer. 286 

 287 

ࢋࡽ =  ૚૙ି૚ ∙  ૛.ૡૠ૜ૠ    (2) 288࢘૞૙૙ࢌ࡭

 289 

݁ܮ =  0.0015 ∙ ݎ500݂ܣ − 161.56    (3) 290 

 291 

݁ܣ =  10ିହ ∙ ݎ500݂ܣ + 175.14    (4) 292 

 293 

The root mean square error (RMSE) is used as the accuracy estimator (Equation 5),  and the 294 

standard deviation (SD) is used as the precision estimator  (Equation 6).  These estimators were 295 

determined for river discharge (Qe), water level (Le), and altimetry (Ae) are presented in Table 3. 296 
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 297 

ܧܵܯܴ    =  ට∑ (ோ௘௙௘௥௘௡௖௘೙ି஼௔௟௖௨௟௔௧௘ௗ೙)మ

௡
௡
௡ୀଵ    (5) 298 

 299 

ܦܵ =  ට∑ ൣ(ோ௘௙௘௥௘௡௖௘೙ି஼௔௟௖௨௟௔௧௘ௗ೙)ି (ோ௘௙௘௥௘௡௖௘೙ି஼௔௟௖௨௟௔௧௘ௗ೙)തതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത൧మ

௡ିଵ
௡
௡ୀଵ (6) 300 

 301 

Table 3 302 

 303 

In summary, this CVS methodology established for the Araguaia river can be explored to 304 

estimate the river flow, water level, and altimetry for other rivers around the world. 305 

 306 

5 Discussion 307 

 308 

Hydrographic data obtained from satellites and other remote sources provide the possibility 309 

of broad global coverage for river discharge estimates (Bahadur and Samuels, 2013; Lakshmi, 310 

2004). The advances in computing power and data storage capacity associated with the 311 

innovations in the satellite remote sensing area are enabling global monitoring of different 312 

variables related to the water cycle (Lettenmaier et al., 2015; Wagner et al., 2018). Nowadays, 313 

the increase in the number of Planet CubeSats brings images with more cost-effective and higher 314 

spatiotemporal resolutions than other commercial satellites (Houborg and McCabe, 2018b). 315 

Currently, Planet CubeSat is the only commercial constellation available for capturing daily 316 

optical images with high resolution of the entire surface of the Earth. In Brazil, there is a national 317 

program (https://www.gov.br/mj/pt-br/acesso-a-informacao/acoes-e-programas/programa-brasil-318 

mais/) that provides Planet images with high-resolution (3 m orthorectified per pixel) freely 319 

available to governmental institutions throughout the Brazilian territory.  320 

Access to the CubeSat images is an important political and economic decision. The use of 321 

satellite information is an economical way of measuring river discharge using in situ gauges 322 

stations that are costly to install, maintain, and operate (Zaji et al., 2018). According to U.S. 323 
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Geological Survey (USGS), the cost for a typical in situ gauge station evolves several costs 324 

associated with its activities, which are estimated at 41% for labour staff (field and office), 25% 325 

for administrative activities, 10% for building and utilities, 10% for field equipment, 7% for data 326 

management and delivery, 5% for vehicles and 2% for travel (Norris, 2010). These percentages 327 

can vary according to location and conditions, especially in remote areas where in situ gauges 328 

stations require expensive field works (Norris, 2010). Besides reducing costs, the implementation 329 

of technology-based remote sensing for river discharge can avoid exposing surveyors to 330 

dangerous and reacher inaccessible rivers (Samboko et al., 2020). 331 

Monitoring of rivers requires a reliable system, being the water level and the river discharge 332 

the two essential parameters in this analysis (Mao et al., 2020, 2019, 2018; Mostafavi, 2018). 333 

Besides that, the monitoring requires integrated modelling tools that cover adequate spatial and 334 

temporal scales involving mathematical applications (Mannschatz et al., 2015). In this context, 335 

an innovative methodology for river flow estimation was developed using Planet CubeSat images 336 

to detect changes in the flood area surface, which can be used as a CubeSat Virtual Station (CVS).  337 

Although methods of river discharge from the direct measurement of width, depth, and 338 

velocity (based on velocity-area method) provides a higher level of accuracy than orbital remote 339 

sensing (Bjerklie et al., 2005), the proposed methodology used an approach that relies on  340 

identifying of the water surface from morphologic features that are easier to recognize from space. 341 

The geomorphic features and structural dynamics related to river discharge as channel type, 342 

channel slope, channel roughness, depth, and velocity were assumed associated with the river 343 

hydraulic geometries and can be used to develop more robust calibration methods. 344 

The CVS data obtained were compared with the measures of water level and river discharge 345 

of a Conventional Station (CS) and altimetry of the JASON Virtual Sation (JVS), located in the 346 

Araguaia River (Brazil). 347 

Analyzing the CS data collected in this study, it was found a complete correlation (R² = 1) 348 

between the measurements of water level and river discharge, indicating that the in-situ reference 349 

station used was well-calibrated. It was also observed a high correlation of the CS water level 350 

measurements with the JVS altimetry data (R² = 0.85) confirming that the satellite remote sensing 351 
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can be a useful tool for river flow estimation. Bogning et al., (2018) also found a good correlation 352 

(R² > 0.82) when in-situ gauge records were compared to altimetry‐ based water levels from 353 

multiple satellites, composed of a network of altimetric virtual station (ENVISAT, SARAL, 354 

ERS‐ 2, Sentinel‐ 3A, JASON‐ 2, and JASON‐ 3 data). This analysis was performed in the 355 

Ogooué river basin, located at Gabon, with an annual river discharge of 4,750 m³/s and a 356 

hydrologic wet-dry regime similar to the characteristics of this study in the Araguaia River. Smith 357 

and Pavelsky, (2008) demonstrated that remotely sensed width variations were well correlated to 358 

ground measurements of river discharge (R² = 0.81) when taken days later and hundreds of 359 

kilometres downstream. Gleason and Smith (2014) showed that useful estimates of absolute river 360 

discharge may be obtained solely from river width using multiple satellite Landsat images, 361 

through a characteristic scaling law named At-Many-station Hydraulic Geometry (AMHG), with 362 

no ground-based or a priori information. The AMHG was calculated with the monitoring of large 363 

extensions (10 to 13 km) from remote sensing along the river.  364 

JVS and Landsat can be employed in the case of lacking river rating curves and cross-365 

sectional geometries, as well as when the water levels or flow rates measurements are missing in 366 

situ station historic data. However, the use of JVS and Landsat data in a river hydrodynamics 367 

context is limited by data coverage in both time and space, which may be insufficient to capture 368 

key spatiotemporal variations in water surface elevation daily (Houborg and McCabe, 2018a). 369 

Besides that, JVS can be used only to monitor the level of wider rivers (Huang et al., 2018) that 370 

intersect with JASON-2 satellite tracks. 371 

In this study, the innovative method using Planet CubeSat images provides a possibility to 372 

monitor river narrower than those evaluated by JVS and Landsat due to its higher spatial 373 

resolution (Houborg and McCabe, 2018b, 2018a). Also, Planet constellation allows monitoring 374 

rivers around the world (Kääb et al., 2019) with more flexibility to establish Virtual Stations 375 

concerning JVS that are limited to the track satellite intersections. The fact of use high-resolution 376 

Planet CubeSat images, with low acquisition inclination, reduces the effect of shadow and 377 

increases the river border identification details. This agrees with Bjerklie et al. (2003), who 378 

reinforces that even if the river could always be distinguished from the surrounding landscape, 379 
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narrower channels would have greater uncertainty in the width estimates due to the relative width 380 

concerning the resolution of the sources. The altimetry accuracy for the JVS stations varies with 381 

the river width, with better precision the wider the channels (Bjerklie et al., 2018), while for the 382 

proposed CVS stations the accuracy in determining the level varies with the flooded area close to 383 

the station, with precision dependent on the slope at the edges of the channel, as it reflects in the 384 

expansion of the flooded area. 385 

For the period of study, 8 images were selected with dates correspondent to CS and JVS 386 

reference measures. However, many other Planet CubeSat images were available in the period, 387 

with 110 cloud-free SR images against 22 JVS measures, representing at least 5 times more 388 

information than JVS data for the Araguaia river. Although many Planet images were available, 389 

it was decided to use only the images that allowed the comparison with CS and JVS on the same 390 

date.  391 

The data from CubeSat images showed a well-correlated estimation with river discharge      392 

(R² = 96.49%) when small lengths of the river (500 m buffer) were analyzed. This correlation was 393 

higher than the JVS data and river discharge correlation (R²=85.01%) that is one of reference 394 

adopted by the ANA in Brazil. The results using CubeSat images were also well correlated with 395 

CS water level (R² = 94.38%) and JVS altimetry (R² = 88.83%) when evaluated the flooding area 396 

(m²). According to Papa et al. (2010), ideally, the goal for discharge data accuracy is within ±5% 397 

related to the true value, but the community agrees that 15% to 20% accuracy is in general 398 

acceptable for discharge measurements. 399 

Virtual stations with CubeSat images showed greater accuracy and precision at lower river 400 

discharge rates (Fig. 5) whereas JASON virtual stations have greater accuracy and precision for 401 

higher river discharge rates (Fig. 4b). This is observed by the fact that in the CVS, a better 402 

refinement of the flooded area is possible even with the presence of sandbanks while the JVS 403 

presents greater noise in the identification of the altimetry related to these areas. At higher river 404 

discharges, we observed that the JVS presented better details of the altimetry, especially when the 405 

increase in the level of the river occurred inside the channel without accompanying the expansion 406 

of the flooded area. 407 
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In this study, it was visually observed a refined design of the flooded areas due to the 408 

resolution of the CubeSat images. From this observation, an attempt was made to find a 409 

relationship between the width of the river and a buffer size that provided less demand of image 410 

areas to achieve a high Pearson coefficient. It was observed that a buffer ranging from 0.5 to 1 411 

times the average width of the studied river section allowed to reach these results, remaining 412 

stable even the value of R². Then, the proposed methodology allows the use of less than 388 km² 413 

of images/year for this virtual station, representing an advantage in comparison with the AMGH 414 

methodology, which suggests the evaluation of multiple river widths by stretches greater than 10 415 

km. Using 3-meter Planet images as reference, Pôssa et al. (2018)  observed a slightly increased 416 

precision in the water surface delineation compared to Landsat and Sentinel images due to spatial 417 

resolution of satellite images. 418 

Overall, these experiments allow us to employ a simple exponential equation model with 419 

daily CubeSat images for well predict the river flow at a monthly scale, based on the surface 420 

hydrological information measured from space as proof of concept and utility of the method. The 421 

use of new constellations, new hydrological science methods, and advancements in resolutions 422 

(spatial, temporal, and radiometric) of remote sensing make possible the application of monitoring 423 

increasingly smaller watersheds, as they have coverage of several pixels and more frequent data 424 

acquisitions (Lakshmi, 2004). Besides that, to flow estimation measurement, the CubeSat images 425 

can be used to study other processes related to data assimilation; flood monitoring and prediction; 426 

floodplain connectivity (Cooley et al., 2017); land surface characteristics (land use, temperature, 427 

snow cover) (Reichle, 2008); image fusion to land use mapping and monitoring (Houborg and 428 

McCabe, 2018b; Joshi et al., 2016); and water quality monitoring (Maciel et al., 2020). 429 

  430 
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6 Conclusion 431 

 432 

An innovative method for semi-automated river flow estimation using Planet CubeSat data 433 

was developed to detect changes in the surface of the flood area, using the Araguaia River as a 434 

testbed. In summary, the flood areas detected by CubeSat data showed significant correlations 435 

with river discharge and water level measurements from gauge-based Conventional Station (CS) 436 

in small areas of the river using a reduced amount of satellite images. CubeSat data also presented 437 

a significant correlation with altimetry measurements from JASON-2 Virtual Station (JVS) 438 

officially adopted by the Brazilian agency, with the advantage to provides greater records 439 

numbers per year, more flexibility of position for Virtual Stations establishment, and the 440 

possibility to monitor narrower rivers. The river discharge extracted from Cubesat data showed a 441 

higher correlation with CS than JVS, indicating that CVS had more capacity of reproducing the 442 

ground truth compared to JVS. 443 

In the future, this method can be completely automated to fill the gaps in the streamflow 444 

series, to compute different riverine contributions in the sub-basin, and to promote an 445 

understanding of river discharge spatial distribution on a near-real-time for entire continents. This 446 

method can also be used as a cost-effective alternative to monitoring the sub-basin discharges, 447 

improving water management, particularly, in developing countries where the presence of 448 

conventional stations is limited. 449 
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Figures 602 

 603 

Fig. 1. Overview of the study area. (A) Overview of South America with its 10 Hydrographic Regions 604 

(black), passes of JASON-2 over the area (red), and the Tocantins-Araguaia basin (light blue); (B) Zoom 605 

in the Tocantins (light-green) - Araguaia (yellow) basin boundaries, presence of rivers with federal 606 

regulation (blue) and all fluviometric in situ stations (black dots), complemented by tracks of Jason-2 (red) 607 

highlighting JVS (red circle; north) and CS (pink circle; south) ground references. 608 

 609 

610 
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Fig. 2. The study area of the Araguaia sub-basin. (A) Zoom in the Araguaia River (center) highlighting the 611 

track of Jason-2 (red) over the surface drainage (blue), and the Conventional Station (CS) used as ground 612 

truth (pink dot). The region where the Jason-2 track crosses the Araguaia River is the Virtual Station (JVS) 613 

far 78 km from CS and, the region used to download the CubeSat SR images; (B) Zoom in the VS (red dot) 614 

over the Araguaia River (blue line) with the 4 different buffer areas used in the methodology (50 m – grey; 615 

250 m – yellow; 500 m – orange; 1000 m – red). In the background it is presented the Surface Reflectance 616 

(SR) Planet image from July, 20th 2018 with 50% transparency and the representation of the Jason-2 track 617 

over the region (red dashed line). 618 

 619 

 620 

621 

 B) 

 A) 
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Fig. 3. Methodological framework using CubeSat to estimate the river flow. The 1st step is used for 622 

gathering reference information to support the key-curves. In the 2nd step are prepared the specific buffer 623 

areas and selected the CubeSat images to investigate the correlation between inundation extent and river 624 

flow. The 3rd step is used for preprocessing selected CubeSat images with pixel classification (water/no-625 

water) based on NDVI values. In the 4th step are calculated the flooding area for each image. The last step 626 

is to evaluate the regression analysis comparing the 3 reference data (CS - Flow river; CS – Water Level; 627 

JVS – Altimetry). 628 



 26 

629 



 27 

Fig. 4. Evaluation of the reference data. (a) Relationship between the river level (x-axis) and flow (y-axis) 630 

by the CS in the São Felix do Araguaia/MT station for the period of analyses. The blue curve represents 631 

the exponential equation (y= 0.0026x2.1978) that are well adjusted with R² = 1. 632 

(b) Relationship between the altitudes (x-axis) calculated by the JVS and the quotes determined on the 633 

water level (y-axis) by the CS in the Araguaia basin for the period of analyses. The blue curve represents 634 

the linear equation (y= 128.65x -22585) with R² = 0.8501. In both figures, the solid blue circles represent 635 

correlated values with 10 days interval. 636 

 637 

 638 

 639 

640 
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Fig. 5. Regression curves against 3 ground references and 4 different buffer sizes 641 

 642 
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Fig. 6. Relationship between R² (x-axis) and 4 buffers distances (y-axis) for 3 sets of reference data (CS 645 

water level and river flow and JVS altimetry). 646 

 647 

 648 

649 
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Tables 650 

 651 

Table 1. Detail of measurements related to JVS, CS, and satellite images used in the period of analysis 652 

for river flow estimates. 653 

654 

Label 

 ID 
Date 

JASON 

Virtual 

Station (JVS) 

Altimetry (m) 

Conventional 

Station (CS) 

Water Level 

(cm) 

Conventional 

Station (CS) 

River Flow 

(m³/s) 

Surface Reflactance 

(SR) 

Planet CubeSat 

Images 

1 2018 01 03 179.049 579 3,022.10 incomplete/cloud 

2 2018 01 13 178.917 561 2,819.00 incomplete/cloud 

3 2018 01 23 180.478 623 3,551.62 available 

4 2018 02 02 180.404 597 3,233.03 incomplete/cloud 

5 2018 02 12 180.165 608 3,365.81 incomplete/cloud 

6 2018 02 22 180.615 679 4,294.38 incomplete/cloud 

7 2018 03 04 181.030 708 4,709.77 available 

8 2018 03 13 181.103 710 4,739.20 incomplete/cloud 

9 2018 03 23 180.913 685 4,378.59 incomplete/cloud 

10 2018 04 02 180.931 691 4,463.70 incomplete/cloud 

11 2018 04 12 180.651 667 4,128.66 incomplete/cloud 

12 2018 04 22 180.508 666 4,115.01 available 

13 2018 05 02 180.419 627 3,602.11 incomplete/cloud 

14 2018 05 12 179.721 536 2,549.77 available 

15 2018 05 22 179.557 464 1,856.67 TOA image 

16 2018 06 01 179.220 454* 1,769.96* available 

17 2018 06 11 179.248 421 1,499.74 available 

18 2018 06 21 178.612 372 1,143.57 TOA image 
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19 2018 07 01 179.049 355 1,032.33 incomplete/cloud 

20 2018 07 10 178.217 345 969.81 incomplete/cloud 

21 2018 07 20 178.786 334 903.52 available 

22 2018 07 30 177.912 328 868.46 available 

* average beetween 02/06/2018 and 31/05/2018     

 655 

Label 
 ID 

Date 

JASON 
Virtual 
Station 
(JVS) 

Altimetry 
(m) 

Conventional 
Station (CS) 
Water Level 

(cm) 

Conventional 
Station (CS) 
River Flow 

(m³/s) 

Surface Reflactance 
(SR) 

Planet CubeSat 
Images 

1 2018 01 03 179.049 579 3,022.10 incomplete/cloud 
2 2018 01 13 178.917 561 2,819.00 incomplete/cloud 

3 2018 01 23 180.478 623 3,551.62 available 
4 2018 02 02 180.404 597 3,233.03 incomplete/cloud 
5 2018 02 12 180.165 608 3,365.81 incomplete/cloud 

6 2018 02 22 180.615 679 4,294.38 incomplete/cloud 
7 2018 03 04 181.030 708 4,709.77 available 

8 2018 03 13 181.103 710 4,739.20 incomplete/cloud 
9 2018 03 23 180.913 685 4,378.59 incomplete/cloud 

10 2018 04 02 180.931 691 4,463.70 incomplete/cloud 

11 2018 04 12 180.651 667 4,128.66 incomplete/cloud 
12 2018 04 22 180.508 666 4,115.01 available 

13 2018 05 02 180.419 627 3,602.11 incomplete/cloud 
14 2018 05 12 179.721 536 2,549.77 available 

15 2018 05 22 179.557 464 1,856.67 TOA image 
16 2018 06 01 179.220 454* 1,769.96* available 
17 2018 06 11 179.248 421 1,499.74 available 

18 2018 06 21 178.612 372 1,143.57 TOA image 
19 2018 07 01 179.049 355 1,032.33 incomplete/cloud 

20 2018 07 10 178.217 345 969.81 incomplete/cloud 
21 2018 07 20 178.786 334 903.52 available 

22 2018 07 30 177.912 328 868.46 available 

* average beetween 02/06/2018 and 31/05/2018     
656 
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Table 2. Flood area calculated inside buffers with NDVI value smaller than 0.15. 657 

658 

Label 

ID 

Selected dates of 

Surface Reflectance (SR) 

Planet CubeSat Images 

Flood Area 

inside 

Buffer 

50m (m²) 

Flood Area 

inside 

Buffer 

250m (m²) 

Flood Area 

inside 

Buffer 

500m (m²) 

Flood Area 

inside 

Buffer 

1000m (m²) 

3 2018 01 23 53,181 273,024 547,929 1,046,745 

7 2018 03 04 54,261 275,040 550,251 1,079,640 

12 2018 04 22 54,846 276,984 557,586 1,097,469 

14 2018 05 12 52,839 267,615 513,891 997,580 

16 2018 06 01 44,964 222,336 431,730 819,477 

17 2018 06 11 40,572 199,512 395,604 736,335 

21 2018 07 20 39,924 177,471 332,415 585,909 

22 2018 07 30 40,707 173,313 320,805 563,895 

  659 
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Table 3. Accuracy (RMSE) and precision (SD) estimators related to river flow (Qe), water level (Le) and 660 

altimetry (Ae)  661 

662 

Regression 
Curves  

Accuracy Estimator 
(RMSE) 

Precision Estimator 
(SD) Unit 

River Flow (Qe) 717.59 553.63 m³/s 

Water Level (Le) 59.45 37.16 cm 

Altimetry (Ae) 0.33 0..34 m 
 663 


