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Abstract 3D shape editing is widely used in a range of applications such as movie production, computer games and
computer aided design. It is also a popular research topic in computer graphics and computer vision. In past decades,
researchers have developed a series of editing methods to make the editing process faster, more robust, and more reliable.
Traditionally, the deformed shape is determined by the optimal transformation and weights for an energy formulation. With
increasing availability of 3D shapes on the Internet, data-driven methods were proposed to improve the editing results.
More recently as the deep neural networks became popular, many deep learning based editing methods have been developed
in this field, which are naturally data-driven. We mainly survey recent research studies from the geometric viewpoint to
those emerging neural deformation techniques and categorize them into organic shape editing methods and man-made model
editing methods. Both traditional methods and recent neural network based methods are reviewed.

Keywords mesh deformation, man-made model editing, deformation representation, optimization, deep learning

1 Introduction

3D shapes are one of the most important types of

objects in computer graphics and computer vision re-

search. Editing or interactive deformation of 3D shapes

provides an intuitive way to produce new shapes based

on existing ones, which is fundamental for many ap-

plications. Methods for 3D shape editing are therefore

one of the research hot spots. In recent years, deep

learning has been widely used, and many research fields

have developed new solutions based on deep learning,

such as deep generation of 3D models [1, 2], 3D deep

reconstruction [3, 4], deep neural network based 3D

shape analysis methods [5, 6], 3D shape retrieval [7]

and so on. 3D models can be generally divided into

two types, namely organic shapes and man-made mod-

els. Fig. 1 shows some examples of these two types. Or-

ganic shapes such as human bodies, animals, and so on.

are often deformable, whereas man-made objects tend

to comprise of a larger number of (near-)rigid compo-

nents. Different techniques are therefore needed to cope

with these two types of shapes. Neural network based

editing methods based on deep learning are also emerg-

ing, although they are still at relatively early stage and

many open areas remain, which we will discuss later in

the survey.
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Fig.1. Some examples of organic shapes (in [8]) and man-made
models (in [9]). (a) Organic Shapes. (b) Man-made Models.

Early 3D model editing methods analyze the char-

acteristics of the model itself, and strive to keep these

characteristics unchanged during the deformation. For

organic shapes, common examples include human bod-

ies and animal shapes, which are near articulated as

shown in Fig. 1(a). It is possible to bind a skele-

ton inside the model. On the one hand, the edit-

ing of these models typically defines deformation en-

ergies to impose constraints on the deformation, such

as volume-preserving deformation. On the other hand,

by binding skeletons for these models, the user can ma-

nipulate the skeleton to drive the deformation of the

shape. Skeleton-based deformation is often convenient

and leads to good results. However, the binding of

the skeleton is not only time-consuming, but also re-

quires professional software and expertise. For man-

made models, the main purpose of editing is to mod-

ify the appearance, or geometric features of the mod-

els. For this purpose the topological structure of the

model is usually a feature that needs to be maintained.

Such kind of methods is referred to as structure-aware

editing [10]. The editing of man-made models is more

complicated than the deformation of organic shapes,

because organic shapes are typically manifold meshes,

while man-made models are often non-manifold with

more complex structures.

Surveys on other aspects of 3D models have recently

been published, such as 3D deep generative models [11],

3D deep reconstruction [12, 13] and 3D deep representa-

tion [14]. However, for 3D shape editing/deformation,

existing surveys [15, 16] were published over a decade

ago, only covering deformation methods of 3D organic

shapes. Methods for editing of man-made models are

not reviewed in specialized surveys, and only discussed

in loosely related courses [10, 17]. The rapid develop-

ment of deep learning in recent years has also led to

the emergence and the growth of neural network based

deformation and editing methods. It is necessary to

have an extensive review to summarize the related re-

search and discuss future directions. To this end, we

present this survey, reviewing both traditional methods

and methods based on deep neural networks, as well as

methods applied to both organic shapes and man-made

models.

This survey is structured as follows. We divide the

editing methods according to different analysis perspec-

tives, namely attribute-based (Section 2) or traditional

data-driven based (Section 4) methods. Although neu-

ral editing methods also learn from datasets, because

this kind of methods is a new direction that is cur-

rently being actively explored and often requires and

benefits from a larger amount of data, we will introduce

it in Section 5, separately from the traditional data-

driven methods. For these three types, because organic

shapes and man-made models have certain differences

in representation, and their editing methods also have

differences, we summarize methods for organic shapes

and man-made models separately. Skeleton-based and

cage-based deformation methods rely on handles, often

referred to as proxies different from the model itself and

usually require weighted interpolation of deformation

on the skeleton or cage to obtain the transformation

of the shape. They will be discussed in Section 3, and

these methods can also exploit the information from

datasets. Finally, we will conclude with existing prob-
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lems and discuss interesting future research directions

(Section 6). Fig. 2 provides a timeline of representa-

tive shape editing methods for organic shapes and man-

made models.

2 Attribute-Based Model Editing

In this section, we discuss those methods that focus

on analyzing various attributes of the surface model,

including geometry characteristics and semantic at-

tributes, to define different constraints which are then

used to guide the model editing.

Organic shapes, a.k.a. deformable models, usually

refer to models that are non-rigidly deformable. Hu-

man bodies and animal shapes are common examples.

The editing of 3D organic shapes mostly uses inter-

active deformation. In these methods, organic shapes

are often represented as triangular meshes. The de-

formation of organic shapes mainly strives to maintain

the geometric details of the original shape and produce

natural and reasonable results. The early deformation

methods mainly analyze the geometry of the shape and

define the constraints accordingly for the deformation.

We summarize those methods as geometry-based mesh

deformation methods.

The editing of man-made models will be relatively

more complicated and difficult, compared to the de-

formation of organic shapes. On the one hand, the

man-made models have different shapes and complex

topological structures. On the other hand, the meshes

of man-made models are generally not regular and con-

sistent. This has led to certain obstacles to the di-

rect application of some deformation methods of or-

ganic shapes. To achieve the purpose of editing, one

should pose some constraints on 3D man-made models

to ensure plausible results. One way to obtain those

constraints is maintaining the structural relations be-

tween different components of the model, which can

be seen as a kind of semantic knowledge. We summa-

rize these semantic constraints for man-made models in

Subsection 2.2.

2.1 Geometry-Based Mesh Deformation

Geometry-based deformation methods typically de-

fine energy functions which transform the deformation

problem into a constrained optimization problem. The

constraints are generally provided by the user by spec-

ifying control handles and their positions. Early re-

search studies were all around simulating the elastic

deformation of objects. Terzopoulos et al. [18] proposed

the classical elastic energy or the so-called shell energy

which measures stretching and bending by the change

of the first and the second fundamental forms and op-

timizes the energy to obtain deformation results. Two

follow-up studies [19, 20] propose to simplify the en-

ergy by replacing the first and the second fundamental

forms by the first and the second order partial deriva-

tives of displacement function. In order to solve the

problems of computational complexity and distortion of

geometric details, many studies [21, 22, 23, 24, 25, 26]

based on multigrid solvers or multi-resolution deforma-

tion strategies have been proposed in succession. Inte-

grated into a multi-resolution framework [24], Bostch

and Kobbelt [27] proposed an intuitive framework for

the user to define custom tailored basis functions, which

are precomputed to achieve real-time editing. For the

above works, please refer to [15] for a thorough intro-

duction. Follow-up works change the form of energy

formulation to facilitate the solution and achieve better

results. The most widely used is Laplacian-based mesh

editing. The well-known As-Rigid-As-Possible (ARAP)

energy is also Laplacian-based, and has been applied

to deformation with extensive research including recent

development [28]. We will begin with Laplacian based

methods, including ARAP and follow-ups, followed by
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Fig.2. Timeline of representative 3D shape editing methods for two types of 3D models.

methods using other formulations.

2.1.1 Laplacian-Based Mesh Deformation

Kobbelt et al. [24] were the first to propose a multi-

resolution Laplacian-based deformation method, which

is able to approximately solve constrained mesh opti-

mization in real time. The readers may refer to [29, 30]

which give an early summary of Laplacian-based mesh

processing. Differential coordinates can capture lo-

cal properties [31] used in free-form deformation [32],

and allow a direct detail-preserving reconstruction of

the edited mesh by solving a linear least-squares sys-

tem [33]. However, the differential coordinates are de-

fined in a global coordinate system, and thus are not

rotation-invariant, thereby it is necessary to introduce

approximated local frames to compensate for distor-

tions caused by orientation [33]. Laplacian coordinates,

as pointed out by [33], are the simplest form of the dif-

ferential coordinates. Given a triangular mesh model,

we denote each vertex of the mesh as vi, i = 1, · · · , n,

where n is the number of vertices. The 1-ring neigh-

borhood of vi is denoted as N(i). Then we can define

Laplacian coordinates of the vertex vi as Eq. 1

li =
∑

j∈N(i)

wij(vj − vi), (1)

where wij is the weight of the edge eij = vj − vi. It

can be seen that li is a weighted average of position

differences between the vertex vi and its adjacent ver-

tices, thereby it describes the local geometry at vi. By

collecting all Laplacian coordinates li and presenting

them in the matrix form, it can be written as l = LV ,

where L is a 3n × 3n matrix with elements composed

of weights wij . L is referred to the Laplacian operator

and its elements as the Laplacian coefficients. Sorkine

et al. [34] proposed to minimize the differences between

Laplacian coordinates before and after deformation to

deform the surface models, which can form a sparse

linear system and be solved in the least squares sense.

Lipman et al. [35] reviewed the above two Laplacian

based methods [33, 34] which both preserve shape de-

tails when editing mesh models.

Many works have improved Laplacian coordinates

or proposed other forms of differential coordinates. For

example, Yu et al. [36] proposed a gradient domain

mesh editing method which deforms meshes by inter-

polating gradient fields derived from user constraints.

Combined with [36], Zayer et al. [37] also proposed

a gradient-based shape editing method, which prop-

agates local deformations over the surface via har-

monic scalar fields. Moreover, by specifying several

corresponding markers on two models, the manipula-

tions on one model can be transferred to the other

model. However, the proposed method is translation-

insensitive [38], which may cause unsatisfactory re-

sults when the constraints contain translation. Zhou et

al. [39] proposed a Laplacian coordinate method based

on a volumetric graph to better preserve the model vol-

ume during deformation. The above two methods re-
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quire the orientation and local frames of the handles as

input. Therefore if the users only move the handles,

the orientation and the local frames are not changed

accordingly, leading to shearing and stretching distor-

tions caused by incompatible handle positions and ori-

entations. Pyramid coordinates [40] and iterative dual

Laplacian [41] are proposed to solve this problem , pre-

serving rotation invariance and can avoid the distortion

caused by incompatible rotation and translation of han-

dles. However, such methods cannot handle large-scale

rotations. To deal with the problem that the previ-

ous methods either cannot get the rotation information

when the handles are only translated, or cannot handle

large-scale rotations, Fu et al. [42] proposed to use an

affine matrix at each vertex which is linear w.r.t. the

vertex position. They further decomposed the affine

matrix by polar decomposition to extract only rotation

and uniform scaling to offset the impact of shearing

distortion.

Most of the previous gradient based editing meth-

ods turn the problem into solving a linear system, but

not all the constraints can be formulated linearly and

also, non-linear constraints are more flexible. Huang et

al. [43] proposed a solution framework that can effec-

tively solve the deformation containing nonlinear con-

straints, such as skeleton constraints for skeleton-based

deformation and volume constraints for volume preser-

vation. Those constraints can be transformed to a non-

linear energy minimization problem, but the minimiza-

tion faces the problems of slow convergence and numeri-

cal instability. So Huang et al. built a coarse cage mesh

enclosing the original mesh shape, and used mean value

coordinates [44] to transfer the energy and constraints

to the cage.

Vallet et al. [45] proposed an efficient method

to compute eigenfunctions of the Laplacian even for

meshes with a million vertices. Based on that, they

also proposed a filtering algorithm to filter specific fre-

quency bands, which can be used to interactively edit

mesh surfaces, such as exaggerating geometric details.

As-rigid-as-possible (ARAP) deformation is an

important part of Laplacian-based methods. The prin-

ciple of as-rigid-as-possible (ARAP) was first applied

to shape interpolation [46] and the deformation of two-

dimensional shapes [47]. Sorkine et al. [48] further pro-

posed a 3D surface model deformation method that

maintains local rigidity. The method is based on mini-

mizing an ARAP energy, which measures non-rigid dis-

tortions in local 1-ring neighborhoods of all vertices.

We denote the triangle mesh as S, and N(i) is the

index set of vertices adjacent to vertex i. We denote

vi ∈ R3 as the position of the vertex i on the mesh S.

Also assume that S is to be deformed to S′ with the

same connectivity and different vertex positions v′
i. As

shown in Eq. 2, the overall deformation energy to mea-

sure the rigidity of the entire mesh is the sum of the

distortion energies of each deformation cell Ci (includ-

ing vertex i and its 1-ring neighbors)

E(S′) =

n∑
i=1

w̄iE(Ci, C
′
i)

=

n∑
i=1

w̄i

∑
j∈N(i)

wij∥(v′
i − v′

i)−Ri(vi − vj)∥
2
.

(2)

Here, C ′
i denotes the deformed cell of Ci, wij =

1
2 (cotαij+cotβij) is the cotangent weight, and αij , βij

are the angles opposite of the mesh edge (i, j), w̄i is the

cell weight that needs to be pre-determined, which is

set to 1 in [48]. We can notice that E(S′) depends only

on the geometry of S and S′, the positions of the ver-

tices vi and v′
i. In particular, when the source model

S is determined, the only variables in E(S′) are the

deformed vertex coordinates v
′

i. This is because the

optimal rotation matrix Ri is a function of v′

i.

[48] takes vertex i and its 1-ring neighbors as a cell,
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and each cell seeks the best rotation matrixRi that sat-

isfies the condition as much as possible. The overlaps

between the cells ensure continuous deformation. They

further formulate an iterative optimization framework

that is easy to implement, which readers can refer to

[48] for details. The deformation shows the advantages

on detail preservation and elastic effect. Given only po-

sition constraints, reasonable deformation results can

be obtained, as shown in Fig. 3.

(a) (b)

Fig.3. Moving a single position constraint, the result with large
deformations can be obtained [48]. (a) The original shape. (b)
The deformed shape.

Following [46, 47, 48], many ARAP extensions have

been developed. Applied to volume deformation, Chao

et al. [49] derived another discretization of ARAP en-

ergy from the continuous form. The ARAP energy can

be further enhanced by smooth rotations [50], which

can achieve comparable results on surface mesh mod-

els to volumetric ARAP [49] on tetrahedral meshes, as

shown in Fig. 4. Cuno et al. [51] formulated the ARAP

deformation with a Moving Least Squares (MLS) ap-

proach. Liu et al. [52] extended [46] and proposed a new

morphing method for surface triangular meshes based

on ARAP. Compared with [46], their method does

not need tetrahedral meshes to represent the shapes,

which reduces computation time, and by integrating

the translation vector into the energy formulation, elim-

inates the need for users to specify the fixed vertices

when solving the equation.

Fig.4. Comparison of SR-ARAP (smooth rotation ARAP) with
some other deformation methods [50]. (a) Source shape. (b)
PriMo [38]. (c) ARAP surface [48]. (d) ARAP volume [49]. (e)
ARAP volume applied to a tetrahedral stratum. (f) ARAP sur-
face with an additional term for a smooth map differential. (g)
SR-ARAP [50].

Fig.5. ARAP has been applied to deformation, with extensive
research including some developments recently. Cubic styliza-
tion [28] minimizes the ARAP formulation with l1 regularization
to achieve locally isometric deformations while preserving texture
attributes. (a) (c) are the source shapes. (b) (d) are the deformed
shapes.

ARAP deformation has also been extended to make

the stiffness of deformation controllable. Instead of

using 1-ring neighborhoods, Chen et al. [53] specified

larger neighborhood sizes to better preserve geomet-

ric details, and also offer a parameter to adjust phys-

ical stiffness. Qin et al. [54] replaced 1-ring neighbor-

hoods with face-based local cells and specified a stiff-

ness parameter for each local cell to simulate defor-

mation of different materials. Le et al. [55] extended

ARAP deformation to editing man-made models. They

improved stiffness of ARAP deformation by introduc-

ing an anisotropic material and a membrane model.

However, the deformation focuses on local stretching.

Another approach to extending ARAP to anisotropic

ARAP was proposed by Colaianni et al. [56, 57] , intro-

ducing an affine matrix Ti into the ARAP formulation
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to enable directional editing:

E(S′) =

n∑
i=1

w̄i

∑
j∈N(i)

wij∥(v′
i − v′

i)− TiRi(vi − vj)∥
2
.

Different forms of matrix Ti can realize anisotropic scal-

ing, anisotropic shearing or anisotropic rotation.

ARAP deformation methods are useful. How-

ever, they can only achieve interactive rates on coarse

meshes [50]. Some research works [58, 59, 60] inves-

tigate acceleration techniques of ARAP. Borosan et

al. [58] combined surface-based deformation with cage-

based deformation to perform hybrid mesh editing. The

user deforms the simplified version of the input shape

using ARAP surface modeling [48], and the deformation

is then propagated to the original shape by precom-

puted Mean Value Coordinates [44]. Manson et al. [61]

also performed ARAP on simplified meshes and pro-

posed a prototype of hierarchical ARAP. They built

coarse meshes using edge contraction, and reversed the

edge-collapse process to add details back after defor-

mation on the simplified mesh. Following this accel-

eration strategy, Liu et al. [28] achieved cubic styliza-

tion of models by minimizing the ARAP energy with

an l1 regularization, as shown in Fig. 5. Sun et al. [59]

also achieved hierarchical ARAP by constructing a bi-

harmonic surface to decompose the mesh. Zollhofer et

al. [60] proposed a GPU-based multi-resolution ARAP

implementation, which accelerates the computation of

ARAP and allows to pose even high-quality meshes con-

sisting of millions of triangles in real time. Accelerating

the optimization of ARAP has also been addressed in

various recent works [62, 63, 64, 65, 66].

ARAP formulation has also been combined with

other deformation methods. Zhang et al. [67, 68] in-

tegrated a skeleton into ARAP surface modeling, effec-

tively extending it to volume modeling. They evenly

sampled points on the skeleton and connected surface

vertices with the sampled points to form skeleton edges,

which are also considered in an ARAP energy together

with the surface edges. In this way, the method can

avoid volume loss, which is a common issue for surface-

based deformation. Jacobson et al. [69] introduced the

ARAP energy into the LBS (Linear Blend Skinning)

deformation method to reduce the degrees of freedom

that require user specification. They further clustered

the vertices based on their Euclidean distances in the

skinning weight space, and used the same rotation ma-

trix for all the vertices in the same cluster. Yang et

al. [70] proposed to combine the ARAP energy with

a data-driven energy in deformation transfer. Their

method also clusters vertices. However, their cluster-

ing is based on the rotation-augmented weight matrix,

which is composed of the weight matrix and the ACAP

(as-consistent-as-possible) deformation feature [71] (see

Subsection 4.1 for more details). The resulting clusters

are more reasonable than using the weight matrix alone.

In addition to the above combinations, the ARAP en-

ergy has also been extended for use in other applica-

tions such as parametrization [72], data-driven interpo-

lation [73], shape optimization [74], shape decomposi-

tion [75], mass-spring simulation [76], image registra-

tion [77, 78], image warping [79], and video stabiliza-

tion [80].

2.1.2 Other Surface Geometry Properties

In addition to the Laplacian-based methods for an-

alyzing the local characteristics of the mesh, there are

many other geometry-based deformation methods that

analyze surface mesh characteristics. For example, cur-

vature is an important attribute of the surface. Crane

et al. [81] edited shapes by manipulating the mean cur-

vature and boundary data. The deformation is confor-

mal and has less distortion. Fang et al. [82] utilized

not only the mean curvature but also Gaussian curva-

ture to perform editing. An example is shown in Fig. 6.
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The method also performs conformal surface deforma-

tion which preserves local texture features.

Fig.6. Shape editing by keeping the mean curvature while chang-
ing the Gaussian curvature [82]. As the control parameter λ
increases, the details are preserved and the main structure is ex-
aggerated. (a) λ = 0.8. (b) Input shape. (c) λ = 1.2.

Lai et al. [83] proposed a robust feature region ex-

traction and classification method, which can identify

features such as ridges, valleys and prongs on mesh sur-

faces. These feature regions are further used for feature

editing of meshes, such as dilation and erosion of prong

features and sharpening ridges. Lipman et al. [84] per-

formed isometric deformations which preserve the first

fundamental form of the surface and minimize the de-

viation of the second fundamental form. The proposed

method preserves shape and volume even under a large

rotation (2π radians).

Stretching a mesh may destroy its geometric details.

Alhashim et al. [85] proposed a shape editing method

for stretching, which replicates the geometric details

along the stretching direction such that the geometric

details are not distorted. They first used a base mesh

to represent the general shape of the input, and then

used the curve skeleton extracted by [86] to create a

curvilinear grid on the desired stretching region, and

project the region onto the grid to form a 2D texture.

The user specifies the stretching direction by drawing

a 3D curve, and the new geometric details will be syn-

thesized according to the 2D texture.

Liu et al. [87] presented a set of scale-invariant mea-

sures consisting of triangle angles and edge angles (di-

hedral angles of the edges) to represent 3D shapes. The

representation is unique for a given shape. Moreover,

given one edge and the orientation of one of the tri-

angles containing this edge, the mesh shape can be re-

constructed by this representation uniquely. The re-

construction is through an iterative process that alter-

nately solves the face normals and vertex coordinates.

An ARAP-like formulation is introduced when updat-

ing the normals, and when solving for the vertex coor-

dinates, the constraints obtained from the user’s edited

handles are added. The editing process preserves the

local details at different scales.

Sparsity has also been widely used in geometry-

based mesh deformation. Xu et al. [88] reviewed these

methods in geometric modeling and processing that use

sparsity, with one section discussing shape deformation

based on sparsity. Gao et al. [89] introduced general

lp norms to shape deformation, and showed that differ-

ent p values influence the distribution of unavoidable

distortions. Deng et al. [90] explored local modifica-

tions of the shape, and proposed to use a mixed l2/l1

norm regularization which provides more local editing.

Different from [89] that applies sparsity penalty on the

error function, Deng et al. imposed it on the displace-

ment vectors.

In addition to the explicit mesh representation, im-

plicit representations such as distance fields or level sets

also provide an efficient representation for some edit-

ing operations. Museth et al. [91] proposed a level set

method for surface editing. They defined the speed

function which describes the velocity at each surface

vertex along the surface normal. Different speed func-

tions develop different surface editing operators, such

as the cut-and-paste operator for copying, removing

and merging level set models, and smoothing opera-

tor for smoothing the enclosed surface to a predefined

curvature value. The method enables easy blending and

topological changes of models thanks to the flexibility of
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implicit representation. Eyiyurekli and Breen [92] also

operated on level set representations and aimed to pre-

vent loss of surface details caused by movements in the

direction of the surface normal. Inspired by the idea of

multi-resolution deformation, they extracted geometric

details in advance and stored them in the particles on

the surface, and then combined the details back when

the deformation is completed.

2.2 Semantic Constraints for Man-Made Mod-
els

Assuming that the input models are all meshes, the

simplest way to edit a 3D model is to change the coor-

dinates of the mesh vertices, but this way lacks the nec-

essary constraints and is difficult to produce reasonable

results. Therefore, we prefer to use high-level editing

methods to edit multiple vertices at the same time, such

as Free Form Deformation (FFD) [32, 93], which we will

discuss with cage-based deformation in Subsection 3.2.

Although this method is simple and straightforward,

the users are required to adjust all parameters manu-

ally. Structure is only implicitly imposed by using only

a few, low-frequency basis functions. It should be noted

that structure is an important indicator in the editing

of man-made models. [10] summarizes the method of

structure-aware shape processing.

Fig.7. Non-homogeneous resizing results of stretching a camera
which preserve structural features [94]. (a) Original. (b) Scaled.
(c) Non-homogeneous.

2.2.1 Local Adaptivity

Early work on 3D man-made model editing efforts

sought to maintain the reasonableness of the 3D shape

when scaling 3D models. For example, Kraevoy et

al. [94] proposed to estimate the “vulnerability” of lo-

cal areas of the shape and adaptively deform the shape.

This method prefers axis-aligned stretch when editing,

as shown in Fig. 7. Xu et al. [95] proposed a joint-

based shape deformation method, which uses joints to

segment a 3D shape into parts, while constraining the

relative spatial configuration of adjacent parts. The

proposed deformation system edits the models under

those joint constraints.

Fig.8. Pipeline of iWIRES [96].

2.2.2 Global Relations

It is not enough to only consider local adaptivity,

so some methods explore the relationship between dif-

ferent parts or features of the whole model, and use

this as a constraint to edit the model. Gal et al. pro-

posed iWIRES [96], which forms an analyze-and-edit

paradigm, as shown in Fig. 8. Based on the obser-

vation that man-made shapes can be abstracted by

some special 1D line segments and their relationships,

they abstracted the 3D shape into a set of curves and

adopted simple methods to edit shapes while retain-

ing geometry features. Utilizing 1D curves to repre-

sent the model structure, Li et al. [97] extracted a

curve network and additional attributes as prior infor-

mation to reconstruct the 3D model with detailed and

interleaving structures from the scanned point cloud.

Those extracted high-level curves can be used as han-
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dles to edit the reconstructed model. Following a sim-

ilar analyze-and-edit concept, Zheng et al. [98] decom-

posed the model into several meaningful parts, and ab-

stracted the parts to simple geometric parametric prim-

itives, named as component-wise controllers. During

editing, the user manipulates one of the controllers and

the applied change is automatically propagated to other

controllers to maintain the structural relations among

them, such as symmetry, coplanarity and parallelism.

The final model is reconstructed with respect to the

modified controllers. Those controllers also serve as de-

formation handles for image guided shape editing [99].

Zhang et al. [100] segmented a complex input mesh into

several different primitives by clustering, which are de-

picted by a set of shape parameters and vertex coordi-

nates. During the editing procedure, they added several

different constraints on these parameters to minimize

the target energy function. Optimized parameters are

then applied to the corresponding primitives to change

the shape of input mesh.

Architectural models such as buildings are also im-

portant editing targets. These models are highly struc-

tured and often have many repetitive patterns, such

as windows. Based on this observation, Bokeloh et

al. [101] first deformed the model under user constraints

by as-rigid-as-possible deformation method [48] while

maintaining continuous patterns. They found the re-

peated patterns in advance by sliding dockers and mea-

sured the stretch to determine insertion or deletion of

those discrete repeated patterns after the elastic de-

formation. After finding those discrete or continuous

regular patterns, the authors [102] further built a novel

algebraic model of shape regularity and characterized

the shape as a collection of those linked translational

patterns. For those irregular architecture models, Lin

et al. [103] proposed an editing method for resizing

them. The users are required to specify the box hier-

archy and corresponding attributes, such as replicated,

scaled and fixed. Those irregular bounding boxes are

then transformed into a set of disjoint sequences auto-

matically. These sequences will be processed in turn.

During processing, those user-specified operations are

performed on corresponding boxes and their enclosed

parts, while the remaining sequences are constrained.

Milliez et al. [104] decomposed the model into differ-

ent parts, each of which undergoes elastic deformation.

They used several alternative rest states for each elastic

part, so the deformation energy is computed by consid-

ering a set of those alternative rest shapes. The method

further performs the corresponding model editing based

on the jigsaw-puzzle-type local replacement mechanism

on the user’s interactive operations, such as replace-

ment, stretching and shrinking, merging and cutting.

Habbecke and Kobbelt [105] linearized the constraints

that ensure regional and intuitive control in editing

process, making real-time or interactive editing pos-

sible. Texture is an important attribute to show the

appearance of the model, but it is not considered in the

above methods. Cabral et al. [106] proposed an editing

method for textured models which update the texture

to maintain the texture features while editing the ge-

ometry of the model. They used directional autosimi-

larity, which measures the ability of a texture region to

maintain similarity with itself under slight translation.

3 Proxy-Based Deformation

We focus on smoothly interpolating deformation

along the surface of 3D models in this section, where

proxies are used to drive the deformation of the mod-

els. An organic shape has a hinge structure. In addition

to directly editing the vertices on the mesh, binding a

skeleton to the shape, and driving the surface deforma-

tion through the skeleton are also a popular research

direction. We summarize these as skeleton-based mesh
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deformation methods. There is also extensive research

of cage-based deformation methods that utilize a set of

enclosing cages as proxies, which are not only suitable

for organic shapes but also man-made models. We sum-

marize these cage-based deformation methods in Sub-

section 3.2.

3.1 Skeleton-Based Mesh Deformation

Skeleton is one of the shape representations that

can describe both the topology and the geometry of

the shape [107]. There are various types of 3D skele-

tons, and we refer the readers to [107] for a thorough

survey of the state-of-the-art of various 3D skeletons,

while we mainly focus on bone-skeleton used for edit-

ing and deformation.

3.1.1 Skeleton-Based Skinning

Skeleton-based deformation is most commonly used

for the deformation of realistic animated characters. It

needs users to bind a skeleton to the shape first, which

is termed as the bind time. The user then manipulates

the skeleton to deform the shape accordingly, which

is the pose time. Most methods propagate the han-

dle transformations to the deformation of each surface

vertex through a weighted blending of handle transfor-

mations. One of the classical methods that uses skele-

tons to drive the deformation of mesh surfaces is linear

blend skinning (LBS), also known as skeleton subspace

deformation (SSD) [108]. Let Ω ⊂ R2 or R3 denote the

volumetric domain enclosed by the given shape S. We

denote the handles by Hj ⊂ Ω, j = 1, ..., nh. In fact,

LBS is not limited to skeleton-based deformation. A

handle can be a single point, a region, a skeleton bone

or a vertex of a cage. Here, we focus on the skeleton

bone, and others are easy to generalize. A transforma-

tion matrix Tj requires the user’s specification for each

handle Hj . Then all vertices v ∈ Ω are deformed by

their weighted blends:

v
′

i =

nh∑
j=1

WijTjvi, (3)

where v′

i is the vertex coordinates after deformation, vi

is the vertex coordinates before deformation, and Wij

is the skinning weight of handle Hj on vertex i.

The linear blend weights W in Eq. 3 are crucial to

the deformation. Usually, the LBS weights are deter-

mined by manual assignment or coming from dataset

analysis, which not only takes lots of time and effort,

but also produces unnatural deformation results due

to the lack of smoothness. To address this, Bang et

al. [109] proposed a spline interface for users to edit

skinning weights interactively. Some early works use

bone heat [110] or an improved version, bone glow [111],

to assign the skinning weights. Jacobson et al. [112]

proposed bounded biharmonic weights (BBWs), aiming

at enabling users to work freely with the most conve-

nient combination of handle types, and making defor-

mation design and control easier. The BBWs produce

smooth and intuitive deformation results for any topol-

ogy of control points, skeletons, and cages. They define

the weight vector Wj of the j-th handle (consisting of

the control point weights at all vertices) as minimizers

of a higher-order shape-aware smoothness functional,

namely, the Laplacian energy:

argmin
Wj ,j=1,...,nh

1

2

∫
Ω

∥∆Wj∥2dV, (4)

subject to: Wj |Hk
= δjk,

∑nh

j=1 Wj(v) = 1 and

0 ≤ Wj(v) ≤ 1, j = 1, ..., nh,∀v ∈ Ω,

where δjk is the Kronecker function, and v is the mesh

vertices. It is natural that different control handles do

not affect each other. The constraints also guarantee

that the deformed shape will not scale and the handles

all have positive contributions to the deformation.

For conveniently solving the Laplacian energy Eq. 4,

[112] discretizes the equation using the standard linear
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FEM Laplacian M−1L, where M is the lumped mass

matrix and L is the symmetric stiffness matrix. After

discretizing the continuous integral, we can get Eq. 5
nh∑
j=1

1

2

∫
Ω

||∆Wj ||2dV ≈ 1

2

nh∑
j=1

Wj
T(LM−1L)Wj . (5)

Through discretization, the minimization of an inte-

gral is converted into a quadratic optimization which is

easy to compute. The above constraints are all linear

equations or inequalities about Wj . Once we know the

matrices M and L of the given shape, the only thing

left is solving a quadratic optimization problem under

linear constraints. We can observe in Fig. 9 that the

BBWs are smooth and local.

Directly adding constant bounds to high-order en-

ergy leads to more and more oscillation [113]. So Ja-

cobson et al. [113] minimized quadratic energies while

avoiding spurious local extrema to wrangle the oscilla-

tions. By exploiting datasets to strengthen the BBWs,

Yuan et al. [114] used data-driven, ARAP and sparsity

terms to optimize the BBWs. The deformation results

using optimized weights can better reflect the deforma-

tion behavior of the example shapes in the dataset.

The above methods are suitable for manifold

meshes. For non-manifold meshes, such as models

obtained from 3D modeling software, they are often

not watertight or have multiple components. One

way of computing skinning weights is to voxelize the

model [115, 116]. The weights are then calculated based

on the geodesic distance between each voxel lying on a

skeleton “bone” and all non-exterior voxels. [115, 116]

also allow the user to modify weights interactively when

deforming the model to test the effect of the modifica-

tion.

The calculated weights always have an inapplicable

area. Eliminating the trouble of assigning weights, Yan

et al. [117, 118] proposed to use skeleton to drive the

transformation of mesh simplices (triangles in 2D and

tetrahedra in 3D) instead of vertices without the need of

specification of skinning weights. The vertex connectiv-

ity information was directly exploited in their method

since simplices include mesh connectivity information.

Although LBS is straightforward, easy to implement

and has real-time performance, it can lead to well-

known artifacts such as “collapsing elbow” and “candy

wrapper”. Some methods [119, 120, 121, 122] have

been proposed to address these problems. Rumman

and Fratarcangeli [123] first transformed the surface

mesh to a tetrahedral mesh where LBS is performed,

then added stretch constraint, tetrahedral volume con-

straint and bound constraint to eliminate the artifacts

caused by LBS. The constraints are solved by a parallel

Position-Based Dynamics schema. Performing contex-

tual deformation, Weber et al. [124] separated surface

detail information from skeleton driven pose changes

and learned the deformation of skin details from the

example characteristic shapes. The editing results can

avoid the artifacts of LBS at body elbows. Shi et

al. [125] also considered detailed motions (or secondary

deformations formally) in skeleton-based deformation.

They utilized LBS to generate primary deformations

and learned those physical behaviors from the example

sequences.

In addition to LBS, there are other alternative skin-

ning methods, such as linear combinations of dual

quaternions or dual quaternion skinning (DQS) [126,

127]. However, it suffers from more complex vertex

processing [128]. So the work [128] makes improve-

ments and only uses a few samples of nonlinear func-

tions (virtual bones) in some key locations, such as joint

areas. Other non-linear techniques, such as log-matrix

skinning (LMS) [129, 130] and spherical blend skinning

(SBS) [131] also perform volume-preserving deforma-

tion, but suffer from bulges near bent joints [132]. Kim

and Han [133] proposed some post-processing opera-
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Fig.9. The bounded biharmonic weights [112] are smooth and local.

tions such as modifying vertex coordinates and nor-

mals to solve the bulge and distortion problems faced

by DQS.

Another choice is spline skeletons [134, 135, 136].

They viewed the bone as a spline and introduced spline

deformation to skinning animation, replacing the pre-

vious transformation matrix guidance. These methods

can produce better results but are nonlinear and often

fail when large rotation deformations are encountered.

The differential blending method proposed by Öztireli

et al. [137] can solve this problem. The work uses sketch

as the interaction tool, and the selected bones will de-

form to match the strokes drawn by the user.

Jocobson et al. [69] combined ARAP [48] with the

original LBS formulation, different from some other

methods [138, 139, 140] which change the LBS formu-

lation to other forms. All computations of [69] except

for SVD decomposition are linear. When the num-

ber of vertex clusters is reasonably selected, real-time

deformation can be guaranteed. Also incorporating

ARAP energy into LBS deformation, Thiery and Eise-

mann [141] proposed a method to generate skinning

weights given a 3D mesh and corresponding skeleton.

They used a variant of bone heat weights [110] to initial-

ize the weights and optimize both weights and skeleton

joints according to the deformation quality to example

shapes. Li et al. [142] proposed an automatic implicit

skinning method which bounds the surface onto the

skeleton implicitly. The local surface surrounding the

joint is used to parameterize the joint position. The de-

formation is achieved by Laplacian deformation energy

with volumetric constraints which prevent those unnat-

ural collapsing at the joints. Kavan and Sorkine [143]

aimed to produce visually similar results to physical

elastic simulations through a skeleton-based skinning

method. So they proposed not only a new way to cal-

culate the skinning weights but also a new skinning

method based on a specific deformer, which they called

joint-based deformers. Le et al. [132] proposed to im-

pose orthogonal constraints to prevent those artifacts

near the joints suffered by LBS, DQS, LMS, and SBS

and guarantee real-time performance. However, they

needed rest pose with skinning weights and bone trans-

formations as inputs.

Artifacts at the joints are often caused by surface

self-contact. Physically-based methods can solve the

problem of skin collision well and produce visually plau-

sible deformations, but even after significant optimiza-

tion [144], they can only be close to real-time and can-

not achieve complete real-time interactive posing. Vail-

lant et al. [145] segmented the mesh according to the

skeleton bones by [110], and then approximated each

part with an implicit surface utilizing Hermite Radial

Basis Functions (HRBF) [146, 147], and at last merged

different parts by union or other methods that per-

form better. They proposed to edit the shape through

these field functions and geometric skinning methods.

The rigid transformations are also applied to the field

functions during deformation. The mesh vertices move

along the gradient of field function and stop when they
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reach the original field value or the point where the gra-

dient is discontinuous so that the surface contacts can

be handled well without collision detection. Based on

[145], Vaillant et al. [148] further proposed a new fam-

ily of gradient-based composition operators for combin-

ing those implicit surfaces which can deal with surface

contacts better. They also derived a tangential relax-

ation scheme from ARAP [48] to track the iso-surface.

The deformation results are better than these of [145],

especially on extreme character movements. Teng et

al. [149] applied the subspace simulation of articulated

deformable shapes to deal with self-contact situation.

They proposed a pose-space cubature scheme to resolve

the collision without detecting all collision points.

Without the need to input the skeleton or pre-

dict the hierarchical structure of the bones, James and

Twigg [150] used non-parametric mean shift clustering

and least squares method to establish proxy bone trans-

formations and vertex weights to edit and animate the

shape. Yoshizawa et al. [151] proposed to extract a

skeletal mesh from the dense mesh model. The skeletal

mesh is deformed by FFD [32] and the deformation is

back-propagated to the dense model using differential

coordinates. A hierarchical framework is used to speed

up the process. Xie et al. [152] proposed a shape edit-

ing method for personal fabrication applications where

the user edits the shape through the constructed skele-

ton. They observed that most of the editing made by

users are local. Based on this fact, they introduced

a domain decomposition method that allows the FEM

system to re-assemble the sub-matrices only for the lo-

cal part modified by the user, while the rest remains

unchanged, which can avoid unnecessary calculations

for fast convergence. Following [152], Xu et al. [153]

also used the skeleton to drive the deformation of the

model, and locally updated the FEM system. Further-

more, they introduced multi-grid solvers into the anal-

ysis of the stress distribution. For man-made models,

they introduced iWIRES [96] to preserve the character-

istic structure of the model.

3.1.2 Automatic Rigging

In addition to studying how to use skeletons to

drive shape deformation, another research direction is

how to bind a skeleton to the shape. This problem is

called rigging. In the traditional workflow, this pro-

cess often needs manual specification with the help of

professional 3D modeling software. This process usu-

ally consists of two steps. The first one is to spec-

ify the joint positions and their connections, and the

other is to determine the skinning weights which we

have mentioned some methods above. There are some

works [86, 154, 155, 156, 157, 158, 159, 160] that extract

skeletons aiming to discover the shape topology, typi-

cally called curve-skeletons, while we focus on another

type of skeletons, called bone-skeletons, which can be

directly used for editing. For the early work, Baran et

al. [110] proposed an automatic method, called Pinoc-

chio, to generate skeleton and the skinning weights from

a single shape. They fit a pre-defined skeleton template

to the input shape so the method may fail when the

shape structure is different from that of the skeleton.

Feng et al. [161] transferred high quality rigging to in-

put body scan with the help of the SCAPE model [162].

However, they only dealt with human body shapes. For

multi-component characters which are easily accessible

on the Internet, Bharaj et al. [163] proposed a method

to automatically bind skeletons to the character mod-

els. The method builds a contact graph for the compo-

nents of the input model and exploits graph clustering

to obtain the target skeleton with corresponding skin-

ning weights from the input animation skeleton. The

mapping from the input skeleton to the target skele-

ton of the input model is achieved by a novel mapping
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scheme based on dynamic programming.

Also, the quality of the skeleton extracted using the

information from a dataset is better than that extracted

from a single shape. Most works use a set of example

poses to extract a hierarchical, rigid skeleton. Schae-

fer et al. [164] used clustering to find the rigid bones

of the skeleton, and then solved for the vertex skin-

ning weights which are further used to determine the

joint positions and their connections. Aguiar et al. [165]

bridged the gap between mesh animation and skeleton-

based animation. They also first performed clustering

to extract rigid bone transformations and then estimate

joint motion parameters and appropriate surface skin-

ning weights. Different from former methods that ex-

tract a skeleton from the examples of the same subject,

Hasler er al. [166] estimated a rigid skeleton including

skinning weights from examples of different subjects.

The skeleton extracted by their method represents ei-

ther shape variations or pose variations. With the

combination of pose skeleton and shape skeleton, the

user can control them independently. However, Le et

al. [167] pointed out that these data-driven methods, on

the one hand, use motion driven clustering which does

not model the skeleton structure well, so some specific

parameter settings are required. On the other hand, the

step-by-step process will cause error accumulations. So

they adapted skinning decomposition [168] and added

soft constraints converting unorganized bone transfor-

mations to hierarchical skeleton structure. They over-

estimated the number of the skeleton bones during ini-

tialization, and exploited an iterative framework to au-

tomatically prune the redundant bones and update the

skinning weights, joint location and bone transforma-

tion. The rigging results are shown in Fig. 10.

Fig.10. Example-based rigging results of [167].

3.2 Cage-Based Deformation

The cage-based deformation method is very similar

to the skeleton-based deformation, but the difference is

that the skeleton is generally inside the model, while

the cage is generally wrapped outside the model. In

essence, they both simplify the structure of the model

and provide users with the handle to edit models. Free

Form Deformation (FFD) [32] is first proposed to pro-

duce digital animation. This technique makes it possi-

ble to deform 3D shapes smoothly. Given the lattice

vertices vi, i = 1, · · · , n, we denote the new position

of a point inside lattice as p′, and low-frequency basis

functions as ϕi, and then we can obtain the formulation

as follow:

p′ =

n∑
i=1

ϕi(p)vi. (6)

However, limited by the 3D control lattices, FFD

is hard to realize complicated deformations like limb

movements so that it is difficult to depict articulated

shapes. Cage based deformation (CBD) is an extension

of FFD. The control lattice is replaced by a polyhedral

mesh which can better approximate the 3D shape and

the deformation formulation is the same as Eq. 6.

3.2.1 Cage Prediction

The first thing of CBD is cage generation which can

be divided into two kinds, automatic and user interac-

tive. Automatic methods are typically completely geo-

metric including mesh simplification [169, 170, 171, 172]

and voxelization [173, 174]. But these methods tend to

produce imperfect cages or sometimes fail. The inter-
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active methods [175] allow users to add cage vertices

to produce better cages for deformation but are more

time-consuming. Ju et al. [176] proposed a data-driven

method to exploit the cage template dataset created by

artists for better cage selection in animation. Savoye

et al. [177] proposed a linear cage estimation method

for the target shape given the source shape and cor-

responding cage, which facilitates cage extraction and

animation re-editing work.

3.2.2 Blending Weights Generation

The next step of cage based deformation is to es-

tablish the relationship between the cage and the inte-

rior shape. For this purpose, Mean Value Coordinates

(MVC) are first introduced in [178, 179] and applied

to the deformation for triangular meshes [44]. Hor-

mann et al. [180] extended MVC to arbitrary polygon

meshes. But these coordinates have a main drawback

that they could be negative, which will produce un-

satisfactory results. To avoid the negativeness, Joshi

et al. [181] proposed Harmonic Coordinates which en-

sure positive values and produce more local deforma-

tions, but the computation is time-consuming. Lip-

man [182] improved MVC to avoid negative values, uti-

lizing GPU visibility rendering. Langer et al. [183] gen-

eralized MVC and vector coordinates [184] to spherical

barycentric coordinates which are defined for arbitrary

polygonal meshes on a sphere. Those coordinates can

also be integrated into existing space-based deforma-

tion frameworks. Later on, Lipman [185] found that

the details of mesh surfaces are not retained when con-

fronting large-scale deformations. In previous methods

like MVC and Harmonic Coordinates, only cage ver-

tex positions are considered. Therefore, he suggested

to relate the cage’s face normals to the interior ver-

tices and proposed new coordinates called Green Coor-

dinates. The Green Coordinates are further extended

to complex domains, making the deformation better fit

the user’s input [186]. Unlike the original Green Coordi-

nates, which associate the face normals with the vertex

positions, the function of the face normals and the func-

tion of the vertices in [187] are independent, providing

a higher degrees of freedom and a larger deformation

space.

Yang et al. [188] added global and local stiffness

control to the lattice-driven shape deformation. The

global stiffness is provided by the width of overlapping

lattice cells, and the local stiffness is controlled by the

stiffness coefficient. The deformation of the lattice is

transferred to the embedded shape by bilinear or trilin-

ear interpolation. Manson and Schaefer [189] proposed

moving least squares coordinates which suffer from the

same problem on boundary edges as MVC and Hermite

MVC [190] when used for deforming concave shapes.

Weber et al. [191] further proposed biharmonic coor-

dinates derived from the solutions to the biharmonic

equation. They also presented a thickness-preserving

deformation method which is better than As-Similar-

As-Possible (ASAP) and ARAP methods [47]. In the

context of transfinite interpolation, Li et al. [192] pro-

posed Cubic Mean Value Coordinates (CMV). Cage-

based deformation is essentially a series of interpola-

tion approaches, which interpolate the control vertices

of the cage, so CMV can also be used for cage-based

shape deformation, as shown in Fig. 11. They showed

shape deformations under the control of cage networks

consisting of straight and curved edges.
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Fig.11. Deformation results using curved edge networks with cu-
bic mean value coordinates [192]. (a) (b) are source models and
(c) (d) are edited results.

Most of barycentric coordinates are global, that is,

the vertices on the deformed model are determined by

the weighted sum of all vertices on the cage, which

will cause some counter-intuitive deformations, losing

good controls for local variations. On the one hand,

even for not too many vertices (50-100 vertices) on

the cage, the calculation process is time-consuming and

may not achieve real-time. On the other hand, since the

coordinates are decreasing functions of distance, such

as Euclidean distance [44] or geodesic distance [181],

then there are some vertices on the cage that may

have little influence on a single vertex of the deformed

mesh. So reducing the number of weights is neces-

sary and feasible. Based on these observations, Landre-

neau et al. [193] proposed a Poisson-based weight reduc-

tion method which can reduce the number of weights

(control points) that affect a single vertex to a user-

specified number, while preserving the deformation re-

sults. The method requires a certain number (typically

4-6) of example poses in the optimization to achieve

better results, and the minimization energy is obtained

from Poisson equation solved for the weights by La-

grange multipliers. Their method is also applicable to

other deformation methods that require weights, such

as skeleton-based deformation methods. However, im-

posing the sparsity constraint may obtain suboptimal

solutions, which will lead to non-smooth results or even

poor approximation results; and sometimes there are

exceptional vertices, which are affected by more bones

or control points than the preset threshold. There-

fore, Le et al. [194] proposed a two-layer blend skin-

ning model that performs lossy weight matrix compres-

sion to avoid imposing sparsity constraints. They added

virtual bones as an intermediary between the original

bones and vertices. They first blended the transfor-

mations of the original bones to obtain the transfor-

mations of the virtual bones, and then blended up to

two virtual bones to obtain the transformation of each

vertex. Although mainly dealing with skeleton-based

deformation in their paper, their method could also be

used in cage-based deformation after combining with an

objective function similar to the one in [193]. Similar

to enhancing the locality of the deformation, Zhang et

al. [195] proposed Local Barycentric Coordinates (LBC)

for better local deformation. They introduced total

variation (TV) originally used in image smoothing and

reconstruction [196], minimizing which under a couple

of constraints of partition of unity, reproduction, and

non-negativity. The deformation using LBC can realize

multi-scale high-quality editing without any other man-

ual specification. However, LBC has no closed-form

expression and must solve a time-consuming optimiza-

tion problem when dealing with dense mesh models, as

pointed out in [197]. So Tao et al. [197] proposed a new

efficient solver for the optimization of LBC.

Some works exceed the limits of single cage and lat-

tice. Instead of using a polyhedral mesh cage or control

lattice, Botsch et al. [198] proposed to use small vox-

els to enclose the model for space-based deformation.

They defined a nonlinear elastic energy which supports

large-scale deformations. However, the discretization

may cause some aliasing problems. Li et al. [199] pro-

posed a method to directly interpolate points on the

mesh without constructing a whole cage for the mesh;

instead, they only built an umbrella-like cell interac-
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tively on the partial mesh where users are interested.

Considering that Green Coordinates cannot ensure con-

formal deformations with an open cage or umbrella-like

cell, they also took the local deformation differences of

the cage into account. Replacing the cages with the

Interior Radial Basis Functions (IRBFs) center points,

Levi et al. [200] improved the cage-based deformation

methods based on VHM (Variational Harmonic Maps)

method [187]. The harmonic basis functions are re-

placed by IRBFs which are defined with respect to cen-

ters on the surface of the model. They also placed a

set of spheres inside the model to minimize local dis-

tortions by preserving the shapes of the spheres. Aim-

ing for multi-level detail and high-quality deformations,

Garcia et al. [201] proposed a cage-based deformation

method based on star-cages instead of a single cage

as traditional methods do. The star-cage consists of

multiple cages that offer easier interaction compared

with the single cage. Based on a new representation,

sphere-meshes, which can approximate shapes, Thiery

et al. [202] used the sphere-mesh hierarchy as a defor-

mation handle to deform shapes well. They [203] fur-

ther apply this representation to the approximation of

animated mesh sequences and the skinning weights ob-

tained by skinning decomposition can guide pose edit-

ing well.

In the traditional FFD or cage-based deforma-

tion, after determining the lattice or cage, without re-

parameterization, the user can only use the existing

handle to deform the shape. Zhang et al. [204] pro-

posed a control lattice with adjustable topology, which

does not need to re-parameterize the relation between

lattice and enclosed shape again after changing the lat-

tice. This method uses a tailored T-spline volume to

create the lattice and further uses a refinement algo-

rithm to obtain a proxy, which is a simplified version of

the lattice and fits the enclosed shape better. The user

manipulates the proxy, driving the deformation of the

lattice and the deformation is then transferred to the

shape. There are fewer vertices on the proxy than the

lattice, which is more convenient to manipulate. How-

ever, the method is essentially based on volumetric lat-

tice, which is not as flexible as cage-based deformation

in large-scale deformation.

4 Data-Based Deformation with Numerical
Models

With the development of 3D scanning and regis-

tration techniques, geometric shape datasets [162, 205]

are becoming increasingly available on the Internet.

Analyzing the existing shapes from the shape dataset

to provide prior information for deformation becomes

an attractive direction. We summarize these as data-

driven mesh deformation methods. The structural and

semantic knowledge of the man-made model can also

be obtained by analyzing multiple models. We summa-

rize these as data-driven analysis for man-made models

methods.

4.1 Data-Driven Mesh Deformation

Aforementioned geometry-based methods have

some essential weaknesses. On the one hand, they are

prone to producing unreasonable deformation results

when the user’s interaction is insufficient. On the other

hand, they have high requirements for meshes and dif-

ferent models tend to require different parameter set-

tings. To address these limitations, data-driven meth-

ods exploit plausible deformations from shape datasets

and can produce more natural deformation results with-

out manual selection of parameters or a large amount

of user constraints. An important pioneering work is

Mesh based Inverse Kinematics (MeshIK) [206], based

on which a series of works has been proposed to im-

prove or extend the method. We will group these meth-
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ods according to different deformation representations

of shapes. Another active research area is not limited

to editing model pose, but also considering shape.

4.1.1 Blend Mesh Representation

In data-driven deformation of mesh models, the de-

formation representation is important for representing

the mesh model. Euclidean coordinates are the most

straightforward way to represent the model, but there

are obvious limitations on rotations.

Gradient-Based representation. Deformation

gradient is a straightforward gradient-based representa-

tion, which is defined as the affine transformation that

optimally describes the mapping of local neighborhoods

(triangles or one-ring neighbors) from the source mesh

to the target mesh. Sumner and Popović [207] used

deformation gradients to transfer the deformations be-

tween two mesh shapes. Further, Sumner et al. [206]

proposed MeshIK, a method based on principal com-

ponent analysis (PCA) to analyze the shape dataset

and use the weighted combination of deformation gra-

dients to edit shapes. MeshIK is used to produce styl-

ized surface deformation and in analogy to traditional

skeleton-based inverse kinematics for posing skeletons,

and hence the name of MeshIK. Each example shape

is represented using a feature vector, containing de-

formation gradients of triangles describing deformation

from a reference model. The deformation gradient has

a good property that it is a linear function of the mesh

vertices. They further decompose the deformation gra-

dient Tij for the j-th triangle in the i-th shape into

rotation and scaling/shear components using polar fac-

torization Tij = RijSij . The rotation is not linear

so if it needs to be interpolated linearly, one can map

the rotation from 3D rotations SO(3) to so(3) of skew

symmetric 3× 3 matrices [208]. The mapping uses the

matrix logarithm and can be reversed by the matrix ex-

ponential [208]. Then the nonlinear span of the defor-

mation gradient for the j-th triangle given m example

meshes has the formulation as Eq. 7:

Tj(w) = exp(

m∑
i=1

wi log(Rij))

m∑
i=1

wiSij . (7)

This constitutes the nonlinear feature space, where wi

is the combination weight for the deformation gradient

from the i-th shape. As shown in Fig. 12, given differ-

ent example models, the editing will produce different

results.

Der et al. [209] proposed a reduced model for inverse

kinematics which is faster than MeshIK [206]. They

clustered the vertices according to the influence of the

control parameters, and replaced the same cluster of

vertices with a proxy vertex located at the weighted

centroid of the cluster. The method takes advantage of

the reduced complexity of deformation proxies, not re-

lying on the geometric complexity of the original mesh

to interactively edit even extremely detailed geometry

models. Wampler [210] exploited the ARAP energy [48]

for interpolation between a set of example shapes. The

method allows spatially localized interpolation which

has more natural transitions. However, it also suffers

from the problem of potential non-local editing and re-

quiring to solve a complicated system of equations when

a large number of examples are given.

Fig.12. Given different examples, MeshIK [206] will produce dif-
ferent deformation results. (a) (c) are example bends and (b) (d)
are outputs.
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MeshIK cannot deal with large-scale deformations

where rotations are larger than 180◦. Gao et al. [71]

proposed a shape editing method based on ACAP (as-

consistent-as-possible) deformation features to address

this problem. The rotation at each vertex can be repre-

sented using an axis-angle representation. However, the

direction of the axis (one of the two opposite directions)

and the rotation angle (with multiples of 2π added)

are ambiguous. They proposed an integer optimiza-

tion strategy to eliminate the ambiguities, so the pro-

posed feature can express rotations greater than 180◦.

The method further introduces sparsity constraints into

model editing that utilizes the prior information from

the model dataset to automatically select a smaller

number of basis deformations. It also supports multi-

scale editing with high efficiency, as shown in Fig. 13.

Fig.13. Using ACAP features [71] along with sparsity constraints
enables multi-scale editing. (a) is the reference model. (b) is the
deformation result with the simplified mesh. (c)-(e) are the de-
formed results on the high resolution mesh with both facial and
body deformations. Their method automatically selects suitable
basis modes for both small-scale facial expression editing and
large-scale pose editing.

Rotation-Invariant representations. Another

direction of research to tackle rotation ambiguities is to

develop rotation-invariant representations. Lipman et

al. [211] locally defined linear rotation-invariant (LRI)

coordinates at each vertex which consist of two discrete

forms. The discrete form coefficients w.r.t. orienta-

tion can be used to represent the mesh that facilitates

detail-preserving surface editing and shape interpola-

tion. Changing the definition domain from one-ring

neighborhoods of the vertices to mesh patches, Baran

et al. [212] proposed patch-based rotation-invariant co-

ordinates, which solve the noise sensitivity problem of

the original LRI [211] and accelerate the shape recon-

struction. They used patch-based LRI coordinates to

project the shape into the shape space and transfer se-

mantic deformations to the target shape. The patch-

based LRI representation is further used in data-driven

shape interpolation and morphing [213] which provides

an interface for users to intuitively edit the morphing

results. Kircher and Garland [214] proposed a differ-

ential rotation-invariant surface representation for sur-

face editing. The second-order differences are both

rotation-invariant and translation-invariant. The edit-

ing can be operated both in time and space. Winkler

et al. [215] used the edge lengths and dihedral angles

as a representation for multi-scale shape interpolation.

Their method supports input settings for more than

two shapes. Further, Fröhlich and Botsch [216] pro-

posed to use edge lengths and dihedral angles to rep-

resent shape deformation. However, since edge lengths

cannot be negative, the method cannot handle extrap-

olation deformation well. Gao et al. [217] proposed

a data-driven shape editing method based on a novel

rotation-invariant representation named RIMD (Rota-

tion Invariant Mesh Difference). They decomposed the

deformation gradient into rotation and scaling/shear

matrices, and combined the logarithm of the rotation

difference of each edge and the scaling/shear matrix

of each vertex to represent the shape. As shown in

Fig. 14, the rotation difference cancels out global rota-

tions, making it a rotation invariant representation and

thus it can handle large-scale deformations. However,

when applied for data-driven deformation, it uses global

principal components extracted from example shapes,

so it is difficult to perform local editing. Besides, the

derivatives are calculated in a numerical way, which

restricts the editing efficiency.
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Fig.14. RIMD features can handle large-scale deformations [217].
(a) (b) are the input shapes and (c) is the result.

Generalized to deforming mesh sequences, Xu et

al. [218] proposed a keyframe based mesh editing

method. Once the constraints are specified by users or

induced from the environment, the frames with those

constraints become keyframes. And the constraints and

deformations will be propagated to the whole mesh se-

quence. Instead of directly editing the input represen-

tation of the model, Sumner et al. [219] proposed to

embed the model into a deformation graph which is

built by uniformly sampling on the model surface. The

graph node j is associated with an affine transforma-

tion Rj and a translation vector tj which can map the

point p to a new position by p′ = Rj(p− gj)+ gj + tj ,

where gj is the position of the graph node. Assuming

there are m graph nodes, then the final deformed posi-

tion v′ of the model vertex v will be determined by the

weighted sum of all influences, as shown in Eq. 8

v′ =

m∑
j=1

wj(vi)[Rj(vi − gj) + gj + tj ]. (8)

In addition to editing the mesh models, this method can

also perform particle simulation, but the disadvantage

is that the local details cannot be edited.

Deformation components. Given a dataset, we

can extract the deformation components of the shape

and manipulate the basis to achieve the purpose of edit-

ing the shape. Early work [220] employed principal

component analysis (PCA) to extract the deformation

components, but the extracted components are global,

which are not convenient for users to manipulate di-

rectly. Therefore, in combination with sparsity, a se-

ries of works propose the extraction of sparse defor-

mation components. For the first work, Neumann et

al. [221] proposed to decompose the animated mesh se-

quences into sparse localized deformation components

(SPLOCS). Those components form a spatially local-

ized basis which captures semantic deformations. The

user can edit the shape by manipulating those com-

ponents. However, the method operates on vertex

coordinates, which are translation and rotation sensi-

tive and thus cannot handle large rotations. Huang et

al. [222] used the deformation gradient to represent the

shape, and decomposed the deformation gradient into

rotation and scale by polar decomposition, and finally

used SPLOCS on those vector representations. But

this method still cannot handle rotations larger than

180◦. Bernard et al. [223] also aimed to find local sup-

port deformation components from the example shapes

in the dataset. They used matrix factorization with

sparsity and graph-based regularization terms, account-

ing for smoothness to automatically select the position

and size of the local support component. Adopting

a rotation-invariant representation, Wang et al. [224]

extended [221] using the shape representation of edge

lengths and dihedral angles. However, the problem

that the extrapolation may fail due to the fact that

the edge length cannot be negative still exists, and the

insensitivity to scale will lead to lack of robustness to

noise. The edge length and dihedral angle representa-

tion is also used in [225], which analyzes the edge length

vectors and the dihedral angle vectors respectively to

extract the adaptive sparse deformation components.

Then, by adapting [216], the method allows users to

directly edit vertices and produces deformation results

under the guidance of components. Based on Nonlin-

ear Rotation-Invariant Coordinates (NRIC) [226, 227],

Sassen et al. [228] combined the advantages of principal

geodesic analysis [229] and SPLOCS [221] and proposed
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Sparse Principal Geodesic Analysis (SPGA) on the Rie-

mannian manifold of discrete shells.

4.1.2 Blend Shape and Pose

This series of methods model the human body

through several parameters (often related to shape and

pose of the body), and the editing of the human body

can be achieved by different parameter inputs. As one

of the pioneering works and also one of the most suc-

cessful works, SCAPE [162] uses the deformations of

the triangular faces to represent the body shape and

pose, separately. The follow-up work, Skinned Multi-

Person Linear model (SMPL) [230], decomposes the

body shape into identity-dependent shape and non-

rigid pose-dependent shape with a vertex-based skin-

ning approach, such as LBS and DQBS. Given shape

parameters β ∈ R∥β∥ and pose parameters θ ∈ R∥θ∥,

they propose to represent the neutral mesh T (β, θ) by

adding a blend shape function, BS(β), which sculpts

the subject identity, and a pose-dependent blend shape

function, BP (θ) to a mean mesh template T̄ ,

T (β, θ) = T̄ +BS(β) +BP (θ). (9)

The neutral pose is then deformed by some blend skin-

ning methods,

M(β, θ) = W (T (β, θ), J(β), θ,W ),

where W (·) represents a standard blend skinning func-

tion, and W is the skinning weights. J(β) is a function

that determines the joint locations, which transforms

rest vertices into rest joint locations.

Although SMPL can model human bodies well,

it lacks modeling of non-rigid dynamic deformations

caused by body motions. To model them, the Dyna

model [231] proposes to use a second-order auto-

regressive model which predicts soft-tissue deforma-

tions. Specifically, it represents non-rigid deformation

of a body, T̂ (β, δ), by the combination of identity and

soft-tissue deformations,

T̂ (β, δ) = S(β) +D(δ).

Further, different from SMPL, Dyna follows the similar

idea of SCAPE [162], which describes different human

bodies by triangular deformations. Given the edge êi of

triangle i in the template mesh, the edge ei of triangle

i belonging to the mesh at time t can be represent as,

ei(β, θt, δt) = Ri(θt)T̂i(β, δ)Qi(θt)êi

= Ri(θt)(Si(β) +Di(δt))Qi(θt)êi,

where β and θ are still body shape coefficients and body

pose parameters, respectively. Qi(θt) represents pose

dependent deformations which are a linear function of

θ, Si(β) represents identity-dependent transformations

which are a linear function of β, Ri(θt) represents ab-

solute rigid rotations, and Di(δt) represents dynamics-

dependent deformations which is a linear function of

coefficients δt. Dynamics deformations are related to

body motion; thus, velocities and accelerations. So, the

angular velocity and acceleration (θ̇t, θ̈t) of body joints

and the velocity and acceleration (vt, at) of the root of

the body at time t are also the inputs of the model.

Let δ̂t−1 and δ̂t−2 be the coefficients representing the

history of estimated low-dimensional dynamic defor-

mation, and the dynamic control vector of the Dyna

model is xt = {θ̇t, θ̈t, vt, at, δ̂t−1, δ̂t−2} in total. Dy-

namics deformations also depend on the body shape,

which is specified by the shape identity coefficients β.

The dynamics-dependent deformations Di(δt) can be

further specified as Di(f(xt, β)), where f is a function

to be learned that maps dynamic control vector xt and

shape coefficients β to the low dimensional representa-

tion δt of the dynamics.

SMPL can also be extended to model those dynamic

deformations by adding dynamic blend shape function,
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BD(xt, β) to Eq. 9,

T (β, θt,xt) = T̄ +BS(β) +BP (θt) +BD(xt, β),

where BD(xt, β) also predicts vertex offsets. This

model is named as Dynamic SMPL, abbreviated as

DMPL.

4.2 Data-Driven Analysis for Man-Made Mod-
els

Data-driven analysis for man-made model editing is

to learn some prior information from a model dataset

that contains closely related models, such as those be-

longing to the same category or having the same style.

The prior information provides plausible variations of

the models and adds constraints to user editing which

ensures reasonable results. [17] reviews the methods of

data-driven analysis and processing.

4.2.1 Interactive Editing

Fish et al. [232] proposed meta-representation to

represent the essence of 3D man-made model dataset.

The representation is formulated from the correspon-

dence between model segmented parts, which encodes

the arrangement rules of the parts. So it can be viewed

as a constraint guiding user editing, where models can

maintain their familial traits and performing coupled

editing, where several shapes can be collectively de-

formed by directly manipulating the distributions in the

meta-representation. Yumer et al. [233] abstracted co-

constrained handles for model editing. The handles are

obtained from the different segmented parts through

a co-abstraction method [234]. The co-constraints are

generated by clustering the different planes of the ab-

stracted parts. This method supports interactive edit-

ing by not only abstract handles but also sketches,

as shown in Fig. 15. Based on this work, Yumer et

al. [235] further proposed a semantic editing method

for 3D models, where users can edit 3D models through

semantic attributes. This method establishes a contin-

uous mapping between semantic attributes and model

geometry through the relative scores of attributes and

geometric differences between models. Although the

deformation is continuous, this method cannot add or

remove certain parts of the model. The above meth-

ods all use the dataset of some categories to learn de-

formation constraints to edit shapes. These methods

have been able to take advantage of the information in

the shape dataset, and those pairwise parameter con-

straints work well during shape editing. However, their

parameter pairs are of the same kind, and the con-

straints on the parameter pairs that may be formed

by different kinds of parameters are not considered. To

address this, [236] uses multivariate regression methods

to learn the correlation between parameters. The pro-

posed method can perform both structure-preserving

and structure-varying shape editing. Laga et al. [237]

analyzed the pairwise co-variation of the geometry and

structure of the part. After the user edits a part of

the model, the method can automatically find a suit-

able configuration for the entire model to ensure the

plausibility of the edited model.

Fig.15. [233] supports interactive editing through not only ab-
stract handles but also sketches. (a) Input models. (b) User pre-
scribed deformation (top: translation, bottom: silhouette sketch-
ing). (c) Constraints resolved by the system. (d) Final models.

4.2.2 Editing for Other Purposes

From a relatively novel perspective, Zheng et

al. [238] wanted to change the model to suit for the

input human body. As shown in Fig. 16, the input is

a model with semantic labels, and a spatial relation-

ship graph is used to represent the model, where the
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graph nodes represent the model components, and the

edges of the graph represent the spatial relationships

of the components. They first established the contact

constraints between the body skeleton and the model

(such as buttocks and chair seats). Then the deforma-

tion is an optimization process, and an edit propagation

algorithm is designed to deform the model according to

these constraints while maintaining the model struc-

ture.

Fig.16. The model changes according to the change of the skele-
ton [238].

Model editing can also be used for other applica-

tions. For example, Ovsjanikov et al. [239] explored a

shape dataset through the deformations of a template

shape which abstracts the shape structure using several

boxes. Ishimtsev et al. [240] proposed a data-driven

mesh deformation method, named CAD-Deform, to fit

the retrieved synthetic CAD models to the real 3D scan.

The deformation energy ensures smooth deformation

and keeps sharp features, which also includes a part-

to-part mapping term, and nearest-neighbor mapping

term. The former matches the deformed mesh and the

target scan globally, while the latter makes them match

more accurately when they get close enough.

5 Neural Shape Editing

In this section, we review attempts at the deforma-

tion methods based on deep learning in recent years.

Combining with deep learning brings new opportunities

and challenges to both organic and man-made shape

editing methods.

5.1 Organic Shape Editing

With the availability of large human body

datasets [231, 241], deep neural networks have also been

introduced into the editing of organic shapes.

5.1.1 Editing via Learning Mesh Deformation

Tan et al. [242] first proposed to use a variational au-

toencoder (VAE) to encode shape deformations. They

used the RIMD deformation feature [217] as input and

can generate different poses after learning from the ex-

isting deformations in the dataset. The latent space

can be used for shape exploration, which guides the

user to find specific shapes they want. However, the

network is entirely composed of fully connected layers,

which has high memory consumption and thus, cannot

handle dense mesh models. To solve this, graph-based

convolutions [243] and mesh pooling [244] have been

introduced. At the same time, they [245] proposed a

convolutional mesh autoencoder utilizing the locality

of the convolution operator and sparsity constraints to

extract the local deformation components of the de-

formable shapes. The extracted deformation compo-

nents can be used to synthesize new shapes. Also for

extracting deformation components, Yang et al. [246]

proposed to use multi-level VAEs, which can extract

multi-scale deformation components, achieving better

results. Qiao et al. [247] proposed bidirectional LSTM

with graph convolutions to generate mesh sequences.

As an application of shape deformation and editing, de-

formation transfer can transfer the user’s editing of one
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shape to another shape. Traditional deformation trans-

fer [207, 212, 170] requires manually specifying several

correspondences between source and target shapes. Al-

though Yang et al. [70] proposed a method of auto-

matically selecting appropriate key points to transfer

the deformation, some candidate points still need to be

manually specified. So Gao et al. [248] first proposed

a fully automatic shape deformation transfer method.

They trained SimNet, a neural network that predicts

the similarity of two poses of source and target shapes.

The proposed VC-GAN combines MeshVAE and Cycle-

GAN [249] to transfer the latent vectors of two input

shapes, enabling unpaired deformation transfer. Us-

ing shape deformation representations and neural net-

works, some works [250, 251] achieve super-resolution

on cloth simulation. More shape analysis and shape

generation works based on shape deformation are illus-

trated in Fig. 17. Wang et al. [252] represented 3D hu-

man meshes by a series of parameters including shape,

pose, and vertex order, to perform deformation trans-

fer. The method first encodes these parameters of the

source shape by a permutation invariant encoder to ex-

tract pose feature and then uses a style transfer decoder

together with the target identity mesh as condition to

generate the target shape with the source pose.

5.1.2 Performing Mesh Deformation

Bailey et al. [253] proposed a convolutional neural

network for approximating facial deformations which

can handle high-frequency deformations. The method

separates the process into three parts: a coarse ap-

proximation, a refined approximation and an approx-

imation for rigid components of the mesh. The coarse

and refined approximations are comprised of two in-

dependent convolutional networks by inputting rig pa-

rameters. For those segments that only undergo rigid

rotations and translations, they are approximated by

a faster rigid approximation rather than convolutional

networks to improve efficiency. The method also pro-

poses a feed-forward neural network to output rig pa-

rameters given user-specified control points for inverse

kinematics.

The skinning technique also benefits from neural

network based methods in deformation, skeleton and

weights prediction. As the first work to introduce

the neural network in character deformation, Bailey et

al. [254] split skinning deformation into linear and non-

linear portions. The linear portion is approximated by

a linear skinning method while the nonlinear portion

is approximated by a neural network consisting of two

fully connected layers. Based on the similar idea that

decomposing the deformation into linear and nonlinear

parts, Li et al. [255] proposed a graph attention based

network to predict the nonlinear effects by inputting

mesh graphs and linear deformations, while the linear

part is computed with LBS. Liu et al. [256] also pro-

posed a neural skinning method which utilizes graph

convolutions. They first constructed a graph using the

input 3D mesh with its associate skeleton hierarchy.

Each graph node encodes the mesh-skeleton attributes.

The graph and node attributes are fed into their graph

convolution network to predict the skinning weights.

Almost at the same time, Xu et al. [257] proposed to

convert an input 3D shape into a set of geometric rep-

resentations expressed in a volumetric grid. The input

representation is processed through a stack of 3D hour-

glass modules. Each module outputs joint and bone

probabilities in the volumetric grid, which are progres-

sively refined by the following module. The final joint

and bone probabilities are processed through a Mini-

mum Spanning Tree (MST) algorithm to extract the fi-

nal skeleton. They further proposed RigNet [8], which

can predict a skeleton with the skinning weights for

the input model with the network shown in Fig. 18.
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Fig.17. Shape editing, analysis and representation based on shape deformation feature, proposed by the geometry learning group, ICT,
CAS.

Fig.18. The network architecture of RigNet [8].

The method first extracts the geometric features from

the input mesh and predicts candidate joint locations

and an attention map indicating the confidence of each

candidate joint. After the joints are detected, another

network learns to determine the root joint and predict

whether there is an edge connecting two joints. Finally,

a Minimum Spanning Tree algorithm is performed to

generate the final skeleton which is sent to another net-

work to predict skinning weights. The method also con-

siders user inputs like how many joints are wanted. The

predicted skeleton and skinning weights can be directly

used for editing and modeling. Vesdapunt et al. [258]

proposed a joint-based representation for 3D face mod-

els which rigs semantic joints to the face model. The

specified joints add prior information which reduces the

demand for large amounts of training data. They also

proposed an autoencoder network to predict the skin-

ning weights which not only enhances the modeling ca-

pacity, but also supports users to edit the model.

NNWarp [259] designs a heuristic deformation fea-

ture vector including geodesic, potential and digression,

and warps linear elastic simulations into nonlinear elas-

tic simulations via a DNN prediction to handle a wide

range of geometrically complex bodies, which is faster

than existing nonlinear methods. Fulton et al. [260]

compressed the solid dynamics deformation space into

a nonlinear latent space with fewer degrees of freedom

through a neural network, while achieving equivalent

or even greater simulation fidelity, speed and robust-

ness compared with other model reduction methods.

They used the autoencoder architecture and initial-

ize the outer layer with the basis computed by PCA.
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Also based on an autoencoder, Santesteban et al. [261]

combined the non-linear deformation subspace with a

regressor composed of a recurrent architecture GRU

(Gated Recurrent Unit) which regresses soft-tissue de-

formations. They propose that the soft-tissue deforma-

tions are not only related to shape and pose, but also

motion, so the regressor also uses the motion descrip-

tor as input. NASA [262] and NiLBS [263] condition

the implicit field of articulated shapes on the skinning

weights, enabling fast shape query without extra accel-

eration data structures.

5.2 Man-Made Models Editing

Some large man-made model datasets [264, 9, 265,

266] are also available on the Internet, which are the ba-

sis for some works that try to combine 3D shape editing

with neural networks to realize the intelligent editing

of 3D shapes.

5.2.1 Appearance Editing

Some methods are based on volumetric represen-

tations. For example, Yumer et al. [267] realized the

semantic deformation of 3D shapes by a 3D volumet-

ric convolutional network, predicting deformation flow

from semantic attributes. However, each semantic at-

tribute is only described by three numbers (0, 0.5, 1.0,

indicating decreasing, keeping the same and increasing

respectively), which lacks the degree of freedom and

controllability of user editing. Liu et al. [268] realized

interactive 3D modeling using adversarial generative

networks, as shown in Fig. 19. But the edited object

is a voxel-based shape, lacking geometric details, and

the resulting shape may not be in line with the user’s

intentions. As for mesh representation, mesh models

generally have inconsistent connectivity. Umetani et

al. [269] presented a parameterization method for effi-

ciently converting an unstructured mesh into a mani-

fold mesh with consistent connectivity using depth in-

formation. The parameterization is then fed into an au-

toencoder, and the plausible deformation space is rep-

resented by the latent space of the autoencoder. The

users can explore shape variations by directly manip-

ulating the mesh vertices through an interactive in-

terface. Also using autoencoder to optimize on the

manifold, DiscoNet [270] believes that even if the 3D

models belong to the same category, they generally do

not lie on a connected manifold. So the authors pro-

posed to use multiple autoencoders (two in their pa-

per) to learn different connected components of the

disconnected manifold, without any supervision. Ex-

tending the traditional cage based deformation, Wang

et al. [271] proposed a neural architecture that pre-

dicts source cage and cage offset. The mean value co-

ordinates are computed by a novel MVC layer, and a

cage-based deformation layer produces the deformed re-

sult from the cage offset and mean value coordinates.

Also inspired by traditional deformation methods, Liu

et al. [272] proposed to use meta-handles, the combina-

tions of control points, as deformation handles and bi-

harmonic coordinates [273] to edit the 3D models. The

control points are sampled by farthest point sampling,

and meta-handles are predicted by MetaHandleNet.

The meta-handles reflect the correlation between the

control points. For example, the control points on the

two chair armrests should maintain the symmetry of

the chair armrests during deformation. At the same

time, the plausible deformation range is predicted, and

the specific deformation parameters are predicted by

DeformNet to deform the source shape to match the

target shape. They also proposed to use a soft ras-

terizer [274] and a 2D discriminator network to ensure

reasonable and realistic deformation.
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Fig.19. An example of interactive neural editing of man-made
3D models. The user edits the model, and the network maps it
to a latent space, and a new model is generated. The result is a
voxel-based model with less geometric details [268].

DualSDF [275] uses a two-level representation to

perform interactive shape editing and learn a tightly

coupled latent space for the two-level representations

by a variational autodecoder (VAD) framework [276].

The editing operations are performed on the coarse

primitive-based representation, and the deformation re-

sults are presented as signed distance fields. Deng et

al. [277] proposed a deformed implicit field network

(DIF-Net) to represent 3D shapes and perform editing.

The user freely selects one or more 3D points among the

surface and specifies their new positions. The edited

shape is obtained from the latent optimization. The

editing also supports adding new structures to the given

shape. Also utilizing deformation from a template SDF

to represent 3D shapes, Zheng et al. [278] are able to

manipulate shapes, but this is limited to mesh stretch-

ing.

Wei et al. [279] proposed an encoder-decoder net-

work to edit shapes by editing semantic parameters like

the height, depth, and width of each semantic part of

man-made objects. Their method can be divided into

two stages: semantic parameter encoding and defor-

mation transfer. To provide semantic parameter su-

pervision for the encoder, they first generated ground

truth semantic parameters for shapes synthesized by

bounding boxes of segmented shapes in the real dataset.

They also edited these corresponding synthetic shapes

and get corresponding semantic parameters. After en-

coding the original synthetic shapes and deformed syn-

thetic shapes into the semantic latent space, a decoder

uses shape-level Chamfer distance supervision to re-

construct both original shapes and deformed shapes.

At the inference time, the network encodes a realis-

tic shape into the parameter space, and after editing

the shape parameters in the parameter space decodes

the reconstructed synthetic shape and edited synthetic

shape. As for deformation transfer, by defining a de-

formation field as the vertex displacements on the de-

coded synthetic shape, where each vertex on the real

shape finds k nearest points on the synthetic shape and

regards the weighted sum of the displacements of these

nearest points as the vertex displacement of the realis-

tic shape. In this way, deformation is transferred from

the synthetic shape to the realistic shape. In addition,

this method can be easily applied to non-rigid models

by changing the definition of the semantic parameters,

e.g., pose and shape for human bodies.

Sung et al. [280] embedded shapes into an idealized

latent space where points represent shapes and vectors

between points represent shape deformations. The de-

formation vector can be decoded into a deformation

action which can be applied to new shapes directly.

5.2.2 Other Forms

In addition to geometry, structure is also editable.

Mo et al. [281] developed a deep neural network based

on structural shape representation StructureNet [282]

to embed shape differences or deltas into the latent

space of VAE, enabling multiple kinds of edits with both

geometric and structural modifications. Representing

3D man-made models as a set of handles, Gadelha et

al. [283] adopted a two-branch network architecture to

generate shape handles. After training the network,

users can edit any handle of the handle set, and the

back propagation is used to optimize the latent vector

to obtain a result that preserves the overall structure.
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Reinforcement learning can also be integrated in

model editing. For example, Lin et al. [284] proposed

a reinforcement learning based method to edit mesh

models. First, the Prim-Agent predicts a sequence of

actions to operate the primitives to approximate the

target shape given a shape reference and pre-defined

primitives. Then the edge loops are added to the out-

put primitives. Second, the Mesh-Agent takes as input

the shape reference and the primitive-based representa-

tion, and predicts actions to edit the meshes to produce

shapes with detailed geometry.

Some methods input some guidance to deform the

models. Kurenkov et al. [285] took an image as input

and retrieve a template mesh from the repository, and

then they deformed the template 3D shape to match

the input image while preserving the topology of the

template shape using Free-Form Deformation. Also re-

trieving from the given dataset at first, Uy et al. [286]

deformed the retrieved set of source models to the tar-

get image or scan. The retrieval and deformation mod-

ules are trained jointly, in an alternating way. The de-

formation is part-based and structure-aware, predicted

by a general MLP which takes encoded target, global

and per-part source codes as inputs. Wang et al. [287]

extracted global features from both the source shape

and the target input or point cloud. These features

are then inputted to an offset decoder which predicts

per-vertex offsets to deform the source to produce a de-

formed shape similar to the target. Groueix et al. [288]

also performed per-vertex deformation, leveraging not

only reconstruction loss, but also cycle-consistency loss.

6 Conclusions

In this survey, we reviewed the history of 3D model

editing and the exploration of deep learning based edit-

ing methods in recent years. We divided the editing

methods into four subjects based on the data sources.

In each subject, we further discussed the respective

editing methods around organic shapes and man-made

models. The former is generally manifold, and the

latter is generally designed by an artist and is non-

manifold. We showed the whole map with some rep-

resentative works in Fig. 20.

For organic shapes or deformable models, we first

discussed classical Laplacian-based methods, especially

ARAP [48] and its large amounts of derivative works.

In addition to these surface-based deformation meth-

ods, there are also deformation methods based on skele-

tons and cages. Editing methods learning from a

dataset take into account the deformation principles

of existing models in the dataset, and the deforma-

tion results will be more natural. The neural network

based methods are also mainly divided into two parts

for exploration. On the one hand, they consider the

surface meshes and use various deformation represen-

tations as input, like traditional data-driven methods.

On the other hand, they consider the skinning deforma-

tion based on the skeleton to provide intelligent solution

strategies for skeleton rigging and weight assignment.

For man-made models, keeping the structure of

the model from drastic changes, or maintaining the

salient features of man-made models is most important.

Therefore, editing methods of man-made models will

maintain the invariance of local areas, and at the same

time analyze the correlation between different parts of

the model to limit the influence of editing. This invari-

ance can be obtained by analyzing a single model or a

large number of models in the dataset.

Neural editing is a promising direction. Although

some works have explored neural editing methods for

3D models, there are still many directions that can be

improved.

Organic shapes. At present, most of the editing

methods of organic shapes based on neural networks
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still use traditional skeleton-based or cage-based skin-

ning methods, while neural networks are used for skele-

ton binding [8], cage prediction [271], and weight as-

signment [256]. Although there are some methods [259]

that explore the direct use of neural networks to pre-

dict the displacements of nonlinear deformation, exper-

iments have only been carried out on isotropic mate-

rials, and the anisotropic materials need to redesign

the framework. Therefore, on the one hand, we still

need to design an end-to-end framework which inputs

user constraints, such as editing handles and handle dis-

placements, and outputs shape transformation matrix

or vertex displacements; on the other hand, we need

to study how to relate the selection of the deformation

handle with the deformation result, such as optimizing

the selection of control points, character rigging, and

the prediction of weights according to the deformation

results. In the latter, reinforcement learning may be a

possible solution where possible control points are se-

lected by the agent and rewards are given based on the

deformation results.

Man-made models. The neural editing of man-

made models still requires to satisfy both easy-to-

manipulate deformation handles, and representations

that can fully show the details of the model. The ex-

isting neural editing methods either use implicit sur-

faces [275] or manifold surfaces [269] to approximate the

non-manifold model, which will lose part of the model

details; or directly use FFD or cage-based editing meth-

ods on the original non-manifold model, but the handles

are limited, such as semantic vector [235] and global de-

formation through cage [271]. A good form of handles

can be edge loop [284] or coarse primitive-based repre-

sentation [275]. But how to relate these handles with

the non-manifold models still needs lots of work.

As a recently widely studied representation, implicit

surfaces can achieve arbitrary resolution theoretically,

which is a potential representation in various areas. In

addition to further explorations in 3D model editing,

neural morphing, i.e., morphing two shapes using neu-

ral networks, and neural modeling, i.e., modeling 3D

models using neural networks, can also be regarded as
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possible research directions.
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