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Interactive Graph Construction
for Graph-Based Semi-Supervised Learning

Changjian Chen, Zhaowei Wang, Jing Wu, Xiting Wang, Lan-Zhe Guo, Yu-Feng Li, Shixia Liu
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Fig. 1: DataLinker: (a) the Filtering panel helps focus on nodes and edges of interest; (b) the Label Change view shows label
changes as an evolving river; (c) the Sample view displays samples as a combination of a scatterplot, a node-link diagram,
and a bar chart; (d) the Action Trail records the modification history; (e) the Information view shows the image content of
selected samples and their nearest neighbors.

Abstract—Semi-supervised learning (SSL) provides a way to improve the performance of prediction models (e.g., classifier) via the
usage of unlabeled samples. An effective and widely used method is to construct a graph that describes the relationship between labeled
and unlabeled samples. Practical experience indicates that graph quality significantly affects the model performance. In this paper, we
present a visual analysis method that interactively constructs a high-quality graph for better model performance. In particular, we propose
an interactive graph construction method based on the large margin principle. We have developed a river visualization and a hybrid
visualization that combines a scatterplot, a node-link diagram, and a bar chart to convey the label propagation of graph-based SSL.
Based on the understanding of the propagation, a user can select regions of interest to inspect and modify the graph. We conducted two
case studies to showcase how our method facilitates the exploitation of labeled and unlabeled samples for improving model performance.

Index Terms—Semi-supervised learning, unlabeled samples, graph quality
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1 INTRODUCTION

The success of supervised learning relies on a large number of
labeled samples. However, in many applications (e.g., medical
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image classification), the labeling process is often too tedious to
keep up with the rate of data acquisition, which results in a large
amount of data with only a small number of labels. Semi-supervised
learning (SSL) provides a way to improve machine learning
performance via the usage of unlabeled samples. An effective
and widely used method involves constructing a graph to describe
the relationship between labeled and unlabeled samples so that label
information can be propagated from labeled samples to unlabeled
samples [1]. Graph-based SSL (GSSL) has been continually
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Fig. 2: (a) An example of a kNN graph where k = 2. The black
monkey in the middle is predicted to be a dog due to the wrong
edges A and B; (b) the wrong edges are removed when the k values
of dogs and the misclassified monkey are set as 1.

improved since it was first proposed. For example, methods based
on deep neural network models (Planetoid [2], graph convolutional
network [3], etc.) have achieved state-of-the-art performance [4],
[5]. For GSSL methods, graph quality is widely recognized as a
key factor that significantly affects the learning performance [1],
[4], [6]. In a high-quality graph, the edges correctly capture the
similarity relationships between samples, and thus give the model
strong generalization ability. Moreover, the model always performs
better than direct supervised learning with labeled samples only.
By comparison, in a low-quality graph, there are a significant
number of wrong edges that connect samples in different classes
(e.g., Figs. 2A and 2B). And this will adversely affect the model
performance. Although the importance of graph quality is widely
recognized, previous studies either assume that the graph structure
is accurate or require a lot of labeled samples and computational
resources to search for the graph structure [4]. It is still an unsolved
problem to construct high-quality graphs in a label-efficient manner.

There are two challenges to solve this problem. First, the
small number of labeled samples is insufficient to provide a
reliable judgment of the graph quality. There are a large number
of graphs that can fit the limited number of labeled samples but
behave very differently on unlabeled ones [1]. Although some
criteria, such as the large margin principle [7], can automatically
exclude some high-risk graphs, the search space for graphs is still
extensively large. Second, automatic algorithms are largely based
on assumptions (e.g., nearest neighbors having similar labels) and
work like a “black box.” With the increase in data quantity and
complexity, these assumptions can hardly hold true for all data.
For example, in a kNN graph, a global k is applied to all training
data, but local regions often require different k values. It is more
appropriate to adaptively set the k values based on local properties.
For example, setting k = 2 for all the samples in Fig. 2 results in
the wrong connections between the dogs and the black monkey
(Fig. 2(a)). Locally changing the k values of these three samples to
1 will remove the wrong connections and result in a better quality
graph (Fig. 2(b)). However, automatic GSSL lacks the flexibility
for this kind of graph construction. The large search space, coupled
with automatic algorithms, results in little control over the learning
results. It is desirable to 1) open the “black box” to understand how
the graph structure affects model performance, and; 2) leverage
expert knowledge in the construction of high-quality graphs.

To achieve these goals, we have developed DataLinker, an

interactive visual analysis tool that helps machine learning experts
1) explore the graph structure and understand the label propagation
in GSSL, and 2) participate in the graph construction process. To
better understand the graph structure and how it affects model per-
formance, both the propagation of labels and the spatial distribution
of samples are required. Thus, we provide two coordinated views: a
Label Change view (Fig. 1(b)) that shows an overview of the label
propagation as an evolving river, and a Sample view (Fig. 1(c)) that
shows the spatial distribution of samples in a hybrid visualization
consisting of a scatterplot, a node-link diagram, and bar charts. The
two views work together, with the Label Change view providing
guidance on problem-prone samples that, upon selection, will
be highlighted in the Sample view for further examination and
modification. A Filtering panel (Fig. 1(a)) is also provided to filter
edges/nodes according to their attributes, such as edge importance,
node uncertainty, etc., to help quickly identify the important parts.
By a coarse-to-fine exploration strategy, the whole interface (Fig. 1)
facilitates experts to identify which part of the graph may cause
performance deterioration and modify the graph structure locally.
This greatly reduces the search space for high-quality graphs.

We conducted two case studies with experts on the STL-10
dataset for image classification [8] and on retinal OCT images
for medical diagnosis [9]. Both case studies show that DataLinker
allows experts to gain a better understanding of the data and
data relationships, and in turn to make informed changes to the
graph structure. With the constructed high-quality graph, model
performance is improved. The demo and the source code are
available at http://datalinker.thuvis.org/.

The main contributions of this work are:
• A coordinated and hybrid visualization to support the ex-

ploration of large scale graphs and facilitate the understanding
of label propagation in GSSL.

• An interactive graph construction method that takes
into consideration local data properties and leverages expert
knowledge to construct high-quality graphs.

• A visual analysis tool based on hybrid visualization, inter-
active graph construction, and GSSL for improving model
performance.

2 RELATED WORK

Our work is related to integrating interactive visualization with
machine learning methods to acquire high-quality data. In the field
of visualization, many methods have been proposed to improve
data quality. Based on whether the data is labeled, the relevant
work can be classified into two categories: improving the quality
of noisy labeled samples and unlabeled samples [10].
Improving the quality of noisy labeled samples. A cost-
effective way to collect labels is crowdsourcing. As the crowd-
sourced annotations are usually noisy [11], [12], various methods
have been proposed to improve their quality. Park et al. [13]
developed C2A, a visual analysis tool to facilitate the detection of
polyps in virtual colonoscopy videos by leveraging crowdsourced
labels. By interactively exploring crowdsourced labels and worker
behavior with C2A, doctors can discard most polyp-free video
segments and focus on those that are likely to have polyps. Willett et
al. [14] proposed a crowd-assisted clustering method to detect
and remove redundant explanations provided by crowd workers.
CRICTO [15] was developed for the sensemaking of text data by
constructing a graph that represents entity connections annotated by
workers. Analysts can generate cohesive hypotheses by interactively

http://datalinker.thuvis.org/
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exploring the graph. LabelInspect [16] focuses on identifying
uncertain instances and unreliable workers to improve the quality
of crowdsourced annotations. Based on expert verification, more
instances and workers are recommended for validation by an
interactive and iterative procedure. In practice, many datasets
(e.g., ImageNet [17]) have no information about crowd workers.
To handle data quality problems not restricted to crowdsourcing
settings, Xiang et al. [18] developed a scalable data correction
algorithm to propagate the labels of trusted items to other unverified
items. A hierarchical visualization was proposed to facilitate the
exploration and identification of trusted items.
Improving the quality of unlabeled samples. All the methods
mentioned above require labels that are noisy. However, many
datasets do not even have noisy labels. To tackle this, various
methods have been proposed to improve the quality of unlabeled
samples. A SOM-based visualization [19] was developed where
similar images are placed together. Users can label multiple
similar images at the same time. VASSL [20] was proposed to
detect and label social spambot groups on social media. Five
coordinated views are utilized to display similarities between
accounts from different perspectives to facilitate identifying clusters
with anomalous behavior. Recently, a variety of methods have been
proposed for integrating learning models with visualizations to
promote interactive visual labeling [21]. Inter-active labeling was
first proposed by Hoferlin et al. [22] to enhance active learning
with human knowledge. It not only enables users to query data for
labeling via active learning, but also allows better understanding
and refining of the classification model via visualizations. Dennig et
al. [23] provided FDIVE to detect the best-fitting features and
distance functions based on labels provided by users. The features
and distance functions are then used to train a SOM-based relevance
model, which is visually explorable and can be further refined by
providing more labels. VIANA [24] developed a language model to
recommend text fragments for annotation in argumentation mining
tasks. In this work, layered visual abstractions were designed to
support five relevant analysis tasks required for text fragment anno-
tation. A unified visual interactive labeling process was proposed by
Bernard et al. [21]. Experiments conducted by Bernard et al. [25]
showed the superiority of user-centered visual interactive labeling
over model-centered active learning. Bernard et al. [26] also ran
a quantitative analysis of user strategies for selecting samples in
the labeling process. Results show that data-based user strategies
(clusters, dense areas) work well in early phases, and model-based
user strategies (e.g., class separation) perform better in later phases.

Although these active-learning-based methods improve the data
quality to some extent, they may deteriorate the performance due to
some wrong similarity relationships between samples. In our work,
the proposed interactive graph construction method complements
these methods by providing high-quality relationships between
samples. In particular, we designed a river visualization and a
hybrid visualization to facilitate the understanding of how the graph
structure, both nodes and edges, affects GSSL model performance.
An interactive graph construction method is also provided to help
experts improve graph quality in a coarse-to-fine manner.

3 BACKGROUND: GSSL MODELING

There are two steps in GSSL modeling: 1) graph construction that
builds a kNN graph to describe the relationships between labeled
and unlabeled samples; and 2) label propagation that propagates
labels from labeled samples to unlabeled ones along graph edges.

(a) (b)
Labeled samples

Unlabeled samples

Keeping the
original label
Having the
same label

Fig. 3: An example of label propagation: (a) a graph with two
labeled samples; (b) the final prediction.

kNN graph construction. Several automatic, adaptive kNN graph
construction methods [1], [27], [28], [29], [30], [31] have been
developed, which adaptively choose nearest neighbors for local
regions. However, these methods are easily overfitted when labeled
data is scarce [27], [31]. Previous studies have shown that the
traditional kNN graph construction method is more robust [27], [31]
and widely used [1]. Therefore, we employ the traditional method
in DataLinker. Given n samples where l samples are labeled, and
the rest u samples (u = n− l) are unlabeled, an initial kNN graph
is constructed based on the similarities between them. Similarities
between samples are measured by the cosine similarities between
the sample features. State-of-the-art deep neural network models,
such as the pretrained models on ImageNet [32] or deep SSL
models [33], are used for feature extraction, which has been shown
to achieve state-of-the-art performance [4], [5]. With the calculated
similarities, each sample’s k nearest neighbors are determined, and
the kNN graph is constructed. The weights of edges are typically
set to the sample similarities or a constant 1. In practice, the two
approaches have achieved similar results [34], and we pick up the
later one as our implementation. A common way of achieving high-
quality graph construction is to maintain sparsity and make sure
that each connected component in the graph has at least one labeled
sample [34]. Thus, in our implementation, parameter k is set to be
the smallest integer that ensures every connected component has at
least one labeled sample.

Label propagation. With the constructed graph, label propagation
assigns labels to samples along the graph edges. It aims to ensure
that 1) similar samples have the same label and 2) the labeled
samples keep their original labels, as shown in Fig. 3. The
predicted labels are represented by a label matrix Fn×c where
each row Fi is the label vector of sample i. The j-th element
of Fi represents how likely sample xi belongs to class j. Label
propagation is achieved by optimizing the following cost function:

min
F

1
2

 l+u

∑
i, j=1

Wi j

∥∥∥∥∥ 1√
di

Fi−
1√
d j

F j

∥∥∥∥∥
2
+µ

l

∑
i=1
||Fi−Yi||2 (1)

The first term is a manifold regularization requiring similar samples
to have similar predictions. The second term ensures the predicted
labels of labeled samples are consistent with their provided ones.
µ is a weight to balance the two terms. Matrix Wn×n records the
edge weights. Wi j = 1 if edge xix j exists, otherwise Wi j = 0. di is
the sum of the i-th row of W, which is used to normalize the label
vector of sample i. Y is the ground truth label matrix for labeled
samples. This optimization problem has a closed-form solution:
F = (1−αS)−1Y, where α = (1+µ)−1, and S is the symmetric
normalized Laplacian matrix of W. However, when matrix W is
large and dense, the matrix inversion in the closed-form solution is
time-consuming. A mathematically equivalent solution is to solve
it iteratively [35]: F(t+1) = αSF(t)+(1−α)Y. F is initialized to
Y. At each iteration, the label of each sample is propagated to its
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nearest neighbors. This iterative process repeats until it converges.
According to the previous study [36], the iterative solution is faster
when W is dense and no slower than the closed-form solution
when W is sparse. Thus, the iterative solution is a safer choice and
is adopted in our implementation.

4 DESIGN OF DATALINKER

We designed DataLinker during an eight-month collaboration with
two groups of machine learning experts. Based on interviews and
discussions, we gained an understanding of the current practices,
major challenges, and user needs in GSSL. We then distilled the
requirements and designed the system with the experts.

4.1 Requirement Analysis
To derive the requirements, we closely worked with two groups of
experts. The groups varied in terms of experience in GSSL and their
application goals. The first group consisted of two experts (E1 and
E2) specializing in GSSL. E1 is a professor and has studied GSSL
for over ten years. He has developed state-of-the-art GSSL methods
and published papers in top-tier machine learning conferences. E2
is a Ph.D. student who has studied GSSL for three years. E1 and
E2 are familiar with the most advanced methods for exploiting
unlabeled samples and are eager to extend the horizon of GSSL
by finding new insights. The second group included two machine
learning researchers (E3 and E4) who have a basic understanding
of GSSL. Focusing on natural language processing and computer
vision, respectively, the two experts want to leverage unlabeled
samples to improve model performance. For simplicity, we took the
kNN graph as an example during the requirement analysis. Despite
the diverse experience in GSSL and different goals, we identified
two common challenges:

C1. How does one determine which unlabeled samples are
useful for graph construction and when labels must be pro-
vided? All experts mentioned that the quality of unlabeled samples
is crucial for building a high-quality graph. However, since the
unlabeled samples are crawled from the website, they are usually
of poor quality, e.g., contain noises that are irrelevant to the task.
For example, E1 said, “When the task is to classify whether an
image contains a dog or a cat, it is very likely that the unlabeled
samples will contain images of rabbits or tigers. This results in
degenerated model performance.” It is also difficult to know when
unlabeled samples can benefit graph construction and when labels
must be added to improve graph quality (E1 to E3).

C2. How does one debug and refine the graph structure
effectively? Currently, graph refinement is still based on a time-
consuming trial-and-error procedure (E1 to E4). There is no way
to fully understand how the key parameter k impacts the graph,
what the learned edges are, and how the learned edges impact
the final predictions. Compared with supervised learning, model
(graph) refinement is even more difficult for GSSL, since there
is no effective quantitative criterion for thoroughly measuring the
graph quality (E1 to E3).

Both challenges require a better understanding and more
effective refinement of the learned graph, whose structure is
influenced by its nodes, i.e., unlabeled or labeled samples (C1),
edges, and the key parameter k (C2). Based on these observations,
we then derived the following requirements through six 60-minute
participatory design sessions with the experts. We divided the
requirements into two groups, according to whether they focus
on understanding and debugging or graph refinement.

To better understand and debug the graph, the experts
wanted to understand how the graph structure affects the final
prediction (understanding), with an emphasis on the problematic
aspects (debugging). For example, E2 said, “I hope that the system
can show the deficiency of the graph, for example, which samples
cannot be easily classified and which parts of the graph lead to the
issue.” To achieve this goal, we need to display the graph in terms
of both temporal influence and spatial structure, i.e., how the final
prediction is derived by propagating labels along the graph edges
during iterations (temporal), and how the distribution of the nodes
and edges impact the prediction results (spatial). Accordingly, we
distilled two requirements:

R1. Displaying how labels propagate along the graph
during iterations. All experts agreed that it is important to
understand the temporal change in labels, i.e., how the labels
propagate along the graph edges. E1 and E2 said that this could
help identify some problematic samples, e.g., samples whose
labels frequently change during iterations.

R2. Revealing how the graph structure impacts the final
results at different levels of detail. In particular, the experts need
to know how the distribution of nodes (both unlabeled and labeled)
impacts the edges, and how both node and edge distributions
contribute to the final prediction results. Since the number of nodes
and edges is large, it is important that both overview and details can
be obtained on demand. More importantly, problematic samples
(e.g., samples with high uncertainty) and important edges should be
highlighted so that the experts can debug quickly. For example, E1
said, “I would like to know which samples are the riskiest and why.”

To better refine the model, the experts required to directly make
modifications in the visualization. According to the discussions on
challenges, the most desirable functions are related to the refine-
ment of graph nodes (C1), edges, and the key parameter k (C2).

R3. Guided refinement of graph nodes, including both unla-
beled and labeled samples. According to the experts, three types
of modifications on the graph nodes are needed: adding labels,
adding unlabeled samples of specific classes, and deleting noisy
samples. Since the number of samples is very large, it is important
that this refinement process is guided by the designed visualization.

R4. Efficient modification of graph edges. Graph edges have a
large impact on the final results. According to the experts, it is very
possible that some edges wrongly connect nodes in different classes
in a kNN graph or are missing from the graph. E3 said, “It will be
very cool if we can quickly identify the incorrect edges and remove
their influence on the prediction.” To ensure that the edges can be
modified efficiently, we need to support different granularities of
interactions, i.e., both local and individual edge modification.

R5. Interactive tuning of the key parameter k and observe
its influence on the graph structure. In current practice, experts
can only tune k globally (i.e., for all samples). They are intrigued
by being allowed to directly change k in the system both globally
and locally for a group of samples.

4.2 System Overview

Motivated by these requirements, we designed a visual analysis tool,
DataLinker, to assist the construction of a high-quality graph. Fig. 4
shows the overview of DataLinker. It contains two modules: GSSL
modeling and visualization. The two modules work together to sup-
port a coarse-to-fine strategy for constructing a high-quality graph.

Given a set of labeled and unlabeled samples, state-of-the-
art deep neural networks, such as the pretrained models on
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Fig. 4: DataLinker overview. The GSSL modeling module constructs an initial kNN graph and propagates the labels from labeled samples
to unlabeled ones; the visualization module helps understand how the graph structure influences the final predictions and interactively
construct a high-quality graph.

ImageNet [32], are used to extract features from input data. Then
based on the cosine similarities between the extracted features
of samples, an initial kNN graph is constructed, and labels are
propagated through the graph. To help experts better understand
how the graph structure influences the final predictions and
interactively construct a high-quality graph, a visualization module
is provided. By examining how labels propagate through iterations
in the Label Change view (R1), experts can select problematic
samples, such as those propagated to at later iterations, and turn to
the Sample view for further analysis. The Sample view utilizes a
hybrid visualization to present the distributions of both the nodes
and the edges of the graph. Filters are provided to help experts
focus on important information, e.g., edges that have large impacts
on the final predictions. The two views, along with the filters,
help experts explore from a global overview to local details and
understand how labels are propagated through the graph (R2).

Based on the understanding, a coarse-to-fine strategy is sup-
ported to construct a high-quality graph interactively. Experts can
adjust labels and augment unlabeled samples to make sure that
the graph nodes are sufficient and appropriate (R3). After that, the
key parameter k controlling the graph structure can be modified
in local regions with the proposed interactive graph construction
method (R5). The graph can be further refined by modifying
individual nodes and edges (R3, R4). The process of interactive
graph construction, label propagation, and visual exploration iterate
until a high-quality graph is constructed.

5 DATALINKER VISUALIZATION

In this section, we describe the visual design of DataLinker and
the interactions for exploring and modifying graph structures.

5.1 Visual Design

The visualization consists of two major components: 1) a visualiza-
tion of label changes to give an overview of the label propagation
process (R1); 2) a hybrid visualization of samples to reveal both
the samples and their relationships in the graph structure, and how
they influence the label propagation process (R2). An Information
view is also provided to assist the exploration. The Information
view displays the selected samples and their nearest neighbors.

5.1.1 Label Change

As discussed in Sec. 4.1, experts expressed their need to understand
the label propagation process, which can help identify the prob-
lematic samples. For example, a frequent label change of a sample
indicates that the label of this sample is influenced by the samples
from different classes. In such a case, this sample may have wrong
edges that lead to misclassification [34]. Thus, the experts expressed
their need to examine such samples. The iterative solution, as
mentioned in Sec. 3, can naturally reveal the temporal changes in
labels, which is a further advantage over the closed-form solution.
With the iterative solution, the visualization needs to present 1) how
the samples are distributed among the classes at each iteration, and
2) how the distribution changes through iterations. To this end, we
propose to use a river flow metaphor [37], which has been used to
present dynamic change of topics in visual text analysis [38], [39].

Iter. (t) Iter. (t+1)

Unlabeled

Apple

Banana

# instances
in this classA

B

Fig. 5: Label change.

At each iteration, a
stacked bar (Fig. 5A) is used
to represent the distribution
of samples among classes,
where the bar color indicates
the class, and the bar height
encodes the number of
samples. The top bar with
the color “gray” represents
samples that haven’t been
propagated to. Between consecutive iterations, connections
between stacked bars represent the exchange of samples, and
the width of the connection encodes the number of samples. For
example, the highlighted connection (Fig. 5B) represents samples
that change their labels from “banana” to “apple” from iteration
(t) to (t + 1). The connection color is a blending of colors from
one end to the other. From this visualization, experts can have
an overview of the label propagation process and quickly identify
problematic samples, e.g., samples that are propagated to at later
iterations and/or frequently change during iterations.

5.1.2 Samples and Their Relationships

To help experts understand the impact of samples and their
relationships on label propagation, both the sample distribution
and the graph structure should be displayed simultaneously. We
propose a hybrid visual representation that combines a scatterplot,
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a node-link diagram, and a bar chart (Fig. 1(c)). In addition,
samples are hierarchically organized to support the exploration
of a large amount of data.

Hybrid visual representation. The hybrid visual representation
consists of a scatterplot, a node-link diagram, and a bar chart. In the
visualization, samples are presented as nodes in a 2D scatterplot,
while edges reflect the relationships between samples. To facilitate
experts in quickly identifying problematic samples, an uncertainty
value is calculated for each sample and visually displayed in the
scatterplot. To effectively display a large number of graph edges,
we design the edge visualization at two levels: 1) to individually dis-
play edges between samples in local regions of interest (node-link
diagram), and 2) to statistically convey the overall distribution
of edges (bar chart). In the following, we will introduce the key
components in the hybrid visual representation, i.e., uncertainty-
aware scatterplot, individual edges, and edge distribution.

Uncertainty-aware scatterplot. An intuitive way to visualize
the samples and their relationships is to use graph layouts, such as
force-directed graph layouts. However, our experiments have shown
that the sample distribution generated by the force-directed graph
layout is cluttered (Fig. 6(a)). Samples in different classes are mixed
together, failing to convey the data distribution as required by the
experts. This result is also consistent with the findings of previous
work that the force-directed graph layout can easily become stuck
in a bad local minimum [40], [41]. Moreover, it does not utilize the
predicted classes of samples to get better class separation. Another
popular method for visualizing sample distribution, t-SNE-based
projection, uses an early exaggeration strategy to attract similar
samples to be gathered into clusters during initial iterations, which
avoids a bad local minimum [42]. Existing studies have shown
that it is effective for preserving neighborhoods and clusters [43].
In our implementation, we use a supervised t-SNE [44], which
utilizes the predicted classes to reduce the distance between the
projected samples of the same class. As shown in Fig.6, using the
supervised t-SNE results in better class separation than using the
force-directed graph layout.

During the interviews, experts expressed the need to examine
not only the predicted classes of samples but also their prediction
uncertainties (R2). Uncertainty is a widely used measure to indicate
problematic unlabeled samples when ground truth labels are not
available [45]. It has proven to be useful in many tasks [46],
[47]. According to the widely used large margin principle [7], low
uncertainty usually means better prediction results. Inspired by the
uncertainty glyphs in [48], [49], here we also encode uncertainty

(a) (b)

Fig. 6: Sample distributions generated by (a) the force-directed
graph layout and (b) the supervised t-SNE.

in glyphs and display them in place of the nodes in the scatterplot
when required. The glyph design is shown in Fig. 1E. The color
of the central dot encodes the predicted class. The semicircular
ring consisting of multiple colored arcs represents the predicted
class distribution. The length of each arc encodes the probability of
belonging to the corresponding class. The angle between the two
sliders encodes the degree of uncertainty, which is calculated as
the entropy of the predicted probabilities. The larger the angle, the
higher the uncertainty.

Individual edges. Edges are displayed on demand upon
selecting a region of interest. We use tapered edges [50] ( )
to encode their directions where an edge starts at the wide side
and ends at the narrow side. The color of an edge is the blending
of the predicted class colors at its two ends. As the number of
edges is usually large, nearby edges of the same type, i.e., edges
with the same starting classes and ending classes, can be grouped
to reduce visual clutter and facilitate tracing. We thus turn to the
divided edge bundling [51]. It is a force-directed-based method
where edges in the same direction attract each other, and edges
in opposite directions repel each other. To group edges by types,
the same as grouping edges by directions, we utilize the divided
edge bundling method to attract edges of the same type and repel
edges of different types.

Edge distribution. For each class, the edges connected to
samples can be categorized into homogeneous edges (homo-edges)
connecting samples of the same class and heterogeneous edges
(hetero-edges) connecting samples of different classes. A higher
ratio of hetero-edges indicates a heavier confusion of this class
with others. To give an overview of the edge distribution, a bar-
chart-based distribution visualization and a Voronoi-based space
partition are combined. A bar chart (Fig. 1P1) is displayed for
each class showing the homo/hetero-edges distribution within the
class. The height of each bar encodes the ratio of homo/hetero-
edges, and the color indicates the type (colored: homo-edges, gray:
hetero-edges). The hetero-edge bar can be further expanded to
show the detailed distribution of edges connecting each of the other
classes (Fig. 1D). Clicking on a bar will display the corresponding
edges in the Sample view. The Voronoi-based partition aims to
allow easy perceptual separation of different classes and link the
classes with corresponding bar charts. Each partition should 1) try
to include samples of only one specific class; and 2) following
Gestalt theory [52], be as convex as possible to make clusters more
evident. To satisfy these two constraints, we propose a two-step
partition method based on the Voronoi tessellation [53].

The first step is to generate an initial partition based on the
Voronoi tessellation (Figs. 7(b) and 7(c)). A straightforward way
is to generate the Voronoi tessellation on all samples and then
merge adjacent Voronoi cells of the same class for generating the
partitions. However, this method suffers from high computational
costs. To accelerate the process, instead of generating the Voronoi
tessellation on all samples, we only use the ones on the boundary
of each class for the tessellation. Here we use α-hulls [54] to
represent the boundaries (Fig. 7A). The α-hull is a generalization
of the convex hull, which can capture the shape more accurately
than the convex hull by allowing internal angles to be larger than
180 degrees. As the α-hull is sensitive to outliers [55], we utilize
the local outlier factor algorithm [56], one of the most widely-used
outlier detection methods [57], to remove outliers for each class
before generating its α-hull. With this strategy, the number of
samples for the Voronoi tessellation is largely reduced. However,
as shown in Fig. 7(c), this step cannot guarantee the convexity of
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A

Fig. 7: Illustration of the Voronoi-based partition method: (a) positions of all samples; (b) finding samples on the boundary of each class;
(c) generating the Voronoi tessellation for samples on the boundaries and merging adjacent cells of the same class; (d) approximating the
polyline-based borders by a set of polylines with a smaller number of vertices.

partitions. The second step thus follows to improve the convexity.
A direct solution is to replace the polyline-based border of two
partitions with a line segment. However, it may introduce errors
to the partitions, i.e., each partition may contain samples other
than of the main class. To balance between error and convexity,
we propose to use a polyline with a smaller number of vertices
(Fig. 7(d)) as a balance between the original polyline and a line
segment. In particular, we define the partition cost as

C(P) =
c

∑
i=1
{E(Pi)+β (1−V (Pi))}, (2)

where c is the number of partitions; E(Pi) measures the error of
partition Pi by the number of misplaced samples in it; V (Pi) is the
measure of convexity in Pi using the measure defined in [58]. The
idea behind is that the line segment between any two samples in
the partition should lie within the partition as well if the partition
is convex. The ratio of line segments that lie within measures the
convexity of the partition. β is the balancing parameter and is em-
pirically set as 2 in our tool to balance the magnitude of these two
measures. Our goal is to minimize cost C(P) by replacing groups
of consecutive line segments on the border with straight lines. The
optimal solution can be obtained using dynamic programming.

Hierarchy construction. To allow efficient exploration of a large
number of samples, we organize the samples in a hierarchy. An
uncertainty-biased sampling method [18], [59] is used to build
the hierarchy. This sampling method takes both region density
and classification uncertainty into consideration and increases the
sampling ratio from dense regions with low uncertainty to sparse
regions with high uncertainty. As such, it preserves more uncertain
samples while maintaining the overall data distribution.

The hierarchy is built in a bottom-top manner. The bottom layer
L0 contains all samples. When sampling from layer Ll−1 to layer
Ll , the sampling rate is set as 25%, and each sample in layer Ll−1
will be assigned as a child to its nearest sample in layer Ll . This
process repeats until the number of samples in the top layer is
less than a certain threshold (1,000 in our implementation). During
exploration, experts can zoom in/out to navigate the hierarchy.

5.2 Interactive Exploration and Graph Construction

To help experts easily examine the samples of interest and make
informed changes to the underlying graph structure, two main
interactions, i.e., graph filtering and interactive graph construction,
are provided. The first interaction helps identify the samples of
interest more efficiently. The second interaction follows a coarse-
to-fine strategy and enables experts to make efficient changes to

the graph structure at different levels, including global (R3), local
(R5), and individual levels (R3, R4).

5.2.1 Graph Filtering
A set of filters (Fig. 1(a)) are provided to help experts find the
graph nodes and edges of interest. Scented Widgets [60] are used
as the visual guidance for filtering out unimportant information and
focusing on the information of interest. Information filtering can
be carried out according to five attributes of nodes or edges:
• Predicted class allows experts to focus on specific classes of

interest. (Fig. 1C1);
• Uncertainty helps identify unreliable samples with higher

prediction uncertainties (Fig. 1C2);
• Path length limits the length of the propagation path to be

displayed (Fig. 1C3).
• Edge direction allows the selective display of edges that start

or end in the selected region (Fig. 1C4).
• Edge importance enables the display of edges that contribute

the most to the final predictions (Fig. 1C5).
To quantitatively measure edge importance, we utilize the

AURORA algorithm described in [61]. This algorithm defines the
edge importance as the derivative of the predictions with respect to
an edge, which approximates the change in prediction scores after
removing this edge.

5.2.2 Interactive Graph Construction
Efficient modifications of the graph structure at the global, local,
and individual levels are the essential requirements of our experts.
For adjusting labels and augmenting unlabeled samples at the
global level, and removal of incorrect edges and noisy samples
at the individual level, the interactions are straightforward, such
as directly deleting incorrect edges from the graph. At the local
level, however, interactively determining the parameter k to modify
the local graph structures is nontrivial due to the limited labeled
samples. To help experts tune parameter k in a local region, a local
graph modification method based on the large margin principle [7]
is proposed. Combining the visualization and the proposed local
graph modification method, a coarse-to-fine strategy is provided
to help experts interactively construct high-quality graphs. In
addition, an Action Trail is developed to record the modification
history and allows experts to return to a previous step.
Local graph modification. A straightforward method to deter-
mine the best k value for a local region is to choose the value that
performs best on a given set of labeled samples. However, it is often
difficult to obtain a certain number of labeled samples in practice.
To solve this problem, we utilize the large margin principle [7],
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Fig. 8: A typical workflow of DataLinker is a coarse-to-fine graph construction process. Experts usually start from (a) adjusting graph
nodes at the global level; then (b) modify local k values according to local properties; they (c) further refine individual nodes with high
uncertainty; and (d) start a new round of modification.

which has been shown promoting GSSL model performance [6],
to guide the search for the best k. The margin for a sample is the
difference between the probabilities of its top two predicted classes.
A larger margin indicates a more discriminative prediction. For
multi-class classification problems, a large margin is achieved by
minimizing the entropy of predictions [62]. Given a set of nodes
X in the local region and a search range [k0,k1], a grid search is
applied to determine the best k in the range. More specifically,
for each k′ in the range, a candidate graph is constructed with k′

nearest neighbors of nodes in X. Label propagation is then applied
to obtain predictions and the corresponding entropy. The k′ with
the lowest entropy is the best k. The candidate graph may contain
multiple components when the new k′ is small. To tackle this issue,
we apply a greedy method for connecting all components. Starting
with the two largest components, we connect them by connecting
the two nodes from each of them with the minimum distance. This
process repeats until only one component exists.

Graph construction workflow. Fig. 8 illustrates a typical work-
flow of DataLinker to construct a high-quality graph interactively.
With the initial kNN graph construction, the expert first examines
the overall sample distribution to make sure each class has enough
labeled and unlabeled samples (global). From both the Label
Change view and the Sample view, the expert can find problematic
samples that may need label adjustment and classes that are with
insufficient unlabeled samples (Fig. 8(a)). After the adjustment of
samples, the expert then turns to the local modification of graph
edges (local). From the Sample view, regions with inappropriate k
values can be identified (Fig. 8(b)). For example, a small cluster
with limited connections to the major cluster of this class may
need a larger k. The local graph modification is then used to find
the best k for each of these regions and update the graph locally.
Further individual refinement will be carried out for the remaining
small number of samples with high uncertainty (individual). Their
propagation paths are first examined (Fig. 8(c)) to understand why
the GSSL model makes such predictions on them. Based on that,
experts can identify and remove the problematic nodes/edges that
result in the wrong predictions. The quality of nodes and edges
are mutually influenced. The changes in one (e.g., the nodes) will
affect the quality of the other. Therefore it is appropriate to carry
out iterative modifications. The experts can start a new round of
modifications to further improve the graph quality (Fig. 8(d)).

Action Trail. We provide an Action Trail (Fig. 1(d)) to record
the expert’s modification actions and allow them to roll back to
a previous step. Each row represents a step that the expert has

made, and the rows are ordered by time stamps. For each step,
three kinds of information are recorded: 1) the action types, 2) the
number of samples with changed predictions, and 3) the average
uncertainty of all samples. With the Action Trail, experts know
what kinds of actions they have made and what changes these
actions bring. Based on the understanding, they can then stop the
modification when there are little changes in the prediction result.

6 CASE STUDY

Two case studies have been conducted to evaluate how DataLinker
helps understand the influence of the graph structure on GSSL and
improve the learned models by making informed changes to the
underlying graphs. We invited two machine learning experts, E2
and E4, to conduct case studies on two datasets, the STL-10 [8] and
the OCT (Optical Coherence Tomograph) [9]. STL-10 is a popular
dataset for SSL [63], which E2 has often used in his research. As
a researcher in SSL, E2 has a focus on analyzing the influence
of graph structures on final results. E4 is currently working on a
collaborative project on OCT image classification and is familiar
with the OCT dataset. His analysis is more performance-driven.

In the two cases, we constructed the preliminary graph struc-
tures using the features obtained by deep neural network models.
In particular, for the first case with natural images, we employed
pre-trained supervised learning models on ImageNet for feature
extraction, where ImageNet is a well-known large-scale natural
image dataset with broad and diverse image coverage. The features
extracted by the pre-trained models on ImageNet have proven
helpful with natural image classification tasks [64]. However, for
image datasets that are significantly different from the ImageNet
dataset, such as OCT images, the extracted features will actually
hurt performance [64]. As a result, for the second case involving
OCT images, we instead train MixMatch [33], a recent state-of-
the-art deep SSL model, on OCT images for feature extraction.

6.1 Case study on the STL-10 dataset
STL-10 consists of 105,000 training images (5,000 labeled images
and 100,000 unlabeled images) and 8,000 test images [8]. In this
case study, a subset of 12,840 training images (50 labeled images,
12,790 unlabeled images) from this dataset was used for training.
Our images comprise 11 classes (airplane, bird, car, cat, deer,
dog, horse, monkey, ship, truck, snake), with only five labeled
images in each of the first ten classes. Our test images include:
1) all the test images in STL-10 (800 for each of the first ten
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Fig. 9: Label Change view and Sample view after (a) constructing the initial graph; (b) adjusting labels; (c) edge distributions before and
after decreasing k values. The ratios of hetero-edges decrease after decreasing k values, but still noticeably high in partition P1.

classes; and 2) additional 100 randomly selected images from the
remaining snake class training images. The low ratio of the labeled
samples (50/12840) and noisy samples (samples of other classes)
makes classification on this dataset a challenging task. Initially, an
accuracy of 88.91% was achieved using a state-of-the-art GSSL
model developed by Iscen et al. [5], which was not satisfying.
Thus, E2 would like to use DataLinker to examine and modify the
underlying graph for improving classification accuracy.

Overview of label propagation (requirements R1 and R2). An
initial graph was constructed with k = 6, the smallest integer
that ensures every connected component in the graph has at least
one labeled sample. Labels were propagated from the labeled
nodes to unlabeled ones along the constructed graph. To know
how the propagation progressed through iterations, E2 first looked
at the Label Change view. He noticed that most samples were
propagated to within four iterations except for a small number
(Fig. 9B). He also noticed a high ratio of label changes among
these samples in later iterations (Fig. 9C), indicating some
uncertainty in the predicted labels. E2 considered these samples
might be misclassified and would like to find where they resided
in the graph. He selected these samples in the Label Change view
and turned his attention to the Sample view.

Adjusting the distribution of labeled nodes (requirements R2
and R3). The Sample view shows the spatial distribution of samples
(graph nodes) in a 2D scatterplot. An even distribution of labeled
nodes in each class is expected to construct a high-quality graph.
Based on this expectation, E2 examined the distributions of the

selected samples (highlighted) and the labeled ones (starred) for
each class and observed a noticeable deficiency of dominant labeled
samples in two regions, as shown in Figs. 9A1 and 9A2. In A1,
there were no labeled samples for this cluster. Checking the sample
images in A1, E2 found they were images of snakes, a class that
hadn’t been considered before. As there were not any labeled
samples for this class, these samples were all wrongly predicted.
E2 thus manually labeled five samples (stars with circles in A1’) in
this region to include this new label into the propagation process.
In A2, the highlighted green (dog) samples were relatively far
from their labeled ones, which were clustered at a corner of the
class (Fig. 9D). “This elongated the propagation paths and reduced
the effective information passing,” pointed out by E2. The high
uncertainties (0.6 - 1.0) of these highlighted samples in this region
confirmed E2’s speculation. E2 then evenly labeled three more dog
samples (stars with circles in A2’) in region A2. Upon update, most
samples were labeled within four iterations, and label changes were
also largely reduced (Figs. 9B’ and 9C’). The Action Trail showed
a reduced overall uncertainty from 0.315 to 0.27 (Fig. 1(d)).

Selecting the remaining unlabeled samples in B’ (Fig. 9(b))
and checking their images in the Information view, E2 found a
few more samples from other classes (A3, A4 in Fig. 9(b)). As E2
considered these samples to be noise, he deleted them directly.
Coarse-to-fine modification of graph edges (requirements R2,
R4, and R5). The following steps are executed to interactively
modify the graph edges from coarse to fine.

Increasing k. E2 noticed some monkey images were wrongly
predicted. (Fig. 9A5). To find the cause, E2 zoomed into this region



10

(a) (b) (c)

A6

A5

A5’
Bird Dog Monkey

Monkey

Monkey
Red panda

A

s1

s2
s3

s4

s5 s6 s7

Fig. 10: Local and individual modification: sample and edges of the selected region (a) before and (b) after increasing the local k value;
(c) propagation paths of selected samples.

to examine how the labels were propagated in this local region.
He noticed two clusters that were all monkey images but wrongly
predicted as dogs (green) or birds (orange), as shown in Fig. 10A5.
To examine the reason for the incorrect label propagation, E2
displayed the important edges going into A5. He found a relatively
small number of important edges from the monkey (yellow) class
compared to those from the bird (orange) or dog (green) classes,
indicating a smaller influence. E2 reasoned that the insufficient
influence from the main monkey cluster to this region resulted in
the wrong predictions. To increase the influence, E2 considered
increasing the connectivity between the main monkey cluster and
the clusters in A5. He thus selected the region around the boundary
between A5 and the monkey cluster (Fig. 10A6) and increased the
k value in this local region. k = 26 was finally determined by a
grid search in the range of [7,40].

Refining. The operation of increasing k locally reduced the
number of wrongly predicted monkey images (Fig. 10A5’). How-
ever, a few still existed. Given the small number, E2 decided to
examine their label propagation paths individually. Selecting s1,
a monkey image wrongly classified as a bird, he noticed its label
was propagated from s2, which was further propagated from s3,
a labeled bird image. Looking for similarities among the three
images, E2 speculated the same state of “on a tree” connected
the three samples and wrongly propagated s3’s label (bird) to s2
and to s1. E2 wanted to break the connection by either deleting
nodes or deleting edges. s2 is a noisy sample whose class (red
panda) is not of interest. But checking the important edges starting
from s2 (Fig. 10A), E2 found s2 adversely affected the labeling of
several other monkey images. To this end, E2 deleted s2 to break
the connection. s4 in the green cluster was another sample checked
by E2. It is a black monkey but had its label propagated from two
black dogs (s6 and s7). This time, E2 speculated the same “black”
color resulted in the wrong propagation. Checking the important

Homo-edges (dog)

Homo-edges (cat)
Hetero-edges

Dog

Cat

A B

(a) (b)

Fig. 11: Sample and edge distributions of the selected region (a)
before and (b) after decreasing the local k value.

edges starting from s4, E2 found s4 further passed the incorrect
label to s5, an image of two black monkeys. As labeling s4 would
lead to wrong label propagation from s4 to s6 and s7, E2 decided
to delete the incorrect edges from s6 to s4 and from s7 to s4. E2
continued checking the propagation paths in the two clusters and
deleted nodes/edges for another six wrongly predicted nodes. Upon
update, the overall uncertainty was reduced from 0.270 to 0.251.

Decreasing k. After the above step, E2 zoomed back to the top
Sample view. He found the confusions between classes were still
observed, especially around the cluster boundaries (e.g., Fig. 1A7).
To better examine the cause of the confusion, E2 displayed the
partitions and the bar charts. From the bar charts, E2 found
four partitions (P1, P2, P3, P4) had a relatively higher ratio of
hetero-edges, indicating heavier confusions. E2 wanted to find the
confused regions, examine their local graphs, and make proper
corrections. He started with partition P1, which had the highest
ratio of hetero-edges. The detailed distribution of hetero-edges in P1
(Fig. 1D) showed that the cat (red) and the dog (green) classes had
the highest confusion. The accordingly displayed important hetero-
edges guided E2 to find where the confusion occurred (Fig. 1A6).
E2 selected the confused region and zoomed in (Fig. 11(a)). From
the edge bar chart inside this region (Fig. 11A), he found that the
ratio of the hetero-edges was much higher than that of the red class,
and many of the samples had high uncertainty (0.6 - 1.0). Checking
the nearest neighbors of these uncertain samples in the Information
view (Fig. 1(e)), E2 further observed that many of these samples
were wrongly predicted, and they tended to have lower-ranked
neighbors in wrong classes (marked with black borders). From
these observations, E2 concluded that k = 6 was too large for this
local region, and he wanted to reduce the k value in this local
region. k = 2 was finally set by a grid-search in the range of [1,5].

Refining. For the small number of remaining uncertain samples
shown in Fig. 11(b), E2 again checked their individual propagation
paths and deleted nodes/edges for these samples in the same way
as the refining step before.

In the same way, E2 analyzed the confusions in P2, P3, and
P4, and reduced the k values in these local regions. The remaining
uncertain samples were further refined. As shown in Fig. 9(c), after
this step, hetero-edges in these partitions were reduced. The overall
uncertainty was reduced from 0.251 to 0.213.
Incremental exploitation of unlabeled samples (requirement
R3). After the modification of labeled nodes and graph edges, a
cleaner data distribution with fewer confusions and uncertainties
was achieved. However, the bar charts showed the ratio of
hetero-edges in partition P1 was still noticeably higher than others
(Fig. 9(c)). As the ratio was determined by both the number of
hetero-edges and the number of homo-edges, E2 speculated that
the reason might lie in the small number of homo-edges at this
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Fig. 12: Propagation overview of the OCT dataset: Label Change view and Sample view after (a) constructing the initial graph and (b)
decreasing local k values.

step. The relatively small number of cat (red) samples (Fig. 1C1)
confirmed his speculation. A balanced number of samples among
classes was needed for classification. When there is a suspicion
that some classes have fewer samples, it is a common practice to
find more data from other sources, e.g., on the internet [63] or in
a larger repository of unlabeled samples. Semi-supervised learning
is no exception. Although the labels were unknown, more samples
can be added to a cluster based on the commonly used sample
similarity measures (e.g., the cosine similarity of two samples).
As a large number of unlabeled samples in STL-10 were not used
as training data in the case study, E2 decided to search in this
large repository and add more unlabeled samples to the predicted
cat cluster. He selected a large set of samples in the red cluster
and loaded 500 more unlabeled samples that were similar (i.e.,
nearest neighbors) to the selected ones. With the update, the ratio
of hetero-edges in P1 was reduced, and the overall uncertainty, as
shown in the Action Trail, was reduced from 0.213 to 0.205.

The increase in nodes inevitably caused some local changes
in the graph structure. E2 thus carried out a second round of
modifications, starting by checking the distribution of labeled
nodes. After the second round, the overall uncertainty was further
improved from 0.205 to 0.186. Although the uncertainty and the
decrease were small, misclassified samples might still exist. To
check whether there were many such samples, E2 further sampled
1% of samples from the test data and labeled them. The accuracy
of the sampled data was 95.06%. He was satisfied with the results
and ended the process.

6.2 Case study on the OCT dataset
The OCT dataset [9] contains the OCT images of the retina, which
are of 4 classes: Normal, Choroidal NeoVascularization (CNV),
Diabetic Macular Edema (DME), and Drusen. Correct classification
of OCT images is important for guiding the diagnosis and treatment
of eye diseases. For this case study, 10,000 images (3,458 CNV,
1,013 DME, 794 Drusen, and 4,735 Normal) were randomly

selected from the dataset, among which 1,000 (370 CNV, 109
DME, 81 Drusen, and 440 Normal) were labeled. As mentioned,
the state-of-the-art deep SSL model, MixMatch [33], was trained
for feature extraction. Another 10,000 images (3,539 CNV, 972
DME, 792 Drusen, and 4697 Normal) were used as the test dataset
to evaluate the performance of the GSSL model. Initially, 92.90%
test accuracy was obtained.
Modifying the graph at the local level (requirements R2 and
R5). An initial graph was first constructed with k = 5, which is the
smallest k that ensures every connected component in the graph has
at least one labeled sample. From the Label Change view, E4 was
satisfied that most unlabeled samples had been propagated to within
three iterations. Considering the relatively large ratio of labeled
samples (10%) and their balanced distribution in the Sample view,
E4 believed it was unnecessary to adjust the labeled samples and
moved on to check the edge distribution in the Sample view. From
the bar charts (Fig. 12(a)), it was observed that the green (P1),
blue (P2), and orange (P3) classes had relatively higher ratios
of hetero-edges. He started his analysis with the green one (P1)
that had the largest ratio. The detailed distribution of hetero-edges
showed that most hetero-edges existed between the green and
blue classes and were around the boundary (Fig. 12A1). Selecting
this region where the hetero-edges resided, higher uncertainties
were observed for samples in these regions. The Information view
further demonstrated that these uncertain samples tended to have
lower-ranked neighbors in the wrong classes (Fig. 13(b)). As with
the STL-10 case, E4 decided to decrease the k values for this
region and the others in partitions P2 and P3. Upon update, the
Sample view showed an obvious reduction of uncertain samples,
and the Action Trail confirmed the improvement with the overall
uncertainty reduced from 0.029 to 0.014 ((Figs. 12(b) and 13(a))).
Refining the graph at the individual level (requirements R2
and R4). For the remaining uncertain samples, E4 zoomed in
locally and further refined the local graph structures by checking
and editing the nodes and edges individually. During the process,
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Fig. 13: The OCT dataset: (a) Action Trail; (b) Information view.

E4 noticed that sample s1 had a high prediction uncertainty
between the DME and Normal classes (Fig. 12(b)). Checking the
propagation path to s1, it was found that the most important edge
was from s3, which also had a high prediction uncertainty between
the DME and Normal classes. E4 consulted with his collaborated
ophthalmologist, who confirmed that both s1 and s3 should be
Normal. s3 had its label propagated from both s2 and s4, where
s2 was Normal, and s4 was DME. Comparing the images of s3
and s4, the domain expert pointed out that s4 was DME because
of the obvious cystoid cavity in the middle (Fig. 12H). The blurred
black patch in the middle of s3 is not considered typical for
DME, but does make s3 visually similar to s4. E4 further checked
the samples that were propagated from s3 and found two more
wrongly predicted samples, s5 and s6. Based on the observations,
E4 deleted the wrong edge from s4 to s3. In collaboration with the
ophthalmologist, E4 corrected the propagation paths for 18 more
uncertain samples. After being updated, the overall uncertainty
was further reduced from 0.014 to 0.011 (Fig. 13(b)).

As with the STL-10 case study, E4 carried out a second round
of modifications. After that, two more labels were provided, and
21 edges were deleted. The uncertainty was reduced from 0.011
to 0.010. Following E2 in the first case study, the ophthalmologist
also sampled 1% of the test data. The accuracy of the sampled data
was 95.00%. Both E4 and the ophthalmologist were satisfied with
the result and ended the modification at this point.

6.3 Post Analysis and Expert Feedback

Post analysis for the case studies. To objectively evaluate
the effectiveness of the interactive construction process using
DataLinker, classification of test data was carried out after each step.
Table 1 shows the step-by-step improvements of the classification
accuracy on the test data. In both cases, the learned model improved
performance with each step. As adjusting labels influenced the
graph structure at a global level, it offered the greatest increase in
classification accuracy. Adjusting the local k values and refining
the nodes and edges modified the graph structures in local regions
and offered a smaller yet steady improvement. Exploiting more
unlabeled samples achieved further improvements on a smaller
scale, as can be expected. A second round of modifications
improved the accuracy further. Using DataLinker, the classification
accuracy on STL-10 was improved from the initial 88.91% to
95.60%, while on OCT was improved from 92.90% to 94.27%,
showing a larger gain on datasets with smaller ratios of labeled
samples.

To evaluate the effectiveness of DataLinker to reduce expert
effort, we also compared it with HSE [65], an effective graph-based
active learning method, on STL-10. After labeling eight samples
using both methods (HSE: samples recommended by the algorithm;

TABLE 1: Improvement of test accuracy after each step using
DataLinker.

Step
STL-10 OCT

Accuracy Gain Accuracy Gain
Initial 88.91% 92.90%
Adjusting labels 92.60% 3.69% - -
Modifying graph 94.40% 1.80% 94.12% 1.22%
Augmenting samples 95.01% 0.61% - -
Second round 95.60% 0.59% 94.27% 0.15%

DataLinker: samples selected by the expert with the help of
interactive visualization), the accuracy achieved with DataLinker
(92.60%) was higher than that of HSE (89.99%). To achieve the
same accuracy of 92.60%, 21 samples were needed to be labeled
for HSE. DataLinker reduced expert effort by 61.90%. This is
because the Label Change view and the Sample view effectively
help experts find more problematic samples to label.
Expert feedback. We had a discussion with both experts after
the case studies. They commented positively on the visualization
for providing an effective and efficient way to improve their
GSSL models. E2 was especially impressed by the 6.69% gain in
classification accuracy. Without visualizations, he usually selected
uncertain samples to label. However, it usually takes more effort
to label more samples for satisfactory performance, which is very
time-consuming. “With the Label Change view and the Sample
view, I can quickly identify regions lacking labeled samples.
Labeling samples in such regions results in relatively large gains.
To achieve similar accuracy, DataLinker reduces my labeling effort
by around 60%,” E2 said. He also pointed out that it would be hard
to improve the prediction accuracy even though the local region
had enough labeled samples but an incorrect graph structure. This
is because the wrong connections between samples will lead to
wrong label propagation and thus low prediction accuracy. For
example, the misclassification of the black monkey in the first case
was caused by the incorrect label propagation from two black dogs.
However, labeling the black monkey will lead to misclassification
of these two black dogs because the label can be propagated from
the monkey to the dogs. “Modifying the graph structure seems
to be a more effective method,” E2 commented. In addition to
effectiveness, both experts found the tool helped them efficiently
locate problematic regions and identify samples/edges that lead to
wrong predictions, thanks to the combination of Label Change view
and Sample view, as well as edge filtering. Both experts also agreed
that the tool helped identify the reasons for wrong predictions. For
example, the interactive identification of outliers, such as the red
panda image in the first case and the wrong edge connecting the
DME and the Normal samples in the second case, were helpful for
improving the graph quality. However, they also pointed out that
they wanted to verify these suspected causes and gain insights into
how to make use of these observations in refining the employed
models. Overall, with DataLinker, the experts now have more
confidence that the unlabeled samples have been used effectively.

7 DISCUSSION AND FUTURE WORK

DataLinker has been successfully applied to two real-world appli-
cations with satisfying results, which demonstrates its effectiveness
and efficiency in improving GSSL models and increasing user
confidence in exploiting unlabeled samples. Image data is used in
these applications to illustrate the idea. However, DataLinker can be
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easily generalized to handle other types of data, such as textual data,
with suitable methods for feature extraction. Only minor changes in
the Information view are needed to display samples of other types.
Apart from generalization, several other improvements are also
desired by experts and will be the subject of our future research:

Reasoning power. DataLinker can help identify causes for wrong
predictions by tracing individual propagation paths. As desired by
experts, one direction of research is to investigate how to go further
from these discrete causes and provide more reasoning power to the
tool. One potential avenue is to integrate automatic outlier detection
methods into DataLinker for automatically detecting more outliers,
which can then be presented to experts for a better understanding
of the root cause of these occurrences. Based on this understanding,
users can figure out the deficiencies in the employed GSSL model
and improve it for better performance.

Streaming data. Currently, DataLinker handles a graph
constructed with the labeled/unlabeled samples at hand. In
real-world applications, unlabeled samples may come in over time
in a streaming manner. In such a scenario, more timely updates
of the learning models are desirable. An interesting direction for
future research is to study how we can effectively visualize the
dynamic changes in a graph structure and incrementally update
GSSL models with the arrival of new unlabeled samples.

Action confidence. DataLinker currently incorporates expert
action as ground truth. For example, it is assumed that labels
provided by experts are correct, and the deleted edges are
truly wrong. While this assumption is correct most of the time,
sometimes experts can make mistakes. To make the tool more
robust to the noise introduced by experts, a possible solution
is to evaluate the confidence of each action and take this into
consideration during model construction and visualization.

Learning curve. The visual metaphors used in DataLinker, such as
river flow, bar chart, Scented Widgets, and Voronoi-based partition,
are all common ones. Thus, the experts can quickly grasp these
visual encodings. It usually takes the experts 10-30 minutes to
become familiar with DataLinker, especially the interactions. The
experts believe that the benefits brought by the tool via interactive
visualization undoubtedly outweigh the learning cost. To further
reduce the learning cost, we also added a tour function to help
experts quickly become familiar with the visual encodings and
interactions of DataLinker.

Generalization to other datasets. DataLinker can help experts
improve the quality of graphs. However, participation in the graph
construction for each dataset is still inefficient. It would be desirable
to generalize expert effort from one graph to other datasets. A
possible solution is to use the model trained on the refined graph
to make predictions on unlabeled samples of other datasets. The
predictions with high confidence can be treated as candidate ground
truth labels to refine other models. This strategy is also widely used
in the field of machine learning [66], [67].

8 CONCLUSION

In this paper, we have presented DataLinker, a visual analysis tool
to help machine learning experts interactively construct a high-
quality graph for better exploitation of unlabeled samples in GSSL.
A coordinated and hybrid visualization has been developed to help
experts understand label propagation along graph edges. To support
the visualization of large graphs, hierarchical presentation and
filtering of graph nodes and edges are provided. The visualization

is integrated with an interactive graph construction method and
provides a coarse-to-fine strategy to progressively construct high-
quality graphs. Two case studies were conducted to demonstrate
the effectiveness of DataLinker.
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