
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

Variational Autoencoders for Localized Mesh
Deformation Component Analysis

Qingyang Tan†, Ling-Xiao Zhang†, Jie Yang, Yu-Kun Lai and Lin Gao∗

Abstract—Spatially localized deformation components are very useful for shape analysis and synthesis in 3D geometry processing.
Several methods have recently been developed, with an aim to extract intuitive and interpretable deformation components. However,
these techniques suffer from fundamental limitations especially for meshes with noise or large-scale nonlinear deformations, and may
not always be able to identify important deformation components. In this paper we propose a mesh-based variational autoencoder
architecture that is able to cope with meshes with irregular connectivity and nonlinear deformations, assuming that the analyzed
dataset contains meshes with the same vertex connectivity, which is common for deformation analysis. To help localize deformations,
we introduce sparse regularization in this framework, along with spectral graph convolutional operations. Through modifying the
regularization formulation and allowing dynamic change of sparsity ranges, we improve the visual quality and reconstruction ability of
the extracted deformation components. Our system also provides a nonlinear approach to reconstruction of meshes using the
extracted basis, which is more effective than the current linear combination approach. As an important application of localized
deformation components and a novel approach on its own, we further develop a neural shape editing method, achieving shape editing
and deformation component extraction in a unified framework, and ensuring plausibility of the edited shapes. Extensive experiments
show that our method outperforms state-of-the-art methods in both qualitative and quantitative evaluations. We also demonstrate the
effectiveness of our method for neural shape editing.

Index Terms—3D Meshes, Variational Autoencoder, Graph Convolution, Sparsity Regularization

F

1 INTRODUCTION

W ith the development of 3D scanning and modeling
technology, mesh data sets are becoming increasingly

popular. By analyzing these data sets with machine learn-
ing techniques, the latent knowledge can be exploited to
advance geometry processing algorithms. In recent years,
many research areas in geometry processing have benefited
from this methodology, such as 3D shape deformation [1],
3D facial and human body reconstruction [2], [3], shape
segmentation [4], etc. For shape deformation and human
reconstruction, mesh sequences with different geometry and
the same connectivity play a central role. Different geomet-
ric positions describe the appearance of the 3D mesh model
while sharing the same vertex connectivity makes process-
ing much more convenient. In such works, a key procedure
is to build a low-dimensional control parametrization for
the mesh data set, which provides a small set of intu-
itive parameters to control the generation of new shapes.
For articulated models such as human bodies, the rigging
method embeds a skeleton structure in the mesh to provide
such a parametrization. However, the rigging operation
is restrictive and does not generalize to other deformable
shapes (e.g. faces). Parameterizing general mesh datasets

• † Authors contributed equally
• ∗ Corresponding author is Lin Gao (gaolin@ict.ac.cn)
• Qingyang Tan, Ling-Xiao Zhang, Jie Yang and Lin Gao are with the

Beijing Key Laboratory of Mobile Computing and Pervasive Device,
Institute of Computing Technology, Chinese Academy of Sciences.
QingYang Tan is also with University of Maryland, College Park, USA.
Jie Yang and Lin Gao are also with University of Chinese Academy of
Sciences, Beijing, China.
E-mail: {zhanglingxiao, yangjie01, gaolin}@ict.ac.cn, qytan@cs.umd.edu

• Yu-Kun Lai is with School of Computer Science & Informatics, Cardiff
University, UK.
E-mail: LaiY4@cardiff.ac.uk

which allows intuitive control in generating new shapes
becomes an important and urgent research problem.

Early work extracted principal deformation components
by using Principal Component Analysis (PCA) to reduce
the dimensionality of the data set. However, such deforma-
tion components are global which do not lead to intuitive
control. For example, when a user intends to deform the
shape locally by specifying locally changed vertex positions
as boundary conditions, the deformed shape tends to have
unrelated areas deformed as well, due to the global nature
of the basis. To address this, sparse localized deforma-
tion component (SPLOCS) extraction methods were recently
proposed [5], [6], [7] on mesh deformation datasets with
the same vertex connectivity. In these works the sparsity
term is involved to localize deformation components within
local support regions. However, these previous works suffer
from different limitations: as we will show later, [5], [6]
cannot handle large-scale deformations, and [7] is sensitive
to noise so cannot extract the main deformation components
robustly. Especially, the methods [5], [8] are suitable for
analyzing localized shape deformation without large-scale
rotations. In contrast, our method is designed to handle
shape collections with large-scale nonlinear deformations
while also performing well on shape collection with linear
deformations.

We propose a mesh-based variational autoencoder
(VAE) architecture to extract meaningful local deformation
components. We represent deformations of shapes in
the dataset based on a recent effective representation [9]
which is able to cope with large deformations. We
then build a variational autoencoder to transform the
deformation representation to encoding in a latent space.
Each convolutional layer involves convolutional operations

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

defined on the mesh as a graph with arbitrary topology.
We then introduce sparsity regularization to the weights
in the fully-connected layers to promote identifying sparse
localized deformations. In existing sparse deformation
component extraction methods [5], an important factor
that affects the extracted components is the sparse range,
which includes globally tunable parameters deciding
how local the extracted deformation components should
be, but often a single global setting does not fit all the
deformation components. To allow more flexible sparsity
ranges while avoiding the need for adjusting parameters in
the regularization term, we propose a novel sparsity weight
formulation with sparsity ranges automatically learned, and
adapted to suit individual deformation components. The
variational autoencoder structure ensures that the extracted
deformation components are suitable for reconstructing
high quality shape deformations.

Our main contributions are:

• This is the first work that exploits convolutional
neural network (CNN) based variational
autoencoder with spectral graph convolutional
operators for sparse deformation component
extraction on meshes with irregular connectivity and
large deformation.

• To achieve this, our method exploits the nonlin-
ear representation capability of variational autoen-
coders, along with a sparse regularization. As a
result, it is able to extract intuitive localized defor-
mation components. It can also deal with datasets
with large-scale deformations, and is insensitive to
noise.

• We develop a formulation that automatically learns
adaptive sparsity ranges for individual deformation
components, leading to improved deformation ex-
traction.

The method can extract important components even for
challenging cases and generalizes well to reconstruction of
unseen data. Extensive qualitative and quantitative experi-
ments demonstrate that our method outperforms the state-
of-the-art methods. We show an example of extracted defor-
mation components (highlighted in blue) in Fig. 1, which are
then combined to synthesize a novel and plausible shape.
The architecture of our proposed network is illustrated in
Fig. 2.

This paper substantially extends our original conference
version [10] in the following ways: We improve the overall
system architecture, by replacing the autoencoder archi-
tecture with a variational autoencoder and introducing a
new sparsity regularization term with the sparsity ranges
automatically learned. We further build our architecture
based on graph convolutions in the spectral domain. As
a result, our new architecture has better reconstruction
and generation ability, and can derive more natural de-
formation components. We further introduce a framework
for shape editing with neural design. It achieves shape
editing by optimizing the latent vector such that the de-
coded shape satisfies the given control point constraints.
Our method is capable of producing plausible deformed
shapes for local and/or large-scale deformations, with only
a small number of control points. We also show experi-

Figure 1. Synthesizing a new mesh model by combining deformation
components derived from the Swing dataset [11] using our method with
equal weights.

mentally that our method with graph convolutions in the
spectral domain achieves better results than with graph
convolutions in the spatial domain, as used in [10]. The
source code is available at https://github.com/IGLICT/
MeshVAE Component Analysis.

2 RELATED WORK

2.1 Principal Deformation Component Analysis

With the increasing availability of 3D shapes, analyzing
shape collections is becoming more important. Thanks to
advances of shape matching methods [12], [13] and non-
rigid registration technology [14], mesh data sets for de-
formable shapes with the same vertex connectivity are be-
coming much more common. Early work employs PCA to
compress the mesh data set and extract global deformation
components [15]. The deformation components from the
PCA are globally supported, which is not intuitive for shape
editing and deformation, especially when the user wants to
deform the shape locally in the spatial domain [16]. Sparse
regularization is effective in localizing deformations [17].
However, standard sparse PCA [18] does not take spatial
constraints into account and therefore the extracted de-
formation components do not aggregate in local spatial
domains. By incorporating spatial constraints, a sparsity
term is employed to extract localized deformation com-
ponents [5], [8], which performs better than region-based
PCA variants (clustered PCA) [19] in terms of extracting
meaningful localized deformation components. However, it
uses Euclidean coordinates which cannot represent shapes
with large rotations. Later work addresses this limitation
by using more advanced shape representations including
deformation gradients [6] and edge and dihedral angle
representations [7]. However, the former cannot cope with
rotations larger than 180◦ which are very common in ani-
mated mesh sequences, while the latter is not sensitive to
the scale of the deformations which makes [7] not robust to
noise. Unlike existing methods, we propose to exploit mesh-
based variational autoencoders with sparse regularization
along with an effective deformation representation [9] to ex-
tract high-quality deformation components, outperforming
existing methods.

2.2 Neural Network Applications for 3D Shapes

Neural networks have achieved great success in different
areas of computer science. Compared with 2D images, 3D
shapes are more difficult to process, mainly due to their

 https://github.com/IGLICT/MeshVAE_Component_Analysis
 https://github.com/IGLICT/MeshVAE_Component_Analysis

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

Figure 2. The proposed network architecture (a) and the spectral graph convolution (b). The network is built based on the spectral convolutional
operation and with a variational autoencoder structure, and we set d′ = 9. The input and output are mesh features X ∈ RV×9. K is the dimension
of the latent space and we set K = 50. Cstd and C are the weights of fully connected layers to map the features to the latent space. The spectral
graph convolution uses graph Fourier transform to filter the features in the spectral domain, and more details are described in Sec. 4.1.

irregular connectivity and limited data availability. Nev-
ertheless, some effort was made in recent years. For 3D
object recognition, Su et al. [20] and Shi et al. [21] represent
3D shapes using multi-view projections or by converting
them to panoramic views and utilizing 2D CNNs. Maturana
and Scherer [22] treat 3D shapes as voxels and extend 2D-
CNNs to 3D-CNNs to recognize 3D objects. In addition, Li
et al. [23] analyze a joint embedding space of 2D images
and 3D shapes. Tulsiani et al. [24] abstract complex shapes
using 3D volumetric primitives. For 3D shape synthesis, Wu
et al. [25] use deep belief networks to generate voxelized
3D shapes. Girdhar et al. [26] combine an encoder for 2D
images and a decoder for 3D models to reconstruct 3D
shapes from 2D input. Yan et al. [27] generate 3D models
from 2D images by adding a projection layer from 3D to
2D. Choy et al. [28] propose a novel recurrent network to
map images of objects to 3D shapes. Sharma et al. [29] train
a volumetric autoencoder using noisy data with no labels
for tasks such as denoising and completion. Wu et al. [30]
exploit the power of the generative adversarial network
with a voxel CNN. In addition to voxel representation,
Sinha et al. [31] propose to combine ResNet and geometry
images to synthesize 3D models. Li et al. [32] and Nash and
Williams [33] propose to use neural networks for encoding
and synthesizing 3D shapes based on pre-segmented data.
Some works [34], [35] propose novel networks based on
Signed Distance Functions (SDFs) for representing detailed
geometry of objects with arbitrary topology. The works [36],
[37] further synthesize structured 3D shapes, but these
methods mainly work for man-made objects and also re-
quire semantic segmentation of training meshes. All the
methods above for synthesizing 3D models are restricted by
their representations or primitives adopted, which are not
suitable for analyzing and generating 3D motion sequences
with rich details, and none of these methods are designed
for extracting deformation components.

2.3 Convolutional Neural Networks (CNNs) on Arbitrary
Graphs and Meshes

Traditional CNNs are defined on 2D images or 3D vox-
els with regular grids. Some research has explored the
potential to extend CNNs to irregular graphs (such as
meshes) through construction in the spectral domain [38],
[39], [40] or the spatial domain [41], [42] focusing on spatial

construction. Such representations were exploited in recent
work [43], [44] for finding correspondences or perform-
ing part-based segmentation on 3D shapes. Our method is
based on representative constructions in the spectral domain
and utilizes this to build a variational autoencoder for
analyzing deformation components.

3 FEATURE REPRESENTATION

To represent large-scale deformations, we adapt a recently
proposed deformation representation [9]. Given a dataset
withN shapes with the same vertex connectivity, each shape
is denoted as Sm, m ∈ [1, . . . , N]. pm,i ∈ R3 is the ith

vertex on the mth mesh model. The deformation gradient
Tm,i ∈ R3×3 representing local shape deformations can be
obtained by minimizing:

arg min
Tm,i

∑
j∈N(i)

cij‖(pm,i−pm,j)−Tm,i(p1,i−p1,j)‖22. (1)

where cij is the cotangent weight cij = cotαij +cotβij , and
αij and βij are angles opposite to the edge connecting ver-
tices vi and vj , and N(i) is the index set of 1-ring neighbors
of the ith vertex. By polar decomposition Tm,i = Rm,iSm,i,
the affine matrix Tm,i ∈ R3×3 can be decomposed into
an orthogonal matrix Rm,i describing rotations, and a real
symmetry matrix Sm,i for scale and shear deformations. The
rotation matrix Rm,i can be rewritten as rotating around an
axis ωm,i by an angle θm,i. However, the mapping from the
axis-angle representation to rigid rotation is surjective but
not one to one: The rotation angles and axes in the set Ωm,i

correspond to one rigid rotation:

Ωm,i = {(ωm,i, θm,i + t · 2π), (−ωm,i,−θm,i + t · 2π)} (2)

where t is an arbitrary integer. To overcome this, [9]
proposes a novel representation to select the unique and
consistent axis-angle representation by solving a global op-
timization to minimize the differences between adjacent
rotation axes and angles.

For each vertex i of shape m, we obtain feature qm,i =
{rm,i, sm,i} ∈ R9 by extracting from matrices log(Rm,i) and
Sm,i. To fit the range of activation function tanh (explained
later in Sec. 4.2) and to avoid the gradient vanishing prob-
lem [45], we need to scale the feature values. Denote by
rjm,i and sjm,i the jth element of rm,i and sm,i respectively.
Separately for each element j, we linearly scale rjm,i and

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

sjm,i from [rmin, rmax] and [smin, smax] to [−0.95, 0.95] to
avoid the gradient vanishing problem [45] to acquire pre-
processed r̃jm,i and s̃jm,i, where rmin = minm,i,j r

j
m,i, and

rmax, smin, smax are defined similarly. Then, we have
Xm,i = {r̃m,i, s̃m,i} as the deformation feature for vertex
i of shape m.

4 NETWORK ARCHITECTURE

In this section, we present our framework including con-
volutional operations on irregular meshes, overall network
structure, sparsity constraints and reconstruction loss.

4.1 Convolutional Operation
CNNs have demonstrated power in several computer vi-
sion tasks, including classification, object detection, seman-
tic segmentation, etc. Researchers have extended CNNs to
graphs without regular grids, including techniques in both
spatial and spectral domains. In our network, we choose
the convolutional operator in the spectral domain due to
its superior performance, rather than the spatial domain as
used in [10].

We follow [40] to build our spectral graph CNN. We use
the same formulation of input and output data as in the
spatial domain. Besides input and output data, we define
the graph of a mesh as G = (V, E ,W), where V is the set
of vertices and |V| = V , E is the set of edges, W ∈ RV×V

is the weighted adjacency matrix on the edges of the graph,
and V is the number of vertices. The operation is illustrated
in Fig. 2 (b).

We can denote the spectral graph convolution used in
the network as

Y =
H−1∑
h=0

Th(L̃)Xθh (3)

where X ∈ RV×d and Y ∈ RV×d′
are the input and

output features, H is the order of the filter, which means
the spectral filter is H-localized, i.e. only acting on local
neighborhoods with a distance limit of H edges, Th(L̃) ∈
RV×V is the Chebyshev polynomial of order h evaluated at
L̃, and θh ∈ Rd×d′

are trainable weights, d and d′ are the
dimensions of input data and output data respectively. L̃ =
2L/λmax− In is the scaled Laplacian matrix, where λmax is
the maximum eigenvalue of L and L = −D−1/2WD−1/2

is the normalized graph Laplacian matrix, In is the n-
dimensional identity matrix, D ∈ RV×V is the diagonal
degree matrix where Dii =

∑
j Wij is the ith entry of the

diagonal of the degree matrix. Please refer to [40] for more
details. We use H = 3 in all experiments and we compare
the generalization ability of different values of H in Sec. 6.

4.2 Network Structure
The whole network pipeline is illustrated in Fig. 2 (a). It
is built based on the convolutional operation and with a
variational autoencoder structure. The input to the encoder
part contains preprocessed features which are shaped as
X ∈ RV×9, where 9 is the dimension of the deformation
representation for a vertex. Then we apply a convolutional
layer with tanh as the output activation function. We tested
alternative functions like ReLU , but they performed worse

in the quantitative analysis. The output from the convolu-
tional layer is reshaped as a vector f ∈ Rd′V , where d′ is the
output dimension of the convolutional layer. We use a fully
connected layer with C ∈ RK×d′V and Cstd ∈ RK×d′V to
map the features to the latent space z ∈ RK where K is the
dimension of the latent space:

z = µ+ σε = Cf + Cstdfε, (4)

where ε = N (0, I) is the Gaussian noise with zero mean
and unit variation. To reconstruct the shape representation
from z, we use the decoder, which basically mirrors the
encoder steps. We first use the transpose of C to transfer
from the latent space back to the feature space:

f̂ = CTz. (5)

For the decoder, we use the same number of convolutional
layers and activation function as the encoder. The output of
the whole network is X̂ ∈ RV×9 which has the identical
dimension as the input and can be scaled back to the
deformation representation [9] and used for reconstructing
the deformed shape.

The tied weight formulation of the variational autoen-
coder makes it more like PCA, and we assume that F ∈
RN×d′V is assembled by stacking all the features f extracted
from the convolutional layer for N models in the dataset.
Then, C can be seen as K deformation components of F,
and Z ∈ RN×K stacks the latent representations of the N
models in the dataset, which is treated as combinational
weights to reconstruct the shape.

4.3 Sparsity Constraints and Reconstruction Loss

Following the idea from [5], we use group sparsity (`2,1
norm) to urge deformation components to only capture
localized deformations. The constraints are added on C as:

Ω(C) =
1

K

K∑
k=1

V∑
i=1

∆ik‖Ci
k‖2, (6)

where Ci
k is the d′-dimensional vector associated with com-

ponent k of vertex i, and ∆ik is a sparsity regularization
weight.

Different from the original fixed sparsity constraints
used in [10], we determine the sparsity weights as follows

∆ik = δ(dik,dk) =

{
0 dik ≤ dk

1 dik > dk.
(7)

Here, δ(·, ·) is a function that maps a geodesic distance
to 0 or 1 on the two sides of dk, where dk, 1 ≤ k ≤ K is a
learnable parameter in the kth entry of d. d allows different
sparsity ranges for different components; such flexibility
leads to more effective deformation component extraction.
We initialize dk as 0.2, and dk is directly optimized as
learnable parameters. Since d is learned during training,
we also avoid the manual adjustment process for dmin

and dmax required for the method in [10]. During training,
increasing dk (1 ≤ k ≤ K) (thus setting more δik to 0) will
decrease Ω(C). To avoid degenerate solution with all dk to
be ones, we introduce a regularization term

Φ(d) = ‖d‖2 (8)

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5

TABLE 1
Errors of applying our method to generate unseen data from Swing [11], Horse [46], Face [47], Jumping [11], Humanoid, a fat person (ID: 50002)
from the MPI DYNA [48] datasets, SCAPE [49] and Female Human [50]. We train all these methods with 50 components (K = 50). We compare

different methods with Erms and STED including methods [5], [6], [8] that are suitable for deformations and methods [7], [9], [10] that are suitable
for non-linear deformations. For the sake of completeness, we also evaluate these methods [5], [6], [8] for linear deformations on non-linear

deformation datasets such as SCAPE and Swing. Especially the STED error is designed for motion sequences with a focus on ‘perceptual’ error
of models. The STED error of SCAPE and Female Human are not given because they are not sequential datasets, so STED is not applicable.

Dataset Metric
Methods for Linear Deformations Methods for Non-linear Deformations

Bernard Huang Neumann Wang Gao Tan Ourset al. [8] et al. [6] et al. [5] et al. [7] et al. [9] et al. [10]

Swing
Erms 21.7586 24.4950 15.1941 23.3055 25.2994 14.0836 13.3625

STED 0.1139 0.04344 0.08309 0.04250 0.05214 0.03789 0.03352

Horse
Erms 20.1994 18.0624 10.5185 29.6090 42.4180 12.9605 12.4006

STED 0.4111 0.05273 0.08074 0.04332 0.07841 0.04004 0.0397

Face
Erms 2.9853 12.3221 2.9106 8.5620 2.9260 2.9083 1.2047

STED 0.02662 0.01827 0.008611 0.01320 0.009676 0.007344 0.007135

Jumping
Erms 45.8762 37.9915 47.8150 44.3362 22.3001 24.4827 20.9021

STED 0.4323 0.06305 0.1728 0.05400 0.04995 0.04862 0.04592

Humanoid
Erms 6.6320 16.1995 14.3610 60.9925 5.6510 3.4912 2.9795

STED 0.04612 0.02247 0.07319 0.03757 0.01283 0.01313 0.01234

Fat
Erms 5.7207 8.1438 5.5785 47.0212 5.0909 4.7795 3.2062

STED 0.1505 0.02185 0.06059 0.02511 0.01453 0.01625 0.01241

SCAPE
Erms 14.6233 24.6597 16.3970 79.9577 17.1754 13.5560 11.8712

STED / / / / / / /

Female
Erms 6.3172 9.9553 7.2462 25.1312 10.3842 5.8214 5.2471

STED / / / / / / /

to suppress this. Since the gradient of δ does not always
exist, we use the straight through estimator (STE) [51] to
approximate it.

dik denotes the normalized geodesic distance from the
ith vertex to the cthk vertex. ck is the index of the center
point of component k and is defined as:

ck = argmax
i
‖Ci

k‖2. (9)

ck is updated after optimizing C in each training itera-
tion. Since ck corresponds to the maximum weight in Ck,
when the kth element of z changes, point ck’s feature will
deform the most. Thus, we use Eq. (9) to define the center
point. To fit the training process of the neural network,
we precompute all the geodesic distances between two
vertices using [52], which are then normalized by the largest
pairwise geodesic distance.

Since CTZ = (CTA)(A−1Z), for any invertible matrix
A, to avoid trivial solutions with arbitrarily small C values
and arbitrary large Z values, we also add constraints to Z
as a regularization term:

Π(Z) =
1

K

K∑
j=1

max((max
m
|Zm,j | − θ), 0), (10)

where Zm,j is the weight of the jth element of the mth

model, and θ is a small positive number. We set θ = 5 in
all the experiments. We use Mean Square Error (MSE)

Lrecon =
1

N

N∑
m=1

‖X̂m −Xm‖22 (11)

to urge the network to reconstruct the representation of
models, where Xm and X̂m are input and reconstruction
of mth model (data term), and the KL divergence

LKL = DKL(q(z|f̃)‖p(z)) (12)

promotes the latent space to form a Gaussian distribution,
where p(z) is the Gaussian prior distribution and q(z|f̃) is
the posterior distribution given input feature f̃ . Finally, the
total loss function is:

L = Lrecon+λKLLKL+λΩΩ(C)+λΠΠ(Z)+λΦΦ(d), (13)

We initialize dk = 0.2, 1 ≤ k ≤ K for all K components
and set λKL = 0.01, λΩ = 1000, λΠ = 1, λΦ = 1. We use
ADAM algorithm [53] and set the learning rate to 0.001 to
train the network.

5 APPLICATIONS

Once trained, the network can be used to perform many use-
ful tasks, including dimensionality reduction, reconstruc-
tion, component analysis, shape synthesis and neural shape
editing. The first two applications are straightforward, so we
now give details for performing the last three applications.

5.1 Component Analysis
The matrix C corresponds to the localized deformation com-
ponents. We assume the rth model is the reference model
(which can be the first model in the dataset) which has a

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

(a) Neumann et al.

(b) Ours

Figure 3. Components of the horse dataset [46] extracted by [5] and
our method. The method [5] cannot cope with large deformations and
suffers from artifacts since it is designed to deal with linear deformations.
Moreover, our method also produces more plausible results for small
components such as hooves, thanks to the dynamic sparsity constraints.

(a) (b)

Figure 4. Errors of applying our model to generate unseen data, using a
fat person (ID: 50002) from the MPI DYNA [48] dataset. We randomly
select one model from every ten models for training and remaining
for testing. We evaluate metrics Erms and STED error with different
component numbers. Our method outperforms other methods even for
limited numbers of components. The methods shown with dashed lines
are methods for linear deformations, and others are methods for non-
linear deformations.

latent vector Zr . To analyze the ith deformation component,
we calculate the minimum and maximum values of the ith

element of the embedding, denoted by Zimin
= minm Zm,i

and Zimax
= maxm Zm,i. We can then obtain latent vectors

Ẑimin
and Ẑimax

corresponding to the two extreme values
of the ith component by replacing the ith component of Zr

with Zimin
and Zimax

, respectively. Applying the vectors
to the decoder produces the output mesh features X̂min

and X̂max. We work out the differences ‖X̂min −Xr‖ and
‖X̂max −Xr‖ and the one that has larger distance from the
reference model Xr is chosen as the representative shape
for the ith deformation component, with the corresponding
latent vector denoted as Zih . The displacement of each
vertex feature indicates the strength of the deformation,
which can be visualized to highlight changed positions.

5.2 Shape Synthesis

To synthesize new models, the user can specify a synthesis
weight wsi for the ith deformation component, and the
deformed shape in the latent space can be obtained as:

zsi = Zr,i + (Zih − Zr,i)×wsi , (14)

Figure 5. Components extracted by our method on the Fat dataset
when K is beyond 50. Bigger K will give better reconstruction ability
but also leads to extracting components of weak semantics and small
deformation.

(a) (b)

Figure 6. We use limited control points to reconstruct unseen data
in the humanoid dataset, and report the generalization errors. The
result shows that our method performs well, consistently with smallest
errors in both metrics. The methods shown with dashed lines are
methods for linear deformations, and others are methods for non-linear
deformations.

where zsi represents the ith element of obtained weight
zs in the latent space. Then, by feeding zs in as input to
the decoder, the synthesized model feature can be obtained
which can be used for reconstructing the synthesized shape.
The interpolation from wsi = 0 to wsi = 1 in the latent
vector is an interpolation from the reference model to the
model with the ith deformation component. If the user
wants the synthesized result to contain less characteristic
of the ith deformation component, he/she can decrease wsi .

Besides, we can produce plausible new shapes from a
standard Gaussian sampling in the latent space because
of the strong generative capability of VAE, and details are
shown in Sec. 6.2.2.

5.3 Neural Shape Editing
To edit shapes, users specify a few control points on the
mesh and move one or more of them to deform the shape.
In this paper, we propose a novel neural shape editing
method. On the one hand, the results of shape editing
will avoid artifacts and side-effects with the help of local
deformation components, so this provides a natural and
important application for the key technique developed in
the paper. On the other hand, unlike existing methods [9]
that treat data-driven shape editing as two steps, separately
for deformation component extraction and shape editing,
our method formulates both steps in a unified neural net-
work framework. This further improves the plausibility of
the edited shapes.

Specifically, we introduce a learning-based framework
for shape editing, based on our sparse deformation compo-

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

(a) Neumann et al. (b) Huang et al. (c) Tan et al.

(d) Ours

Figure 7. Comparison of deformation components extracted from a fat person (ID: 50002) in the MPI DYNA [48] dataset, using different methods
including (a) Neumann et al. [5], (b) Huang et al. [6], (c) Tan et al. [10] and (d) Ours. Our method extracts more plausible components than other
methods. [5] cannot extract plausible components because it focuses on linear deformation. [6] and [10] cannot cope with small components while
our method produces better results because of the dynamic sparsity constraints.

(a) Huang et al. (b) Neumann et al. (c) Bernard et al. (d) Our

Figure 8. Comparison of extracted components on the Female Human
dataset, where the component extracted by our method is similar to
Bernard et al.’s method. Our methods mainly focuses on nonlinear
deformation shape collections. The results illustrate that our method
also copes well with linear deformation shapes collections and is able
to obtain similar results as state-of-the-art method [8] on linear shape
collections.

nent analysis framework. Given the deformation represen-
tation X of the input model, the latent vector z is computed
through the encoder. Then, the decoded feature X̂ can be
fed into a differentiable layer F that is able to reconstruct 3D
vertex coordinates from feature X̂. Finally, we minimize the
following editing loss Ledit to optimize the vertex positions
to satisfy the position constraints of target control points.
The loss term Ledit is defined as

Ledit(z) = ||M(F (Dec(z)))−Q||22, (15)

where F is the differentiable layers that can reconstruct the
3D vertex coordinates from the deformation representation
X0, Dec is the decoder of VAE and M is a function that
gathers vertices corresponding to the control point set Q.
Here, the layer F is implemented as follows. Given the
decoded ACAP feature X̂, which includes the local rotation
at each vertex, the vertex positions p′ of the deformed
mesh can be worked out by solving a least-squares problem,
leading to a linear system [37], [54]: Lpp

′ = b, where Lp is
discrete Laplace-Beltrami matrix which is pre-computed, p′

is the unknown vertex positions, b is the vector, which can
be derived directly from X̂. The whole process of solving
the linear system is differentiable and implemented using
TensorFlow [55]. Please refer to Appendix C for more details
about the implementation.

During the optimization, we fix the weights of the whole
network, and only optimize the latent vector z. We use
ADAM algorithm and set the learning rate to 0.01. The
loss converges after 1000 steps. Note that the neural shape
editing is different from the sparse control ability experi-
ments in Sec. 6.1. The latter needs to extract the components
explicitly and then uses traditional deformation methods to
deform the shape. In contrast our learning-based framework
purely uses the neural network to deform the shape without
explicitly extracting any deformation components or relying
on existing deformation method. The evaluations are shown
in Sec. 6.4.

6 EXPERIMENTAL RESULTS

6.1 Quantitative Evaluation

In this section, We compare the generalization ability of our
method with several state-of-the-art methods. These meth-
ods are divided into two types. Methods dealing with linear
deformations include original SPLOCS [5], SPLOCS with
deformation gradients [6], and Bernard et al. [8]. Methods
dealing with nonlinear deformations includes Wang et al.’s
method [7], SPLOCS with the feature from [9] as used in this
paper, and our original conference version [10]. Although
these linear methods are designed for linear deformation
datasets, and usually produce less satisfactory results on
nonlinear datasets, we compare linear and nonlinear meth-
ods both on strong nonlinear deformation datasets for the
sake of completeness.

For the SCAPE dataset, we randomly choose 36 mod-
els as the training set and the remaining 35 models as
the test set. After training, we compare the generalization
error on the test set with different methods, using Erms

(root mean square) error [56]. For sequential datasets and

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

Figure 9. Top row: key frames of a flag dataset we created through physical simulation. Bottom row: synthesized models corresponding to the first
four deformation components extracted by Wang et al. [7] and our method. We also present the synthesis results by combining the four components
with equal weights, which show that our extracted components are more plausible.

(a) Ground Truth (b) Neumann et al. (c) Bernard et al.

(d) Huang et al. (e) Wang et al. (f) Ours

Figure 10. Visual comparison of reconstruction results of the SCAPE
dataset [49]. [5], [8] and [6] are not designed to handle large-scale
nonlinear deformation analysis, so it is understandable that these
methods do not work well.

Female dataset [50], we randomly select one model from
every ten models for training and remaining for testing
due to the similarity of adjacent shapes. The sequential
datasets include Swing [11], Horse [46], Face [47], Jump-
ing [11], Humanoid, a fat person (ID: 50002) from the MPI
DYNA [48] datasets. For all used dataset in our paper, we
also calculate the variation of rotation angles of each vertex
in regions segmented manually to represent the amount of
nonlinearity. Please refer to Appendix A for more details. We
compare Erms error as well as STED error [57], which is
designed for motion sequences with a focus on ‘perceptual’
error of models. The results are shown in Table 1. Although
for the Horse dataset [58], the method [5] has a lower Erms

error than our method, their method cannot cope with such
dataset with large deformations and suffers from artifacts
since it is designed for handling linear deformations, as
shown in Fig. 3.

In Fig. 4, we evaluate quantitative performance under
metric Erms and STED with different component numbers
from 10 to 80 on the Fat person dataset. The methods shown

with dashed lines are linear methods, and others are nonlin-
ear methods. The results indicate that our method has better
quantitative reconstruction results than other methods, with
lower reconstruction errors when sufficient components are
used. Comparison with SPLOCS using [9] demonstrates
that our network is effective, beyond the benefits from the
representation. Besides, we find that the increasing size of
latent space is actually good for reconstruction. From Fig. 4,
it shows that the descent of Erms becomes slower when the
number of components is beyond 50. So indeed, increasing
K leads to better reconstruction. However, as the number
of components increases beyond 50, the components with
vague semantics and small deformation would appear, as
shown in Fig. 5. Besides, 50 is the best trade-off point
on these curves, which is known as the ‘elbow point’ in
the literature [59]. In all used datasets in our paper, 50
components are enough for extracting all meaningful local
components with good quantitative performance, so we
choose 50 components for our experiments setting.

In Fig. 6, we compare the sparse control ability of dif-
ferent methods on Humanoid dataset. The methods shown
with dashed lines are linear methods, and others are nonlin-
ear methods. We randomly select a few points on the mesh
and test the ability of different methods to recover the whole
mesh through these limited control points. This situation is
similar to the scenario that users put limited control points
on significant joints to acquire models with meaningful
actions. To obtain control points evenly distributed on the
mesh surface, we randomly choose the first point, and then
use Voronoi sampling to acquire the other points. For both
methods, we choose 50 components, and for [5] and [8], we
solve the reconstruction problem directly using the limited
points, while for the other methods, we use data-driven
deformation with the extracted components. The results
show that our method performs well, consistently with
smallest errors in both metrics.

In Fig. 7, we compare the deformation components ex-
tracted from a fat person (ID: 50002) in the MPI DYNA [48]
dataset, using different methods including (a) Neumann et
al. [5], (b) Huang et al. [6], (c) Tan et al. [10] and (d) Ours.
Our method extracts more plausible components than other
methods. [5] cannot extract plausible components because it
focuses on linear deformation. [6] and [10] cannot cope with
small components while our method produces better results

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

(a) Bernard et al. (b) Neumann et al. (c) Huang et al.

(d) Ours

Figure 11. Comparison of deformation components located in similar
areas, which are extracted by different methods including (a) Bernard
et al. [8], (b) Neumann et al. [5], (c) Huang et al. [6] and (d) Ours.
Our method can handle large-scale rotation better than the other linear
methods without artifacts like irrational amplification and shrinkage.

because of the dynamic sparsity constraints.
In Fig. 8, we evaluate the qualitative results in a linear

deformation shape collection [50] for a fair comparison with
methods designed for such cases. Although our method
mainly focuses on nonlinear datasets, the results show that
our method also has similar performance as the state-of-
the-art method [8] in the linear deformation shape set [50].
In Table 1, we evaluate the quantitative performance on this
linear deformation shape set. Under the Erms metric, our
method has slightly improved the performance, compared
to the method [8].

(a) Neumann et al.

(b) Huang et al. (c) Ours

Figure 12. Synthesis results with different components of the SCAPE
dataset [49]: The first row contains the components about lifting the left
leg extracted by [5] (left column) and our method (right column) with
weights 0.3, 0.7 and 1.1. The second row contains the components
about lifting the left arm extracted by [6] (left column) and our method
(right column) with weights 0.3, 0.7 and 1.1.

6.2 Qualitative Evaluation
6.2.1 Flag Dataset
To verify our method’s ability to capture primary defor-
mation components even when there is significant noise,
we test on a flag dataset created by physical simulation

Figure 13. Synthesized models based on components derived from
SCAPE dataset [49] by our method.

and compare our method with [7]. For both methods, we
extract 20 components. Following the component analysis
in Sec. 5.1, we sort the distance calculated between each
extracted component and the reference shape in descending
order and get the first four components (bottom row) along
with the key frames of the dataset (top row), as shown in
Fig. 9. Our method is able to extract the main movements
(large-scale swinging of the flag), and separate local move-
ments in the left and right parts of the flag. The synthesized
result with the four components extracted by our method is
reasonable. In contrast, [7] does not handle different scales
well and only captures the noise around the corners of
flags rather than the major deformation modes, and the
reconstructed shape does not capture the true deformation.

6.2.2 SCAPE Dataset
Fig. 10 shows the visual comparison of reconstruction re-
sults on the SCAPE dataset. From the visualization results,
we can see that these works [5], [6], [8] cannot handle large-
scale rotations well and fail to reconstruct plausible models
in such cases, because these methods mainly handle linear
deformations, and are hard to reconstruct plausible results
on such nonlinear deformation datasets, while the work [7]
can be affected by noise in the dataset and cannot recover
some shapes precisely. Our method does not have such
drawbacks.

In Fig. 11, we compare the components extracted by
our method and linear methods [5], [6], [8]. And Fig. 12
shows two groups of components about lifting the left leg
(extracted by our method and [5]) and left arm (extracted
by our method and [6]) with different weights. These justify
that our method can handle large-scale rotation better than
the other linear methods without artifacts like unreasonable
bulging and shrinkage.

In addition, our proposed method also has powerful
synthesis and generation ability. We show synthesis results
by combining several different deformation components in
Fig. 13. And in Fig. 14, we show the randomly gener-
ated new shapes using our variational autoencoder, which
demonstrates that our VAE architecture can generate plau-
sible shapes, thanks to the Gaussian distribution prior in the
latent space.

6.2.3 Swing and Jumping Datasets
For Swing and Jumping datasets from [11], we align all the
models and then train the network. The synthesis results
with weights 0.3, 0.7, 1.1 of our method are compared with
those of [7] in Fig. 15. The first row of components are about
shaking head to left from the Jumping dataset. Our method

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

(a) Autoencoder (b) Variational Autoencoder

Figure 14. Comparison of randomly generated new shapes with
autoencoder (a) and variational autoencoder (b) architectures on three
datasets. We rrandomly sample the latent vector ε̂ = N (0, I) with
Gaussian distribution to generate new shapes by our trained decoder. It
demonstrates that our VAE architecture can generate plausible shapes,
thanks to the Gaussian distribution prior in the latent space.

(right column) focuses on the movement of the head and can
produce reasonable models, while models generated by [7]
(left column) are disturbed by the clothes, and have artifacts
of arm structure. The second row of models are about lifting
the left arms from the Swing dataset, Wang et al. [7] (left
column) even finds wrong direction for this movement. We
also show synthesis results with equal weights for the Swing
dataset by combining three different components in Fig. 1.

6.2.4 DYNA Dataset
We compare the extracted components between fixed and
dynamic sparsity constraints on a fat person (ID:50002)
from the MPI DYNA dataset [48]. As shown in Fig. 16,
both fixed and dynamic constraints can extract reasonable
components such as the leg lifting action, while the dy-
namic sparsity constraints are able to extract more plausible
smaller components such as those around the chest and
hands. Quantitatively, the Erms error of dynamic sparsity
constraints is 3.2062, which is smaller than 4.7795 of fixed
sparsity constraints.

6.3 Parameter Settings and Ablation Studies

In this section, we show the ablation studies of each regu-
larizor and explain the choice of weights of each loss term.
We then compare Erms of generating unseen data under
different numbers of output channels of the convolution
layer d′. We also evaluate the difference between spec-
tral and spatial convolution operators, non-weighted and
cotangent weighted adjacency matrix, as well as fixed and
dynamic sparsity constraints. Finally, we evaluate the dif-
ference between autoencoder and variational autoencoder
architecture, and the choice of reference shape.

6.3.1 The choice of regularization terms
To extract sparse deformation components, we include sev-
eral regularization terms to the reconstruction loss, includ-
ing Ω(C), Φ(d) and Π(Z). Compared to more general L2
norm, our regularization terms have more specific impacts

(a) Wang et al. (b) Ours

Figure 15. Synthesis results with components of Jumping and Swing
datasets [11]: The first row contains the components about shaking
head extracted by [7] (left column) and our method (right column) with
weights 0.3, 0.7 and 1.1. The second row contains the components
about lifting the right arm extracted by [7] (left column) and our method
(right column) with weights 0.3, 0.7 and 1.1.

(a) Fixed Sparsity Constraints

(b) Dynamic Sparsity Constraints

Figure 16. Components of a fat person (ID: 50002) from the MPI DYNA
dataset [48] extracted by our method with fixed sparsity constraints
used in [10] and dynamic sparsity constraints. It shows that dynamic
sparsity constraints extract more plausible small components and Erms

is 3.2062, which is smaller than 4.7795 of fixed constraints.

rather than only avoiding overfitting. Ω(C) urges defor-
mation components to only capture localized deformations
and avoid overfitting. Without Φ(d), the learned dk will
grow arbitrarily large, leading to the failure of sparse con-
straints Ω(C), as excessively large local neighborhoods are
no longer local. Π(Z) avoids arbitrarily large values of the
maximum value in each component which may reduce the
influence of other components, while using the L2-norm will
constrain all element of Z to be small, which is not expected.
There is a quantitative experiment (Table 2) to evaluate
the difference between the L2-norm and max. We evaluate
the reconstruction performance on the test set (SCAPE).
We can see that the L2-norm is a strong constraint on the
latent space Z and not friendly for network training. For a
smaller weight on the Π(Z), the network can converge (but
it is not sufficiently effective, leading to worse performance

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

than using max). On the other hand, if the weight is slightly
higher, the loss on the training data is too high to converge
on the training set.

Fig. 17 shows the ablation studies of each regularizor on
the SCAPE dataset. (a) is the ground truth shape. Without
Ω(C), the network gets poor generation ability because of
overfitting and cannot extract local deformation compo-
nents, as shown in Fig. 17 (b). Without Φ(d), the network
also cannot extract local deformation components as shown
in Fig. 17 (c) because d is increasing. Without Π(Z), the
network extracts poor components as shown in Fig. 17 (d).
We also compute the Erms of unseen data for these ablation
studies, and they are 24.1153, 14.5911, 13.9916 and 11.8712
from (b) to (e). Without any of the regularizor, the network
will get poor generation ability. In addition, Appendix B
shows evaluation of the weight of each loss term.

6.3.2 The choice of d′

The number of output channels of the convolution layer d′

is another adjustable parameter. We compare the Erms of
generating unseen data from the SCAPE dataset [49] with
different d′ from 3 to 15 and stride is 3, and errors are
57.0250, 20.0905, 11.8712, 18.4666 and 20.9998. And we
choose d′ = 9 in our network because this leads to the
minimum Erms.

6.3.3 Graph Convolution Operator and Adjacency matrix
We compare Erms between different graph convolutions
(spatial [10] and spectral graph convolutions).

In Table 3, we use the same autoencoder network archi-
tecture to evaluate Erms of generating unseen data under
different graph convolution operators and adjacency ma-
trix formulations. It is shown that both SCAPE [49] and
Swing [11] datasets get the best results using spectral graph
convolution with H = 3 when the network uses the same
adjacency matrix.

For a certain H number for the spectral domain GCN
kernel, we can consider (H − 1)-ring neighborhoods within
one layer. However, we need to stack H − 1 spatial GCN
layers and introduce more parameters to achieve a similar
effect. Normally, neural networks with more parameters
may cause overfitting on the training set, and may not per-
form well on the test set. To show this problem, we compare
the Erms of network with different numbers of spatial CNN
layers form 1 to 3 on the SCAPE and Swing datasets. As
shown in Table 4, the network gets the lowest testing errors
when the number of spatial CNN layers is 1, while training
errors keep decreasing when we increase the number of
layers. We can see a clear overfitting phenomenon when we
stack more spatial GCN layers.

Meanwhile, in the original spatial version, the neighbour
weight for convolution operation on point i is only adjusted
by the degree of the center point i (1/deg(vi)), shared by
all neighbors j ∈ {1, 2, . . . , deg(vi)}. While, after adding
Laplacian matrix in the spectral GCN, the neighborhood
weights are adjusted by both center point’s degree and
neighbor’s degree (1√

deg(vi)
√

deg(vj)
). In this way, spectral

GCN can better fit the irregular graph of the mesh. This also
helps with the performance improvement in Table 3.

We also evaluate Erms between different adjacency ma-
trix formulations, including unweighted (where wij = 0

TABLE 2
Evaluation on max v.s. L2-norm in Π(Z). We compare the Erms on
unseen data of SCAPE between different weights of L2− norm and
our original version (max with weight 1). In order to achieve the same
performance as our original version, we adjusted the weight to a small
value 0.00001. If the weight is slightly higher, the loss on the training

data is too high to converge on training set. This shows that the
L2-norm is a strong constraint to our network, which is not helpful for

network training.

L2-norm/max max L2-norm

Weight 1 1e-7 1e-5 1e-3 0.1 10
Erms 11.8712 13.3312 12.8427 166.093 163.699 170.286

(a) Ground
Truth

(b) w/o Ω(C) (c) w/o Φ(d) (d) w/o Π(Z) (e) Full

Figure 17. Ablation studies of each regularizor on SCAPE dataset. The
first row shows the extracted components and the second row shows
a reconstruction shape in unseen data. (a) is the test shape. (b) is the
result without Ω(C). (c) is the result without Φ(d). (d) is the result without
Π(Z). (e) is the result of full loss.

means there is no edge connecting vertices vi and vj , and
wij = 1 otherwise) and cotangent weighted adjacency
matrix (where wij is the cotangent weight of the edge). As
shown in Table 3, the network using unweighted adjacency
matrix produces lower errors than with cotangent weighted
one, when the network uses the same graph convolution op-
erator. This is probably for the deformed shapes, cotangent
weights can only be obtained from one shape, which do not
generalize well to other deformed shapes.

6.3.4 Fixed and Dynamic Sparsity Constraints
In Table 5, we use the same autoencoder network architec-
ture as with the spectral convolution operator and H = 3 to
evaluate Erms with fixed and dynamic sparsity constraints.
It demonstrates that dynamic sparsity constraints produce
lower reconstruction error than fixed sparsity constraints
used in [10].

6.3.5 Autoencoder and Variational Autoencoder
We then compare Erms with autoencoder and variational
autoencoder network architectures. For the SCAPE dataset,
mean Erms is 11.8712 of variational autoencoder architec-
ture, which is lower than 12.0668 of autoencoder archi-
tecture. This is because the variational autoencoder forces
the distribution of latent space close to standard normal

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 12

TABLE 3
Errors of applying spatial [10] and spectral graph CNNs with different

adjacency matrix formulations to generate unseen data from the
SCAPE [49] and Swing [11] datasets. For spectral graph CNN, we also
evaluate the errors of generating unseen data with different H values. It

shows that the spectral graph CNN with H = 3 and unweighted
adjacency matrix gets the lowest error.

Dataset Adjacency Matrix Tan et al. [10]
Spectral CNN

H = 3 H = 4 H = 5

SCAPE
Non-weighted 13.556 13.3964 14.3267 15.5826

Cotangent weight 16.505 14.4026 14.3127 16.4832

Swing
Non-weighted 14.0836 13.7278 16.0635 16.1074

Cotangent weight 14.4273 14.0495 16.0616 16.1978

TABLE 4
Errors of different number of spatial layers from 1 to 3 on SCAPE and

Swing dataset. It shows that the network gets the lowest error when the
number of Spatial CNN layers is 1, while training errors keep

decreasing when we increase the number of layers. We can see a clear
overfitting phenomenon when we stack more spatial GCN layers.

Dataset Evaluation Set
Spatial CNN layers

1 2 3

SCAPE
Training Set 5.4093 4.2454 4.1737

Test Set 13.5560 15.6696 18.5327

Swing
Training Set 6.6540 6.2412 4.2306

Test Set 14.0836 17.9519 18.9323

distribution, thus it prevents network overfitting, making
the network have better generation ability. As shown in
Fig. 14, our variational autoencoder architecture can gen-
erate more plausible new shapes than using an autoencoder
architecture.

In summary, we use spectral graph convolution with
H = 3 and unweighted adjacency matrix in our network
with a variational autoencoder. More quantitative results of
other datasets are shown in Table 1, which demonstrate that
our network architecture improves the generation ability.

6.3.6 Choice of reference shape to compute the feature
Although our feature is computed based on the reference
shape, there are no requirements for the first shape (and we
choose the first shape only for simplicity). To verify this,
we randomly choose a shape as the reference for calculating
deformation features and evaluate the Erms of unseen data
on the SCAPE dataset. The Erms of results with randomly
selected reference shapes (11.6587 and 11.9094 for Erms of
two different randomly selected) are similar to the original
results with the first shape as reference (11.8712 for Erms).

6.4 Neural Shape Editing

Fig. 18 shows the evaluations of neural shape editing. Given
several control points (highlighted with green balls in (a))
and an input model (a), the latent vector is optimized
according to the positions of control points with the fixed-
weight network. The green balls shown in (b) to (d) are
fixed points and red balls are edited points. The positions
of these control points are used as constraints to optimize

TABLE 5
Comparison between fixed and dynamic sparsity constraints with

spectral graph CNN and H = 3, to generate unseen data from
SCAPE [49] and Swing [11] datasets. It demonstrates that dynamic

sparsity constraints get lower reconstruction errors than fixed sparsity
constraints used in [10].

Dataset Fixed Dynamic
Sparsity Constraints Sparsity Constraints

SCAPE 13.3964 12.0668

Swing 13.7278 13.5102

(a) Input Model (b) AE (c) w/o Ω(C) (d) Full

Figure 18. Evaluation of neural shape editing. Given several control
points (highlighted with green balls in (a)) and an input model (a),
the latent vector is optimized according to the positions of control
points with the fixed-weight network. The green balls shown in (b)
to (d) are fixed points and red balls are edited points. The positions
of these control points are used as constraints to optimize the latent
vector. We show two examples here. The first row shows a simple
editing by raising the right arm and left leg, and the second row is
a more complicated editing example where all hands and legs are
moved. For each example, (a) is the input model, (b) is the result of
autoencoder with sparse constraint Ω(C), (c) is the result of variational
autoencoder without sparse constraint Ω(C), and (d) is the result of
our full method (variational autoencoder and with sparse constraint).
Using the autoencoder architecture instead of variational autoencoder,
some large-scale deformations, such as raising the arm over the hand,
cannot be properly represented by the network as shown in (b). Without
sparse constraint Ω(C), the weights C are not sparse and local, which
means the network cannot extract local deformation components, and
the model will deform globally even if only a few local points are edited,
such as the right leg in the top row of (c) is affected while only the left leg
and right hand are edited, and the head in the bottom row of (c) is turned.
In contrast for our full method, the variational autoencoder with sparse
constraint is capable of learning a more plausible and smooth latent
space, and produces appropriate local components with the help of the
sparsity constraint Ω(C), leading to much better deformation results.

the latent vector. We show two examples here. The first row
shows a simple editing by raising the right arm and left leg,
and the second row is a more complicated editing example
where all hands and legs are moved. For each example,
(a) is the input model, (b) is the result of autoencoder
with sparse constraint Ω(C), (c) is the result of variational
autoencoder without sparse constraint Ω(C), and (d) is
the result of our full method (variational autoencoder and
with sparse constraint). Using the autoencoder architecture
instead of variational autoencoder, some large-scale defor-
mations, such as raising the arm over the hand, cannot
be properly represented by the network as shown in (b).
Without sparse constraint Ω(C), the weights C are not
sparse and local, which means the network cannot extract

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

local deformation components, and the model will deform
globally even if only a few local points are edited, such as
the right leg in the top row of (c) is affected while only
the left leg and right hand are edited, and the head in
the bottom row of (c) is turned. In contrast for our full
method, the variational autoencoder with sparse constraint
is capable of learning a more plausible and smooth latent
space, and produces appropriate local components with the
help of the sparsity constraint Ω(C), leading to much better
deformation results.

7 CONCLUSION & FUTURE WORK

In this paper, we propose a variational autoencoder based
on graph convolutions in the spectral domain and a sparsity
regularization term with the sparsity range automatically
learned to extract localized deformation components. Exten-
sive quantitative and qualitative evaluations show that our
method is effective, outperforming state-of-the-art meth-
ods and can derive more natural deformation components.
These local deformation component analysis methods de-
pend on mesh collections with the same connectivity of
triangles. This kind of datasets defines a regular domain
with fixed topology, which is friendly for shape analysis. It
also has the benefit of ensuring that the extracted deforma-
tion component corresponds to the same semantic region on
different shapes in the dataset. Nevertheless, it has limited
transfer ability and generalization ability across the shapes
with different connectivity. To deal with it, it is possible to
perform non-rigid registration [14] to align a template mesh
to each shape in the collection to obtain meshes of the same
topology. Such alignment also helps make learning more
effective, thanks to a common domain. In future work, we
would like to further develop methods that do not reply on
the same triangle connectivity to increase the generalization
ability. Another interesting direction is to employ the idea
of [8] to optimize the local support region in a parameter-
free manner.

ACKNOWLEDGMENT
This work was supported by the Newton Advanced
Fellowship from the Royal Society (No. NAF\R2\192151),
the Youth Innovation Promotion Association, CAS (No.
2019108), the National Natural Science Foundation of
China (No. 62061136007 and No. 61872440), the Beijing
Municipal Natural Science Foundation (No. L182016) and
the Tencent AI Lab Rhino-Bird Focused Research Program
(No. JR202024).

REFERENCES

[1] L. Gao, Y. Lai, D. Liang, S. Chen, and S. Xia, “Efficient and flexible
deformation representation for data-driven surface modeling,”
ACM Trans. Graph., vol. 35, no. 5, pp. 158:1–158:17, 2016.

[2] C. Cao, D. Bradley, K. Zhou, and T. Beeler, “Real-time high-fidelity
facial performance capture,” ACM Trans. Graph., vol. 34, no. 4, pp.
46:1–46:9, 2015.

[3] F. Bogo, A. Kanazawa, C. Lassner, P. V. Gehler, J. Romero, and
M. J. Black, “Keep it SMPL: automatic estimation of 3D human
pose and shape from a single image,” in Proceedings of the 14th
European Conference on Computer Vision (ECCV), 2016, pp. 561–578.

[4] K. Guo, D. Zou, and X. Chen, “3D mesh labeling via deep
convolutional neural networks,” ACM Trans. Graph., vol. 35, no. 1,
pp. 3:1–3:12, 2015.

[5] T. Neumann, K. Varanasi, S. Wenger, M. Wacker, M. A. Magnor,
and C. Theobalt, “Sparse localized deformation components,”
ACM Trans. Graph., vol. 32, no. 6, pp. 179:1–179:10, 2013.

[6] Z. Huang, J. Yao, Z. Zhong, Y. Liu, and X. Guo, “Sparse localized
decomposition of deformation gradients,” Comput. Graph. Forum,
vol. 33, no. 7, pp. 239–248, 2014.

[7] Y. Wang, G. Li, Z. Zeng, and H. He, “Articulated-motion-aware
sparse localized decomposition,” Comput. Graph. Forum, vol. 36,
no. 8, pp. 247–259, 2017.

[8] F. Bernard, P. Gemmar, F. Hertel, J. M. Gonçalves, and J. Thunberg,
“Linear shape deformation models with local support using
graph-based structured matrix factorisation,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2016, pp. 5629–5638.

[9] L. Gao, Y. Lai, J. Yang, L. Zhang, S. Xia, and L. Kobbelt, “Sparse
data driven mesh deformation,” IEEE Trans. Vis. Comput. Graph.,
vol. 27, no. 3, pp. 2085–2100, 2021.

[10] Q. Tan, L. Gao, Y. Lai, J. Yang, and S. Xia, “Mesh-based
autoencoders for localized deformation component analysis,”
in Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence (AAAI), 2018, pp. 2452–2459.

[11] D. Vlasic, I. Baran, W. Matusik, and J. Popovic, “Articulated
mesh animation from multi-view silhouettes,” ACM Trans. Graph.,
vol. 27, no. 3, p. 97, 2008.

[12] F. Bernard, J. Thunberg, P. Swoboda, and C. Theobalt, “HiPPI:
Higher-order projected power iterations for scalable multi-
matching,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), 2019, pp. 10 283–10 292.

[13] F. Bernard, Z. K. Suri, and C. Theobalt, “MINA: convex
mixed-integer programming for non-rigid shape alignment,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2020, pp. 13 823–13 832.

[14] M. Zollhöfer, M. Nießner, S. Izadi, C. Rhemann, C. Zach,
M. Fisher, C. Wu, A. W. Fitzgibbon, C. T. Loop, C. Theobalt,
and M. Stamminger, “Real-time non-rigid reconstruction using
an RGB-D camera,” ACM Trans. Graph., vol. 33, no. 4, pp. 156:1–
156:12, 2014.

[15] M. Alexa and W. Müller, “Representing animations by principal
components,” Comput. Graph. Forum, vol. 19, no. 3, pp. 411–418,
2000.

[16] L. Williams, “Performance-driven facial animation,” in Proceedings
of the 17th Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH’90, 1990, pp. 235–242.

[17] L. Gao, G. Zhang, and Y. Lai, “Lp shape deformation,” Science
China Information Sciences, vol. 55, no. 5, pp. 983–993, 2012.

[18] H. Zou, T. Hastie, and R. Tibshirani, “Sparse principal component
analysis,” Journal of Computational and Graphical Statistics, vol. 15,
no. 2, pp. 265–286, 2006.

[19] J. R. Tena, F. D. la Torre, and I. A. Matthews, “Interactive region-
based linear 3D face models,” ACM Trans. Graph., vol. 30, no. 4,
p. 76, 2011.

[20] H. Su, S. Maji, E. Kalogerakis, and E. G. Learned-Miller, “Multi-
view convolutional neural networks for 3D shape recognition,”
in Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), 2015, pp. 945–953.

[21] B. Shi, S. Bai, Z. Zhou, and X. Bai, “DeepPano: Deep panoramic
representation for 3-D shape recognition,” IEEE Signal Process.
Lett., vol. 22, no. 12, pp. 2339–2343, 2015.

[22] D. Maturana and S. A. Scherer, “Voxnet: A 3D convolutional
neural network for real-time object recognition,” in Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2015, pp. 922–928.

[23] Y. Li, H. Su, C. R. Qi, N. Fish, D. Cohen-Or, and L. J. Guibas, “Joint
embeddings of shapes and images via CNN image purification,”
ACM Trans. Graph., vol. 34, no. 6, pp. 234:1–234:12, 2015.

[24] S. Tulsiani, H. Su, L. J. Guibas, A. A. Efros, and J. Malik, “Learning
shape abstractions by assembling volumetric primitives,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2017, pp. 1466–1474.

[25] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao,
“3D ShapeNets: A deep representation for volumetric shapes,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2015, pp. 1912–1920.

[26] R. Girdhar, D. F. Fouhey, M. Rodriguez, and A. Gupta, “Learning
a predictable and generative vector representation for objects,”
in Proceedings of the 14th European Conference on Computer Vision
(ECCV), 2016, pp. 484–499.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 14

[27] X. Yan, J. Yang, E. Yumer, Y. Guo, and H. Lee, “Perspective
transformer nets: Learning single-view 3D object reconstruction
without 3D supervision,” in Proceedings of the 29th Conference on
Neural Information Processing Systems (NeurIPS), 2016, pp. 1696–
1704.

[28] C. B. Choy, D. Xu, J. Gwak, K. Chen, and S. Savarese, “3D-
R2N2: A unified approach for single and multi-view 3D object
reconstruction,” in Proceedings of the 14th European Conference on
Computer Vision (ECCV), 2016, pp. 628–644.

[29] A. Sharma, O. Grau, and M. Fritz, “VConv-DAE: Deep volumetric
shape learning without object labels,” in Proceedings of the 14th
European Conference on Computer Vision (ECCV), 2016, pp. 236–250.

[30] J. Wu, C. Zhang, T. Xue, B. Freeman, and J. Tenenbaum, “Learning
a probabilistic latent space of object shapes via 3D generative-
adversarial modeling,” in Proceedings of the 30th International
Conference on Neural Information Processing Systems (NeurIPS), 2016,
pp. 82–90.

[31] A. Sinha, A. Unmesh, Q. Huang, and K. Ramani, “SurfNet:
Generating 3D shape surfaces using deep residual networks,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2017, pp. 791–800.

[32] J. Li, K. Xu, S. Chaudhuri, E. Yumer, H. R. Zhang, and L. J. Guibas,
“GRASS: generative recursive autoencoders for shape structures,”
ACM Trans. Graph., vol. 36, no. 4, pp. 52:1–52:14, 2017.

[33] C. Nash and C. K. I. Williams, “The shape variational autoencoder:
A deep generative model of part-segmented 3D objects,” Comput.
Graph. Forum, vol. 36, no. 5, pp. 1–12, 2017.

[34] J. J. Park, P. Florence, J. Straub, R. A. Newcombe, and S. Lovegrove,
“DeepSDF: Learning continuous signed distance functions for
shape representation,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2019, pp. 165–174.

[35] E. Tretschk, A. Tewari, V. Golyanik, M. Zollhöfer, C. Stoll, and
C. Theobalt, “PatchNets: Patch-based generalizable deep implicit
3D shape representations,” in Proceedings of the 16th European
Conference on Computer Vision (ECCV), 2020, pp. 293–309.

[36] K. Mo, P. Guerrero, L. Yi, H. Su, P. Wonka, N. J. Mitra, and L. J.
Guibas, “StructureNet: hierarchical graph networks for 3D shape
generation,” ACM Trans. Graph., vol. 38, no. 6, pp. 242:1–242:19,
2019.

[37] L. Gao, J. Yang, T. Wu, Y. Yuan, H. Fu, Y. Lai, and H. Zhang, “SDM-
NET: deep generative network for structured deformable mesh,”
ACM Trans. Graph., vol. 38, no. 6, pp. 243:1–243:15, 2019.

[38] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks
and locally connected networks on graphs,” in 2nd International
Conference on Learning Representations (ICLR), 2014.

[39] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional
neural networks on graphs with fast localized spectral filtering,”
in Proceedings of the 30th International Conference on Neural
Information Processing Systems (NeurIPS), 2016, pp. 3837–3845.

[40] ——, “Convolutional neural networks on graphs with fast
localized spectral filtering,” in Proceedings of the 29th Conference
on Neural Information Processing Systems (NeurIPS), 2016, pp. 3837–
3845.

[41] M. Niepert, M. Ahmed, and K. Kutzkov, “Learning convolutional
neural networks for graphs,” in Proceedings of the 33rd International
Conference on International Conference on Machine Learning (ICML),
2016, pp. 2014–2023.

[42] D. Duvenaud, D. Maclaurin, J. Aguilera-Iparraguirre, R. Gómez-
Bombarelli, T. Hirzel, A. Aspuru-Guzik, and R. P. Adams,
“Convolutional networks on graphs for learning molecular
fingerprints,” in Proceedings of the 28th International Conference on
Neural Information Processing Systems (NeurIPS), 2015, pp. 2224–
2232.

[43] D. Boscaini, J. Masci, E. Rodolà, M. M. Bronstein, and D. Cremers,
“Anisotropic diffusion descriptors,” Comput. Graph. Forum, vol. 35,
no. 2, pp. 431–441, 2016.

[44] L. Yi, H. Su, X. Guo, and L. J. Guibas, “SyncSpecCNN:
Synchronized spectral CNN for 3D shape segmentation,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2017, pp. 6584–6592.

[45] S. Hochreiter, Y. Bengio, P. Frasconi, J. Schmidhuber et al.,
“Gradient flow in recurrent nets: the difficulty of learning long-
term dependencies,” 2001.

[46] R. W. Sumner and J. Popovic, “Deformation transfer for triangle
meshes,” ACM Trans. Graph., vol. 23, no. 3, pp. 399–405, 2004.

[47] L. Zhang, N. Snavely, B. Curless, and S. M. Seitz, “Spacetime faces:

High resolution capture for modeling and animation,” ACM Trans.
Graph., vol. 23, no. 3, pp. 548:1–558:11, 2004.

[48] G. Pons-Moll, J. Romero, N. Mahmood, and M. J. Black, “Dyna: a
model of dynamic human shape in motion,” ACM Trans. Graph.,
vol. 34, no. 4, pp. 120:1–120:14, 2015.

[49] D. Anguelov, P. Srinivasan, D. Koller, S. Thrun, J. Rodgers, and
J. Davis, “SCAPE: shape completion and animation of people,”
ACM Trans. Graph., vol. 24, no. 3, pp. 408–416, 2005.

[50] Y. Yang, Y. Yu, Y. Zhou, S. Du, J. Davis, and R. Yang, “Semantic
parametric reshaping of human body models,” in Proceedings of
the 2014 Second International Conference on 3D Vision (3DV), 2014,
pp. 41–48.

[51] Y. Bengio, N. Léonard, and A. C. Courville, “Estimating or
propagating gradients through stochastic neurons for conditional
computation,” arXiv preprint arXiv:1308.3432, 2013.

[52] K. Crane, C. Weischedel, and M. Wardetzky, “Geodesics in heat: A
new approach to computing distance based on heat flow,” ACM
Trans. Graph., vol. 32, no. 5, pp. 152:1–152:11, 2013.

[53] D. P. Kingma and J. Ba, “ADAM: A method for stochastic
optimization,” in 3rd International Conference on Learning Represen-
tations (ICLR), 2015.

[54] O. Sorkine and M. Alexa, “As-rigid-as-possible surface modeling,”
in Proceedings of the fifth Eurographics Symposium on Geometry
Processing (SGP), 2007, pp. 109–116.

[55] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur,
J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner,
P. A. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu,
and X. Zheng, “TensorFlow: A system for large-scale machine
learning,” in 12th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 16, 2016, pp. 265–283.

[56] L. Kavan, P. J. Sloan, and C. O’Sullivan, “Fast and efficient
skinning of animated meshes,” Comput. Graph. Forum, vol. 29,
no. 2, pp. 327–336, 2010.

[57] L. Vása and V. Skala, “A perception correlated comparison method
for dynamic meshes,” IEEE Trans. Vis. Comput. Graph., vol. 17,
no. 2, pp. 220–230, 2011.

[58] R. W. Sumner, M. Zwicker, C. Gotsman, and J. Popovic, “Mesh-
based inverse kinematics,” ACM Trans. Graph., vol. 24, no. 3, pp.
488–495, 2005.

[59] R. B. Cattell, “The scree test for the number of factors,” Multivariate
Behavioral Research, vol. 1, no. 2, pp. 245–276, 1966.

Qingyang Tan received the B.Eng. degree in
Computer Science and Technology from Univer-
sity of Chinese Academy of Sciences. He is a
Ph.D. student at University of Maryland, College
Park. His research interests include computer
graphics and geometric processing.

Ling-Xiao Zhang received his Master of Engi-
neering’s degree in Computer Technology from
Chinese Academy of Sciences in 2020. He is
currently an assistant engineer in the Institute
of Computing Technology, Chinese Academy of
Sciences. His research interests include com-
puter graphics and geometric processing.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 15

Jie Yang received a bachelors degree in
mathematics from Sichuan University in 2016.
He is currently a PhD candidate in the Institute
of Computing Technology, Chinese Academy
of Sciences. His research interests include
computer graphics and geometric processing.

Yu-Kun Lai received his bachelor’s degree and
PhD degree in computer science from Tsinghua
University in 2003 and 2008, respectively. He
is currently a Professor in the School of Com-
puter Science & Informatics, Cardiff University.
His research interests include computer graph-
ics, geometry processing, image processing and
computer vision. He is on the editorial boards
of Computer Graphics Forum and The Visual
Computer.

Lin Gao received the bachelor’s degree in math-
ematics from Sichuan University and the PhD
degree in computer science from Tsinghua Uni-
versity. He is currently an Associate Professor at
the Institute of Computing Technology, Chinese
Academy of Sciences. He has been awarded
the Newton Advanced Fellowship from the Royal
Society and the AG young researcher award.
His research interests include computer graph-
ics and geometric processing.

	Introduction
	Related Work
	Principal Deformation Component Analysis
	Neural Network Applications for 3D Shapes
	Convolutional Neural Networks (CNNs) on Arbitrary Graphs and Meshes

	Feature Representation
	Network Architecture
	Convolutional Operation
	Network Structure
	Sparsity Constraints and Reconstruction Loss

	Applications
	Component Analysis
	Shape Synthesis
	Neural Shape Editing

	Experimental Results
	Quantitative Evaluation
	Qualitative Evaluation
	Flag Dataset
	SCAPE Dataset
	Swing and Jumping Datasets
	DYNA Dataset

	Parameter Settings and Ablation Studies
	The choice of regularization terms
	The choice of d'
	Graph Convolution Operator and Adjacency matrix
	Fixed and Dynamic Sparsity Constraints
	Autoencoder and Variational Autoencoder
	Choice of reference shape to compute the feature

	Neural Shape Editing

	Conclusion & Future work
	References
	Biographies
	Qingyang Tan
	Ling-Xiao Zhang
	Jie Yang
	Yu-Kun Lai
	Lin Gao

