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Summary

This thesis investigates the current state-of-the-art in registration of non-rigidly de-
forming shapes. In particular, the problem of non-isometry is considered. First, a
method to address locally anisotropic deformation is proposed. The subsequent eval-
uation of this method highlights a lack of resources for evaluating such methods.
Three novel registration/shape correspondence benchmark datasets are developed for
assessing different aspects of non-rigid deformation. Deficiencies in current evaluative
measures are identified, leading to the development of a new performance measure
that effectively communicates the density and distribution of correspondences.

Finally, the problem of transferring skull orbit labels between scans is examined
on a database of unlabelled skulls. A novel pipeline that mitigates errors caused by
coarse representations is proposed.
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represent stretching for an edge vab. (c) vab transforming into new
basis B = (e1, e2, e3). . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.8 Example problematic region between two shapes with no correspon-
dences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.9 Exemplar illustration of geodesic distance. For a point at the centre
of the leopard’s face, the geodesic distance to any given point on the
surface is indicated by the local colour value. . . . . . . . . . . . . . . 77

4.10 TOSCA high-res dataset results. . . . . . . . . . . . . . . . . . . . . . 78
4.11 Results for the TOSCA cat, gorilla, David & dog sets, (a) source/target

models used, (b) combined registration error of our method, (c) com-
bined registration error of [210]. . . . . . . . . . . . . . . . . . . . . . 79

4.12 Registration results on TOSCA dog. (a) initial pose source (top) target
pose (bottom), (b) our method (c) Yang et al. [210]. . . . . . . . . . 79

4.13 Deformation results on Bouncing dataset [202]. (a) initial pose source,
(d) target pose (bottom), (b,e) our method (c,f) sparse non-rigid reg-
istration method [210]. . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.14 Results on SHREC’16 partial dataset compared with results (Partial
Functional Maps & Random Forests) from the dense methods reported
in [43]. The evaluation is split up into models containing (a) holes, and
(b) cuts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.15 Results of our method in different configurations on SHREC’16 partial
dataset. In configurations where PSF is off, standard geodesics are
used, rather than anisotropic ones (skipping lines 7 & 8 of Algorithm
1). Where correspondence inference is off, we skip lines 10 & 11 of
Algorithm 1. The evaluation is split up into models containing (a)
holes, and (b) cuts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.16 Results of our proposed non-rigid registration technique on partial
body scans [4]. (a,b,c) initial pose source X (blue), target Y (white),
(d,e,f) overlapped result. . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.17 Registration results of pairs of models from the FAUST dataset. . . . 86

xiii



LIST OF FIGURES

4.18 Screenshots of correspondence results of (a,d) our method, (b,e) Li
et al. [109] and (c,f) Vestner et al. [200] on pairs of inter-person shapes
from the FAUST dataset (left source, right target). Colours represent
correspondence between shapes (i.e., the same point on each shape
should have the same colour). Note the reflection of correspondences
of [200] in (c), and the colour bleed at the intersection between legs in
(f). The mean geodesic error for each scan pair: (a) 0.0373, (b) 0.0419,
(c) 0.2971, (d) 0.0639, (e) 0.0820, and (f) 0.0840. . . . . . . . . . . . . 87

5.1 Examples of objects in the dataset. . . . . . . . . . . . . . . . . . . . 88
5.2 Illustrations of some of the challenges in the dataset. . . . . . . . . . 90
5.3 A photo of the real wooden hand used in the dataset after markers

were drawn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.4 An illustration of the processing pipeline applied after extracting (a)

a local patch is projected to a 2D plane, (b) a linear discriminator is
applied to classify pixels, (c) morphological operations (e.g., dilating
and pruning) are then applied, (d) the final skeleton is then used to
count the number of endpoints. . . . . . . . . . . . . . . . . . . . . . 93

5.5 An illustration of the construction of a query string using the points
neighbouring a query point (circled with two rings). The query string
encodes the distance (by order), colour and number of spokes. . . . . 93

5.6 Shape pairs from test-sets 0, 2 & 3 with ground-truth correspondences
visualised. Matching colours between shape pairs represent corre-
sponding points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.7 This figure shows an example output of the deformed template using
[74]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.8 Extremely sparse (top) and sparse (bottom) correspondences produced
by Sahillioğlu [172] on some pairs. . . . . . . . . . . . . . . . . . . . . 97

5.9 Results of all methods on each test set. . . . . . . . . . . . . . . . . . 99
5.10 Results for all test sets. . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.11 Wooden hand object from the dataset coloured by the surface normals

to illustrate the lack of high frequency geometric detail on the shape’s
surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

xiv



LIST OF FIGURES

6.1 Illustrations of the surfaces of meshes with different internal materials
coloured by the surface normals. These materials help induce vary-
ing magnitudes and frequencies of protrusions and indentations on the
surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2 Illustrations of the contents of the benchmark dataset. (a) partial
(source) meshes, (b) the full/watertight (target) mesh. Note that the
stretch pose with couscous filling was omitted in preliminary stages of
scanning as its appearance was similar to the same pose with risotto
filling. All scans were filled with 36 fl. oz. (or approx. 1065ml) of
grains or beans, except for scans where the shape was inflated where
they were filled with 56 fl. oz. (or approx. 1656ml). . . . . . . . . . . 117

6.3 A photo of the model (in the pose of scan00) used for the dataset with
markers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.4 Examples of texture transfer using the ground-truth correspondences.
(a) Target shape. (b-e) Source shapes. Correspondences were trans-
ferred and interpolated using a landmark-based correspondence method [67].
The original texture was projected onto the coronal (frontal) plane of
the rabbit in (a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.5 Illustrations of some of the challenges in the dataset. (a) Partial scans
(green indicates the boundary). (b) Complex deformations. (c) Miss-
ing geometry caused by self-occlusion. . . . . . . . . . . . . . . . . . . 118

6.6 Error curves for the methods used to establish an initial correspon-
dence. Note, Pruning [192] only estimated ≈ 7.4250% of correspon-
dences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.7 Comparison of the error of methods initialised with different initial
correspondence techniques (N-ICP [27], Pruning [192], SEG [100], or
None). (a) R3DS Wrap 3. (b) Ezuz and Ben-Chen [67]. (c) Dyke et al.
[55]. (d) Ren et al. [155]. . . . . . . . . . . . . . . . . . . . . . . . . 120

6.8 Cumulative error curves with scans grouped by the pose exhibited.
(a) twist (scan no. 1, 4 & 8). (b) indent (scan no. 2, 5 & 9). (c)
inflate (scan no. 3, 6 & 10). (d) stretch (scan no. 7 & 11). . . . . . . 121

6.9 Cumulative error curves with scans grouped by the internal material se-
lected. (a) Couscous (scan no. 1, 2 & 3). (b) Risotto (scan no. 4, 5, 6 & 7).
(c) Chickpea (scan no. 8, 9, 10 & 11). . . . . . . . . . . . . . . . . . 122

6.10 The performance of methods over all test sets. . . . . . . . . . . . . . 123

xv



LIST OF FIGURES

7.1 A simple example of a homologous part between quadrupeds. The
coloured area represents the matching part for the hind leg. Whilst
inter-species, it is possible to intuitively recognise that these areas cor-
respond. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.2 Illustrations of the contents of the benchmark dataset simplified to
consist of a maximum of 100,000 faces. . . . . . . . . . . . . . . . . . 127

7.3 A screenshot of the software used by specialists to annotate correspond-
ing points between shapes. The rhino on the left was initially labelled,
and used as a reference for subsequent animals. . . . . . . . . . . . . 128

7.4 Illustrations of some of the challenges in the proposed dataset (a) par-
tial scans (green indicates the boundary), (b) significant non-isometric
deformations between pairs of models, and (c) topological inconsisten-
cies: inherent to the original object or caused by scanning limitations. 128

7.5 An illustration of the initial correspondence computed by matching
different descriptors after diffusion pruning. . . . . . . . . . . . . . . 130

7.6 Examples of a shape from the dataset segmented using increasingly
dense sampling of Voronoi cells. Each sub-figure contains following
number of Voronoi cells: (a) 2, (b) 10, (c) 25, (d) 50, (e) 150, & (f) 500.135

7.7 An example illustrating a barycentric cell (the shaded area) for the
vertex in the centre of a one-ring neighbourhood. The area of each
vertex Ai—used in Alg. 2—also corresponds to the area of the vertex’s
barycentric cell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.8 Examples of points distributed on the surface of a model from this
dataset. (a) Bijective mapping, (b) part mapping (75.0%), (c) part
mapping (50.0%), (d) sparse correspondence (50.0%), (e) sparse corre-
spondence (25.0%), and (f) sparse correspondence (10.0%). . . . . . . 137

7.9 An example of the coverage measure computed using synthetic corre-
spondences on a real mesh. . . . . . . . . . . . . . . . . . . . . . . . . 138

7.10 Overall coverage performance of methods that submitted results for all
test sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.11 Cumulative error curves for each test set, (a) test-set 0, (b) test-set 1,
and (c) test-set 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.11 Cumulative error curves for each test set, (d) test-set 3, and (e) test-set 4.140
7.12 Overall performance of methods that submitted completed all test sets. 141
7.13 Cumulative error curves for each test set, (a) test-set 0, (b) test-set 1,

(c) test-set 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

xvi



LIST OF FIGURES

7.13 Cumulative error curves for each test set, (d) test-set 3 and (e) test-set 4.143

8.1 An illustrative diagram indicating the approximate location of the or-
bit. The dashed line represents the orbit on the human skull. . . . . . 153

8.2 An overview of the proposed orbit registration pipeline. . . . . . . . . 155
8.3 An illustrative diagram highlighting the neck bone geometry that is

typically excluded due to its separation from the skull, causing a dis-
connected mesh. The ruby area represents the neck supporting the
human skull. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

8.4 An illustration of the method used to measure the error between source
point i and a discretised spline curve (..., j − 1, j, j + 1, ...). . . . . . . 157

8.5 An illustration of a correctly projected discretised spline over a one-
ring neighbourhood. All adjacent points typically share the same face
or are on an adjacent face. . . . . . . . . . . . . . . . . . . . . . . . . 158

8.6 A registration error matrix illustrating the orbit alignment error of
registering all manually labelled skulls against all of the other manually
labelled skulls. Skull no. 3 & 5 achieve notably poor results both as
the source and as the target scan. In the case of skull no. 3, the spline
produced is misaligned. In the case of skull no. 5 the top of the skull
is cut off just above the orbit, which is significantly inconsistent with
the other skulls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

8.7 A comparison of the performance of using a barycentric interpolation
method [91] vs. a naïve transportation method—nearest neighbour—
on scans remeshed to 50,000 faces. . . . . . . . . . . . . . . . . . . . . 161

8.8 A histogram illustrating the planarity results of the predicted orbit
registration pipeline using meshes with 50,000 and 100,000 faces. The
mean of the ground-truth scans is also shown. . . . . . . . . . . . . . 164

8.9 A histogram illustrating the asymmetry results of the predicted orbit
registration pipeline using meshes with 50,000 and 100,000 faces. The
mean of the ground-truth scans is also shown. . . . . . . . . . . . . . 166

xvii



LIST OF FIGURES

xviii



Chapter 1

Introduction

Overview

What is registration? Generally, registration is the process of transforming two or
more surfaces to embed them optimally in the same co-ordinate space. In the simplest
case, we want to find a rotation and translation that will correctly align two surfaces
in this shared space. Imagine an electronics assembly line in a factory that uses a
robotic arm to place widgets on a printed circuit board (PCB). For the robotic arm
to place the widget in the correct location, there must be an understanding of the
location and orientation of the target PCB. By using a camera, or 3D scanner, placed
above the conveyor belt, a registration algorithm positions a known template on top
of the image, or scan, of the PCB. In this template fitting step, the template, or
source, PCB has been registered to a target PCB.

Figure 1.1: An illustration of the hypothetical widget assembly machine.

Interest in the area of geometry processing has been stimulated by the greater
accessibility to hardware and software for capturing and reconstructing 3D shapes.

1
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Tasks that require the comparison or combination of two or more shapes can benefit
from accurate registration. The objective of this chapter is to provide a high-level
overview of the work undertaken and contributions to the area of registration of
non-rigidly deforming objects. The motivation and the structure of this thesis are
described in Section 1.1. Section 1.2 then clarifies the key contributions of this thesis.
Finally, a summary of the chapter is given in Section 1.3.

1.1 General topic

1.1.1 Goals

Broadly, the goal of this thesis is to develop, and contribute towards the further devel-
opment of, registration and correspondence techniques for non-rigidly deforming 3D
shapes. Specifically, this thesis focuses on the problem of isometry in the context of
non-rigid registration. While aspects of surface registration have been studied thor-
oughly, a problem lacking research is that of non-isometric deformation; this is one of
the primary focuses of this thesis. Furthermore, the tools and resources available for
the comparison and measurement of the performance of existing approaches are in-
sufficient. This has motivated the development of several datasets and benchmarking
methodologies produced for this thesis.

In this thesis: a novel automatic registration pipeline is proposed; a set of resources
for evaluating both registration and correspondence methods is developed; finally,
a methodological contribution is made by utilising non-rigid registration on a large
dataset to extract information, such as planarity and asymmetry, for automatic shape
analysis.

1.1.2 Motivation

Non-rigid registration is a fundamental problem that underpins many applications
in geometric processing (e.g., template fitting [213], quadrangulation [14], surface
reconstruction [223], classification [149], etc.). In the context of morphometry—the
study of anatomical variations amongst objects—non-rigid registration enables the
construction of statistical models, which may be used to conduct further study and
develop an understanding of a group of objects.

The accessibility of high-quality scanning hardware continues to improve, with
increasing amounts of 3D data produced every day. Accurately registering the data
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manually is not feasible as—even for a small number of shapes—the process of reg-
istration is already infeasible. It is therefore crucial that automatic techniques that
are sufficiently accurate are developed.

This thesis identifies that most current methods do not consider non-isometric
deformations; therefore, a new technique is proposed. Additionally, a novel problem
is examined where a set of labels must be transferred between shapes in a large
database of 3D skulls. To address this problem, a modified non-rigid registration
algorithm underlies a bespoke label transferal pipeline.

Furthermore, relevant evaluation procedures are necessary to determine how well
registration methods perform in non-rigid scenarios, and enable comparisons between
approaches. A distinct lack of suitable evaluative benchmarks for non-isometric de-
formations is identified. This leads to the development three unique datasets.

1.1.3 Organisation

This thesis comprises of an introduction, literature review, five contribution chapters,
and a conclusion.

The work undertaken and structure of this thesis is outlined in this chapter. Chap-
ter 2 provides an introduction to a range of fundamental concepts that are necessary
to understand the literature in this area.

The following chapter (Chapter 3) is a literature review. The chapter provides an
overview of the current state-of-the-art in non-rigid registration, as well as discussing
other relevant techniques, such as: functional mapping and deep learning correspon-
dence methods. Additionally, an investigation into contemporary evaluation resources
is conducted, producing a taxonomy of benchmark datasets for correspondence meth-
ods.

Chapter 4 introduces a novel non-rigid registration pipeline, which is designed to
handle non-isometric deformations, achieving state-of-the-art performance.

Chapters 5, 6 & 7 propose novel correspondence benchmark datasets that consider
various types of challenging deformations. These datasets were used in organised
benchmarking challenges where multiple groups of researchers contributed correspon-
dence results using either shape correspondence or registration methods. Chapter 5
presents a new dataset for evaluating shape correspondence. The benchmark is struc-
tured into a hierarchy, containing various types of challenging deformations (e.g.,
piecewise-rigid, non-isometric, etc.). Chapter 6 is inspired by work on human per-
ception. Four types of physically-based deformation are chosen, the coarseness of the
internal material is varied, causing deformations for the same target pose to differ.
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These present a challenge to both humans and automatic algorithms. In Chapter 7
specifically, it is observed that current evaluation measures are insufficient and only
tell half the story about correspondence quality. Thus, a novel evaluation metric,
which characterises the distribution and sparsity of correspondences is proposed.

Chapter 8 investigates the problem of automatically registering the orbits (i.e.,
eye sockets) for a pair of skulls. A bespoke registration pipeline is developed. This
method is applied to a large database of skulls to extract measures of orbital planarity
and orbital asymmetry; thus, demonstrating the practicality of the approach.

Finally, this thesis is concluded in Chapter 9. Further discussions of the work
undertaken and suggestions for future directions of work are identified.

1.2 Contributions

This thesis makes significant contributions to the problems of non-rigid registration
and shape correspondence in the field of geometric processing. The key contributions
of this work are summarised below.

Non-rigid registration

A novel non-rigid registration pipeline to handle large and anisotropic deformations
is developed in Chapter 4. The contributions of the work are as follows:

• A novel method to estimate anisotropic deformations on a discrete mesh by
using the principal scaling factor.

• A correspondence generation and correspondence pruning method based on lo-
cal geodesics that copes with anisotropic deformations; this makes use of our
anisotropic deformation estimate.

• The r-ring ARAP formulation is introduced for regularisation in non-rigid
registration, which effectively handles challenging large deformations where ex-
isting registration methods fail.

In Chapter 8, a bespoke non-rigid registration pipeline is applied to a novel prob-
lem in which the asymmetry of the orbits of a collection of skulls is measured. The
contributions of the work are as follows:

• A novel pipeline is proposed for the efficient localisation of orbits on large skull
datasets.
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• An evaluation of the accuracy of the proposed method compared against the
performance of a sample of experts.

Benchmark datasets

Multiple datasets for the purposes of registration and correspondence evaluation are
introduced.

The contributions of the work in Chapter 5 are as follows:

• Generation of a novel dataset of anthropomorphic shapes.

• A benchmark comprising of tiers based on the deformation exhibited, enabling
greater insight into which scenarios a method may perform well in.

The contributions of the work in Chapter 6 are as follows:

• Generation of a novel dataset of physically-based deformations of a single object.

• Comprehensive use of the benchmark dataset to evaluate correspondence and
registration methods in challenging full-to-partial scenarios.

The contributions of the work in Chapter 7 are as follows:

• Generation of a novel dataset of quadrupeds with sparse ground-truth corre-
spondences labelled by three specialists.

• Development of a new measure to evaluate the coverage of correspondences on
a shape’s surface—discussed further in Section 7.4.

• Systematic evaluation of the performance of a selection of recent shape cor-
respondence methods, with additional quantitative insights into performance
from our novel measure.

1.3 Summary

The objective of this chapter was to provide a high-level understanding of the work
conducted in this thesis. Discussions about the goals and motivations provided some
context regarding the work, this is expanded upon in each contribution chapter (Chap-
ters 4, 5, 6, 7 & 8). To help guide the reader through this document, the precise
organisation of the material was given. It is possible to skip through any of the
contribution chapters—just listed—without losing too much context. The key contri-
butions of this thesis were outlined here; however, the list is not exhaustive as minor
contributions are omitted.
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Chapter 2

Preliminary Concepts

Overview

The objective of the following section is to provide an introduction into the theoreti-
cal foundations of non-rigid registration for the novice reader, and also to ensure the
information in this thesis is as self-contained as possible. In Section 2.1, Euclidean
space, the space in which most of geometry problems are considered, is described.
Section 2.2, provides a definition for the continuous representation of a curve. This
definition is extended to describe a surface. Using this representation, Section 2.3
introduces the `-norm and geodesics, which are commonly used to quantify distance
extrinsically and intrinsically. Section 2.4 defines the Riemannian manifold, a geomet-
ric structure used to describe surfaces. Relevant topological properties (i.e., genus)
and geometrical properties (e.g., non-isometry) are also described. An intuitive defi-
nition of the surface normal is given in Section 2.5. Section 2.6 discusses the problem
of rigid registration; further discussion of registration methods is provided in Chap-
ter 3. Section 2.7 introduces the concept of neighbourhoods. Section 2.8 discusses
some common problems encountered in surface registration. Finally, Section 2.9 sum-
marises the content of this chapter and makes recommendations on additional reading
material.

2.1 Euclidean Space

Euclidean space is a real co-ordinate system that enables the position of a point to be
determined. In geometry, conventionally, points are considered in the context of two-
or three-dimensions. Two-dimensional spaces are typically represented by R2 where
a point may be represented by (x, y) ∈ R2, while points in three-dimensional spaces
are represented by (x, y, z) ∈ R3.
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2.2 Parametric Representation of Curves and Sur-
faces

When approaching problems in the domain of geometric processing, the parameteri-
sation of geometry is important to consider. This provides a mathematical grounding
for a method; and practically, this approach ensures solutions generalise to problems
regarding discrete meshes of varying density and non-uniformity.

Differentiable curves

Consider a point in a two-dimensional space (R2) at time unit u. The point’s position
at any time is given by the function c(u) = (x(u),y(u)). As u changes, the point
follows the path of a curve c(·). More formally, a continuously differentiable curve
may be expressed as follows [178]:

Definition 2.2.1 A parameterised differentiable curve in Rn (n = 2, 3, . . . ) is a
continuous map c : I → R, where I ⊂ R is an open interval (of end points a, b ∈
[−∞,∞]).

a b

c

x

y

Figure 2.1: An example of a parameterised differentiable curve.

A differentiable curve is an example of a one-dimensional manifold. This is illus-
trated in Fig. 2.1.

Differentiable surfaces

Conceptually, a continuous surface embedded in R3 is not too dissimilar from a curve
in R3. A differentiable surface is an example of a two-dimensional manifold. Intu-
itively, while a curve comprises of a single parameter (u), a surface is comprised of
two parameters. i.e., :
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Definition 2.2.2 Let S be a surface embedded in R3. A parameterised differentiable
surface in R3 is a continuous map Φ : S → R3, where S ⊂ R2.

This concept is illustrated in Fig. 2.2.

u

v

S

(u, v)

Φ

y

z

x

S

Φ(u, v)

Figure 2.2: An example of a differentiable surface.

Point p = (u, v) may be mapped from the local co-ordinate system R2 of surface
S to the global co-ordinate system R3 by the co-ordinate map:

Φ(u, v) = (x(u, v),y(u, v), z(u, v)).

2.3 Norms and Geodesics

The norm is a measure of the length of a vector. The most familiar norm is the
`2-norm, which measures Euclidean distance, see Fig. 2.3.

y

z

x

a

b

Figure 2.3: An example of the physical representation of Euclidean distance with
respect to a differentiable surface.

Euclidean distance is the length of a line between two points in a Euclidean space.
Euclidean distance is an extrinsic measure. This is measured by the Euclidean norm

8



2.3. NORMS AND GEODESICS

or the `2-norm, the square root of the sum of all squared elements, i.e., the Euclidean
norm of an n-dimensional vector u = (u1, . . . , un) is:

‖u‖2 =
√
u2

1 + · · ·+ u2
n

.
There are several other norms1 that are commonly used in computational geome-

try, these are listed below:

Name Definition
`0-norm The number of non-zero elements in u i.e.,

∑n
i=1 u

0
i , assuming 00 = 0.

`1-norm The sum of the absolute values of its elements i.e.,
∑n

i=1 |ui|.
`2-norm The squared sum of values of its elements i.e., (

∑n
i=1[u2

i ])
1
2 .

`∞-norm The maximum of the absolute values of its elements i.e., maxni=1 |ui|.

The contour plot in Fig. 2.4 illustrates how the response of `p-norm changes as p
is varied in R2. An interactive example of this is available2.

−1 −0.5 0.5 1

−1

−0.5

0.5

1
`1

`2

`∞

Figure 2.4: An example of various norms. The contour lines shown correspond to
locations where the resulting value of lp-norm is equal to one.

A geodesic, or a geodesic path, is the shortest path between two points on the
surface of a shape, while geodesic distance is a measure of length of a geodesic path.
Geodesic distance is an intrinsic measure. This is illustrated in Fig. 2.5.

1This concept generalises to the form called `p-norm where ‖u‖p = (
∑n

i=1[u
p
i ])

1
p .

2Interactive plot: https://www.desmos.com/calculator/h7wtnao1x4
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y

z

x

a

b

Figure 2.5: An example of a geodesic path on a differentiable surface.

More formally, a path on a surface is considered to be a geodesic when:

Definition 2.3.1 Let c : I → S be a parameterised differentiable curve, where I ⊂ R.
If the line joining any two points on a curve c(a) and c(b) is the shortest path of all
curves between these points, then this curve is called a geodesic.

2.4 Manifolds

Amanifold is any geometric structure that has a locally Euclidean topology. A smooth
manifold is any manifold that is infinitely differentiable.

A curve (Definition 2.2.1) is classed as a one-dimensional manifold, and a surface
(Definition 2.2.2) is classed as a two-dimensional manifold.

Riemannian manifolds

A Riemannian manifold (M, g) comprises of a smooth differentiable manifoldM and
a Riemannian metric g.

Riemannian metric

The Riemannian metric is an important tool used in studying differential geometry.
It is used to measure angles and lengths of curves on smooth manifolds that are
classified as Riemannian manifolds.

Definition 2.4.1 Given a manifoldM, TpM is the tangent space ofM at point p.
The Riemannian metric g comprises of the set of inner products (given by the dot
product in R2) of TpM.

10
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This concept is illustrated in Fig. 2.6.

y

z

x

p

TpM

M

Figure 2.6: An example of the tangent plane TpM to a point p on the manifoldM.

Geodesics on Riemannian manifolds

Based on Definition 2.4.1 of a Riemannian metric, a geodesic distance may be mea-
sured as g(c(a), c(b)). To simplify the notation, unless stated otherwise, from hereon
we shall exclude c and assume the shortest path is always followed.

Isometry

If two Riemannian manifolds M and N have a smooth mapping Φ : M → N ,
such that the geodesic distance between points is preserved, then Φ is an isometric
mapping.

More formally, given a mapping between two Riemannian manifolds, i.e., Φ :

(M, gM) → (N , gN ), Φ is considered to be an isometric mapping, if for any pair of
points (a, b) ∈M where (Φ(a),Φ(b)) ∈ N , then

gM(a, b) = gN (Φ(a),Φ(b)).

Also, a subset between two manifolds SM ⊂M and SN ⊂ N may be considered a
locally isometric mapping, if for any pair of points (a, b) ∈ SM where (Φ(a),Φ(b)) ∈
SN , then

gSM(a, b) = gSN (Φ(a),Φ(b)).

If Φ is locally isometric and diffeomorphic3, then Φ is isometric.
3Both Φ and Φ−1 are smooth and differentiable
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Near-isometry

A mapping Φ : (M, gM) → (N , gN ) may be considered to be ε-isometric if the
pairwise distance between points (a, b) ∈M map to (Φ(a),Φ(b)) ∈ N is

|gM(a, b)− gN (Φ(a),Φ(b))| ≤ ε.

In practice, mappings tend not to be exactly isometric. ε-isometric mappings
where ε is small are considered to be near-isometric. Selecting an appropriately small
ε is application dependent, it may be hard to define and is typically not specified in
most works.

Isotropy and anisotropy

When discussing deformation, isotropy refers to the quality of a given manifold to
stretch uniformly, see Fig. 2.7. Local isotropic deformation occurs when a surface
locally stretches in all directions by the same amount. A balloon being inflated is an
intuitive example of isotropic expansion. While similarly, a balloon deflating is an
example of isotropic contraction.

Isotropic deformation

Figure 2.7: An example of isotropic deformation.

In contrast, anisotropy refers to deformations that non-uniformly stretch a mani-
fold in different directions, see Fig. 2.8. A real-world example of anisotropic deforma-
tion can be observed by pulling on an elastic band. The stretch may be described by
two orthogonal eigenvectors/values λ1 and λ2. An isometric deformation will induce
no stretching, i.e., |λ1| = 1 and |λ2| = 1.

Source Isotropic (|λ1| = |λ2|)

λ1

λ2

Anisotropic (|λ1| 6= |λ2|)

λ1

λ2

Figure 2.8: An example of anisotropic deformation.
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Genus

Genus may be considered to be the number of topological holes in a surface. The
genus of the shape is the same as the number of handles, see Fig. 2.9. Topological
holes differ from geometric holes, which are caused by missing geometry. In cases
where there are no geometric holes, the geometry may be referred to as watertight.

(a) A sphere of
genus 0.

(b) A torus of genus 1. (c) A torus of genus 2.

Figure 2.9: Examples of simple low-genus shapes.

The genus of a surface is closely related to the Euler-Poincaré characteristic. The
theory considers a graph-based representation of a manifold, where |V |, |E|, |F | are
the numbers of vertices, edges, and faces respectively, the genus g can be calculated
by rearranging the following equation:

χ(g) = |V | − |E|+ |F | = 2− 2g.

In the case of shapes consisting of multiple connected components, the formula
may be extended to incorporate |B| number of boundary edges, and |C| number of
connected components, to compute g∗ the total genus for all components:

|V | − |E|+ |F | = 2|C| − 2g∗ − |B|.

2.5 Normals

Given a locally diffeomorphic (i.e., locally flat) surface. The normal may be described
by a unit vector n that is perpendicular to the surface at point p. Given p and any
two arbitrary points a and b on the tangent plane—assuming the points are non-
collinear—the normal may be computed using the cross product. This is illustrated
in Fig. 2.10.

n =
(a− p)× (b− p)
‖(a− p)× (b− p)‖2

(where p 6= a, p 6= b, a 6= b).

13
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Figure 2.10: An example of a normal n to a surface at point p.

2.6 Rigid registration

The general objective of rigid registration methods is to find a transformation that
optimally aligns two sets of points. The rigid transformation may be described by a
rotation R and translation t between a source shapeM and target shape N .

Given a set of corresponding points between two shapes (xi, yi) ∈ M × N , the
following least squares equation is minimised:

E(R, t) =
n∑
i=1

‖(Rxi + t)− yi‖2
2 .

The resulting transformation may be applied to all points in the source shape to
transform the correspondences to align with the target shape. yi = Rxi + t.

Rigid Iterative Closest Point registration

Iterative closest point (ICP) is an algorithm used to estimate the transformation
between two shapes with unknown correspondence. Typically, a set of candidate
correspondences that may be initially inaccurate is estimated. As the name suggests,
an iterative approach aims to improve the accuracy of these correspondences. Two
main steps are alternated between:

1. For each point on the source shape, find the closest point on the target shape.

2. Estimate a transformation between the set of corresponding points.

In subsequent iterations, after the first, the estimated transformation is applied to
the source shape; this is used to find a new set of correspondences. Traditional ICP
implementations assume surfaces are coarsely aligned. Depending on the complexity
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of the geometry being aligned, distant initial orientations of surfaces cause ICP to
fail.

The performance of each iteration is significantly improved through the use of
k-D trees [18]. Given a source shapeM with n points and a target shape N with m
points. The cost of computing the closest points between the shapes in each iteration
is O(n log2m).

The performance of each iteration of ICP is dependent on the strategies used to
compute a correspondence between shapes.

Common strategies to align points use point-to-point [19] and point-to-plane [39]
error metrics.

Epoint-to-point =
n∑
i=1

‖(Rxi + t)− yi‖2
2 .

Epoint-to-plane =
n∑
i=1

(((Rxi + t)− yi) · ni)
2.

These may be combined to help estimate transformation using a parameter (e.g.,
α) to weight each component, i.e.,

E = Epoint-to-point + αEpoint-to-plane.

Low [123] produced a technical report that goes into further details of the imple-
mentation of point-to-plane-based ICP.

Further variants of ICP proposed in literature seek to improve the stability to
noise and outliers, accuracy, and speed of convergence [90, 165].

2.7 Neighbourhoods

When performing analyses on geometry, information about neighbourhoods is often
required to compute elementary properties, such as surface normals and curvature.

Geodesic r-neighbourhoods

In topology, a neighbourhood is typically thought of as a disk or ball that has a
particular radius r ∈ R+. Anything encompassed by the ball at a particular point (a)
is considered to be within the neighbourhood of a. More formally:

B(a, r) =
{
b ∈M|0 < gM(a,b) < r

}
.
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This is illustrated in Fig 2.11

y

z

x

a

Figure 2.11: An example of a geodesic disc on a surface.

This concept is compatible with discrete meshes, however computing geodesics
can be expensive in terms of time. This cost also increases as r increases.

r-ring graph neighbourhoods

On discrete meshes, the surface may be treated as a graph. Neighbourhoods are
commonly defined by vertices that are connected to a particular vertex (a) within a
certain number of edge hops r (note that here r ∈ N+). This method is efficient to
compute for small discrete neighbourhoods. This is illustrated in Fig. 2.12.

(a) one-ring neighbourhood. (b) two-ring neighbourhood.

Figure 2.12: An example of (a) one-ring and (b) two-ring vertex neighbourhoods.

Neighbourhoods may also be described directly by edges, or faces. The weakness
of this approach comes from the underlying assumptions that the shape has a good
quality triangulation and that each vertex is reasonably spaced. This is often not the
case when using real data, meaning that additional mesh refinement is required.
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2.8 Problems in practice

Capturing data

Depending on the scanning technology used, different limitations may be observed.
All scanning methods have a degree of error. These present in the form of geometric
noise and topological change.

Handles that are incorrectly created during reconstruction are due to parts of a
surface being incorrectly fused or punctured. These can be corrected by either cutting
(or pinching) thin handles, or collapsing (or filling) small holes [204]. Such strategies
are essential for correspondence and registration methods that require input shapes
to have a low or consistent genus. This concept is illustrated in Fig. 2.13.

(a) Original surfaces (b) Reconstructed surface (c) Corrected surface

Figure 2.13: An example of (a) two surfaces (b) undergoing a topological change
causing a thin handle. (c) The surface is cut at the shortest surface cycle to correct
the topological error.

Geometry quality

Non-manifold geometry Non-manifold geometry refers to geometry that is not
manifold everywhere. Such geometry is often undesirable in real-world capture sce-
narios and is problematic for many tasks. Properties such as volume cannot be easily
measured on non-manifolds. This problem has been extensively investigated [130].
Fig. 2.14 illustrates two common non-manifold scenarios.

(a) Non-manifold edge (b) Non-manifold vertex

Figure 2.14: Common examples of non-manifold geometry.
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Self-intersection The intersection of geometry occurs when a part of two or more
shapes occupy the same space, such as in Fig. 2.15. In the real world, such anomalies
are not possible. However, errors during the scanning and reconstruction of an object
can cause these to occur. Geometry that is free from self-intersections is important for
applications such as 3D printing. Self-intersections can be rectified using the method
proposed by Zhu et al. [221]. For non-rigid registration algorithms, typically the
deformation phase is under-constrained, accepting solutions with self-intersections. In
pose estimation, an additional collision term is used to address self-intersection [16].
Recently, demonstrated by Eisenberger et al. [62], it is possible to efficiently compute
a deformation field that does not introduce additional self-intersections for shape
correspondence.

Figure 2.15: An example of a cylinder intersecting a cube.

Discretisation error

As a shape’s representation coarsens, the fidelity decreases, as exemplified in Fig 2.16.
Processing geometry with large numbers of polygons may be infeasible for some
algorithms even on modern hardware. Therefore, obtaining an accurate—yet low-
polygon—discretisation of a shape is important.

For example, coarsening strategies have been used to compute smaller wave kernel
maps for functional mapping methods, which often require large amounts of mem-
ory [105, 120].

Geodesics

Many geometry processing methods require the computation of distance. The com-
plexity of the renowned graph-based shortest path method Dijkstra’s algorithm [52]
is O(|E|+ |V | log |V |) in the worst case. For graphs, this method is considered highly
efficient and is appropriate for many graph-based problems. However, for meshes,
this approach tends to lead to a severe overestimation of the actual distance, see
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3

≈ 41.35%

6

≈ 82.70%

12

≈ 95.49%

24

≈ 98.86%

Figure 2.16: Regular polygons inscribed inside a circle to illustrate how a piece-wise
linear approximation of a circle improves as the number of edges increases [5]. The
difference in area between the polygon and the actual circle’s area is reported beneath
each shape.

Fig. 2.17. This is because the true geodesic often passes through the mesh faces,
rather than precisely following the edges of the mesh. Computing exact geodesics
that cut through faces, rather than following edges, can be expensive; therefore ap-
proximate methods are often employed. For the computation of exact geodesics the
prominent method—self-titled—“continuous Dijkstra” [135] is used with similar per-
formance to [52]. This method is precise but slow on fine meshes. For large-scale
applications approximate approaches are favoured. The Fast Marching method [97]
exploits the eikonal equation to estimate the shortest path across faces. The original
method performs in O(|V | log |V |).

(a) (b)

Exact method
Dijkstra method

Figure 2.17: An example illustrating the difference between the shortest path follow-
ing the edges of a mesh, and the shortest path over the faces. In (a) Dijkstra obtains
the `1-norm distance, while in (b) the correct distance is computed.
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2.9 Summary

The aim of this chapter has been to prepare the uninitiated reader for the topic of
surface registration. Although this chapter’s contents cannot be comprehensive, it
was to provide an adequate basis for the discussions in the subsequent chapters of
this thesis. Suggested further reading include “Polygon Mesh Processing” [26] for an
overview of a variety of geometry processing techniques, and “Numerical Geometry
of Non-rigid Shapes” [32] for a deep exploration of non-rigid shape analysis. Going
forth, the rest of this thesis discusses work that contributes novel findings to the area
of non-rigid registration.
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Chapter 3

Literature Review

Overview

This chapter presents a review of notable works that are relevant to the technical con-
tributions of this thesis. The review aims to provide an overview of the current state-
of-the-art, identifying general trends and notable deficiencies of these techniques—
the scope of which is defined in Section 3.1. Section 3.2 introduces works that have
surveyed relevant literature in the areas of surface registration and shape correspon-
dence. In Section 3.3, the general surface registration pipeline is decomposed into
its key components (i.e., pre-processing, initial correspondence, transformation opti-
misation). Notable surface registration techniques that appear in the literature are
then discussed in the relevant subsection. An overview of a wide variety of shape
correspondence approaches is given in Section 3.4. Section 3.5 describes in detail
relevant registration and shape correspondence methods that are used later in evalu-
ative work. In Sections 3.6 & 3.7, an overview and discussion of suitable datasets for
the evaluation of non-rigid registration and shape correspondence methods is given.
Section 3.8 surveys evaluative techniques used to measure the performance of regis-
tration methods. Section 3.9 discusses a task-specific set of registration methods that
are designed to register skulls with non-rigid deformation. The overall contributions
of this chapter are discussed in Section 3.10. Finally, the content of the chapter is
summarised in Section 3.11.

3.1 Scope

Principally, this thesis considers the problem of non-rigid registration. The non-rigid
registration is deconstructed into its constituent parts, and notable extensions or mod-
ifications proposed in the literature are discussed. Due to the broad applicability of
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the dataset contributions of this thesis, this chapter also provides an introduction to
other relevant problems and emerging areas (e.g., functional mapping, learning-based
correspondence, and correspondence benchmark datasets). While not necessarily ad-
dressing the registration problem directly, these approaches establish meaningful cor-
respondences between non-rigid shapes, which may be subsequently used to initialise
a registration method. Only techniques that are designed to handle either point cloud
or 3D triangulated mesh structures are included. A related problem that is outside
the scope of this review is reconstruction. Many reconstruction techniques rely on
registration to accurately produce a 3D model from a series of partial scans. These
methods often adopt simple yet efficient registration techniques that are capable of
being incorporated into online reconstruction pipelines.

The field of shape correspondence has an abundance of literature. A brief explo-
ration (Fig. 3.1) shows that in the past decade there has been a marked increase of
publications related to this problem.
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Figure 3.1: Number of published papers on the topic of non-rigid shape correspon-
dence and registration. Based on Web of Science data, see Appendix A for further
details about the search.

3.2 Previous surveys

Surveys provide a broad introduction to newcomers and are helpful to experts as they
may offer a new perspective on a given problem.

A seminal survey in the field of shape correspondence by van Kaick et al. [196] (2011),
provides a broad introduction and organisation of numerous solutions. Additional
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discussions of evaluation methods and applications for shape correspondence are pre-
sented. Tam et al. [191] (2013) investigate a broad range of techniques for both
rigid and non-rigid registration. The survey deconstructs the principal components
of notable registration pipelines. Further distinction between works is made by the
constraints incorporated to simplify the complexity of the registration problem. In-
terestingly, despite the age of the surveys, van Kaick et al. [196] and Tam et al. [191]
still remain relevant with many of the concepts discussed in these works still prevalent
in state-of-the-art methods used to date.

More recently, Ovsjanikov et al. [146] (2017) provide a thorough overview of the
functional map concept, demonstrating the applicability of the functional map rep-
resentation for relevant problems. At each stage of the functional map pipeline, the
work introduces and discusses various solutions that seek to address a specific chal-
lenge. Sahillioğlu [171] (2019) provides a much needed comprehensive overview of
many recent shape correspondence methods, complementing [196]. This survey ex-
tends the general shape analysis taxonomy by Biasotti et al. [20] (2016), categorising
recent correspondence methods by additional relevant criteria.

For shape descriptors, Rostami et al. [163] (2019) distinguish between shape de-
scriptors by their application by constructing a taxonomy. Shape correspondence and
shape similarity are reviewed by Bronstein et al. [34] (2017), providing further con-
text in the field of deep learning for two particular applications. For shape similarity
a descriptor is only necessary to discriminate between shapes globally; whereas, for
shape correspondence, the ability of a descriptor to localise matching parts of a shape
is essential.

3.3 Registration

This section discusses existing literature regarding the registration of non-rigidly de-
forming surfaces.

Point set registration A related problem is the registration of non-rigid point
sets—rather than meshes. Zhu et al. [220] survey the many current works on point
set registration. Often such methods adapt either ICP [19, 39] or use a probabilistic
approach with a mixture model [138]. While relevant, these methods do not consider
valuable geometric data contained in mesh-based shapes; therefore, they do not seek
to solve the same problem. This thesis focuses greatly on mesh-based registration
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where surfaces have been discretised into triangles. Since some of the contributions
discussed in this thesis are underpinned by ICP, we shall discuss the approach here.

From rigid registration The problem of aligning two sets of data points has been
studied for a long time in the statistical domain. In the last three decades, there has
been an increasing interest in the alignment of different co-ordinate spaces. Besl and
McKay [19] and Chen and Medioni [39] introduced ICP, a simple iterative approach to
registration for point sets. The method is computationally efficient. Many variants of
the original ICP formulation have since been proposed. The general ICP framework
is as follows: First, a binary (hard) correspondence is established using a closest point
criterion, such as nearest neighbours. Then a rigid transformation between the two
surfaces is estimated using a least-squares formulation. These two steps are repeated
until a convergence criterion is met. The method has also been extended to handle
non-rigid cases. The main shortcoming of this approach is the necessity of a good
initial alignment. When handling large-scale deformations, typical (non-rigid) ICP
often fails. Further discussion and evaluation of various implementations of ICP have
been conducted by Rusinkiewicz and Levoy [165].

Non-rigid registration Non-rigid approaches were initially developed to register
range scans where the scanning devices used had been incorrectly calibrated [108].
Typical non-rigid registration frameworks may be deconstructed into a few distinct
components that all contribute toward solving the registration problem:

• Pre-processing;

• Correspondence computation;

• Transformation optimisation.

3.3.1 Pre-processing

Many efficient registration methods that are capable of processing large numbers of
points in a short amount of time have been proposed [37, 109, 109, 88].

For computationally intensive approaches, where processing is impractically slow
for large meshes, coarser representations are required. Often, either farthest point
sampling strategies [92] or mesh simplification [70] are used (see [200, 55]). Recent
work by Liu et al. [120] seeks to preserve spectral properties rather than the geomet-
ric properties for tasks such as shape matching. Conversely, for some approaches,

24



3.3. REGISTRATION

additional subdivision of particularly coarse meshes may be required. In the case
of [66], the technique is underpinned by the embedding method by Aigerman and
Lipman [3]. However, the method [3] fails to produce a valid embedding if two or
more geodesic paths share an edge. This can happen at the boundary of a mesh when
the triangulation is too coarse.

In the case of [200], input is further cleaned using [12] to construct a watertight
representation.

Methods that rely on specific topologies (see [171]) or limited geometric error re-
quire meshes to be cleaned in advance. Although not directly addressed by modern
registration pipelines, in the case of many methods, non-manifold geometry, erro-
neously high genera, and disconnected geometry must all be fixed beforehand. Au-
tomatic approaches have been proposed, however there are no guarantees that such
fixes will preserve important information.

For many shape matching and registration methods some properties that are
invariant, or are treated as invariant, when finding a correspondence can be pre-
computed. Typical registration methods [19, 27] do not manipulate the target shape
and therefore do not require properties (e.g., surface normals) of the target model to
be re-computed at each optimisation step. For both source and target shapes, often,
feature descriptors and geodesics can be computed just once. Feature descriptors
are used to measure properties of a mesh that are invariant to certain deformations;
therefore, re-computing descriptors on the deformed mesh has little benefit, and is
likely to introduce greater errors. In the case of [55], an estimation of anisotropy is
updated upon each iteration, causing geodesics to be updated to reflect the estimated
anisotropic distortion. Commonly, k-d tree structures are employed to efficiently es-
timate the closest points between a query point and a point set. The initial data
structure may be constructed once for the target shape, then repeatedly queried with
points from either the source or deformed shape.

3.3.2 Correspondence computation

Rusinkiewicz and Levoy [165] discuss a variety of procedures to compute a set of
correspondences between rigid shapes. The authors discuss strategies to select key-
points, finding correspondences between keypoints, weighting pairs, and strategies to
reject pairs. These approaches also apply to non-rigid registration methods.
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Initial correspondences [71, 82, 192] compute an initial set of sparse correspon-
dences. First, feature descriptors for each point are computed. These are often based
on purely geometric data; as [113] demonstrates, when a shape’s texture is available
it is possible to incorporate this additional information. Next, a subset of corre-
spondences that preserve their global coherence are matched through an optimisation
procedure. These methods rely heavily on the robustness of extrinsic or intrinsic
distance measures. When used to initialise a registration method, these approaches
tend to improve results [210, 109, 55]. However, results may worsen if particular
deformations (e.g., non-isometries) are not considered by the model, or if the shape
descriptors used are sensitive to such changes. Recently, Kleiman and Ovsjanikov
[100] proposed a method to co-segment pairs of shapes that exhibit non-isometric
deformation. The corresponding regions were used to initialise a functional mapping
method [144].

Correspondences determined during optimisation The majority of methods
find the closest point from a source to a target shape. This can be done efficiently by
constructing a k-d tree [165]. For registration problems where a sub-vertex accuracy
is necessary, source points may be projected onto the surface of the target scan.
The projected points are then used as targets for fitting—this approach is used in
Chapter 8. Papazov and Burschka [147] discovered that for registration, applications
simply using nearest neighbours can lead to many undesirable matches. Papazov and
Burschka [147] and Jiang et al. [87] find the closest point on the target surface that is
suitably close and has a compatible normal with a similar orientation. Then, among
the neighbours of this point, the point that has the closest distance to the average
distance of the neighbours is selected.

3.3.3 Transformation optimisation

When estimating the optimal transformation, the problem is treated as an energy
optimisation in which a data and a regularisation term—or set of terms—is minimised
(i.e., E = Edata + Ereg). This subsection discusses various notable formulations for
both terms.

3.3.3.1 Data In the context of rigid registration, a variety of popular error mea-
surement strategies are discussed by Rusinkiewicz and Levoy [165]. Also, Babin
et al. [15] compare the performance of different functions for penalising fitting er-
rors. The authors conclude that the `1-norm obtains reasonably good results, with
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no additional parameters required to tune. Here, literature surrounding two popular
strategies (point-to-point and point-to-plane) is discussed.

Point-to-point Commonly, formulations for point-to-point methods use an `2-
norm-based energy term [6, 82, 27, 208, 210, 55]. This is suitable in some cases,
but has been shown to be less suitable in cases where there are significant amounts
of noise and outliers.

Epoint−to−point =
∑

(i,j)∈C

‖x′i − yj‖2

2 ,

where (i, j) ∈ C specifies the closest point yj on Y from x′i.
There are several notable variations of this formula. Li et al. [107] also use `2-

norm, but limit the search space to principally the target shape’s surface, with the
energy term modified to approximately align regions with no overlap. This approach
provides good results for scans with small holes or missing parts. Alternatively, Li
et al. [109] and Jiang et al. [88] use `1-norm. This approach is considered to help
alleviate some undesirable overfitting caused by `2-norm measures. To make the
error term more representative on non-uniform meshes, Pauly et al. [148] use an `2-
norm-based measure with the distance weighted by the area of each vertex. Yao
et al. [212] observe that, while less sensitive to noise, alternative formulations that
incorporate the `p-norm (p < 1) [28] are costly to compute, requiring the use of slower
minimisation techniques. Instead, Yao et al. [212] formulate the error metric using
Welsch’s function [80], which can be minimised efficiently.

Point-to-plane The seminal work by Chen and Medioni [39] proposed the use of
a point-to-plane algorithm for registration. In cases of surfaces with sparse high-
frequency details, this approach enables surfaces to slide along each other, obtaining
a superior convergence rate compared to early point-to-point methods [165]. Since
then, the point-to-plane measure has continued to be used in more recent works (e.g.,
[123, 82, 27, 208, 55]).

Epoint−to−plane =
∑

(i,j)∈C

‖(x′i − yj) · ni‖2

2 ,

where ni is the respective normal of xi.
Zhang et al. [217] incorporate Welsch’s function [80] for solving rigid registration

problems. However, as well as utilising a different optimisation procedure, here it is
formulated as a point-to-plane term.
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3.3.3.2 Regularisation Non-rigid deformations can have a high number of de-
grees of freedom. It is therefore important to consider how registration may be con-
strained. Depending on the scenario, undesirable deformations can be penalised.
Here we discuss some notable regularisation formulations that may be considered
when developing a registration method.

Cell edge sets: triangles, spokes, spokes-and-rims A cell refers to the local
neighbourhood N , cells are used to compute local surface properties. Spokes refer to
edges (j, k) connected to a subject vertex xi, this is denoted as (j, k) ∈ Ni. Rims refer
to edges connected to the vertices that neighbour a subject vertex. Fig. 3.2 illustrates
the vertices and edges that each type of neighbourhood comprises of.

(a) triangles. (b) Spokes (c) Spokes-and-rims

Figure 3.2: An illustration of the neighbourhood of (a) triangles, (b) spokes, and (c)
spokes-and-rims.

Triangles: The simplest expressible neighbourhood is the three edges of a triangle
fi. This neighbourhood information of discrete faces F is explicitly defined in most
common data representations as,

N̂i = {(xi, xj), (xj, xk), (xk, xi) | (xi, xj, xk) ∈ F} .

Spokes: The neighbourhood of a given vertex xi ∈ V is the set of edges E that
are adjacent with xi.

Ni = {(xj, xk) ∈ E | xi = xj} .

To increase the size of the neighbourhood from a one-ring neighbourhood to a two-ring
neighbourhood (N2

i ), this formulation is extended to include the edges of neighbours
from the first ring:

N2
i =

⋃
j∈Ni

Nj.
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Spokes-and-rims: The neighbourhood of a given vertex xi ∈ V is the set of edges
that are adjacent with xi combined with the edges between vertices that share an
edge with xi.

Ñi = {(xja, xka), (xjb, xkb), (xjc, xkc) ∈ E |

xi = xja and xi = xjb and xka 6= xkb and xka = xjc and xkb = xkc} .

Isometric or length-preserving Geodesic distances on the surface should remain
unchanged. Such preservation can also be incorporated by combining angle-preserving
and scale-preserving constraints. Kilian et al. [94] ensure isometric shape deforma-
tion by preserving geodesics between surface points. Sauvage et al. [177] propose a
deformation framework for B-spline surfaces that incorporates a volume constraint.

Given a one-ring neighbourhood (r = 1), Sorkine and Alexa [185] seek an optimal
rotation Ri between a set of points x and a corresponding deformed set x′. Chen
et al. [38] generalise this approach to r-ring neighbourhoods

EARAP =
∑

(j,k)∈Nr
i

wjk
∥∥(x′k − x′j)−Ri(xk − xj)

∥∥2

2
,

where wjk is some edge weighting scheme (e.g., co-tangent weights). The one-ring
formulation of this term is commonly used for non-rigid registration. Dyke et al. [55]
incorporate an r-ring term into a registration pipeline to provide stronger regularisa-
tion to cope with large-scale deformation.

Levi and Gotsman [106] incorporate an energy term that penalises the difference
between neighbouring rotations. This leads to smooth bending.

ESR−ARAP = EARAP + αESR,

where
ESR =

∑
(j,k)∈Ni

wjk ‖Rk −Rj‖2
2 .

Sumner et al. [188] describe deformation with affine transformations—here, R̂

represents an affine matrix. To penalise undesirable shearing a term that promotes
the affine matrix to appear as a rotation matrix in used.

Erot =

|V |∑
i=1

Rot(R̂i),
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where

Rot(R̂) = (a1 ·a2)2 + (a1 ·a3)2 + (a2 ·a3)2 + (1−‖a1‖)2 + (1−‖a2‖)2 + (1−‖a3‖)2.

In this case, R̂ can be an affine transformation, and a1, a2, and a3 are 3× 1 column
vectors of R̂. This approach for registration is used by Li et al. [107]. Brown and
Rusinkiewicz [35] also propose an efficient non-rigid registration method based on
thin-plate spline deformation, which may be separated into affine and non-affine parts.

Amberg et al. [6] use a similar approach to ESR for an affine matrix R̂. Adopting
a weighting matrix G = diag(1, 1, 1, γ), the energy term is applied to every edge
(i, j) ∈ E:

ES =
∑

(j,k)∈Ei

wjk

∥∥∥(R̂j − R̂i)G
∥∥∥2

2
.

This formulation allows the amount of shearing to be controlled by γ. In the im-
plementation described by Amberg et al. [6], this regularisation term is iteratively
relaxed. It should be noted that the over-relaxation of this term may lead to overfit-
ting. The problem of determining the ideal weight of the regularisation term or terms
is universal for all registration methods.

Conformal, similar or angle-preserving These formulations permit isotropic
deformation, but penalise angular distortion.

Yamazaki et al. [208] use an as-similar-as-possible (ASAP) energy term in a non-
rigid ICP pipeline to register range scans.

EASAP =
∑

(j,k)∈Nr
i

wjk
∥∥(x′k − x′j)− siRi(xk − xj)

∥∥2

2
,

si ∈ R+ is a scale factor.
Inspired by Levi and Gotsman [106], Jiang et al. [87] incorporate the ESR term

ECASAP = EASAP + αESR.

This additional term constrains deformations to bend smoothly, but also permits
isotropy.

Yoshiyasu et al. [214] propose to solve a linear approximation of the as-conformal-
as-possible (ACAP) formulation. Both ASAP and ACAP induce conformal deforma-
tions, the key difference between the two formulations is in the optimisation calcu-
lation. Comparisons using a linear approximation of ACAP find that this leads to
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varied results, in terms of quality and convergence [214].

EACAP =

|V |∑
i=1

Conformal(Ri),

where

Conformal(R) = (a1 · a2)2 + (a1 · a3)2 + (a2 · a3)2

+ (‖a1‖ − ‖a2‖)2 + (‖a2‖ − ‖a3‖)2 + (‖a3‖ − ‖a1‖)2. (3.1)

Wu et al. [206] incorporate EARAP and EACAP and ESR terms into a registration
pipeline. The combination of these regularisation terms help constrain deformation
during optimisation to establish accurate correspondences between isometric shapes.

Deformation constrained by Laplacians was proposed by Sorkine et al. [184]. This
approach penalises heterogeneous transformations of vertices with respect to the cen-
tre of mass of their cell. This leads to deformations being smooth across the surface.

ELaplacian =

|V |∑
i=1

‖Ti(X ′)δi − L(x′i)‖
2
2 ,

where the uniform Laplacian operator is formulated as

L(xi) =
1

|Ni|
∑

(j,k)∈Ni

(xj − xi).

Equiareal or scale-preserving Equiareal maps penalise distortion in the area of
a deformation.

EEquiareal =

|V |∑
i=1

‖Area(x′i)− Area(xi)‖2
2 ,

where Area( · ) is the area of a given cell. For a given point, where
∑

(i,j,k)∈Nr
i
is a

triangle, Area( · ) may be calculated as follows:

Area(xi) =
1

6

∑
(i,j,k)∈Nr

i

|(xj − xi)× (xk − xi)| .

Jiang [86] tetrahedralise the interior of shapes in order to form a volume-preserving
mapping. By applying either EARAP or EASAP to both cells on the internal points,
as well as the mesh surface, it is possible to constrain the deformation to penalise
changes in volume. However, tetrahedralisation becomes problematic on open meshes

31



CHAPTER 3. LITERATURE REVIEW

(e.g., partial scans, scans with holes, etc.) where the volume boundary is not defined.
For suitably complete meshes, Barill et al. [17] propose an approximate form of the
winding number to determine the interior and exterior of a mesh.

Popa et al. [154] propose a deformation model capable of handling anisotropic
materials through the use of local co-ordinate frames. Achenbach et al. [1] successfully
apply an anisotropic regularisation energy with edge Laplacians to a template face
model, to improve alignment for anisotropic facial regions such as wrinkles.

Our main observation is that recent novel registration techniques have limited
their focus to optimisation of these constraints, with less focus on other aspects of the
pipeline—e.g., correspondence selection. With respect to the work undertaken in this
thesis, a novel approach that unifies diffusion pruning and registration is developed
to address non-isometric deformation.

3.4 Shape correspondence

Shape correspondence methods attempt to compute the correspondence between two
shapes without applying transformations to align the source and target meshes [196].

3.4.1 Local feature descriptors

Local feature descriptors may be used to establish correspondences between keypoints
with similar local geometry. The majority of shape correspondence methods rely on
matching descriptors that are invariant under specific deformations. A non-extensive
survey of notable approaches is given here, see the survey by Rostami et al. [163] for
a more complete overview.

Over the years, many robust feature descriptors have been proposed [89, 69, 168,
169, 194]. They have been extensively evaluated by Guo et al. [76]. Among those, the
Signature of Histograms of Orientations (SHOT) [194] is a highly popular descrip-
tor, because of its computational efficiency and state-of-the-art performance. More
recently, Zeng et al. [216] proposed a volumetric feature descriptor using a Convolu-
tional Neural Network (CNN) architecture. Other descriptors based on CNNs have
also been proposed [203, 136]. However, these techniques may still generate inconsis-
tent correspondences and usually require a large amount of data for training.

3.4.2 Geodesic-based correspondence

Geodesics are often used to measure the distortion between candidate correspon-
dences [196, 193, 82, 192, 55, 9].
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Huang et al. [82] present a technique capable of registering large-scale deforma-
tions. Near-rigidly deforming regions of a shape are segmented into clusters, which
are then deformed and registered. The method thus assumes a mostly piecewise-rigid
deformation from the source to the target shape. To obtain reliable correspondences,
they adapt the spectral matching technique by Leordeanu and Hebert [104], which
computes a globally consistent set of correspondences by assuming a near-isometric
deformation.

Vestner et al. [201] construct a probabilistic framework to estimate the location
of a correspondence. Geodesic Gaussian kernels smooth existing sparse, or noisy,
correspondence data. The authors find that the problem can be treated as a linear
assignment problem, and an auction algorithm is employed. The approach enables
the method to handle non-isometric deformations; however, these meshes must be
bijective. Vestner et al. [200] improves upon [201], introducing the use of heat kernels
and support for partial correspondence.

Sahillioğlu and Yemez [173] measure isometric distortion on a set of points on the
source and target shapes using geodesics. Due to the computational complexity of
this approach on shapes with a large number vertices, a sparse set of points is used.
Sahillioğlu [172] extends this method using a genetic algorithm-based approach to find
an optimal correspondence configuration of the points, and a new sampling technique.
The sparse set is updated each iteration using an adaptive sampling technique to help
further decrease the distortion error.

Arbel et al. [9] use geodesics to extract pairs of patches from a set of initial
correspondences. The similarity of each pair of patches is measured by the uniqueness
of feature matches within a patch, and the consistency of the distances between
correspondences and a centre point. Correspondences are refined using a coarse-
to-fine approach, where the localisation of a candidate correspondence is refined to
ensure maximum similarity in a patch at a given scale. The use of Fast Point Feature
Histogram (FPFH) [169] as feature descriptors makes the method robust to intrinsic
symmetries; however, in cases where significant non-isometric or topological change
is present, this method may fail.

3.4.3 Functional maps

The seminal work by Ovsjanikov et al. [144] proposes a shape matching technique
that is computed in the functional domain. The main advantage of this method is
the efficiency of solving the correspondence problem in a truncated functional map
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representation. Functional maps have demonstrated great flexibility, with the facility
to incorporate either point-to-point or region-based correspondences [100, 155].

The original method had several major deficiencies. [144] was incapable of distin-
guishing between intrinsically symmetric solutions. This meant that for shapes with
a single intrinsic line of symmetry, there was a 50% chance that the correct solution
would be chosen. The original approach used isometrically invariant descriptors, these
may become unreliable under non-isometric deformation. Coupled with a pointwise
recovery method that was only suitable for isometries, the method was limited to only
(near-)isometric deformations. Furthermore, functional maps produce what is called
a soft map, many reliant applications require hard—point-to-point—correspondences.
The original work employed a simple ICP-based method to recover a point-to-point
representation. However, this approach was limited to isometric shape pairs and could
not specify correspondences with a sub-vertex precision.

Symmetries In certain classes of shape there tends to be a significant amount of
intrinsic symmetry. This is often a problem for principally intrinsic approaches, which
fail to discriminate symmetric solutions. For benchmarks [32, 43, 159], symmetric
ground-truths are available. For methods that are not robust to symmetric matches,
two symmetric solutions may be submitted for each shape pair, and the solution
with the lowest error is selected. This has led to subsequent works that incorporate
information about the surface to address this. As well as two input shapes, [145]
requires a known symmetry map as input.

For orientable surfaces, it is possible to automatically disambiguate symmetries
with the use of appropriate shape descriptors (e.g., FPFH [169]). This has been
demonstrated in the context of intrinsic shape correspondence [110]—albeit not a
functional mapping approach. Recent work has incorporated information about sur-
face normals directly into the optimisation formula [155]. Yoshiyasu et al. [215] iden-
tify symmetries by constructing low-dimensional embeddings of input shapes.

Non-isometry The original method [144] was proposed to address isometric defor-
mation, however a plethora of follow-up works have demonstrated possible extensions
that help facilitate non-isometric deformation [95, 162, 101, 65, 67, 155, 156, 181, 66,
133, 85, 63]. A subset of these methods are assessed in this thesis.

Pointwise map recovery In the original work [144], a strategy similar to ICP was
employed to recover point-to-point correspondences in the spectral domain through
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the use of nearest neighbours. Ezuz and Ben-Chen [67] note that this approach
is not suitable in non-isometric scenarios. Rodolà et al. [162] present a recovery
method that incorporates a Coherent Point Drift method [138] to align the spectral
embeddings of the two shapes. However, the method was only capable of coping with
bijection (i.e., both shapes have the same number of points, all of which correspond
uniquely). A follow-up work by the same authors [161] extended this method to handle
partial matching problems. However, this approach was limited and could not specify
correspondences with a sub-vertex precision. Ezuz and Ben-Chen [67] and Ezuz
et al. [68] propose point-to-face recovery methods capable of handling non-isometric
shapes. The methods apply a series of optimisation techniques to ensure maps remain
smooth and reversible. Both approaches are highly flexible, being applicable to most
functional mapping pipelines, at handling non-isometric deformation problems.

3.4.4 Learning-based correspondence

Lately, there has been an increasing interest in utilising deep learning on meshes, with
the growing development of deep learning tools that may be applied intrinsically
to the mesh surface [34]. As discussed below, a large proportion of literature in
this area aims to develop robust feature descriptors, which are designed to handle
domain/task/class-specific deformations.

Bronstein et al. [34] give an overview of deep learning methods. Each technique
is broadly classified by the domain the network works in (i.e., frequency, spatial, or
spatial-frequency domain). To avoid repetition of the existing survey, this section
provides a broader overview of learning-based correspondence techniques.

Shallow learning Wuhrer et al. [207] and Salazar et al. [175] propose correspon-
dence methods to establish correspondences between human models and face scans
respectively. The pipeline used by both works is similar. An initial set of labelled
models are used to train a Markov random field to predict landmark locations on an
input scan. Landmarks between the template and input scan can then be coarsely
aligned. In the case of the human models, a template fitting method [78] is then used
to determine the human’s pose, while in the case of the face scans, a linear blendshape
model is used to estimate the appearance of a face. Finally, the deformed template
and input scan are aligned using non-rigid registration. This approach is adequate
for specific well-constrained problems. However, outlier poses that are not encoded
in the original shape model may be problematic.
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Generating training data For facial correspondence, Gilani et al. [72] use a
deep neural network architecture to extract predefined landmarks on the input scan.
The network is trained using a set of synthetically generated models—with intrinsic
ground-truths—produced by a commercial solution. Many other notable learning-
based works [74] take a similar approach, using existing parameterised models (e.g.,
[8, 121, 153, 224]) to generate models.

Metric learning Sun et al. [190] note that in the case of non-isometric deforma-
tions, local metrics are dissimilar, causing typical spectral descriptors in the Euclidean
space to fail. Sun et al. [190] seek to learn an optimal embedding for spectral descrip-
tors in a new metric space, which promotes invariance for task-specific deformations.

Feature learning Many deep learning methods seek to develop accurate pointwise
descriptors that are invariant to a specific class of objects. By training a network
using weaker descriptors, such as Heat Kernel Signature (HKS) [189] or Wave Ker-
nel Signature (WKS) [13], it is possible to learn an improved descriptor with greater
specificity [118]. In early works, functional mapping methods (e.g., [144, 158]) were
initialised by these newly learnt feature descriptors [158, 129, 25]. More recently,
state-of-the-art refinement techniques (e.g., [201, 133]) have been proposed that are
initialised by new learning-based descriptor methods [136, 199, 36, 77, 53]. These
methods consistently obtain improved results on domain-specific problems when com-
pared with state-of-the-art methods that use hand-engineered feature descriptors.

Litany et al. [116] develop a learning-based method that focused specifically on
the problem of shape correspondence. Unlike previous works, the method incorpo-
rates [144] directly into the network’s training scheme for calculating loss. Roufosse
et al. [164] and Halimi et al. [77] extend this method to facilitate unsupervised
learning—without the use of ground-truths—by optimising constraints such as bi-
jectivity, isometry, and orthogonality during training. Unsupervised methods that
seek to preserve isometric mappings fail to be robust against non-isometries and
topological changes [77].

Wei et al. [203] propose a learning-based correspondence method that is robust
to areas with no overlap, occlusions and partial matches. The method learns feature
weights using an end-to-end pipeline on depth maps of human models from three
datasets.
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Data scarcity Classical deep learning approaches typically perform well when a
large amount of quality training data is available. As evidenced in Section 3.6, there
are a limited number of shape correspondence datasets that exist—with many limited
to just anthropocentric shapes. Alternatively, when valuable labelled data is scarce, it
is possible to utilise either a Siamese [24, 116, 164, 77, 75, 53, 190] or triplet [36] neural
network for training the network to produce consistent features. Siamese networks are
often trained by penalising descriptors [81] or maps [116, 53] that produce matches
in non-corresponding regions. This is done through the formulation of a loss term
that measures embedding feature space distance [81], metric/map distortions [116] or
other intrinsic properties of the functional map [53].

The development of effective deep learning techniques on shape correspondence
problems is still a maturing area. Current methods demonstrate exceptional results
for class-specific deformations; however, these methods do not adequately generalise
to other deformation scenarios. There are further avenues of research yet to be ex-
plored to address acquisition (e.g., occlusion, topological change, etc.), as well as
practical implementation challenges (e.g., resource efficiency). An ensemble-based
approach combining multiple existing models with the use of a multi-branch network
might lead to fast convergence of optimal feature weights in unsupervised scenarios.

3.4.5 Partial matching problem

Partial meshes often occur in real-world scenarios, where parts of the object being
scanned are occluded from the scanning equipment, and thereby are missing from
the final reconstruction. Several real-world datasets with ground-truths that contain
partial meshes have been proposed [157, 21, 57, 58]. The amount of overlap between
the source and target scans varies between these datasets.

Rodolà et al. [159, 160] present a variant of the synthetic dataset by Bronstein
et al. [32] that contains partial meshes. Shapes were modified to include holes and cuts
that introduce different types of challenges. The dataset provides insights into the
performance of shape correspondence or registration techniques on varying degrees of
partial shapes (between 20% and 80%). Lähner et al. [102] modify Rodolà et al. [158]
to produce a dataset with geometric fusions that reflect the limitations of common
real-world scanning techniques.

Many methods have been developed that are capable of addressing the problem
of establishing correspondences between a partial scan and a watertight model [152,
170, 139, 115, 159, 200, 54, 9, 55, 205]. However, these approaches are not designed
to handle scans that have little overlap.
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Li et al. [107] address this with a method that identifies holes and occlusions in the
target scan. An energy fitting term is subsequently re-weighted to avoid incidentally
penalising the source from aligning to such regions.

A shape descriptor designed to handle partial matches for both correspondence
and retrieval tasks is proposed by van Kaick et al. [197]. The authors demon-
strate good performance under topological change, despite the method’s reliance on
geodesics. However, the method is still sensitive to changes that have a more extreme
effect on geodesic measures.

To address partial scans, intrinsic approaches impose assumptions about the pos-
sible types of deformation; typically, this excludes non-isometry [152, 170, 139, 115,
159, 54, 9, 205]. For many real-world scenarios this limitation is not adequate. There
is a clear need for methods that are designed to handle partial matching problems for
non-isometrically deforming shapes.

3.4.6 Matching shape collections

Traditionally, the problem of establishing correspondences has been posed as a pair-
wise problem, in which just two shapes are analysed. However, we are often interested
in establishing correspondences amongst a collection of shapes rather than just two.
By collectively optimising correspondences, partially incorrect mappings can be iden-
tified and rectified using the rest of the set. It is therefore possible to establish accurate
and consistent maps amongst a set of shapes. For tasks such as co-segmentation, this
is necessary.

Initial work by Davies et al. [50] sought to construct 3D statistical shape models
while also establishing a homeomorphic set of correspondences between a collection
of shapes automatically. The motivation behind the proposed method was to address
the time-consuming process of manually labelling correspondences to build shape
models. Similar to the same authors’ research into 2D statistical shape models [49],
the problem of establishing correspondences is treated as a minimisation of the de-
scription length used for a spherical parameterisation of each shape. The proposed
objective function seeks to reduce the complexity (i.e., description length) of the pa-
rameterisations, which is manipulated by diffeomorphic transformations. The method
is limited to genus 0 shapes. In experimental results, the method was shown to be able
to produce a dense consistent parameterisation based on a sparse set of automatic
landmarks.

Since this thesis focuses on mappings between pairs of shapes, notable facets of
existing literature for this problem are only briefly discussed.
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Nguyen et al. [141] note that when encountering intrinsically symmetric shapes,
it is often non-trivial for pairwise correspondence methods to resolve these cases.
Typically, matching methods for collections of shapes incorporate a cycle-consistency
criterion to refine weak maps in the collection. The authors describe a method to
produce cycle-consistent maps between shapes. The consistency and accuracy are
measured using geodesic distances between corresponding points, which is globally
optimised. The main limitation of this approach is that it assumes that only a few
incorrect maps exist in the collection.

Huang et al. [83] and Kim et al. [96] use fuzzy approaches to solve the problem.
Huang et al. [83] present a method that is capable of refining a sparse set of ini-
tial pointwise correspondences. The method uses a two-step iterative optimisation
procedure in which soft correspondences are produced and refined before computing
a set of point-to-point correspondences, while Kim et al. [96] uses a diffusion-based
approach to establish a set of fuzzy correspondences between a collection of shapes
in an iterative manner. Huang et al. [84] use a functional map-based approach to
establish correspondences amongst heterogeneous shapes.

Cosmo et al. [45] introduce a new method that does not require initial pointwise
correspondences. Furthermore, the method is capable of establishing consistent corre-
spondences between partially similar shapes, disregarding regions that do not match.
However, Cosmo et al. [45] relies on stable geodesics, and the method may discard
good matches between corresponding regions that are only present in a minority of
shape pairs in favour of globally consistent matches.

Recently, Cohen and Ben-Chen [41] propose a method that relies on pairwise
matching to establish consistent correspondences between two collections of shapes.

One challenge that occurs when using pairwise methods to establish correspon-
dences over a collection of shapes is selecting a representative model. As discussed
in Chapter 8, it is possible to find a suitable model by measuring the correspondence
error of a sub-sample of shapes.

3.5 Relevant approaches to this thesis

Several existing surface registration and shape correspondence methods are examined
in the benchmark dataset Chapters 5, 6 & 7. Each method is described in moderate
detail here. The exact parameters used in the subsequent experiments are detailed
later on in the respective chapters.
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Classification Based on the comprehensive survey paper by Sahillioğlu [171], all
methods evaluated in Chapters 5, 6 & 7 have been categorised in Table 3.1 based
on the criteria described in [171]. Please refer to the original survey for the precise
definition of each criterion.

3.5.1 Traditional Non-Rigid ICP (N-ICP)

Bouaziz and Pauly [27] propose an implementation of N-ICP that extends the orig-
inal rigid formulation of ICP [19] to support non-rigid deformation. The method
repeatedly applies the following two steps until convergence. In the first step, it
finds correspondences between surfaces based on closest point matching, similar to
ICP. In the second step, point-to-point distances are combined with point-to-plane
distances to minimise the distance between correspondences. The combination of
distance measures speeds up convergence, aligning the surfaces. It also uses one-ring
as-rigid-as-possible regularisation to smooth local deformations.

3.5.2 Non-Rigid Registration with Anisotropic Estimation

The method by Dyke et al. [55], which is described in greater detail in Chapter 4,
follows the N-ICP framework that alternately improves correspondences and local
transformations. The initial correspondences are obtained based on matching of lo-
cal geometric features (SHOT [194] is used). In order to address (local) anisotropic
deformations, the method iteratively estimates local anisotropy—represented as lo-
cal principal directions and principal scaling factors. These estimates are then in-
corporated in an extended diffusion pruning framework [192] to identify consistent
correspondences, taking anisotropy into account when calculating geodesic distances.
Local regions with substantial stretching may end up with very few correspondences
identified due to changes of local geometric features. To cope with significantly differ-
ent input shapes, the method introduces additional correspondences by incorporating
established correspondences as landmarks.

3.5.3 3D-CODED

The method by Groueix et al. [74] takes a deep learning approach for matching de-
formable shapes, and introduces Shape Deformation Networks which jointly encode
3D shapes and correspondences. This is achieved by factoring the surface representa-
tion into (i) a template that parameterises the surface, and (ii) a learnt global feature
vector that parameterises the transformation of the template into the input surface.
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By predicting this feature for a new shape, correspondences between this shape and
the template are implicitly predicted. These correspondences can be improved by an
additional step which improves the shape feature by minimising the Chamfer distance
between the input and transformed template.

To learn a transformation between shapes, an encoder-decoder architecture is
trained end-to-end to optimise a regularised reconstruction loss. 3D shape correspon-
dences between two shapes X and Y are found by first using the decoder to compute
the parameters that deform the template to each of the two shapes. For each point
on shape X, its nearest neighbour is found on the template deformed to X. This tem-
plate point has a known corresponding point in the template deformed to Y , which
is then used to find the nearest neighbour in Y .

3.5.4 Efficient Deformable Shape Correspondence via Kernel
Matching

Kernel Matching applies the method proposed by Vestner et al. [200]. The algorithm
solves a series of linear assignment problems (LAPs) of the form

P(k+1) = arg max
P∈Πn

〈P, αFY F>X + Ktk
Y P(k)Ktk

X〉, (3.2)

P(0) = arg max
P∈Πn

〈P, αFY F>X〉, (3.3)

where P is a permutation matrix, FX ,FY are matrices of pointwise descriptors and
Ktk
X ,K

tk
Y are the positive-definite heat kernel matrices with diffusion parameter tk on

shapes X and Y , respectively. Intuitively, the first term in Eqn. 3.2 describes descrip-
tor similarity and the second how well the neighbourhood information is preserved
by comparing heat kernels. By decreasing the diffusion parameter more emphasis is
put on local neighbourhoods (cf. the ε-δ definition of continuity). The paper gives
more details about connections to quadratic assignment problems of the form

arg max
P∈Πn

E(P) = arg max
P∈Πn

〈P, αFY F>X + Ktk
Y PKtk

X〉, (3.4)

as well as interpretations in terms of kernel density estimation and low pass filtering
of correspondences.

By construction the algorithm yields bijections and is—in its basic variant—only
applicable to pairs of shapes with consistent sampling, in particular with the same
number of vertices. In addition solving the LAP becomes intractable for high number
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of vertices. Thus a multi-scale approach is applied that overcomes both issues: At
each scale a subset of the vertices is sub-sampled (with increasing density). The
solution of each scale induces Voronoi cells in the following scale, and sparse initial
correspondences for the next scale.

Since the Voronoi cells can directly be put into correspondence, the vertices are
matched between corresponding cells and thus a set of smaller LAPs is solved instead
of one big LAP. Notice that the payoff matrices (Eqn. 3.2) of an LAP capture the
correspondences between the centres of all Voronoi cells. The different number of ver-
tices within corresponding cells can be tackled via slack variables. As a consequence
the final matching is a bijection between subsets of the vertices on X and Y . The
fraction of unmatched vertices is low and tends to appear in areas with inconsistent
sampling.

3.5.5 Reweighted Position and Transformation Sparsities

In order to cope with challenges of non-rigid registration, namely high degrees of
freedom and presence of noise and outliers, Li et al. [109] propose a robust non-rigid
registration method using reweighted sparsities on position and transformation to
estimate the deformations between 3D shapes. Observing that large position and
transformation errors tend to concentrate on local areas, which can be considered
as sparse signals over surfaces, they formulate the energy function with position and
transformation sparsity on both the data term and the smoothness term, and define
the smoothness constraint using local rigidity. The double sparsity based non-rigid
registration model is enhanced with a reweighting scheme to further improve its ro-
bustness. The formulation is solved by transferring it into four alternately-optimised
sub-problems which have exact solutions and guaranteed convergence. To cope with
large differences in source and target shapes, diffusion pruning [192] is applied to
obtain initial correspondences based on matching of local SHOT features [194], and
further correspondences are introduced during iterative optimisation based on closest
points, similar to the standard N-ICP framework.

3.5.6 Genetic Isometric Shape Correspondence

The method by Sahillioğlu [172] exploits the permutation creation ability of genetic
optimisation to find the permutation matrix that encodes correspondences between
two point sets. To this end, Sahillioğlu [172] provides a genetic algorithm for the
3D shape correspondence problem. The point sets to be matched are sampled from
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Figure 3.3: Overview of the genetic algorithm [172].

two isometric (or near-isometric) shapes. The sparse one-to-one correspondences
produced by this algorithm minimise the following isometric distortion function:

Diso(φ) =
1

|φ|
∑

(xi,yj)∈φ

1

|φ′|
∑

(xl,ym)∈φ′
|dg(xi, xl)− dg(yj, ym)|, (3.5)

where dg(·, ·) is the normalised geodesic distance between two points on a given surface
and φ′ = φ \ {(xi, yj)} in the most general setting. The optimal bijection φ∗ being
sought minimises Diso in the space of all N ! possible bijections while matching N
points. Since a bijection is merely an assignment of a permutation π of the target
samples to the fixed source samples, the proposed genetic algorithm efficiently seeks
the optimal permutation π∗ of indices that will be used as subscripts of {yj}, e.g., fixed
x1, x2, .., sN is assigned to y4, y3, .., y29, respectively, and π∗ = 4, 3, .., 29 (Fig. 3.3).

Having represented a permutation that defines a correspondence as a chromosome,
[172] evolves with a fitness function that yields the set of correspondences with min-
imal distortion using carefully designed genetic operations. The algorithm with the
same parameters used in the original paper is able to compute correspondences under
articulated, isometric, and non-isometric deformations.

3.5.7 RSDS Wrap 3.3 & 3.4

Wrap 3 [166] is a widely used commercial software tool for mesh processing that
includes a wrapping tool that non-rigidly fits one 3D shape to another. It is often
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used to wrap a well structured base mesh around unstructured scanned data. This
method accepts pre-defined (hard) correspondences between shapes to create control
nodes on the source shape. A position for each control node is then found so that it
matches the target shape as closely as possible. The method runs iteratively where
the density of control nodes is increased per iteration. This leads to an approximation
of the target shape with increasing accuracy per iteration.

3.5.8 Partial Functional Correspondence

Rodolà et al. [159] extend the functional mapping framework to address the problem
of partial input data. The authors discovered that it is possible to estimate a partial
correspondence with functional maps. Given a dense set of point-wise descriptors,
computation of a partial functional map C is formulated as an alternating minimisa-
tion problem with two steps. In the first step, correspondences are regularised based
on assumptions about the overlap of the source mesh. The slope, orthogonality, and
rank of C>C are incorporated to help regularise this step. In the second step, the
mapping is regularised by the part. Solutions with a dissimilar area and long bound-
aries are penalised. This method assumes the deformation to be near-isometric.

3.5.9 Deblurring and Denoising of Maps between Shapes

Ezuz and Ben-Chen [67] observe that functional maps typically lack specificity, more-
over recovering vertex-to-vertex correspondences from a functional map leads to un-
desirable noise. The authors propose a method to refine a functional map, which is
capable of recovering vertex-to-point correspondences. This is desirable when trans-
porting high frequency information between surfaces—such as textures. The authors
incorporate a correspondence regulariser that favours smooth maps. The method
removes noise by first blurring the map, and then applying their proposed smooth-
ness term. Point-wise correspondences are subsequently recovered from the mapping,
projected to a facet.

3.5.10 Continuous and Orientation-preserving Correspondences
via Functional Maps

Ren et al. [155] propose a method that attempts to address the problem of symmetric
ambiguity for functional mapping methods. The method also attempts to ensure that
the mapping remains bijective and continuous when recovering point-wise correspon-
dences from a given functional map. WKS is used as a point-wise descriptor. It was
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shown to be robust to some topological changes in the seminal paper [13], although
the descriptor is known to be strictly invariant only under isometric deformation.
Unlike most functional map methods, [155] is able to distinguish ambiguous intrinsic
symmetries. However, the authors remark that the method is not designed to directly
handle partial cases.

3.5.11 FARM+

A variant of [126], referred to here as FARM+, is evaluated. This method relies on the
registration of a morphable model exploiting the functional map framework [144]. In
the original paper, automatic landmarks are detected on protrusions relying only on
geometrical information of the discrete-time evolution process (DEP) [131] descriptor.
These landmarks are used to initialise a dense correspondence in the functional do-
main, and also to retrieve finer local correspondence over hands and heads. Then, a
learned deformable template of human bodies is optimised to fit the target model. Fi-
nally, a local refinement is applied to align the template to the target using anARAP
regularisation. The correspondence between the template and target is achieved us-
ing nearest-neighbour between vertices. This method has been refined by incorporat-
ing [125]—removing some iterative steps—and using ZoomOut [133] refinement for
functional maps.

3.5.12 CMH Connectivity Transfer

The coordinate manifold harmonics (CMH) framework proposed in Marin et al. [127]
and extended on animals in Melzi et al. [134] establishes correspondences by transfer-
ring the connectivity. The method relies on extending the standard Laplace-Beltrami
operator (LBO) basis by adding three additional bases that encode extrinsic informa-
tion of the meshes. This combination of intrinsic and extrinsic information permits
the geometry of the models to be fully encoded without information loss due to a low-
pass representation. A functional map is then computed, as proposed by Nogneng
and Ovsjanikov [142] using a number of landmarks as probe functions. In the case
of human bodies, these landmarks are found automatically using DEP [131]. Finally,
the connectivity is transferred using the point-to-point correspondence and refined
using an ARAP regularisation.
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3.5.13 ZoomOut

Similarly to CMH [127], ZoomOut [133] computes standard LBO bases, which it then
refines iteratively. Correspondence and functional map computations are performed
alternately, increasing the dimension of the mapping at each step. As with CMH, the
connectivity is transferred and the result is refined using ARAP optimisation.

3.6 Correspondence datasets

In Tables 3.2 & 3.3 a comprehensive list of datasets are presented. To help differentiate
the datasets, a selection of relevant properties have been identified. Rostami et al.
[163] provide a survey of existing datasets for evaluating the performance of shape
descriptors. While some of the same datasets may be used for both purposes, the
focus of this section is datasets that can be used for evaluating correspondences.

Only datasets that have ground-truth correspondences have been mentioned, al-
though, it is possible to assess the performance of correspondence methods on datasets
that do not have ground-truths. This can be measured quantitatively by using mea-
sures of fitting error (e.g., Hausdorff distance), however this measure is not robust to
overfitting. It is also possible to qualitatively present errors using applications that
are sensitive to bad correspondences, e.g., texture transfer. The results of qualitative
approaches cannot be summarised, so for large collections they are ineffective.

3.7 Non-isometry in datasets

For the problems of non-rigid registration and shape correspondence, there is a great
focus on anthropometric—the measurement of humans—surface deformation [157,
176, 8, 202, 78, 21], with the many datasets produced opening up avenues to conduct
further research. The popularity of this area is likely due to the numerous pertinent
applications that require the accurate measurement of the human body. However,
the range of motion of a human is naturally constrained, thus the degree of non-rigid
deformation is relatively limited. Whilst significant non-isometric deformation does
occur between persons, features like the head, hands and feet, are particularly dis-
tinct, enabling correspondences between distinctive surface regions to be established
through smooth interpolations. The field of anthropometry may be considered to
be a sub-field of morphometry—the measurement of typically organic forms. While
morphometry is studied by many other areas of geometry processing (e.g., shape
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retrieval, classification, segmentation, etc.), the area is often overlooked by shape cor-
respondence methods as a wider range of deformations must be considered. Notable
correspondence datasets for both areas are described here.

The renowned FAUST dataset [21] contains a total of 300 real scans of 10 humans
in 30 poses captured using the 3dMDbody.u System by 3dMD. Subjects were covered
in sparse markers to enable shapes to be registered using a novel texture-based tech-
nique, which ensured quality alignment in areas with little geometric detail. Ground-
truth correspondences between different individuals have been established, with a
subset publicly released for training purposes. This was subsequently extended in a
dataset that captured human body motion [22], containing 40,000 scans.

Vlasic et al. [202] propose a technique that uses multiple monocular cameras to
capture a sequence of images of a human’s performance from multiple angles. At
each time step the image from each camera is segmented to separate the background
from the actor. This is used to produce a silhouette. A template mesh rigged with a
skeleton is used in combination with the silhouettes to reconstruct the human’s pose.
This approach enables all models using the same template to have the same connec-
tivity and thus have dense correspondence. 10 performances have been published, in
which sequences consist of between 150 and 250 watertight meshes.

The CAESAR dataset [157] is one of the largest human body datasets. 4,431 sub-
jects were scanned in North America, the Netherlands, and Italy using laser scanning.
72 stickers were placed on each subject for use as landmarks; however, due to initial
capturing limitations 110 subjects from the European subset do not have landmarks.
Subjects were scanned in three poses: standing, sitting comfortably, and sitting with
arms raised.

The CAESAR dataset is not publicly available without purchase of a license. The
licensing and copyright of content is an issue present across computer vision, especially
in research where it may be unclear as to whether one’s work is considered to be for
commercial or non-commercial purposes. Whilst still a grey area, subsequent human
body datasets have been derived from the dataset [78, 211, 121, 149]. Loper et al.
[121] & Zuffi et al. [224] both use data that is not considered to be in the public
domain to develop linear blend skinning algorithms to construct a model of the data.
These have been subsequently used to produce synthetic datasets for evaluative and
training purposes as ground-truths are easily established [74].

Several synthetic datasets have been derived from the Digital Art Zone (Daz
Productions, Inc. or Daz 3D). Daz 3D is a digital model platform, as well as a
software development company. They have produced a series of base (i.e., template)
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models which are rigged and include morphs to alter the appearance of a model (e.g.,
emaciated, muscular, etc.). Many datasets have been derived from these models [32,
158, 149]. Models that use the same template share the same connectivity, and
therefore possess dense ground-truths.

Kim et al. [95] combined three existing datasets [8, 32, 111], of which a subset of
the shapes are animals, for which a volunteer selected 21 corresponding points on the
quadruped shapes. The dataset contains 51 quadruped shapes that approximately
contain between 3,000 and 56,000 faces.

Several SHREC tracks have used datasets that contain non-isometric deforma-
tion [132, 56, 57, 58]. Melzi et al. [132] and Dyke et al. [58] both curate datasets from
existing data sources. These datasets differ in both contents and the processes used
to acquire ground-truths. Melzi et al. [132] use an automatic registration method to
produce a dense correspondence between 44 human shapes. For [58], a collection of
14 quadruped shapes are manually labelled by three experts. In the case of Dyke et al.
[56, 57], scans of inanimate subjects in multiple poses were captured using a hand-
held Artec 3D device. Dyke et al. [56] use a small articulated wooden mannequin and
wooden hand as base subjects to produce 50 watertight scans using varying textiles to
exhibit a range of deformations. Dyke et al. [57] use a stuffed rabbit model made of a
stretchy textile with no internal skeleton, enabling greater deformation. The internal
filling of the rabbit model is varied with fine and coarse materials that modify the
appearance and deformations exhibited.

3.7.1 Dataset taxonomy

Here, the classification criteria for the taxonomy in Tables 3.2 & 3.3 are described.

Deformation type Non-rigid deformations between two shapes may generally be
considered to be either (near-)isometric or non-isometric. During (near-)isometric
deformation geodesics are approximately preserved. Conversely, non-isometric defor-
mations involve stretching and compressing that affect geodesics. See discussions in
Section 2.4.

Due to scanner limitations when capturing real-world objects, often topological
changes may occur (e.g., Fig. 2.13). Such changes increase the complexity of defor-
mations and cause geometric measures, such as geodesics, to become unstable.

For [30], deformations are primarily near-isometric, however there are also some
affine transformations.
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One notable online source [2] provides a large number of synthetic human bodies
that all share the same underlying skeleton rig. A wide variety of animations of these
skeletons are available, providing a great potential source for studying action-specific
deformation.

Similarity level Many correspondence methods [144, 145, 101, 201, 155] seek to
enforce bijectivity between surfaces. Therefore, such methods only perform well on
matching problems where the shapes share a full correspondence. Other methods are
capable of handing injective, or shapes that exhibit a partial correspondence. This
is a desirable feature, as many real-world correspondence problems involve partial
scans.

Scan type Data created either by a computer or an artist using software are consid-
ered to be synthetic. Real scans are representative of real-world scenarios, with real-
istic deformations, noise and capture limitations. Synthetic datasets can be produced
without the use of expensive scanning equipment and may provide incrementally chal-
lenging problems, which could be hard to model in real-life. Some synthetic datasets
attempt to synthetically induce challenges that are present in particular scanning
technologies, e.g., partial shapes [159, 160] and topological changes [102]. A common
shortcoming of real scans is that, without either interpolating or automatically reg-
istering shapes, establishing a dense ground-truth correspondence between shapes is
labour-intensive. In instances where a template shape—either real or synthetic—is
deformed, the correspondence is intrinsic to the shape’s triangulation. In the taxon-
omy, this is referred to as a deformed template.

In the case of [21], the evaluative benchmark comprises of real scans, while the
training set for learning-based methods provides a deformed template that is water-
tight.

Ground-truth density A correspondence between two shapes is considered to be
dense if most vertices in one shape have a corresponding location on the target shape.
Otherwise, when the correspondence of only a (relatively small) subset of points is
known, the density is sparse. In the case of [21, 22] texture markers are registered,
while Dyke et al. [56] interpolate sparse texture markers, to produce dense ground-
truths.
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Ground-truth acquisition As mentioned previously, intrinsic correspondences ex-
ist when a collection of shapes all share the same connectivity and therefore have a
correspondence. When scanning real-world objects, it is possible to apply struc-
tural or texture markers to a surface which are possible to match either manually
or automatically [157, 21, 22, 56, 57]. Where markers are not present, a volunteer
can manually establish ground-truth correspondences [95, 58] or—if appropriate—a
bespoke shape model [132] can be used.

Training facility For learning-based methods, additional data may be required to
train a model for a particular scenario. As the taxonomy demonstrates, such data
is scarce. In the case of [56], no training facility was available, but a learning-based
method by Groueix et al. [74] used another anthropomorphic linear blend skinning
model [121] to produce a training dataset.

Anthropometric Many datasets focus on the problem of deforming human models
(i.e., anthropometry). Few notable correspondence datasets strictly investigate other
problems.

No. of scans The number of scans in a dataset is important for the purposes of
thorough evaluation. Due to the cost of producing such large datasets, experimental
works often contain much fewer scans.

No. of vertices The average number of vertices in each mesh is an indicator of
the fidelity of the data. The computational cost of present correspondence methods
varies widely, with methods that require the computation of dense geodesic distance
matrices requiring O(n2) space.

A common trend has been to reuse existing datasets, this saves time scanning or
creating new digital models, which can take a considerable amount of time. [95, 132,
58] collect models from multiple sources.

As mentioned earlier, few correspondence datasets characterise non-humanoid de-
formation. This is particularly problematic for learning-based methods—which have
been shown to perform particularly well on class-specific deformations—as there are
not enough resources to suitably train these methods for additional problems. This
is an area that requires urgent focus. Without datasets to facilitate the development
of generalised learning-based methods, this area is likely to remain under-researched.
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With respect to the work undertaken in this thesis, there is a distinct lack of
structure to the deformations in these datasets. Previously, Bogo et al. [21] provided
the most structure with the dataset being split into intra-person scan pairs—scans
of the same subject with little non-isometry—and inter-person scan pairs—scans of
different subjects undergoing significant non-isometric deformation. This problem
is addressed from different perspectives by the datasets developed in this thesis in
Chapters 5, 6 & 7.

3.8 Evaluative measures

A variety of techniques used to evaluate the performance of correspondence methods
on benchmark datasets are discussed by van Kaick et al. [196].

The most popular procedure that is used to assess the performance of correspon-
dence methods is by Kim et al. [95]. The area under curve from this measure is also
used as a numerical method for performance comparisons [56, 57, 58].

We shall begin with a few definitions. Let C be a set of correspondences between
the source surface X and the target surface Y . For a predicted correspondence be-
tween source and target surfaces ci = (xi, yi) ∈ X × Y , the respective ground-truth
correspondence is (xi, y

∗
i ) ∈ X × Y . The distance between the predicted point yi and

the ground-truth point y∗i is measured using distance function dY (yi, y
∗
i ), which may

represent either the Euclidean or geodesic distance.
Often geodesic distance, or a normalised variant of it, is used to directly measure

performance. The average geodesic error may be formulated as

E =
1

|C|

|C|∑
i

dY (yi, y
∗
i ). (3.6)

Many previous evaluative works on shape correspondence have principally used
geodesic distance as a measure for error [132, 30, 31, 29]. Note that when measuring
the overall error for a collection of target shapes, it may be necessary to normalise the
computed error by the surface’s properties such as the area of Y or farthest geodesic
on Y .

Measures that require each predicted correspondence to be assigned a binary clas-
sification b(yi) ∈ {0, 1} as either true positive (TP) or true negative (TN), e.g., pre-
cision, recall, and specificity, rely on an appropriate classification strategy b(yi) =

B(yi, y
∗
i ). A common strategy is to measure the distance between the predicted and

ground-truth correspondence points dY (yi, y
∗
i ); points that are below a specified error
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threshold ε are considered correct. This description is the basis of the correspondence
error measure proposed by Kim et al. [95], where a correspondence is considered to
be a TP when dY (yi, y

∗
i ) ≤ ε. The value of ε is increased to measure the number

of TP over larger radii, which can be used to produce a curve. This approach fails
to characterise the distribution and sparsity of correspondences on shapes where a
limited number of ground-truth correspondences are available.

The benchmark protocol described by Kim et al. [95] is considered to be the
standard error measure for correspondences. The normalised geodesic error may be
used to produce further statistics through the use of AUC, used in [56]. For a
collection of shapes, Kim et al. [95] also report the average of the maximal geodesic
error. Rodolà et al. [159] & Cosmo et al. [43] report the average geodesic error over a
dataset of shapes with gradually reducing surface areas to measure the robustness of
methods on increasingly partial scans. For functional mapping approaches, Corman
et al. [42] measure the quality of ground-truth and predicted functional basis. In the
case of registration methods, where one shape is deformed to align with another, it
is possible to measure fitting error using the Hausdorff distance [40, 10]. A variety of
other validation methods for shape correspondences are discussed by van Kaick et al.
[196].

Qualitative techniques using visual mappings between two shapes in which topo-
logical information is transported (e.g., colour or texture transfer) [66, 60] are also
used. However, these techniques are not an effective way to succinctly summarise
the performance of a method on larger datasets or for comparing the performance
of multiple methods. Further evaluation may be performed on a proposed registra-
tion or correspondence algorithm using an application that requires a correspondence
mapping (e.g., shape retrieval [33], consistent quadrangulation [66, 14, 143]).

For evaluating shape descriptors there are several other useful evaluation measures,
Guo et al. [76] discuss a few. Receiver operating characteristic curve (ROC) and cu-
mulative match characteristic (CMC) are often used to help evaluate and compare
performance—Moon and Phillips [137] discuss these measures further. These de-
scriptors may be used to initialise typical shape correspondence pipelines, and can be
subsequently evaluated using shape correspondence tools. To demonstrate the qual-
ity of their feature descriptor without influence from the appended correspondence
method, Masci et al. [128] simply use nearest neighbours in the descriptor space.

Despite the wealth of evaluative measures available, there is still scope for further
development in this area. Through the evaluative experiments undertaken in Chap-
ter 5, it is discovered that the benchmark protocol by Kim et al. [95] does not report
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information such as sparsity. Chapter 7 addresses this through the use of a novel
evaluative measure that seeks to help characterise both the sparsity and distribution
of correspondences.

3.9 Medical image registration of skulls

Chapter 8 investigates the problem of registering the orbits of skulls scanned using
computerised tomography (CT). By registering the skulls, geometric measures can
be calculated automatically. This is critical in scenarios where manual labelling is
infeasible, such as for large datasets. While specifically automatic orbit registration
is an unstudied area, the general registration of medical images is a well-studied
problem. In this section, only key existing skull registration pipelines are discussed.

Utkualp and Ercan [195] provide a broad overview of the development of anthropo-
metric techniques in the field of medicine. With the invention of magnetic resonance
imaging (MRI) and CT devices, the field of medical image registration was quickly
established. In medical image registration, numerous approaches have been proposed
for a variety of tasks. Many methods are designed to register images of the same
subject—this only requires a rigid transformation to be estimated. However, in prac-
tice, global affine-based registration approaches are typically used to accommodate
scanner calibration errors [46]. For works that operate directly on the original volume
of inter-subject scans, a non-rigid B-spline registration technique is often used [180].

For the work in Chapter 8, a triangulated mesh representation of the skull’s surface
is extracted for analysis. Few works have considered the problem of inter-subject skull
registration in this form [51, 218, 174, 219].

Deng et al. [51] seek to estimate exterior facial geometry. First, a template skull is
coarsely registering to a target skull using thin-plate splines (TPS). Then, the defor-
mation is locally refined using radial basis functions that support local non-isometry,
minimising global distortion. The deformation is then applied to the known exterior
facial geometry of the template to reconstruct the face. This method relies on man-
ually placed landmarks, therefore making it infeasible to apply to larger databases.

Zhang et al. [218] automatically establish landmarks between extracted skulls in
a coarse-to-fine manner. First, global affine-based registration is used to estimate
the location of a set of sparse landmarks. Subsequently, the locations are iteratively
refined in an alternating manner to optimise the location of points on the mid-sagittal
plane, and the Frankfort horizontal plane. The resulting registration is then refined
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non-rigidly using a TPS-based approach. This method relies on consistent landmark
detection, which is difficult to guarantee when processing low-quality data.

Sahillioğlu and Kavan [174] propose a method to register skulls with significant
deformities. A multi-modal approach is used, with a triangulated source mesh being
fitted to a target volume comprising of voxels. The method incorporates principal
component analysis (PCA), and therefore has a low level of computational complexity.
In Chapter 8, the proposed approach differs, as a triangulated mesh representation is
used for both the source and target.

Zhao et al. [219] propose a conformal parameterisation method for registering
skulls captured using CT. This method is shown to work on simple skulls with holes,
but only one wall. To extract only the exterior skull bone information, the image is
discretised using marching cubes, and then internal geometry is removed. Although
it might be possible to reformulate the extraction method to cut more conservatively,
this technique can remove necessary information that is on, or near, the orbit.

Pinheiro et al. [150] present a pipeline that is designed to measure craniofacial
symmetries between a series of patient scans captured over a number of years. While
related, this work only considers scans of the same individual. The authors demon-
strate the performance of the method on a set of synthetic deformations of a single
shape—therefore bypassing challenging geometric errors that occur in real scans. Fur-
thermore, this work measures asymmetry globally over the entire skull, whereas, the
work in Chapter 8 seeks to only measure asymmetry at the pair of orbits.

Other works have investigated the use of adaptive templates to improve the sub-
sequent surface registration (e.g., [48]). Dai et al. [47] construct a statistical shape
model, which decomposes the symmetric and asymmetric components of a dataset
of heads. A large collection of scans of human faces with textures were used. Land-
marks were automatically found in each texture using a supervised 2D localisation
approach [222]. If an automatic localisation method is not available, such an approach
is not be feasible without extensive additional manual labelling.

Other registration-based applications have been explored. There has been a great
focus on combining data from multiple sources [79, 183, 23]. These have been shown
to help automate parts of tasks, such as surgery planning [79], and forensic recon-
struction [198], which would typically be performed manually.

Overall, there are several undesirable problems with state-of-the-art methods for
skull registration. For large datasets with significant variations, it can be infeasible
to obtain high-quality landmarks (e.g., [51, 218]). CT scans can contain problematic
noise, which is exacerbated when processing low-quality data. Therefore, methods
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that are sensitive to topological and geometric error are not suitable for this problem
(e.g., [219]). Additionally, although not addressed in this thesis, an additional problem
is the absence of studies that evaluate these methods in the context of intra-subject
skull registration.

3.10 Contributions

This chapter has explored current notable works in the area of non-rigid registration
and its related fields. The area of registration is still maturing, with many avenues
of research yet to be explored or requiring further attention.

For shape correspondence methods, there has been a significant amount of work
that considers isometric deformation. Recently, a growing focus has been on non-
isometric deformation [201, 200, 67, 155, 66]. Unfortunately, the assumptions made
in previous works are incompatible with non-isometric deformation; therefore, new
techniques are required for handling challenging cases such as partial correspondence.

Many works focus their evaluations on synthetic benchmark datasets. With re-
spect to real-world scenarios, these datasets do not appropriately reflect the challenges
presented in real scans. This is a persistent problem in many works, where the quality
of the data used differs from the envisioned application. The inclusion of thorough a
evaluation is necessary for potential users to discern whether a method is applicable
for a particular scenario or capture modality.

Existing datasets indicate a dominant interest in anthropometry. It should be
noted that there are other reasons why it is much easier to capture human data than
other objects or species (e.g., copyright, size, compliance, etc.). These are considered
in Chapter 7 where a dataset is curated that consists of 3D scans of quadrupeds that
are available on the internet.

3.11 Summary

The aim of this chapter was to provide a comprehensive overview of the key literature
within the scope outlined in Section 3.1. The amount of literature on non-rigid
registration is substantial, and it is not possible to cover all of it here. However, this
chapter has examined the literature that is most relevant to the problems investigated
in this thesis. Hereon, little additional literature is introduced. For the benchmark
chapters (Chapters 5, 6 & 7), the reader is directed to the descriptions of the methods
in Section 3.5.
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Table 3.4: A list of datasets that have been reused by other benchmark datasets.

Original dataset Derivative datasets
Robinette et al. [157] [78, 211, 121, 151, 132]
Anguelov et al. [8] [132]
Bronstein et al. [32] [95, 159, 43, 160, 132]
Vlasic et al. [202] [95]
Lian et al. [111] [95]
Yang et al. [211] [132]
Bogo et al. [21] [132]

Rodolà et al. [158] [102]
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Chapter 4

Non-rigid registration under
anisotropic deformations

Overview

This chapter introduces a novel non-rigid registration method, which is capable of
handling anisotropic deformation. Section 4.1 describes the problem and identifies
the key contributions of this method. Relevant literature is discussed in the con-
text of this chapter in Section 4.2, this extends the literature reviewed in Chapter 3.
Section 4.3 details the novel components of the proposed pipeline. The performance
of the proposed method is compared with other state-of-the-art methods on several
notable real and synthetic benchmark datasets through sets of quantitative and qual-
itative results. Further evaluation of this method is undertaken in Chapters 5, 6 & 7.
Key limitations for the proposed method are mentioned in Section 4.5. Finally, some
concluding thoughts and suggestions for future work are given in Section 4.6.

4.1 Introduction

Surface registration is a fundamental problem in the domains of computer graphics
and vision, in which the aim is to find a transformation that best aligns two input
surfaces. Surface registration algorithms underline computational solutions to many
prevailing problems, such as 3D acquisition/reconstruction, statistical shape analysis
and shape retrieval. With the increasing pervasiveness of 3D scanners and applica-
tion of 3D scanning in real-world scenarios, the importance of accurate registration
algorithms is continuing to rise.

In many real-life scenarios, surfaces are often non-rigidly deformed. Non-rigid
surface registration is therefore required to find the non-rigid transformation between
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them. Extending from the well-known Iterative Closest Point (ICP) approach for
rigid registration [19, 39], Non-rigid ICP (N-ICP) methods [27] achieve registration
for non-rigid surfaces by alternating between two steps. In the first step, a set of
correspondences is computed using a closest point criterion, and then the second
step identifies a non-rigid transformation that minimises an error metric. Generally,
the associated cost function decreases after each iteration, converging monotonically
to a local minimum. Because of the simple way correspondences are generated, N-
ICP is fast enough to be used in some real-time applications; though alone, it is
incapable of coping with large-scale deformations. N-ICP methods thus typically
require an initial set of correspondences generated through alternative means, such
as automatic/manual markers (e.g., [6]), so as to achieve good registration results.

In the N-ICP framework, dense correspondences are obtained using the closest
point criterion. However, it is only effective when two surfaces are reasonably close.
Additional (sparse) correspondences are often needed to cope with shapes with large
deformations. Since shapes to be registered may only have partial overlaps (e.g., due
to occlusion when two views are captured), correspondences are most often generated
by feature matching of local shape descriptors of source and target shapes.

This requirement exhibits two challenges: First, it can lead to false matches be-
tween areas that appear the same locally, but belong to different regions (e.g., any
local regions on a cylindrical surface). This could be accounted for by ensuring the
correspondences are consistent. Second, in cases where the surface has been warped,
they may not match (unless the shape signatures are insensitive to the particular
warp, which is not generally possible). Typically, there is little contingency built into
theseN-ICP methods, with most relying on such areas being sufficiently insignificant
so as to not affect the final result.

Most recent correspondence methods (e.g., [82, 192]) used in non-rigid regis-
tration account for a certain degree of near-isometric deformation by employing a
geodesic-based consistency measure. However, for surfaces with large deformations,
non-isometric deformations commonly exist (typically in joint areas of articulation, or
on deforming parts), making the global isometry assumption less useful. In the liter-
ature, most surface registration methods do not directly address non-isometric defor-
mation. They simply penalise any deformation that is non-isometric. To cope with
large deformations, a new consistency measure that takes into account anisotropic
non-isometric deformation explicitly is proposed.

Some previous work addresses a related problem of establishing correspondences
between shapes which involve potentially large deformations [95, 117]. However,
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fundamental differences exist. Non-rigid registration aims to identify non-rigid de-
formation (usually in the form of a set of local deformations) to deform the source
mesh to align with the target, whereas correspondence methods only identify point-
to-point correspondences between surfaces. On the one hand, in order to directly
derive deformation with the latter approach, complete or dense per-vertex correspon-
dences would be needed. The computation of such dense correspondences can be
slow. When two surfaces are only partially overlapping, such complete correspon-
dences may not be defined. On the other hand, these methods may have significant
restrictions on topology (complete genus-zero models) [95] or may generate globally
inconsistent correspondences due to the lack of a global constraint [117]. Compared
to these methods, non-rigid registration can often be driven by a sparse set of reliable
correspondences which is easier and more efficient to obtain. It also does not require
any strong topology assumptions.

Due to the typical sparsity of the correspondences used, non-rigid registration
usually requires some regularisation to ensure that the surface deforms appropri-
ately during the N-ICP iterations. Notable methods define the local regularisation
neighbourhood to be one-ring (i.e., vertices connected to the vertex of interest by
an edge) [27] using an as-rigid-as-possible (ARAP) formulation [185]. This however
is insufficient for cases with large deformations, as shown in our experiments. Fol-
lowing work by Chen et al. [38], which uses r-ring ARAP energy for deformation
with controllable stiffness, r-ringARAP regularisation is incorporated to cover larger
neighbourhoods, allowing large deformation to be handled effectively in the N-ICP
framework.

Technical Contribution In this chapter, a novel non-rigid registration technique
capable of registering large-scale and non-isometric deformations is proposed. Ad-
dressing large-scale and non-isometric deformation is a fundamental challenge of ex-
isting non-rigid registration techniques. To the best of our knowledge, this challenge
has not been addressed before. More specifically, our main technical contributions
are:

• A novel method to estimate anisotropic deformations on a discrete mesh by
using the principal scaling factor.

• A correspondence generation and correspondence pruning method based on lo-
cal geodesics that copes with anisotropic deformations; this makes use of our
anisotropic deformation estimate.
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• The r-ring ARAP formulation is introduced for regularisation in non-rigid
registration, which effectively handles challenging large deformations where ex-
isting registration methods fail.

Both qualitative and quantitative evaluation are performed using public bench-
mark datasets. Our results show that our method outperforms the state-of-the-art
methods in non-rigid registration.

4.2 Related work

Here we briefly overview methods which are particularly related to this chapter.
Please refer to Chapter 3 for a more extensive literature review related to this thesis.

Shape correspondences A variety of methods have been proposed for establishing
correspondences between shapes. Notable works have been discussed in Chapter 3.

For non-rigid registration, it is usually sufficient to have a sparse set of initial
correspondences. Leordeanu and Hebert [104] first used spectral matching to acquire
a consistent set of correspondences between images. Huang et al. [82] adapt the idea to
address large-scale, but piecewise-rigid deformations. They further use an assumption
of global isometry to obtain correspondences. However, the computation of geodesic
distances is slow, and using an isometry measure based on global geodesic distances
may not adequately model real-life deformation well. Due to these drawbacks, Tam
et al. [192] propose to use a more flexible local isometry global consistency model,
along with a more efficient diffusion framework to select reliable correspondences. All
these methods assume (near-)isometric deformation. However, these techniques still
cannot model real-life deformation well. Here, to the best of our knowledge, this is
the first work to explicitly model anisotropic non-isometric deformation in a pruning
and registration technique, allowing reliable correspondences and non-rigid alignment
to be obtained even under large-scale deformation.

Shape deformation A detailed discussion of deformation regularisation techniques
is given in Section 3.3.3. The regularisation term restricts arbitrary deformations, and
ensures a natural deformation. Previous work such as Achenbach et al. [1], only uses
anisotropic regularisation in the later refinement stage and therefore the method is not
designed for large-scale anisotropic deformations, which is addressed in this chapter.

As mentioned in the previous chapter, Chen et al. [38] propose a simple formulation
that extends [185], enlarging the neighbourhood size (to r-ring neighbours) to change
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the local rigidity of deformations. In this work, the r-ringARAP energy is introduced
to the N-ICP framework and we demonstrate its effectiveness in handling large-scale
deformations. This approach may seem counter-intuitive, as it penalises anisotropic
deformation. However, when it comes to challenging large-scale deformations where
reliable correspondences may not be readily available, such regularisation is necessary
to ensure the deformation is not arbitrary and does not overfit to noise.

Non-rigid registration Non-rigid registration aims to align surfaces undergoing
non-rigid deformation. Much research has been conducted due to its general appli-
cability, see Sections 3.3 & 3.9. However, most research makes strong assumptions
regarding the type of deformation, e.g., piecewise-rigid [82] and isometric [210, 109].
Although these assumptions are reasonable when the deformations are small or near-
isometric, it is still a challenge to register surfaces with large-scale non-isometric
deformation, in which case anisotropic deformation is common. Jiang et al. [88] re-
cently proposed a method that incorporates a regularisation model that is capable
of handling non-isometric deformations. However, the method relies on a farthest
point sampling technique to establish coarse correspondences, which can be sensitive
to topological change.

4.3 Methodology

Our surface registration algorithm (Algorithm 1) consists of four key components:
modelling of anisotropic non-isometric deformation (Section 4.3.2), correspondence
computation (Section 4.3.3), correspondence pruning (Section 4.3.4) and deformation
optimisation (Section 4.3.5). These components are underpinned by our incorporation
of an anisotropic geodesic method. In this section, we first present an overview of
the algorithm, and subsequently detail each component in the following subsections.

Figure 4.1: An isotropic
geodesic.

4.3.1 Algorithm overview

Given a source mesh X and target mesh Y , geodesic dis-
tances between vertices are pre-computed on both meshes
(dX , dY ). Note, at this stage, no assumptions about non-
isometry are made, so the distance measured between two
points should approximate the conventional geodesic dis-
tance (as illustrated in Fig. 4.1).
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Figure 4.2: (a) Closest matching descriptor between X and Y , the groups of coloured
squares represent feature vectors. (b) Pruning descriptors based on geodesic consis-
tency, the boxes with integer values represent the distance to neighbouring points in
X and the corresponding points in Y .

Next, shape descriptors are computed at each vertex.
Since identifying the optimal feature descriptor for non-
rigid surfaces is not the main focus of this work, SHOT [194] is used to establish initial
correspondences due to its robust performance. Pairs of vertices between shapes are
matched based on their similarity (see Fig 4.2a). The top k matches may be found
efficiently using nearest neighbour distance in the descriptor space using a k-d tree.

Each pair of matched points share a similar a feature description; however, if a
similar feature is present in multiple regions, these matched pair might not share
the corresponding location. The pruning step—on line 4—seeks to address this by
removing matches where geodesic distances to neighbouring points are inconsistent
between surfaces (see Fig. 4.2b). Still, no assumptions about non-isometry are made,
so the original pre-computed geodesics (dX , dY ) are used here.

An extended N-ICP algorithm is then used to non-rigidly align the two surfaces,
initially using the pruned matches as hard correspondences to coarsely align stable
points. An illustration of this step is shown in Fig. 4.3. The outputs of line 5 are the
deformed mesh X ′ and a dense set of nearest-neighbour correspondences CN−ICP.

Up to this point, the described pipeline is suitable for (near-)isometrically de-
forming surfaces. The components of the method described hereon seek to handle
non-isometries. On line 7, given a dense correspondence between X & Y , the eigen-
vectors/values that correspond to the scaling factor in the principal scaling direction
and orthogonal scaling direction are computed. In each iteration of the pipeline, the
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c(x1) c(x2)

c(x3)c(x5)

c(x4)

Figure 4.3: N-ICP using a coarse set of hard correspondences. To the left, the source
surface (X), represented by the red line, is non-rigidly aligned to the target surface
(Y ), in blue. This produces the deformed surface X ′, in red, on the right.

original geodesics (dX , dY ) are incorporated. The pairs of eigenvectors/values form
an anisotropic tensor field, shown in Fig. 4.4.

Figure 4.5: An
anisotropic geodesic.

This information is used to re-scale (or weight) the
edge lengths of each triangle with respect to the local
field. This mesh with modified edge information is used to
compute anisotropic geodesics dAX using the method pro-
posed by Liu et al. [119]. Fig. 4.5 shows an example of
the optimal path between two points after applying the
anisotropic tensor field.

The dense set of correspondences CN−ICP are pruned
to discard pairs of correspondences with inconsistent
geodesics to neighbouring points—these typically occur in misaligned regions. In
contrast to line 4, rather than using the geodesics that were initially computed (dX),
the anisotropic geodesics (dAX) are used for the metric on X.

The pruning stage often discards correspondences between regions that are mis-
aligned. The correspondence inference stage re-populates these areas with correspon-
dences by locating the most geodesically compatible point on the target surface using
the remaining unpruned correspondences (Cpruned from line 9). This concept is illus-
trated in Fig. 4.6.

The correspondences from the pruning step on line 9 (Cpruned) and the corre-
spondence inference step on line 10 (Cinferred) are combined into a single set. The
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Figure 4.4: The resulting pairs of eigenvectors/values of each corresponding point
between X and Y based on the anisotropic non-isometric stretch.
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2       1

d(y3,c(x1))

d(x2,x1)

Figure 4.6: Given the point x2 on surface X, the geodesic compatibility of corre-
spondences is measured for each candidate correspondence on Y (i.e., y2 & y3). In
this case, the distance values between y2 and the known correspondences are more
consistent with the distance values of x2, than the values of y3.
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composite set is then pruned. Since the geodesics between the correspondences in
Cpruned are already consistent, they are unlikely to be removed during the pruning
step. However, Cinferred may introduce correspondences that are not consistent with
neighbouring candidate correspondences in the Cinferred set. The poorer correspon-
dences in Cinferred may not help in the alignment process; therefore, they are removed
in this pruning step.

Finally, the new Cpruned is used to help initialise the extended N-ICP algorithm.
This final pruning stage is necessary as some correspondences introduced in the cor-
respondence inference stage may not be adequately consistent. If further iterations
are required, the CN−ICP produced in this step is next used to compute the principal
scaling factor.

Algorithm 1: Algorithm overview
Input : X, Y – Source and target surfaces
Output: X ′ – Deformed surface (X ′)

CN-ICP – correspondences
1 dX ← ExactGeodesics(X)
2 dY ← ExactGeodesics(Y )
3 CFeatureMatch ← FeatureMatch(X, Y ) // Local feature matching.
4 Cpruned ← prune(dX , dY , CFeatureMatch)
5 X ′, CN-ICP ← N-ICP(X, Y,Cpruned)
6 while X ′ has sufficient changes over the last iteration do
7 EX ← PrincipalScalingFactor(X, Y, dX , dY , CN-ICP) // Output source edge

lengths.
8 dAX ← AnisotropicGeodesics(X,EX)
9 Cpruned ← prune(dAX , dY , CN-ICP)

10 Cinferred ← CorrespondenceInference(X, Y, dAX , dY , Cpruned)
11 Cpruned ← prune(dAX , dY , Cinferred ∪ Cpruned) // Use scaling factor in

consistency measure.
12 X ′, CN-ICP ← N-ICP(X, Y,Cpruned)

13 end

4.3.2 Anisotropy estimation

In real-life non-rigid scenarios, anisotropic non-isometric deformation is common. For
example, the contraction of the muscle bicep would cause the arm to bend at the elbow
(as shown in Fig. 4.16). Such muscle contraction involves shortening in longitudinal
and lengthening in lateral directions of the muscle. It is a typical anisotropic non-
isometric deformation. While some existing works incorporate regularisation terms
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that do allow for some non-isometry [6, 138], alone, the data terms used are only suffi-
cient to handle modest amounts of deformation. Therefore, additional correspondence
information is necessary to align challenging regions of a shape.

To better model these anisotropic non-isometric deformations for a registration
technique, we develop a local anisotropy metric, and incorporate it in the local
geodesic computation. This allows more and better correspondences to be found
in non-isometrically deforming areas, supporting more robust registration results.
Specifically, the anisotropic measure is incorporated into the estimate of geodesic
distance, which is used to accurately measure the consistency of pairs of correspon-
dences. In Algorithm 1, the anisotropic measure is used in steps 9, 10 & 11. In the
following, we first discuss the anisotropy metric in Section 4.3.2.1, then discuss how
to adopt the metric for geodesic computation in Section 4.3.2.2.

4.3.2.1 Local anisotropic deformation metric To model the local anisotropic
deformation at each vertex, we propose an anisotropy metric—a pair of local eigen-
vectors that defines the Principal Scaling Factor (PSF) of deformation.

We first project local points in the source mesh onto the tangent plane of the
vertex of concern. Then we can estimate the local scaling factor by comparing these
2D coordinates with the corresponding geodesic distances from the target mesh (illus-
trated in Fig. 4.7a). This allows us to extract the scaling directions and magnitudes
via eigen-analysis, inspired by the idea of principal curvatures [64]. These constitute
one part of a 2-order tensor field that describes changes in scaling at a per-vertex
level of the source shape.

In order to estimate PSF, it is necessary to have some points with known corre-
spondences. This leads to a chicken-and-egg problem. We address this issue with an
iterative approach. We first compute initial correspondences by matching features
between shapes, as per step 3 of Algorithm 1. Consider a discrete vertex si on the
source shape X, with neighbouring vertices sj ∈ NX(si) where the correspondences of
si and all sj are known. We project si onto a 2D plane with an arbitrary orientation
that is tangential to the normal of si. Let ŝi and ŝj be the projection of vertices si
and sj onto the 2D plane, respectively. The corresponding points on the target shape
for si and sj on the source shape are denoted by tu and tv.

For simpler formulation, we set ŝi = (0, 0) as the origin, and denote ŝj = (x̂j, ŷj).
We also define dj = dg(tu, tv) as the geodesic distance on the target shape between
tu and tv. To ensure robustness, we formulate the problem as a least squares fitting,
and use a quadratic function f(x̂, ŷ) to approximate d2

j since low-order polynomials

69



CHAPTER 4. NON-RIGID REGISTRATION UNDER ANISOTROPIC
DEFORMATIONS

are more stable. The squared distance should have its centre of symmetry at the
origin and f(0, 0) = 0, at which the x term, y term and constant thus should all be
0, leading to

f(x̂, ŷ) = ax̂2 + bx̂ŷ + cŷ2, (4.1)

where a, b and c are coefficients to be determined. We formulate the least squares
problem to minimise the following

F (a, b, c) =
∑

sj∈NX(si)

(
ax̂2

j + bx̂j ŷj + cŷ2
j − d2

j

)2
. (4.2)

Setting ∂F
∂(a,b,c)

= 0 leads to a linear system, which can be easily solved. Let x̂ = (x̂, ŷ).
We construct a matrix Aq

Aq =

[
a 1

2
b

1
2
b c

]
, (4.3)

and f(x̂) = x̂TAqx̂. We then find the first and second eigenvectors of Aq, i.e., ê1,
ê2 and their respective eigenvalues (‖ê1‖, ‖ê2‖). These eigenvectors represent the
anisotropy metric at a specific vertex. We may calculate e1, e2 ∈ R3 by mapping the
tangent plane that e1, e2 lie on back into R3. This process is repeated for each vertex
in X with a correspondence on Y .

4.3.2.2 Measuring anisotropic geodesic distance To measure geodesic dis-
tance we use the method proposed by Liu et al. [119]. This method requires the
anisotropy metric to be encoded into the predicted edge lengths of the shape. We
update the estimated lengths of the edge set for the source shape using the following
procedure.

Let vab be a vector that represents an edge between two adjacent vertices on the
source shape (i.e., vab = sb − sa). At each vertex, there is a pair of eigenvectors,
a principal and secondary vector (ê1, ê2). Thus, for each edge, there are two pairs
of eigenvectors (ê1a, ê2a) & (ê1b, ê2b). The eigenvalue is encoded into the length of
each eigenvector ‖êα‖. An example of this in the 2D tangent plane is illustrated in
Fig. 4.7b.

In practice, eα and vab are embedded in R3. We apply the following calculation
for both points a and b. For simplicity, we only describe the process for one point. We
assign the normal vector at the point of concern to e3 = e1×e2

‖e1×e2‖ . We use the three
normalised vectors as the current basis (i.e., B = ( e1

‖e1‖ ,
e2
‖e2‖ , e3), as e3 is already

normalised). Transforming the subject edge into this basis (ṽab = B−1vab), the
components of each axis now represent the amount of stretching in each direction
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ê2b

(b) Two pairs of eigenvec-
tors

e3 (z) e2 (y)

e1 (x)vab

(c) New basis B = (e1, e2, e3).

Figure 4.7: Illustrations that demonstrate the idea of estimating anisotropic non-
isometric deformation. (a) An anisotropic deformation of points between two shapes
(X & Y ) may be approximately modelled by an ellipse. The surrounding unla-
belled points represent neighbouring points on the source shape sj ∈ NX(si) and
the predicted correspondence of tv on surface Y . (b) Two pairs of eigenvectors
(ê1a, ê2a, ê1b, ê2b ∈ R2) represent stretching for an edge vab. (c) vab transforming
into new basis B = (e1, e2, e3).

(n.b. e3 always has a stretching factor of 1). We illustrate this new basis w.r.t.
point a in 3D in Fig. 4.7c. We can then assign each of our scaling factors to an axis
as follows: x : ‖e1‖, y : ‖e2‖ and z : 1. We can apply our scaling factor to each
respective axis before transforming the stretched edge back into the original global
basis (ṽ∗ab = BSṽab), where S is a 3-by-3 scaling matrix with S11 = ‖e1‖, S22 = ‖e2‖,
S33 = 1 and remaining entries to be zero. This process is repeated for both points
a and b using their respective eigenvectors (e1a, e2a, e3a & e1b, e2b, e3b). The average
length of the resulting two edges is the new edge length (as a discrete approximation
to the integration over the edge).

4.3.3 Correspondence generation

We now describe our method to find correspondences, as per Algorithm 1. In addition
to local feature matching, which only works for regions with limited deformation, we
further identify correspondences using automatic correspondence inference in an as-
consistent-as-possible formulation. The formulation works even under substantial
non-isometric deformation.

4.3.3.1 Local feature matching In our implementation SHOT [194] signatures
have been used to produce a candidate set of correspondences. SHOT computes a
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pointwise descriptor based on extrinsic shape properties. The method relies upon
computing repeatable 3D local reference frames that are invariant to some noise.
The local space is then partitioned by an isotropic spherical grid. Similarly to the
scale-invariant feature transform [124], for a given keypoint, first-order differential
information at neighbouring vertices is grouped into bins to produce a set of local
histograms, which form the signature. Due to the use of a fixed isotropic spatial grid,
SHOT is sensitive to anisotropic non-isometric deformation.

To reiterate, we have chosen SHOT for feature matching as it has acceptable
performance [192, 117]; the focus of this chapter is not to seek the best feature
descriptor. SHOT signatures are computed at two scales for each vertex on X and
Y [194]. Vertices between the two shapes are matched based on the similarity of their
signatures.

As with most low-dimensional feature descriptors, locally symmetric areas may
produce similar local signatures. This kind of incorrect correspondence may be iden-
tified by checking its consistency with other well matched feature points. For regions
with isometric deformations, well established methods based on diffusion pruning [192]
can be used. We will discuss this along with our extended approach for non-isometric
deformation later in Section 4.3.4.

4.3.3.2 Correspondence identification based on automatic correspondence
inference In regions with substantial non-isometric deformation, matching of local
feature descriptors (e.g., SHOT) often fails. Figure 4.8 is an example of a large
deformation. Here, we propose to use reliable correspondences from isometrically
deforming regions as landmarks to help identify new candidate correspondences in
these regions. The landmarks are automatically selected and updated in each iter-
ation of our surface registration framework. Given these landmarks, new candidate
correspondences are proposed based on the consistency of their geodesic distances to
the landmarks. There are three steps to this process, namely: problematic region
identification, automatic landmark selection and correspondence matching.

Problematic region identification Initially, regions that contain substantial non-
isometric deformation can be found by applying a pruning technique [192]. Regions
with no (locally isometrically consistent) correspondences will be identified as prob-
lematic regions (Fig. 4.8). Each problematic region is then separately analysed. To
reduce computation time, very small regions are disregarded since adequate corre-
spondences will be identified later at the ICP stage.
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Figure 4.8: Example problematic region between two shapes with no correspondences.

Automatic selection of landmark correspondences Correspondences returned
from the pruning algorithm by Tam et al. [192] are generally reliable, especially those
scoring high confidence values. In principle, we can randomly pick any of these cor-
respondences as landmarks. However, landmarks that are far away from problematic
regions are not very effective in estimating new candidate correspondences. Fur-
ther, in practice, we observe that only a small number of landmarks are necessary to
uniquely determine a new candidate correspondence point yj ∈ Y for a given point
xi ∈ X. We thus sample 20 landmarks that are closest to the boundary of a prob-
lematic region. This set of landmarks L helps to reduce the ambiguity and impact of
slight errors in the landmark locations. Although a more sophisticated landmark se-
lection procedure would be desirable, through experiments, we found that our method
is insensitive to the number of landmarks, and produces consistent results when this
parameter is varied within a reasonable range. We therefore fixed this parameter in
our experiments.

Matching of correspondences For each point xi in a problematic region on sur-
face X, the point yj ∈ Y with the most consistent geodesic distances to landmarks
is chosen as the corresponding point. Let lk = (lXk , lYk ) ∈ L be the kth landmark cor-
respondence with lXk ∈ X, lYk ∈ Y . We measure the consistency of a correspondence
(xi,yj) w.r.t. a landmark lk as

consk(xi,yj) = min

(
dg(xi, l

X
k )

dg(yj, lYk )
,
dg(yj, l

Y
k )

dg(xi, lXk )

)
. (4.4)
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Similar to [82, 192], Eqn. 4.4 provides a normalised measure of consistency in the
range of [0, 1] where 0 is the worst and 1 is the best. dg(·, ·) measures the geodesic
distance between two vertices. However, unlike existing work that sets a threshold,
which does not generally work for non-isometrically deforming regions, we choose
the target corresponding vertex yj as the one that gives the overall best geodesic
consistency. It works even for regions with non-isometric deformations:

L(xi) = arg max
j

min
k

consk(xi,yj). (4.5)

The rationale is to choose correspondences that give good alignment (by max-
imising the minimum consistency) to all the landmarks, whilst reducing the effect of
far away landmarks that are not discriminative enough for identifying a new good
correspondence.

4.3.4 Correspondence pruning

Tam et al. [192] propose an efficient algorithm capable of pruning a set of candidate
correspondences, preserving only those that are globally consistent. Poor correspon-
dences are pruned based on their low consistency with good local correspondences.
The consistency measure kab for a pair of correspondences a = (si, tu) and b = (sj, tv)

is defined as:
kab = min

(
dg(si, sj)

dg(tu, tv)
,
dg(tu, tv)

dg(si, sj)

)
, (4.6)

where si, sj ∈ X and tu, tv ∈ Y are vertices on surfaces X and Y respectively.
In their work Huang et al. [82] and Tam et al. [192], a threshold c0 (set to 0.7,
as suggested by Huang et al. [82]) is introduced, and a pair of correspondences is
considered acceptable if kab ≥ c0 in order to penalise non-isometric deformations.
Tam et al. [192] extend [82] by considering only local isometry where end points sj

and tv of a correspondence b must be within a specified geodesic distance to the
end points si and tu of a correspondence a. The global consistency of all reliable
correspondences can be further inferred from local isometry via diffusion processing.
This technique is shown to perform well in near-isometric cases.

However, in general, these techniques [82, 192] fail if the surfaces undergo non-
isometric deformation, especially the large-scale deformations that are considered
in this chapter. Our observation is that large-scale deformation often consists of
non-isometric (esp. anisotropic) deformation. As these techniques model isotropic
(near-)isometric deformation only, they fail to return any good correspondences es-
sential for accurate N-ICP alignment. Here, we develop a local anisotropy metric
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(Section 4.3.2) to estimate anisotropic deformation during registration, and apply
Eqn. 4.6 to incorporate an anisotropic geodesic measure [119] dAg (·, ·). To our knowl-
edge, this is the first effort to explicitly model anisotropic non-isometric deformation
in a pruning technique.

4.3.5 N-ICP with extended ARAP regularisation

Our N-ICP implementation is inspired by Bouaziz and Pauly [27]. At each iteration
of N-ICP, we work out the deformed position x′i for each vertex xi minimising an
objective function involving both the data and regularisation terms, i.e.,

E = Edata + λEreg. (4.7)

For the first 5 iterations, we only consider correspondences from pruning (Cpruned

in Algorithm 1). This transforms the surface to an initial deformation that is more
suitable. Let C be the set of pruned correspondences and m = |C| be the number of
correspondences input. Denote each correspondence as ck = (xck ,yck) where xck ∈ X
and yck ∈ Y respectively. The data term we used is the standard formulation:

Edata =
m∑
k=1

∥∥x′ck − yck
∥∥2

2
. (4.8)

After the 5th iteration, we discard prior correspondences, and use nearest neighbour
correspondences to help guide the mesh into alignment. Our data term is now for-
mulated as a combination of point-to-point and point-to-plane distances, where yi is
the closest point to x′i on shape Y , and ni is the normal of point yi. w1 and w2 are
the respective weights of point-to-point and point-to-plane terms.

Edata = w1

n∑
i=1

‖x′i − yi‖2
2 + w2

n∑
i=1

‖ni (x
′
i − yi)‖2

2 (4.9)

For the regularisation term, traditional N-ICP uses a local ARAP energy in
one-ring neighbourhoods [185]. We observe that this regularisation is not sufficient
for registration of regions with large-scale deformations. For the purpose of shape
deformation, Chen et al. [38] generalise this concept to work with r-ring neighbour-
hoods. It would provide greater control over how the deformation of a vertex affects
its connected vertices. We propose to incorporate r-ring ARAP into our N-ICP
registration pipeline to handle large-scale deformations. Let N r

i be the r-ring neigh-
bourhood for the vertex xi, and n = |X| be the total number of vertices of X.

Ereg =
n∑
i=1

∑
j∈Nr

i

∥∥(x′j − x′i)−Ri(xj − xi)
∥∥2

2
(4.10)
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The optimisation of E involves alternating optimisation of the deformed positions
X ′ = {x′i} for each vertex xi (while fixingRi), and the calculation of the optimal local
rigid rotation Ri (while fixing X ′). Similar to [185, 38], the former (global step) is a
least-squares problem and can be solved by solving a linear system, and the latter is
optimised for each vertex and can be solved using Singular Value Decomposition [185,
38].

Note that on line 12, Algorithm 1, we pass X as the source shape rather than X ′,
this enables the consistent application of local regularisation and helps ensure better
registration results.

4.4 Evaluation

To evaluate the performance of our proposed method, we benchmark it on a series of
synthetic and real datasets. These datasets contain challenging registration scenarios,
that include a range of minor and major anisotropic non-isometric deformations. We
compare our technique against the notable N-ICP [27], two recent sparse non-rigid
registration methods [210, 109], and a state-of-the-art functional map method [200].

4.4.1 Error measure

For convenience, the protocol of Kim et al. [95] is described here. For an estimated
correspondence (xi,yi) ∈ X × Y and the respective ground-truth correspondence
(xi, gi) ∈ X × Y . The geodesic distance between the corresponding points on Y is
dY (yi, gi) (an example of geodesics is shown in Fig. 4.9). The area of shape Y is used
to normalise the distance. The error of the estimated correspondence is be measured
as

ε(xi) =
dY (yi, gi)

area(Y )1/2
. (4.11)

Cumulative error curves are subsequently produced by counting the number of
correspondences with an error ε(xi) less than a given threshold of normalised geodesic
distance ε, i.e., ε(xi) ≤ ε.

[210, 109, 200] and the proposed method each rely on an initial set of correspon-
dences. To ensure tests were fair, we computed an initial set of correspondences
using SHOT [194]. Vestner et al. [200] was provided a dense set of feature descrip-
tors; while, for [210, 109] and our method, we subsequently applied pruning [192]
once for each pair of shapes, and used the same set of initial correspondences. To

76



4.4. EVALUATION

0

0.2

0.4

0.6

0.8

1

G
eo
de
si
c
di
st
an

ce

Figure 4.9: Exemplar illustration of geodesic distance. For a point at the centre of
the leopard’s face, the geodesic distance to any given point on the surface is indicated
by the local colour value.

demonstrate the generalisability of each method, we do not perform further parameter
tuning between tests, except where specified.

4.4.2 Implementation

A 352-dimension SHOT feature descriptor was used for [210, 200, 109] and our
method. For the underlying N-ICP of our method, we used the following param-
eters: w1 = 10, w2 = 2, λ = 1000, iterations = 30, & r-ring = 2. The proposed
PSF and correspondence inference methods were enabled in all tests, except where
specified. For the N-ICP method [27], we kept most of the default settings, ex-
cept the number of iterations, for which we found a value of 50 was sufficient. To
run [200], we created a low resolution (5,000 vertices) copy of each mesh using qs-
lim [70] and then applied MeshFix [11], providing both a high resolution and low
resolution version of each shape during run-time. Shape pairs were rescaled to
ensure their area was consistent. We enabled partial matching and set α = 10−7

and t = [500, 323, 209, 135, 87, 56, 36, 23, 15, 10]; initially solving for 10,000 correspon-
dences, with a maximum problem size of 3,000 correspondences for all subsequent
iterations.

4.4.3 Synthetic datasets

TOSCA high-resolution dataset TOSCA is a collection of 80 synthetic meshes
of animals that range from mammals to mythological creatures. For each of the seven
species, meshes of the same shape in different poses are provided. For the TOSCA
dataset [32], we generated 69 pairs of shapes with the same class label (e.g., cat to
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cat, dog to dog, etc.). Each mesh was simplified to have 10,000 faces using qslim [70].
Models with flipped normals were excluded from tests. We disabled partial matching
for [200] on this dataset, and kept other settings (see Section 4.4.2).

Fig. 4.10 shows the average registration accuracy of each method on the TOSCA
dataset. These graphs show the proportion of vertices that have an error less than
the value on the x-axis. The techniques corresponding to curves towards the top left
of the graph are comparatively better. It should be noted that [27] failed to perform
well on the TOSCA dataset, as well as the subsequent datasets. Since this was the
simplest dataset, we excluded this method from further tests.
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Figure 4.10: TOSCA high-res dataset results.

Fig. 4.11 shows the location of registration errors, a colourbar is included with
each example to indicate the error value each colour represents. For every vertex,
we measure the average registration error across a set of deformed models for both
our proposed method and Yang et al. [210]. Fig. 4.12 shows the registration result
when dealing with a large non-isometric intra-class deformation on the hind legs of
the TOSCA dog.

Bouncing dataset Fig. 4.13 shows the results of our proposed method, compared
with [210], on the Bouncing dataset [202]. We measure the fitting error between the
deformed and target shapes with Hausdorff distance in MeshLab [40]. Note that [200]
only produces correspondences rather than surface alignment, and cannot be used for
this evaluation.
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Figure 4.11: Results for the TOSCA cat, gorilla, David & dog sets, (a) source/target
models used, (b) combined registration error of our method, (c) combined registration
error of [210].
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Figure 4.12: Registration results on TOSCA dog. (a) initial pose source (top) target
pose (bottom), (b) our method (c) Yang et al. [210].
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Figure 4.13: Deformation results on Bouncing dataset [202]. (a) initial pose source,
(d) target pose (bottom), (b,e) our method (c,f) sparse non-rigid registration method
[210].
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SHREC’16 partial model dataset We further used the SHREC’16 partial model
dataset [43]. This dataset is an important derivative work of the TOSCA dataset
in which shapes have missing data (holes or cuts) that make non-rigid registration
challenging. Fig. 4.14 illustrates the results of the Partial Functional Maps [159] and
Random Forests [158] reported by Cosmo et al. [43] compared with the results of
[210, 109, 200] and our proposed method. This demonstrates that our method is
robust to holes and cuts, and clearly outperforms state-of-the-art methods, especially
for the cases with holes.

To demonstrate the effectiveness of the individual ideas in our technique (namely,
selection of landmarks, principal scaling factor, and r-ring ARAP), we ran a series
of experiments with different configurations on the SHREC’16 partial model dataset.
Results are illustrated in Fig. 4.15, which show that all the components in our method
contribute to improved performance.

In summary, the results demonstrate that the proposed method consistently out-
performs [210, 109, 200, 27]. In cases where the initial SHOT correspondences were
poor, we found that the landmark-based correspondences and r-ring ARAP helped
improve the alignment of large deformations.

4.4.4 Real datasets

Partial body scans Results from running our registration pipeline on a collection
of partial body scans [4] are shown in Fig. 4.16. We also observed that missing data
can cause our correspondence generation technique to produce more incorrect corre-
spondences. In our tests, using two- or three-ring neighbourhoods helped alleviate
this problem and improved registration results. The results presented in Fig. 4.16
were computed using three-ring neighbourhoods.

FAUST dataset We used the FAUST dataset [21] to help us objectively evaluate
our method. FAUST is a collection of real scans captured using a 3D multi-stereo
system. Ground-truth correspondences were acquired by covering each subject’s body
with a series of stamps that were matched using texture-based registration. We
compared the performance of our method, [210, 109] and [200].

Since none of the methods require any form of training, we used the training
set for our evaluation. In our first experiment we produced an intra-subject test-set
as follows: for each person in the dataset, we registered every mesh of that same
individual to their first mesh, creating a set of 90 intra-person shape pairs. We then
created our own inter-subject data by pairing each person in the dataset to another
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person in the dataset in a single, randomly selected pose. This created a set of 90
randomly chosen pairs to evaluate each method with. We used exactly the same set
of shape pairs for each method.

Registration results on the FAUST dataset are shown in Fig. 4.17, and some visual
examples in Fig. 4.18. Our technique consistently shows lower mean geodesic errors
compared against the state-of-the-art methods.

It should be noted that the curves in the respective figures only show the ag-
gregated performance over the entire dataset. For simpler cases (shape pairs and
regions), all the methods work well. When it comes to challenging regions (esp.
joints), our technique performs significantly better than the curves show. The supe-
rior performance of our method is illustrated by typical examples in the paper.

4.5 Limitations

With the help of local scaling metric estimation and additional correspondences from
landmarks, the method is more robust to large-scale, especially non-isometric defor-
mations in surface registration than existing methods, as demonstrated by extensive
comparisons. However, there are still some limitations. The proposed method still
relies on a few correct initial correspondences to start the iterative process, and may
perform poorly if those correspondences are largely wrong. Currently, a simple strat-
egy is used to fix all the parameters. Some parameters, such as the number of land-
marks and the r-ring ARAP, may work more effectively when more sophisticated,
adaptive algorithms are used; this has been left as future work.

4.6 Conclusions

In this chapter a novel pipeline capable of registering two 3D shapes with large and
non-isometric non-rigid deformations is presented. A technique to estimate local
anisotropic non-isometric deformation and compute reliable correspondences in areas
under large-scale deformation is developed. A new consistency measure and automatic
landmark selection method to support non-isometric consistency are described. The
ARAP regularisation constraint is then extended to deform larger surfaces in a more
uniform manner. Experimental results demonstrate that this technique performs
well in challenging scenarios. Comparative evaluation also highlights scenarios where
state-of-the-art methods fail.
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This technique performs well in non-isometrically deformed regions, and we believe
that the technique can be further developed to handle more challenging cases (e.g.,
heterogeneous objects). In addition, the current implementation only takes a source
and a target shape as input. It is possible to generalise this method to exploit more
example shapes to achieve more accurate registration results.

4.7 Summary

This chapter identified that the problem of non-isometric registration has been studied
minimally. A non-rigid registration pipeline that addresses a fundamental problem
in a novel manner was presented. Several key changes to an isometric registration
pipeline were suggested to support anisotropic deformation. A detailed description
of each component of the novel registration pipeline was presented. To evaluate the
described approach, it was compared against state-of-the-art registration and shape
correspondence techniques. The evaluation performed on this method is extended in
several of the subsequent chapters (Chapters 5, 6 & 7).
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Figure 4.14: Results on SHREC’16 partial dataset compared with results (Partial
Functional Maps & Random Forests) from the dense methods reported in [43]. The
evaluation is split up into models containing (a) holes, and (b) cuts.
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Figure 4.15: Results of our method in different configurations on SHREC’16 partial
dataset. In configurations where PSF is off, standard geodesics are used, rather
than anisotropic ones (skipping lines 7 & 8 of Algorithm 1). Where correspondence
inference is off, we skip lines 10 & 11 of Algorithm 1. The evaluation is split up into
models containing (a) holes, and (b) cuts.
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Figure 4.16: Results of our proposed non-rigid registration technique on partial body
scans [4]. (a,b,c) initial pose source X (blue), target Y (white), (d,e,f) overlapped
result.
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(a) Intra-person model pairs.
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(b) A subset of inter-person models.

Figure 4.17: Registration results of pairs of models from the FAUST dataset.
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(a) (b) (c)

(d) (e) (f)

Figure 4.18: Screenshots of correspondence results of (a,d) our method, (b,e) Li et al.
[109] and (c,f) Vestner et al. [200] on pairs of inter-person shapes from the FAUST
dataset (left source, right target). Colours represent correspondence between shapes
(i.e., the same point on each shape should have the same colour). Note the reflection
of correspondences of [200] in (c), and the colour bleed at the intersection between legs
in (f). The mean geodesic error for each scan pair: (a) 0.0373, (b) 0.0419, (c) 0.2971,
(d) 0.0639, (e) 0.0820, and (f) 0.0840.
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Chapter 5

SHREC’19: Shape correspondence
with isometric and non-isometric
deformations

Figure 5.1: Examples of objects in the dataset.

Overview

This chapter presents a novel dataset for evaluating the performance of registration
and shape correspondence methods on different types of non-rigid deformation. This
chapter is organised as follows: Section 5.1 describes the work undertaken in this
chapter, and clarifies the motivation behind producing a new dataset. Section 5.2
describes the dataset constructed and the approach taken to evaluate the results of
submissions. Section 5.3 describes the configuration of the methods that are compared
in this chapter. Section 5.4 evaluates the results obtained on each test set. Finally,
Section 5.5 summarises this chapter with a conclusion of the findings of the work
conducted.
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5.1 Introduction

Chapters 5, 6 & 7 describe the work undertaken in a series of SHape REtrieval Con-
tests (SHREC) events. The SHREC event focuses on shape retrieval challenges. One
of the applications of surface registration is to facilitate 3D model retrieval; after the
alignment of non-rigid shapes, it becomes easier to compare shapes since the cor-
respondence between their elements is known. An important aspect of the SHREC
event is the encouragement of collaboration. In this case, participants were invited to
run their method on the dataset described in Section 5.2. They were then to submit
their results along with a description of their approach. All further work (e.g., con-
ceptualisation, dataset production, evaluation, etc.), was completed as part of this
thesis. The advantage of this approach is that it ensures the fair comparison between
a wide range of methods. Such works provide a picture—albeit incomplete—of the
practical performance of current state-of-the-art approaches.

Shape correspondence is necessary in common applications such as modelling [94],
reconstruction [107] and tracking [140]. Many potential challenges can occur when es-
timating a correspondence between surfaces: deformations such as non-isometry (i.e.,
stretching between shapes); ambiguities (e.g., mapping features with little geometric
detail); shape incompatibility [132] (e.g., varying connectivity and vertex density);
partial correspondence (e.g., registering two incomplete scans); and semi-compatible
shapes (e.g., matching a human and a centaur). Most existing methods assume sur-
face deformations to be either: piecewise rigid; (near-)isometric; and/or topologically
consistent. As identified in the dataset taxonomy in Section 3.7.1, there are only a
few public benchmark datasets for shape correspondence that challenge these assump-
tions about deformations [21, 43, 102, 7]. Previous contests by Cosmo et al. [43] and
Lähner et al. [102] have used synthetic objects that produce deformations that are
not realistic. [21, 7] do capture real-life objects, focusing on specific object categories
(i.e., human bodies and human faces), but neither benchmark suitably considers the
large range of deformation that an object may undergo simultaneously. Instead of
directly generating correspondences, non-rigid registration methods tend to produce
a set of local transformations that deform one surface to align with the other. The
proposed benchmark can also be used to evaluate such methods, by working out
correspondences based on the deformed shape.

At the time of this work, there were no benchmark datasets that compartmen-
talised shape deformations into distinct sets. This has motivated the production of
this new benchmark dataset of watertight shapes that is divided into distinct sets.
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(a) Non-isometric deformation
due to inflation.

(b) Geometric change caused by
occlusion.

(c) Topological change caused
by self-contact.

Figure 5.2: Illustrations of some of the challenges in the dataset.

Each set contains different types of deformation, ranging from piecewise rigid to
non-isometric. The hierarchical structure of this dataset distinguishes it from pre-
vious works. An additional challenging set is included that introduces topological
changes, which are ill-considered by other benchmarks. Structure and texture data
is simultaneously captured; enabling ground-truth correspondences to be established
by matching markers drawn on the physical objects.

5.2 Dataset

For this work a new dataset was produced from 3D scans of real-world objects, cap-
tured by ourselves using a high-precision 3D scanner (Artec3D Space Spider) designed
for small objects. Each object exhibits one or more types of deformation. Surface
deformations are classified into four distinct groups by level of complexity:

0. Articulating—piecewise rigid deformation

1. Bending—isometric and near-isometric

2. Stretching—isotropic and anisotropic (e.g., Fig. 5.2a)

3. Topologically changing—heteromorphic (i.e., shapes of different topology. e.g.,
Fig. 5.2c)

The dataset consists of wooden mannequins and wooden hands that are artic-
ulated. To produce other types of deformation, clothes have been created for the
model from two materials. One material can bend but is resistant to stretching,
and another can both bend and stretch. To induce greater non-isometry, modelling
clay is used underneath the clothing of the mannequin model. Materials and objects
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have been carefully selected to incrementally introduce these deformation types so
that the limitations (w.r.t. deformation type) can be clearly identified. Because the
dataset consists of real-world scans, it contains geometric inconsistencies and topolog-
ical changes due to self-contacts. The real-scans also contain natural noise, varying
triangulation of shapes and occluded geometry (e.g., Fig. 5.2b). Some examples of
models included in this dataset are shown in Fig. 5.1.

A total of 76 shape pairs were selected for the test sets (Table 5.1). Test-set 0 con-
tains 14 pairs of articulating wooden hand objects that exclusively exhibit piecewise
rigid deformation. Test-set 1 contains 26 pairs of models, comprising clothed man-
nequins and hands that deform (near-)isometrically. Test-set 2 contains 19 pairs of
models; the pairings are between a thin clothed mannequin and a larger mannequin,
ensuring significant non-isometry. Test-set 3 contains 17 carefully selected pairs that
contain challenging geometric and topological changes.

Set name No. of pairs Model materials
Test-set 0 14 wooden hands
Test-set 1 26 clothed hands, clothed mannequins
Test-set 2 19 very stretched clothed mannequins
Test-set 3 17 all materials

Table 5.1: Test set structure.

Information about the dataset presented here, including how to access it, can be
found in the Cardiff University data catalogue
(doi: 10.17035/d.2019.0072003316).

5.2.1 Ground-truth construction

To generate ground-truths, clearly drawn texture marks (e.g., Fig. 5.3) were made
on the surfaces of the objects used. Correspondences were initially determined au-
tomatically using the shape texture maps, and then manually corrected by multiple
annotators to ensure ground-truths were accurate for this work (see examples in
Fig. 5.6 of the obtained ground-truth).

A semi-automatic approach was devised to match corresponding marker points.
First, a linear discriminator was manually trained to classify markers of different
colours in the CIELAB colour space. An additional category to filter out points
that did not belong to any marker was also used. For each marker, the texture
patch was extracted. Then, the marker’s location, colour, and number of spokes
were recorded. The processing steps used are shown in Fig. 5.4. By combining this

91

http://doi.org/10.17035/d.2019.0072003316


CHAPTER 5. SHREC’19: SHAPE CORRESPONDENCE WITH ISOMETRIC
AND NON-ISOMETRIC DEFORMATIONS

Figure 5.3: A photo of the real wooden hand used in the dataset after markers were
drawn.

information with the information of neighbouring markers (as depicted in Fig. 5.5), a
query string that uniquely describes a marker’s position can be constructed. Due to
discrepancies caused by non-rigid deformation, the order of the respective strings for a
pair of scans may slightly differ. Therefore, candidate correspondences were produced
by matching markers based on their edit distance, which was used as a measure of
similarity. Edit distance is a metric used to quantify the similarity (or dissimilarity)
of two ordered lists of nominal data (i.e., symbols), which are referred to as strings.
Given a query string and a target string, the edit distance is defined as the number of
edit operations (insertion, deletion, or substitution) required to transform from the
query string to the target string. When using edit distance, the sequences around the
query point were treated as circular, so the minimal distance with any starting point
was considered. Finally, diffusion pruning [192] was used to remove any geodesically
inconsistent matches. Stride [186] provides further description and analysis of the
approach.
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(a) (b) (c) (d)

Figure 5.4: An illustration of the processing pipeline applied after extracting (a) a
local patch is projected to a 2D plane, (b) a linear discriminator is applied to classify
pixels, (c) morphological operations (e.g., dilating and pruning) are then applied, (d)
the final skeleton is then used to count the number of endpoints.

Query string

4 5 5 3 6 4

Figure 5.5: An illustration of the construction of a query string using the points
neighbouring a query point (circled with two rings). The query string encodes the
distance (by order), colour and number of spokes.

5.2.2 Evaluation

Similarly to other shape correspondence benchmarks [43, 102], the correspondence
quality of each method is evaluated using the evaluation procedure employed by Kim
et al. [95]. The quality of shape correspondence has been evaluated automatically by
measuring normalised geodesics between the ground-truth and predicted correspon-
dence. Specifically, let (xi,yi) ∈ X × Y be a pair of corresponding points between
surfaces X and Y , the normalised geodesic error εi between the predicted correspon-
dence yi and the ground-truth position gi on surface Y is measured as:

εi =
dY (yi, gi)

area(Y )1/2
. (5.1)

The following measurements are used to evaluate the performance of each method:

• An overall error measurement, for methods that complete all test sets.
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(a) Test-set 0 (b) Test-set 2 (c) Test-set 3

Figure 5.6: Shape pairs from test-sets 0, 2 & 3 with ground-truth correspondences
visualised. Matching colours between shape pairs represent corresponding points.

• Four plots (one for each test set) of cumulative geodesic error to demonstrate
the performance of methods for individual types of deformation. This is also
useful for participants that have not submitted results for all test sets.

5.3 Correspondence methods

This section presents the configuration of each approach used to find correspondences
on one or more of the test sets. Seven methods were evaluated using the benchmark,
namely: traditional N-ICP [27], anisotropic non-rigid registration [55], deep learning-
based shape correspondence [74], non-isometric partial functional maps [200], non-
rigid registration with reweighted sparsity [109], genetic optimisation-based (near-
)isometric shape correspondence [172], and a commercial non-rigid registration tool [166].
The pipeline of each method evaluated is described in Section 3.5, a reference to each
method is given in Table 5.2.

5.3.1 Traditional Non-Rigid ICP (N-ICP)

To provide an effective baseline to compare the performance of the recently developed
approaches, a version of the well known N-ICP method by Bouaziz and Pauly [27]
that extends the original rigid formulation of ICP [19] is used.

The following parameters were used w1 = 1 (point-to-plane term), w2 = 1 (point-
to-point term), w3 = 1 (global rigidity term), w4 = 1000 (local rigidity term) and
iter = 100, and shapes were kept at their original scale.
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Reference Section Method
[27] 3.5.1

S. Bouaziz and M. Pauly. Dynamic 2D/3D registra-
tion for the Kinect. In ACM SIGGRAPH 2013 Courses,
SIGGRAPH ’13, pages 21:1–21:14. Association for Com-
puting Machinery, July 2013. ISBN 978-1-4503-2339-0.
doi:10.1145/2504435.2504456

[55] 3.5.2
R. M. Dyke, Y.-K. Lai, P. L. Rosin, and G. K. L. Tam. Non-
rigid registration under anisotropic deformations. Computer
Aided Geometric Design, 71:142–156, May 2019. ISSN 0167-
8396. doi:10.1016/j.cagd.2019.04.014

[74] 3.5.3
T. Groueix, M. Fisher, V. G. Kim, B. C. Russell, and M.
Aubry. 3D-CODED: 3D correspondences by deep deforma-
tion. In European Conference on Computer Vision, ECCV
’18. Springer, September 2018. doi:10.1007/978-3-030-01216-
8_15

[200] 3.5.4
M. Vestner, Z. Lähner, A. Boyarski, O. Litany, R. Slossberg,
T. Remez, E. Rodolà, A. M. Bronstein, M. M. Bronstein, R.
Kimmel, and D. Cremers. Efficient deformable shape corre-
spondence via kernel matching. In International Conference
on 3D Vision, 3DV ’17, pages 517–526. IEEE, October 2017.
doi:10.1109/3DV.2017.00065

[109] 3.5.5
K. Li, J. Yang, Y. K. Lai, and D. Guo. Robust non-rigid regis-
tration with reweighted position and transformation sparsity.
Transactions on Visualization and Computer Graphics, 25
(6):2255–2269, June 2018. doi:10.1109/TVCG.2018.2832136

[172] 3.5.6
Y. Sahillioğlu. A genetic isometric shape correspondence al-
gorithm with adaptive sampling. Transactions on Graphics,
37(5):175:1–175:14, 2018. doi:10.1145/3243593

[166] 3.5.7
Russian3DScanner. Wrap 3.3, April 2018. URL https://
www.russian3dscanner.com/

Table 5.2: The methods evaluated by the dataset described in this chapter.

5.3.2 Non-Rigid Registration with Anisotropic Estimation

The approach by Dyke et al. [55]—described in the previous chapter—is used. All
parameters remain unchanged. Sparse correspondences computed by [192] were used
to initialise the method.
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5.3.3 3D-CODED

The hyperparameters for the deep learning matching approach by Groueix et al. [74]
were unchanged for all the tests. The code used is available online from the authors of
3D-CODED [73] and the pre-trained network called: “sup_human_invY_network_last.pth”
was used. An example output of the deformed template using this method is shown
in Fig. 5.7.

Figure 5.7: This figure shows an example output of the deformed template using
[74].

5.3.4 Efficient Deformable Shape Correspondence via Kernel
Matching

The method proposed by Vestner et al. [200] was run by the authors using the publicly
available code [103]. Two sets of results were submitted for this method with different
parameters. The diffusion parameters for heat kernels remained the same throughout
the benchmark. After normalising the shapes to have unit surface area, the diffusion
parameters are set to

(log10(500), . . . , log10(500)︸ ︷︷ ︸
3x

, . . . , log10(10), . . . , log10(10)︸ ︷︷ ︸
3x︸ ︷︷ ︸

10, logarithmic sampling

). (5.2)

Parameters for SHOT results As pointwise descriptors SHOT [194] is used as
described in the paper.

96



5.3. CORRESPONDENCE METHODS

Parameters for SHOT & HKS results SHOT and HKS [189] are used as
pointwise descriptors.

5.3.5 Reweighted Position and Transformation Sparsities

For the method by Li et al. [109], the diffusion pruning [192] method is used to obtain
initial correspondences based on matching of local SHOT features [194], and further
correspondences are introduced during iterative optimisation based on closest points,
similar to the standard N-ICP framework. All parameters were optimised by the
original authors.

5.3.6 Genetic Isometric Shape Correspondence

For Sahillioğlu [172], two sets of results were submitted for this method with different
levels of sparsity, one set that has relatively sparse correspondences (≈100 per shape
pair) and one set of extremely sparse correspondences (6 per shape pair). A random
result from each deformation type is shown in Fig. 5.8.

Figure 5.8: Extremely sparse (top) and sparse (bottom) correspondences produced
by Sahillioğlu [172] on some pairs.
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5.3.7 RSDS Wrap 3.3

For consistency, the diffusion pruning [192] method is used to generate an initial set
of correspondences for the initialisation of Wrap 3 [166]. The method runs itera-
tively where the density of control nodes is increased per iteration. This leads to an
approximation of the target shape with increasing accuracy per iteration.

5.4 Results

Quantitative results of the methods described in Section 5.3 are presented here.
Figs. 5.9a to 5.9d show the geodesic error of correspondences generated by each
method on each test set. Fig. 5.10 shows the combined results for methods that regis-
tered all test sets. Table 5.3 reports the percentage (and where appropriate number)
of correspondences returned by each method. Table 5.4 shows the area under the
curve (AUC) of each method on each test set.

Evaluation This work uses the same error measure described in Section 4.4.1 in
Chapter 4.

Sparsity of correspondence results Most methods evaluated here compute a
reasonably dense set of matches. The number of correspondences returned by each
method is reported in Table 5.3, 100% indicates that a correspondence was found for
all vertices of X. As discussed in Section 5.3, Sahillioğlu [172] submitted two sets of
results, the first set consisting of an average number of 98.3 (to one decimal place)
sparse correspondences, the other containing 6 correspondences. Methods [109, 55, 27,
166] produce a deformed source mesh towards the target mesh. The following strategy
is used to calculate the correspondences: For each vertex on the deformed mesh, the
point is projected onto a triangle on the target mesh surface, and the barycentric
coordinates are recorded. Correspondences that have a projection distance larger than
the average mesh edge length are rejected, as this indicates regions where surfaces
are not accurately aligned. Before rejecting correspondences, it was noted that the
overall results of “all test sets” for Li et al. [109] & Dyke et al. [55] were comparable.

Test-set 0 This set contains only articulated deformations. This is the most simple
type of deformation that is investigated. Thus most methods are expected to perform
well on this test set. However, performance was discovered to vary across many
methods, especially when compared to the other test sets. Inspecting the shapes
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(a) Results for test-set 0.
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(b) Results for test-set 1.
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(c) Results for test-set 2.
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(d) Results for test-set 3.

Figure 5.9: Results of all methods on each test set.
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Method Correspondences
Dyke et al. [55] 99.02%
Li et al. [109] 75.96%
Bouaziz and Pauly [27] 49.64%
Russian3DScanner [166] 93.99%
Vestner et al. [200] (SHOT+HKS) 92.31%
Vestner et al. [200] (SHOT) 92.39%
Groueix et al. [74] 100%
Sahillioğlu [172] sparse 98.34
Sahillioğlu [172] extremely sparse 6

Table 5.3: Sparsity of correspondence results given as either a percentage of the
number of vertices comprising shape X or the number of correspondences, where
appropriate.

in the dataset reveals that the surfaces are primarily comprised of smooth surfaces
that lack high frequency geometric details. For example finger regions (cylinder-like
surfaces) are symmetrically ambiguous (see Fig. 5.11). This may affect the initial
correspondences leading to a higher error rate. [109] performs well because the large
smooth surfaces fit the sparsity assumption.

Test-set 1 This test set contains shape pairs that bend either isometrically or near-
isometrically. In it, the largest difference was observed between the best performing
method (Li et al. [109]) and the worst performing method (baseline N-ICP [27]).
Shape pairs also have large-scale deformations, which typical N-ICP methods ([27])
cannot handle as N-ICP requires two shapes to have a good initial alignment to
ensure optimal registration.

Test-set 2 Groueix et al. [74] was observed to have the fastest convergence to
100%. It should be noted that this test set contains only non-isometric human-shaped
models. [74] demonstrates how the use of a pre-trained network from some datasets
may be generalised for other datasets. With respect to the other methods, observe
that SHOT-based approaches suffer significantly, when compared with the results in
test-set 0 and test-set 1. This is likely caused by the local non-isometry. As SHOT
signatures are not well defined for such non-isometric surfaces, the degradation in
performance is reasonable.

For Sahillioğlu [172], the performance degrades on shape pairs of mannequins that
possess bilateral symmetry (test-sets 1 and 2). Due to self-occlusions during scanning,
unnatural connections between fingers of some hand models are present, causing some
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pairwise geodesics to be inconsistent in test-set 0. As a purely geodesic-based method,
its performance is also affected by the unnatural shortcuts present in hand models due
to occlusions during capture. It should be noted that the performance of [172] would
have improved significantly if such problematic pairs (symmetric flips and shortcuts)
were discarded.

Test-set 3 Vestner et al. [200] achieve notably worse results through the combina-
tion of SHOT and HKS when compared with using SHOT alone. This is contrary
to the results of test-set 2, where using SHOT and HKS combined performs bet-
ter. This demonstrates the instability of HKS under topological change. Topological
changes present new challenges, and are likely to be beyond the assumptions of most
methods. Therefore, some methods did not participate in this test. However, for those
that participated in this test set, the overall AUC appears comparable to other test
sets. This is probably because, apart from topological changes, this test set tends to
have less distortion.

5.5 Conclusions

In this chapter a novel dataset of real-world scanned objects that cover a large variety
of deformation types has been presented. Investigations have found that changes in
topology is a challenging problem for some methods.

Machine learning-based approaches prove to be more capable of handling non-
isometric deformations. However, they often require a high training cost, and may not
generalise to arbitrary data. Recent advances in non-rigid registration techniques that
explicitly model non-isometric deformation generally perform well in many scenarios.
Though they do not perform as well as deep learning techniques in non-isometric de-
formation, they do not require training, are generically applicable to unseen datasets,
and are less susceptible to topological changes. There is also a need to develop more
reliable features for point-based correspondence on non-rigid surfaces.

To summarise, experimental results suggest that developing correspondence tech-
niques that are generic and reliable to any kind of seen/unseen deformation and
surface, whilst handling noise and topological changes, is still an on-going challenge.
No single technique is perfect, but the results also indicate an interesting direction:
combining the individual advantages of sophisticated deep learning models and the
advantages of generic non-rigid non-isometric registration techniques may lead to a
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Figure 5.10: Results for all test sets.

more useful and generic correspondence technique that performs well in most scenar-
ios, and would practically be applicable in downstream applications.

Overall, R3DS Wrap 3 performed similarly to [55]. It is interesting to see how
well a commercial solution compares to the state-of-the-art methods.

Through this work some challenges in the fair evaluation of the performance of
shape correspondence methods have been discovered. Taking intrinsic symmetries of
shapes into account and reporting details—such as the sparsity of correspondences
estimated—need further investigation.

Further exploration of the robustness of shape correspondence methods on partial
real scans would contribute valuable information to the field, and this dataset could
be augmented to provide such challenges in the future.

5.6 Summary

This chapter identified deficiencies in current benchmarks. Critically, a lack of tiers
in benchmarks can preclude valuable information from being extracted. With this
in mind, a real dataset containing a range of deformations (i.e., articulated, isomet-
ric, non-isometric & topological change) and an acquisition process for ground-truths
was proposed. Numerous registration and shape correspondence methods were bench-
marked on the novel dataset. The results of all methods were then evaluated, focusing
on the performance in each test set. In the two subsequent chapters (Chapters 6 & 7),
further evaluation is performed using novel datasets.
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Figure 5.11: Wooden hand object from the dataset coloured by the surface normals
to illustrate the lack of high frequency geometric detail on the shape’s surface.
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Chapter 6

SHREC’20: Shape correspondence
with physically-based deformations

Overview

This chapter presents a novel dataset that comprises of extreme non-isometric de-
formations of a single real shape. The problem that this dataset seeks to address is
introduced and the key contributions are clarified in Section 6.1. The dataset and the
acquisition method used are described in Section 6.2. Additionally, a brief investiga-
tion into the problem of correspondence initialisation is undertaken in Section 6.2.1,
the results of which are discussed in Section 6.4.1. Participants were asked to estimate
the correspondence between each partial scan in the dataset and one watertight scan
of the rabbit. Section 6.3 details the configuration of the correspondence methods
evaluated using this dataset. The results submitted by participants are presented and
evaluated in Section 6.4.2. Finally, Section 6.5 contains concluding thoughts from the
outputs of this work.

6.1 Introduction

This chapter presents work conducted in a subsequent SHREC event to Chapter 5.
This work was conducted in parallel with the work described in Chapter 7. Both works
consider different aspects of non-isometric deformation—the distinct contribution of
each work is established in the introduction of the respective chapters. Simply put,
the non-isometric deformations considered in Chapter 5 are somewhat limited. The
work in this chapter identifies both complex poses and various internal materials,
which are overlooked in existing literature. While the work in Chapter 7 focuses on a
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constrained set of non-isometric deformations on quadrupeds, by exploiting existing
data sources and using sparse annotations by experts for benchmarking.

Many recent registration and shape correspondence works have focused on ad-
dressing the problem of non-isometric deformations [201, 200, 67, 55, 88, 66, 60].
However, the resources available to evaluate the performance of such methods are
insufficient. Previous SHREC events have produced insightful benchmark datasets.
Many use synthetic objects [30, 102, 159, 160]. While these synthetic datasets may
have certain advantages, such as easily established ground-truths, they also produce
deformations that are not necessarily realistic.

Furthermore, current evaluative datasets only consider a few aspects of shape de-
formation, such as missing data and non-isometry. By providing datasets that focus
on other problems in surface registration and shape correspondence, state-of-the-art
techniques can be developed to address new challenges. Although the dataset de-
scribed in Chapter 5 makes significant progress by developing a dataset that considers
a range of deformations, there remain other important aspects of method performance
that should be analysed. Due to the use of human-based models, the range of defor-
mations were constrained. The dataset proposed here does not use a skeletal model,
therefore increasing the challenge of discerning the deformation induced. This dataset
also considers the use of granular internal materials that affect both the deformation
exhibited and the surface of the shapes.

This work seeks to address a novel aspect of handling problems such as non-
isometry and missing data by designing a hierarchical, incrementally challenging
dataset. We focus on inducing non-rigid deformations on a real-world object and use
texture markers to establish ground-truths. Various internal materials and drastic
poses of the shape were selected, causing complex deformations, and varying degrees
of local protrusions and indentations on the surface. A subset of deformations were
selected—twist, indent, inflate & stretch—from those identified by Schmidt et al.
[179], whose work focuses on how humans interpret deformation of an unknown ob-
ject. No previous works provide such a range of complex deformations. Also, to
the best of the author’s knowledge, this is the only correspondence benchmark that
considers the internal materials of the given shapes.

6.2 Dataset

For this work, 3D scans of a real-world object were captured using a high-precision
3D scanner (Artec3D Space Spider). The scanner is able to match the actual position
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of an observed location at up to 0.05mm accuracy. Each scan exhibits one or more
types of deformation. Scans were classified into four distinct groups by the type of
deformation primarily exhibited by a given pose: twist, indent, inflate, & stretch. The
challenge of the dataset was further increased by varying the internal properties of
the object by filling it with different materials: couscous, risotto, & chickpea. Using
different internal materials changed the local appearance of the shape’s surface, as
well as its deformation properties. For each pose, the object was filled, and then
scanned, with three different internal materials. This caused incremental changes
to the surface and overall deformation exhibited (see Fig. 6.1). In Fig. 6.2, further
variations such as the number of creases on the surface may be observed as the internal
material changes.

(a) Couscous (b) Risotto (c) Chickpea

Figure 6.1: Illustrations of the surfaces of meshes with different internal materials
coloured by the surface normals. These materials help induce varying magnitudes
and frequencies of protrusions and indentations on the surface.

The dataset consists of a stuffed soft toy rabbit made out of a stretchable jersey
material with no internal structure or skeleton that could restrict its movement, see
Fig. 6.3. The rabbit had 590 coloured markers drawn on the surface, which allowed
numerous accurate ground-truth correspondences to be established, see Fig. 6.4. Note
that our purpose is to investigate how different types of physically-based deformations
affect non-rigid shape correspondence, so a carefully chosen object with different
material fillings is sufficient and makes data capture and analysis more manageable.

The poses and materials used were carefully selected to incrementally vary the
deformation challenge so that algorithm deficiencies—with respect to these varying
properties—may be identified. Some examples of challenging problems are shown in
Fig. 6.5.

A key point about the proposed dataset is that the exaggerated nature of the
deformations, such as twisting, often contradicts the underlying assumptions of state-
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of-the-art approaches. Due to changes of the internal material and surface creases,
geometry is often locally non-isometric, which is problematic for many shape descrip-
tors. The model has intrinsic symmetries and, with the exception of the target scan,
all scans are partial.

Information about the dataset presented here, including how to access it, can be
found in the Cardiff University data catalogue (doi: 10.17035/d.2020.0112374975).

6.2.1 Initial correspondences

Most correspondence methods require an initial set of sparse or dense correspondences
that are subsequently refined. Due to the challenging variations in both the local and
global appearance, three sets of initial correspondences using different methods were
produced to find an optimal approach. The following methods were used to acquire
the initial sets of correspondences: diffusion pruning [192], region-level correspon-
dence [100], and N-ICP [27]. All methods took a similar amount of time to compute.
Where possible these initial correspondences have been used for fairer comparisons.

The diffusion pruning method by Tam et al. [192] was used to produce a set of
globally consistent correspondences from an initial set of point-wise descriptors. Due
to the significant deformation, local geometry is often non-isometric and thus local
descriptors that rely on near-isometries performed poorly. SHOT [194] signatures
were computed with 10 bins at two scales, which covered 2% & 5% of the surface
area square rooted. Due to limitations of memory and computation time, diffusion
pruning was performed with the default parameters, except K = 5 and d = 25%.

The region-level correspondence method by Kleiman and Ovsjanikov [100] was
used to produce a set of correspondences between segmented shapes. This method
is capable of finding region-based matches using a shape-graph that describes the
connectivity of consistently segmented shapes. The method was run using default
parameters, with the exception of numComponentsRange = {10, 9, 8, 7}. A dense
point-to-point mapping was subsequently recovered using nearest neighbours of a
functional map from a state-of-the-art approach [142].

The non-rigid registration method by Bouaziz and Pauly [27] was used to register
the shapes together. Point-to-point correspondences were computed using nearest
neighbour between the vertices of the two surfaces. The method’s parameters were
set to w1 = 1 (point-to-plane term), w2 = 1 (point-to-point term), w3 = 1 (global
rigidity term), w4 = 1000 (local rigidity term) and iter = 100.
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6.3 Correspondence methods

This section presents the methods that are examined in this work. Eight methods
were evaluated using the benchmark; namely: non-rigid registration with re-weighted
sparsities [109], non-rigid partial functional maps [159], anisotropic non-rigid regis-
tration [55], non-rigid partial functional maps [200], precise recovery of non-isometric
functional maps [67], continuous and orientation-preserving functional maps [155],
data-driven non-rigid registration FARM+, and a commercial non-rigid registration
tool R3DS Wrap 3.4.

To reduce duplication, the introductory description of each method evaluated is
presented once in Section 3.5, a reference to each method evaluated here is given
in Table 6.1. Relevant configuration details that are specific to the experiments
undertaken here are still included.

6.3.1 Robust Non-Rigid Registration with Reweighted Posi-
tion and Transformation Sparsity

For the method proposed by Li et al. [109], the set of pruned and N-ICP correspon-
dences were provided, and was run using parameters optimised by the authors.

6.3.2 Partial Functional Correspondence

The functional mapping framework by Rodolà et al. [159] that seeks addresses the
correspondence problem between partial isometric shapes was also evaluated.

For the experiments, shapes were re-scaled—as described in the method’s code.
All parameters remained default, with the exception of n_eigen = 100. SHOT was
used to compute dense point-wise descriptors.

6.3.3 Non-rigid Registration under Anisotropic Deformations

The proposed method by Dyke et al. [55] (described in Chapter 4) is fully automatic.
However, for comparative purposes, our pre-computed correspondences are used for
initialisation. All other parameters remain as described in the original paper.

6.3.4 Efficient Deformable Shape Correspondence via Kernel
Matching

Based on the discussions and experimental results found in the original pa-
per by Vestner et al. [200], the parameters α and t were set to 10−7 and
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Reference Section Method
[27] 3.5.1

S. Bouaziz and M. Pauly. Dynamic 2D/3D registra-
tion for the Kinect. In ACM SIGGRAPH 2013 Courses,
SIGGRAPH ’13, pages 21:1–21:14. Association for Com-
puting Machinery, July 2013. ISBN 978-1-4503-2339-0.
doi:10.1145/2504435.2504456

[109] 3.5.5
K. Li, J. Yang, Y. K. Lai, and D. Guo. Robust non-rigid regis-
tration with reweighted position and transformation sparsity.
Transactions on Visualization and Computer Graphics, 25
(6):2255–2269, June 2018. doi:10.1109/TVCG.2018.2832136

[159] 3.5.8
E. Rodolà, L. Cosmo, M. M. Bronstein, A. Torsello, and
D. Cremers. Partial functional correspondence. Computer
Graphics Forum, 36(1):222–236, January 2017. ISSN 0167-
7055. doi:10.1111/cgf.12797

[55] 3.5.2
R. M. Dyke, Y.-K. Lai, P. L. Rosin, and G. K. L. Tam. Non-
rigid registration under anisotropic deformations. Computer
Aided Geometric Design, 71:142–156, May 2019. ISSN 0167-
8396. doi:10.1016/j.cagd.2019.04.014

[67] 3.5.9
D. Ezuz and M. Ben-Chen. Deblurring and denoising of maps
between shapes. Computer Graphics Forum, 36(5):165–174,
August 2017. ISSN 0167-7055. doi:10.1111/cgf.13254

[155] 3.5.10
J. Ren, A. Poulenard, P. Wonka, and M. Ovsjanikov. Con-
tinuous and orientation-preserving correspondences via func-
tional maps. Transactions on Graphics, 37:248:1–248:16, De-
cember 2018. doi:10.1145/3272127.3275040

[126] 3.5.11
R. Marin, S. Melzi, E. Rodolà, and U. Castellani. FARM:
Functional automatic registration method for 3D human
bodies. Computer Graphics Forum, 39(1):160–173, Febru-
ary 2020. doi:10.1111/cgf.13751

[167] 3.5.7
Russian3DScanner. Wrap 3.4, June 2019. URL https://
www.russian3dscanner.com/

Table 6.1: The methods evaluated by the dataset described in this chapter.

{500, 323, 209, 135, 88, 57, 37, 24, 15, 10} respectively. Only SHOT is used to com-
pute point-wise descriptors, as HKS is sensitive to changes in topology. Optimal
results were achieved by scaling input shapes with respect to the unit area of the
source shape. Since all shapes were captured using the same device, the original scale
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was the same.

6.3.5 Deblurring and Denoising of Maps between Shapes

The functional map method by Ezuz and Ben-Chen [67] was run in three configu-
rations, using each respective set of pre-computed initial correspondences. Due to
memory limitations experienced when computing the wave kernel map, all configu-
rations used a subset of 200 correspondences—selected using farthest point sampling
(FPS) based on geodesic distances. The following parameters were modified: k1 = 120

& k2 = 120.

6.3.6 Continuous and Orientation-preserving Correspon-
dences via Functional Maps

The method by Ren et al. [155] was run both with and without our sets of initial corre-
spondences. Similarly to [67], due to limitations of memory when computing the wave
kernel map, 200 correspondences were selected using geodesic-based FPS. Parame-
ters were configured to the default settings used in the paper, with num_iters = 10.
The parameters for computing WKS were numTimes = 100 and skipSize = 10.

6.3.7 FARM+

A variant of [126], referred to here as FARM+, is used. Since no deformable model
is provided, scan00 is animated using Mixamo [2] and some deformation basis is
defined to inflate or shrink the template along the direction of the surface normals. To
compute landmarks, the minimum and maximum of the first Laplacian eigenfunctions
are used, and six landmarks are classified over extremal points of the rabbit’s ears,
arms, and legs. Another main change of the original methods by Marin et al. [125]
and Marin et al. [126] is that no local correspondence is used. All parameters were
left unchanged from the original method, which were tuned for the specific domain
of human bodies.

6.3.8 R3DS Wrap 3.4

At the time of this work, Wrap 3.4 [167] was the latest available version of the R3DS
commercial software utility. The publisher’s documentation does not indicate any
notable modification to the implementation described in Section 3.5.7. Wrap 3 was
used to register the scans both with and without our initial pruned correspondences.
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Better results were achieved by setting the final weight of control points (the initial
correspondences) to zero, all other settings remained as per default.

6.4 Results

In this section we discuss the performance achieved by correspondence methods on our
dataset. We examine how different initialisation techniques impact the performance
of a selection of methods. Then the effects of variations in pose and internal material
are scrutinised. It should be noted that the density of the correspondences acquired
is not wholly reported because all methods report a dense mapping of ≈ 100% in the
majority of cases.

Evaluation This work uses the same error measure described in Section 4.4.1 in
Chapter 4.

6.4.1 Initial correspondences

In Fig. 6.6 the performance of the initial correspondence methods described in Sec-
tion 6.2.1 is reported. The methods are abbreviated as follows: N-ICP [27] refers
to [27], Pruning [192] refers to the diffusion pruning method by Tam et al. [192], and
SEG [100] refers to the region-level correspondence method by Kleiman and Ovs-
janikov [100]. N-ICP [27] performed the best. This may be due to the shapes having
a reasonable initial rigid alignment, which is necessary when using N-ICP. All defor-
mations are largely locally non-isometric; this causes the point-wise descriptors used
to become unreliable.

These initial correspondences were subsequently used to initialise the relevant
shape correspondence and registration methods. In Fig. 6.7, a comparison of the per-
formance of a selection of methods using different initial correspondences is reported.
The results show that using the initial correspondences of N-ICP [27] greatly reduces
the resulting error of the subsequent methods.

Table 6.2 summarises the same performance measurements numerically by report-
ing the AUC of each method for each set of initial correspondences. All methods
perform best using N-ICP [27] for initialisation, with the exception of R3DS Wrap 3,
which achieved its best results using None. This slight improvement may be a conse-
quence of the coarse-to-fine strategy being able to converge to a more optimal solution.
Ren et al. [155] achieve better results using no correspondence initialisation compared
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to Pruning [191] or SEG [100], or just using WKS [13] descriptors. In all cases, using
SEG [100] produced better results than using Pruning [192].

Table 6.2: (a) TheAUCs are calculated from the cumulative error curves of the initial
correspondence methods reported in Fig. 6.6. (b) The resulting AUCs of methods
using each set of initial correspondences—reported in Fig. 6.7. Note, Pruning [192]
reports an average of 7.4250% vertex correspondences.

(a)

Initialisation method AUC
N-ICP [27] 0.8736
Pruning [192] 0.6151
SEG [100] 0.5323

(b)

Method N-ICP [27] Pruning [192] SEG [100] None
R3DS Wrap 3 0.8763 0.5869 0.6050 0.8837
Ezuz and Ben-Chen [67] 0.8829 0.5430 0.5891 N/A
Dyke et al. [55] 0.8771 0.5812 0.6290 N/A
Ren et al. [155] 0.9015 0.5480 0.6347 0.7609

6.4.2 Method comparison

Hereafter, methods initialised with N-ICP [27] correspondences are qualified by an
asterisk (∗). Comprehensive results—measured byAUC—of running each method on
each scan—grouped by pose or by internal material—are reported in Table 6.3. Error
curves that complement Table 6.3 are given in Figs. 6.8 & 6.9. Scans that are members
of a given column were examined collectively. FARM+ achieved the highest overall
accuracy of any method using a semi-automatic approach. Of the fully-automatic
methods, [155] performed the best. On average all methods performed best on the
indented pose. The sporadic non-isometry, limited deformation, and slight topological
change may have helped. Conversely, twist was the most challenging pose. The most
challenging internal material was the risotto. This is likely to be due to the subtle
variations induced on local geometry and how the risotto grains affected the way the
rabbit bent in the distinct poses. However, excluding the results of [159] and [200],
all methods achieve a particularly high accuracy on the stretch pose. Although there
is a large amount of non-rigid motion, the topology remains consistent, and the non-
isometric deformation is relatively simple.
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R3DS Wrap 3 performed unexpectedly poorly on the indent pose, with the worst
performance of any method on scan05. Rodolà et al. [159] performed poorly in most
scenarios, especially in cases where a pose exhibited greater non-isometry. For all
poses, except inflate, FARM+ converges to 100% correspondence within the smallest
geodesic error. Ren et al. [155] performs the worst on the twist pose, this is under-
standable as the fused geometry caused by twisting contradicts the assumption of
continuity.

As shown in Fig. 6.10, overall, FARM+ performed the best of all methods. Ren
et al. [155] performed the best of all the fully-automatic approaches. The performance
of [55] is comparable to [109], with only a slight improvement over the initial N-
ICP [27] correspondences.

6.5 Conclusions

The problem of establishing correspondence between shapes with different internal
materials in challenging poses was considered. A new dataset was created with high
quality texture-based ground-truths. The resulting accuracy achieved by using dif-
ferent correspondence initialisation techniques was investigated. In this scenario,
N-ICP [27] was discovered to perform the best for correspondence initialisation. Of
all the methods, FARM+ achieved the greatest accuracy using a semi-automatic ap-
proach, while [155] performed the best of the fully-automatic approaches.

Further work would include an extended investigation into the performance of
different shape descriptors and initial correspondence techniques on this dataset.

For many of the methods evaluated, it is unclear how to best optimise the parame-
ters. It was possible to incrementally change the parameters to achieve better results,
however this is a time consuming strategy and not necessarily possible in cases where
ground-truths are not available. Further investigation into optimal parameters on a
range of benchmark datasets is required to give a greater overview of what parameters
should be selected in a given scenario.

6.6 Summary

In this chapter, deformations in present datasets were identified to be highly con-
strained. A dataset that enables the evaluation of complex deformation was proposed.
To produce an initial set of correspondences, three methods were selected. The initial
correspondence produced by each initialisation method was evaluated without any
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subsequent refinement. The influence of each set of initial correspondence on the
final results was also evaluated by using them to initialise four refinement methods.
Numerous registration and shape correspondence algorithms were benchmarked on
the dataset. Finally, the results of each method was reported and compared. The
next chapter (Chapter 7) proposes a novel dataset that investigates different aspects
of non-rigid correspondence evaluation to those examined in Chapters 5 & 6.
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Twist Indent Inflate Stretch

Couscous scan01 scan02 scan03

Risotto scan04 scan05 scan06 scan07

Chickpea scan08 scan09 scan10 scan11
(a)

scan00
(b)

Figure 6.2: Illustrations of the contents of the benchmark dataset. (a) partial (source)
meshes, (b) the full/watertight (target) mesh. Note that the stretch pose with cous-
cous filling was omitted in preliminary stages of scanning as its appearance was sim-
ilar to the same pose with risotto filling. All scans were filled with 36 fl. oz. (or
approx. 1065ml) of grains or beans, except for scans where the shape was inflated
where they were filled with 56 fl. oz. (or approx. 1656ml).
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Figure 6.3: A photo of the model (in the pose of scan00) used for the dataset with
markers.

(a) (b) (c) (d) (e)

Figure 6.4: Examples of texture transfer using the ground-truth correspondences. (a)
Target shape. (b-e) Source shapes. Correspondences were transferred and interpo-
lated using a landmark-based correspondence method [67]. The original texture was
projected onto the coronal (frontal) plane of the rabbit in (a).

(a) (b) (c)

Figure 6.5: Illustrations of some of the challenges in the dataset. (a) Partial scans
(green indicates the boundary). (b) Complex deformations. (c) Missing geometry
caused by self-occlusion.
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Figure 6.6: Error curves for the methods used to establish an initial correspondence.
Note, Pruning [192] only estimated ≈ 7.4250% of correspondences.
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R3DS Wrap 3 + N-ICP Ezuz and Ben-Chen [67] + N-ICP
R3DS Wrap 3 + Pruning Ezuz and Ben-Chen [67] + Pruning
R3DS Wrap 3 + SEG Ezuz and Ben-Chen [67] + SEG
R3DS Wrap 3 (none) Ren et al. [155] + N-ICP
Dyke et al. [55] + N-ICP Ren et al. [155] + Pruning
Dyke et al. [55] + Pruning Ren et al. [155] + SEG
Dyke et al. [55] + SEG Ren et al. [155] (none)
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Figure 6.7: Comparison of the error of methods initialised with different initial
correspondence techniques (N-ICP [27], Pruning [192], SEG [100], or None). (a)
R3DS Wrap 3. (b) Ezuz and Ben-Chen [67]. (c) Dyke et al. [55]. (d) Ren et al. [155].
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R3DS Wrap 3 Ezuz and Ben-Chen [67]∗ Rodolà et al. [159]
Ren et al. [155]∗ Li et al. [109]∗ Vestner et al. [200]
Dyke et al. [55]∗ FARM+
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Figure 6.8: Cumulative error curves with scans grouped by the pose exhibited. (a)
twist (scan no. 1, 4 & 8). (b) indent (scan no. 2, 5 & 9). (c) inflate (scan no. 3, 6 & 10).
(d) stretch (scan no. 7 & 11).
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R3DS Wrap 3 Ezuz and Ben-Chen [67]∗ Rodolà et al. [159]
Ren et al. [155]∗ Li et al. [109]∗ Vestner et al. [200]
Dyke et al. [55]∗ FARM+
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Figure 6.9: Cumulative error curves with scans grouped by the internal material
selected. (a) Couscous (scan no. 1, 2 & 3). (b) Risotto (scan no. 4, 5, 6 & 7). (c)
Chickpea (scan no. 8, 9, 10 & 11).
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Figure 6.10: The performance of methods over all test sets.
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Chapter 7

SHREC’20: Shape correspondence
with non-isometric deformations

Overview

In this chapter, a dataset for evaluating non-isometric deformations on quadrupeds is
presented. The distinction between the work undertaken in this chapter and Chap-
ters 5 & 6 is highlighted in Section 7.1. Section 7.2 describes the contents of the
dataset, as well as specifying the acquisition techniques used to capture each object.
Section 7.3 describes the configuration and parameters used for each of the correspon-
dence methods evaluated on this dataset. Section 7.4 describes the measures used to
evaluate the performance of methods, including a novel measure of correspondence
coverage. In Section 7.5 results are presented and discussed. Finally, Section 7.6
contains concluding thoughts arising from the outputs of this work.

7.1 Introduction

Non-isometric shape correspondence is a problem of great interest. Strictly isometric
and near-isometric deformation have been studied extensively, while non-isometric
deformation requires further investigation. State-of-the-art methods [74, 55, 88, 66]
achieve superior performance in current non-isometric scenarios. There is presently
an absence of relevant benchmark datasets for shape correspondence that contain
extensive non-isometric deformation.

With respect to the datasets proposed in Chapters 5 & 6, this dataset focuses
on a different aspect of non-isometric deformation. In Chapter 5, a range of defor-
mations from piecewise-rigid to non-isometric is considered; however, the degree of
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non-isometry is limited. In Chapter 6, a new dataset is created with a focus on com-
plex poses and variations of inner materials that induce non-isometric deformation.
In contrast, the poses in the dataset proposed in this chapter are relatively simple.
The primary focus of this work is on the wide variation in appearance amongst a
range of quadruped animals. The other approaches required costly equipment and do
not leverage the use of existing data. Therefore a disproportionate amount of time is
required to increase the size of those datasets; whereas, this dataset is compiled using
a scalable approach.

Additionally, in real-world scenarios where real objects are scanned, existing cap-
turing techniques induce natural geometric errors (e.g., noise, self-occlusions, and
fusion between parts—causing topological changes). The limitations and errors ex-
hibited vary according to the particular scanning technique employed. As in Chap-
ters 5 & 6, most benchmark datasets consist of scans from one scanning device. When
evaluating a method’s performance this makes it unclear how well a method’s per-
formance may transfer to other technologies. Recently, Melzi et al. [132] published a
dataset that sought to address the issue of incompatibilities between meshes, which
arise when working with scans from multiple sources.

Existing datasets that contain a subset of quadruped shapes [187, 182, 32] provide
ground-truth correspondences between different shapes of the same class, but not dif-
ferent mammals, limiting the degree of non-isometric deformation that can be quan-
titatively evaluated. In the case of Bronstein et al. [32], where deforming templates
are used, no correspondence information is provided between different templates, so
the deformation is near-isometric. The most relevant dataset to this work, by Kim
et al. [95], combines three existing datasets [8, 32, 111]. A subset of the shapes are
animals, for which a volunteer selected 21 corresponding points on each shape. The
dataset contains 51 quadruped shapes. Meshes contain between approximately 3,000
and 56,000 faces. Labels are very sparse, and the expertise of the volunteer is unclear.

For this dataset, a small database of quadruped shapes has been compiled. Es-
tablishing correspondence between animal poses is a pertinent challenge that—with
shapes exhibiting extreme non-isometries—is not currently considered. As discussed
in Section 3.6, most existing datasets address the problem of correspondence between
humans, which has quite limited applications. From the perspective of compara-
tive anatomy, being able to also establish correspondence with other mammalian
vertebrates—focused on here—may be considered a generalisation of the human cor-
respondence problem.

125



CHAPTER 7. SHREC’20: SHAPE CORRESPONDENCE WITH
NON-ISOMETRIC DEFORMATIONS

Although topological variations exist, due to the common ancestry of tetrapod
mammals, many parts are considered homologous structures, in other words to corre-
spond. Fig. 7.1 illustrates the homologous region of the hind leg between quadrupeds.
The hind leg of all tetrapod mammals consist primarily of a femur, tibia, fibula, and
metatarsal; therefore, establishing a valid correspondence is possible.

Methods capable of accurately finding correspondences between different mam-
mals enable further avenues of research, e.g., statistical, behavioural analysis [61],
and generative models [224]. For zoologists that use morphometrics—the study and
development of techniques for the quantitative measurement of organisms—sparse,
manually placed correspondences between animals are required to conduct statistical
shape analysis.

Figure 7.1: A simple example of a homologous part between quadrupeds. The
coloured area represents the matching part for the hind leg. Whilst inter-species,
it is possible to intuitively recognise that these areas correspond.

Contribution The main contributions of this work are as follows:

• Generation of a novel dataset of quadrupeds with sparse ground-truth corre-
spondences labelled by three specialists.

• Development of a new measure to evaluate the coverage of correspondences on
a shape’s surface—discussed further in Section 7.4.

• Systematic evaluation of the performance of a selection of recent shape cor-
respondence methods, with additional quantitative insights into performance
from the proposed novel measure.
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7.2 Dataset

For this work a set of synthetic models and real-world scans of 3D shapes has been
identified. Specifically, the dataset contains only four-legged animals, and a comple-
menting set of ground-truth correspondences has been established. The contents of
the dataset is illustrated in Fig. 7.2.

dog pig leopard bear cow

hippo bison rhino camel_a camel_b

elephant_a elephant_b giraffe_a giraffe_b

Figure 7.2: Illustrations of the contents of the benchmark dataset simplified to consist
of a maximum of 100,000 faces.

Shapes have been amended to remove major errors such as self-intersecting faces
and handles which cause erroneous high genera. Ground-truth correspondences were
acquired by asking specialists in geometry processing and animal studies to label the
shapes manually using a bespoke labelling tool (see Fig. 7.3).

Because the dataset includes real-world scans, many of the shapes contain geo-
metric inconsistency and topological change caused by self-contact. The real-scans
also contain natural noise, varying triangulation and self-occluded geometry. Some
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Figure 7.3: A screenshot of the software used by specialists to annotate corresponding
points between shapes. The rhino on the left was initially labelled, and used as a
reference for subsequent animals.

(a) (b) (c)

Figure 7.4: Illustrations of some of the challenges in the proposed dataset (a) par-
tial scans (green indicates the boundary), (b) significant non-isometric deformations
between pairs of models, and (c) topological inconsistencies: inherent to the original
object or caused by scanning limitations.

examples of challenging cases are shown in Fig. 7.4.
The dataset contains 14 models that have been acquired using a variety of tech-

niques (see Table 7.1). Because the dataset is limited to quadruped mammals, many
regions share a similar shape or function, it is therefore possible to establish corre-
spondences between homologous loci with a reasonable degree of accuracy. While
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the dataset size might initially be considered to be quite small, for the purposes of
computing and evaluating corresponding pairs, there are P (14, 2) = 182 permutations
of shape pairs—or 149 pairs when excluding full-to-partial pairs. In the benchmark
experiment, participants were asked to complete a subset of these pairs comprising of
matching pairs of full-to-full and partial-to-full models (pairs are listed in Table 7.2).

The ground-truths for this dataset are acquired using the originally sourced
meshes. Three specialists labelled corresponding points on each shape based on a
template shape that had initially been labelled with markers. For each point, multi-
ple experts propose a correspondence on the surface and a consensus was found by
selecting the medoid point. Approximately 50 marker positions were initially selected
on the rhinoceros. The rhinoceros was selected as the template since, although it was
reconstructed from a multi-view camera array, the shape was subsequently corrected
by a professional CGI artist.

For the benchmark, where models have an exceedingly high triangle count, the
mesh is simplified to 100,000 triangles. Participants could alternatively submit results
using a low-resolution version of the meshes with 20,000 triangles that were also made
available.

Ground-truth correspondences were not made available to participants and were
solely reserved for evaluative purposes.

Information about the dataset presented here, including how to access it, can be
found in the Cardiff University data catalogue, where the dataset has been split into
two parts based on the licenses associated with the data (doi: 10.17035/d.2020.

0112373427 (Sketchfab), doi: 10.17035/d.2020.0112716358 (AIM@SHAPE)).

7.2.1 Test sets

Pairs of scans were carefully selected to ensure the non-isometry present in each test
set gradually increased. A description of the contents of each test set may be found
in Tab. 7.3.

7.2.2 Initial correspondences

For many shape correspondence and registration algorithms, a sparse set of correspon-
dences is required for initialisation. A set of high quality sparse correspondences en-
ables subsequent automatic refinement of the estimated non-rigid deformation. How-
ever, a poor set of initial correspondences may cause the algorithms to fail. For the
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purposes of establishing correspondences automatically, it is important to select a
robust initial correspondence strategy.

To produce a set of candidate correspondences, SHOT signatures [194] at two
radii (2% and 5% of the square root of the total triangle area) and improved wave
kernel signature (IWKS) [112]—a spectral descriptor—were examined, as well as a
combination of SHOT and IWKS used together. SHOT was found to produce the
most correct correspondences. A spectral pruning method proposed by Tam et al.
[192] was used to remove noisy candidates and produce a set of globally consistent
correspondences. For this method to work optimally, input geometry must be lo-
cally isometric; however, this was rarely the case in the dataset. Due to limitations
of memory and computation time, correspondences were computed with the default
parameters, with the exception of K = 5 (which specifies how many initial correspon-
dences are found for each point in the source mesh) and d = 0.25 (which corresponds
to the local neighbourhood size in diffusion pruning).

An illustration of the initial correspondence achieved by each descriptor is given
in Fig. 7.5. In areas that are mainly isometric, SHOT correctly recovers correspon-
dences. Due to the poor specificity of IWKS, correspondences were often goedesically
inconsistent and therefore pruned by diffusion pruning. In areas, such as the head,
which has significant non-isometric deformation, it was not possible to establish cor-
respondence using any method.

(a) SHOT (b) IWKS (c) IWKS+SHOT

Figure 7.5: An illustration of the initial correspondence computed by matching dif-
ferent descriptors after diffusion pruning.

7.3 Correspondence methods

All the methods examined in this chapter are described in Section 3.5. To avoid
duplication, the reader is referred back to the respective method sections for additional
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detail, a reference to each method is given in Table 7.4 & 7.5. Specific information
about the configurations used in the experiments undertaken here is included.

7.3.1 Baseline N-ICP

For Bouaziz and Pauly [27], the following parameters were used: w1=1, w2=1, w3=1,
w4=1000, iter=100.

7.3.2 Non-rigid registration under anisotropic deformations

Dyke et al. [55] is initialised using the pre-computed sparse correspondences.

7.3.3 Robust Non-Rigid Registration with Reweighted Posi-
tion and Transformation Sparsity

Li et al. [109] requires an initial set of sparse correspondences. Pre-computed corre-
spondences were provided to the participants.

7.3.4 Efficient Deformable Shape Correspondence via Kernel
Matching

For Vestner et al. [200], all shapes were re-scaled to have a similar area. All parameters
remain as described in the original paper, with the following exceptions α = 10−7 and
t = {500, 323, 209, 135, 88, 57, 37, 24, 15, 10}.

7.3.5 Deblurring and Denoising of Maps between Shapes

For Ezuz and Ben-Chen [67], due to memory limitations a subset of 200 correspon-
dences were selected using geodesic-based farthest point sampling. For experiments
the number of basis functions (k1 & k2) were set to 120. The method requires an
initial set of landmarks. The pre-computed SHOT correspondences with diffusion
pruning were used for initialisation.

7.3.6 Partial Functional Correspondence

For the partial correspondence method Rodolà et al. [159], shapes were re-scaled to
have surface areas between 1.5 × 104 and 2.0 × 104. All other parameters remain as
per their default, with the exception of n_eigen = 100.
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7.3.7 Continuous and Orientation-preserving Correspon-
dences via Functional Maps

The region-level correspondence method of Kleiman and Ovsjanikov [100] was used to
establish an initial correspondence between regions using the default parameters, with
the exception of numComponentsRange = {10, 9, 8, 7}. An initial functional mapping
was computed using Nogneng and Ovsjanikov [142], with k1 = 120 & k2 = 120. The
refinement method proposed by Ren et al. [155] was run for 10 iterations to recover
point-to-point correspondences.

7.3.8 CMH Connectivity Transfer

We use the coordinate manifold harmonics (CMH) framework proposed in Marin et al.
[127] and extended on animals in Melzi et al. [134] to establish correspondences by
transferring the connectivity. The method computes a functional map following Nog-
neng and Ovsjanikov [142] using six hand-placed landmarks as probe functions. The
match is recovered by finding the nearest neighbour between the target model and
the source model deformed using ARAP regularisation, and the source connectivity
transferred over the model. This method assumes that the target and source shapes
share the same pose and does not use the coherent point drift local refinement as
proposed in the original paper.

7.3.9 ZoomOut

For ZoomOut by [133], the following parameters were used: 20 as input and 360
as output for the dimension of the functional map, using an incremental step of 10
and 1,000 samples with farthest point sampling for the correspondence step. As
with CMH, the connectivity is transferred and the result is refined using ARAP
optimisation.

7.3.10 R3DS Wrap 3.4

The same implementation of Wrap 3 [167] is used as described in Chapter 6. The
default parameters were left unchanged, and the method was provided with initial
pruned correspondences.
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Submissions As shown in Table 7.6, most methods submitted results for each test
set, except Marin et al. [127] & Melzi et al. [133]. This was mainly because these
methods were designed to primarily handle cases where objects have the same genus.
In this dataset, test-set 2 does not contain any topological changes.

7.4 Evaluation

The quality of correspondences is evaluated using two measures. First, a standard
error metric is employed, calculating the geodesic distance between predicted corre-
spondences and the ground-truth locations, as per Kim et al. [95]. Then the quantity
and uniformity of correspondences are measured using a novel measurement tech-
nique.

7.4.1 Error measure

This chapter uses the error metric described in Section 4.4.1 in Chapter 4 to measure
the accuracy of correspondences.

7.4.2 Surface coverage measure

To further assess the performance of methods we develop a coverage measure. The
measure is derived by first segmenting a shape’s surface into discrete regions and
then summing the area of regions that contain a correspondence, this value is then
normalised by the shape’s total area. When few regions contain a correspondence
the resulting value will be low; this indicates potentially poor overall correspon-
dence between surfaces. By being able to numerically summarise the quality of a
set correspondences, it is possible to gain valuable quantitative insights of a method’s
performance over a large dataset. Furthermore, as we demonstrate in this section,
by varying the number of regions on a shape, it is possible to gain an even greater
understanding of how corresponding points are distributed over the target shape. See
Alg. 2 for a detailed description of the implementation used.

Region segmentation A set of seed points S on the target surface are selected us-
ing a geodesic-based farthest point sampling strategy. This helps ensure a reasonably
well distributed sampling. To obtain discrete regions, a Voronoi segmentation Q is
subsequently computed using the initial seeds S. Fig. 7.6 illustrates the segmentation
of a shape using successively greater numbers of seed points n.
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Algorithm 2: Computation of the coverage measure
Input : n – number of seed points/Voronoi cells

V, F – vertices and triangles of target surface
A – area of each vertex in surface V, F
G – geodesic distance map for the surface V, F
C – binary list with a value of true for vertices with a correspondence

Output: r – ratio of Voronoi cells containing a correspondence

seed← random_integer(1,|V |) // select an initial random seed point
S ← fps_geodesic(G, seed, n) // sample the farthest points on the surface
Q← find_closest_point(G,S) // return classification of each vertex to the
closest point in S
for s← S do

// iterate through each sampled point on S
if any((Q == s) ∩ C) then

// check if there are any correspondences in a given Voronoi cell
r ← r +

∑
i ((Qi == s) · Ai) // sum area of the Voronoi cell

end
end
r ← r/

∑
iAi // normalise r by the total surface area

Segmentation density By varying n such that {n ∈ N+ | n ≤ |V |} a reasonably
smooth and intuitive performance measure is extracted. When n = 1, the shape
is unsegmented and a single region covers the whole mesh. If the surface has just
one correspondence to any point, the output of Alg. 2 would be r = 1 (i.e., 100%
coverage for n = 1). While when n = |V |, the barycentric cell of each vertex is a
discrete region. To achieve 100% coverage for n = |V |, each vertex must have an
associated correspondence.

Precise correspondence When handling correspondences with sub-vertex accu-
racy, each correspondence is associated with the closest discrete point on the shape’s
surface. The barycentric cell of each vertex is treated as the vertex neighbourhood, as
shown in Fig. 7.7. Points within a given neighbourhood are assigned to that respective
vertex.

Segment weighting Since the initial sampling of seed points does not guarantee
that the area of each segmented region is uniform, the regions are weighted by their
respective area, i.e., where s identifies a unique seed point/region

∑
i ((Qi == s) · Ai).

Here, the segmentation classification Q is a list of indices where i refers to a specific
vertex and Qi is the seed point s that is closest to that vertex.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.6: Examples of a shape from the dataset segmented using increasingly dense
sampling of Voronoi cells. Each sub-figure contains following number of Voronoi cells:
(a) 2, (b) 10, (c) 25, (d) 50, (e) 150, & (f) 500.

Computation time Whilst the initial segmentation may be costly to produce,
this approach allows the resulting segmentation to be cached and used for further
comparison of correspondences with little additional computation. The most costly
operation is computing geodesics for the distance map. The complexity of the
popular method proposed by Kimmel and Sethian [98] is O(|V |2 log |V |).

In Fig. 7.8, an example shape is used to illustrate different ways in which corre-
spondences may be distributed using a set of synthetic points. Fig. 7.9 complements
this, demonstrating the response of the coverage measure as the number of segments
is varied. It can be seen that the characteristics of the shape of each curve vary by
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Figure 7.7: An example illustrating a barycentric cell (the shaded area) for the
vertex in the centre of a one-ring neighbourhood. The area of each vertex Ai—used
in Alg. 2—also corresponds to the area of the vertex’s barycentric cell.

the type of correspondence computed.
In the case of a bijective mapping, the coverage value will remain at 100% regard-

less of how fine the segmentation is. Note that this does not mean that the reported
correspondences are correct, but that every point on the target surface has a point-
to-point correspondence on the source shape. In the case that a part of a shape is
not matched (e.g., a leg), the metric will drop off quickly, with no correspondence.
Assuming the rest of the shape is successfully matched, the curve should have a gra-
dient equal to zero. For methods that report evenly spaced sparse correspondences,
the coverage should remain high until the frequency of the Voronoi cell samples is
sufficient to cover areas in-between the sparse correspondences.

7.5 Results

In this section we discuss the performance of correspondence methods with respect
to the two measures described in Section 7.4.

7.5.1 Surface coverage

In Fig. 7.10 we measure the coverage achieved by each method that completed all
test sets. It is important to note that since a subset of the shapes in the dataset
are partial, as the number of Voronoi cells on the surface increases a coverage score
of 100% cannot be maintained. The curves of all methods monotonically decrease;
this is because all methods report dense correspondences. Therefore, the sparsity of
correspondences is not a factor in these results. Based on the curve characteristics
discovered in the example of the coverage measure in Section 7.4, Vestner et al. [200]
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(a) (b)

(c) (d)

(e) (f)

Figure 7.8: Examples of points distributed on the surface of a model from this
dataset. (a) Bijective mapping, (b) part mapping (75.0%), (c) part mapping (50.0%),
(d) sparse correspondence (50.0%), (e) sparse correspondence (25.0%), and (f) sparse
correspondence (10.0%).

exhibit the closest performance to full and dense coverage, with Ren et al. [155]
performing second best. This is understandable as both methods promote bijectivity
and therefore produce both dense and well distributed correspondences. There is a
significant performance gap between the other methods. This may indicate that the
other methods do not promote, or do not strongly promote, bijectivity.

Figs. 7.11a & 7.11e report the performance of methods measured by coverage in
each respective test set. In test-set 2 (Fig. 7.11c) results for the methods of Melzi
et al. [133] and Marin et al. [127] are shown. Both methods perform exceedingly well
with a relatively high level of surface coverage. The results for test-sets 1-4 suggest
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Figure 7.9: An example of the coverage measure computed using synthetic correspon-
dences on a real mesh.

0 20 40 60 80 100
0

20

40

60

80

100

% No. of Voronoi cells

%
C
ov
er
ag
e

R3DS Wrap 3
Ezuz and Ben-Chen [67]
Rodolà et al. [159]
Ren et al. [155]
Bouaziz and Pauly [27]
Li et al. [109]
Vestner et al. [200]
Dyke et al. [55]

Figure 7.10: Overall coverage performance of methods that submitted results for all
test sets.

that most methods failed to establish correspondences for one or more parts of each
target shape.

7.5.2 Geodesic error

Fig. 7.12 reports cumulative geodesic error curves for methods that have completed
all test sets. Table 7.7 complements Fig. 7.12 reporting the AUC of each respective

138



7.5. RESULTS

0 20 40 60 80 100
0

20

40

60

80

100

% No. of Voronoi cells

%
C
ov
er
ag
e

R3DS Wrap 3
Ezuz and Ben-Chen [67]
Rodolà et al. [159]
Ren et al. [155]
Bouaziz and Pauly [27]
Li et al. [109]
Vestner et al. [200]
Dyke et al. [55]

(a)

0 20 40 60 80 100
0

20

40

60

80

100

% No. of Voronoi cells

%
C
ov
er
ag
e

R3DS Wrap 3
Ezuz and Ben-Chen [67]
Rodolà et al. [159]
Ren et al. [155]
Bouaziz and Pauly [27]
Li et al. [109]
Vestner et al. [200]
Dyke et al. [55]

(b)

0 20 40 60 80 100
0

20

40

60

80

100

% No. of Voronoi cells

%
C
ov
er
ag
e

R3DS Wrap 3
Ezuz and Ben-Chen [67]
Rodolà et al. [159]
Ren et al. [155]
Bouaziz and Pauly [27]
Li et al. [109]
Vestner et al. [200]
Dyke et al. [55]
Melzi et al. [133]
Marin et al. [127]

(c)

Figure 7.11: Cumulative error curves for each test set, (a) test-set 0, (b) test-set 1,
and (c) test-set 3.
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Figure 7.11: Cumulative error curves for each test set, (d) test-set 3, and (e) test-set 4.
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Figure 7.12: Overall performance of methods that submitted completed all test sets.

method. Overall, most methods appear to perform similarly, with Ren et al. [155]
and Bouaziz and Pauly [27] performing the best. However, also taking into account
the results of the coverage measure, Ren et al. [155] produce more desirable results
with greater coverage of the target shape.

In Fig. 7.13a & 7.13e results for each test set are presented. Results for Melzi
et al. [133] and Marin et al. [127] on test-set 2 are shown in Fig. 7.13c. These meth-
ods achieve superior correspondence accuracy in comparison to the fully-automatic
methods.

Test-set 0 contains only partial-to-full scans. Bouaziz and Pauly [27] perform
particularly well, this may be due to shapes having a similar initial orientation, which
is important for N-ICP-based methods. Several methods achieve higher levels of
accuracy on test-set 2, this may be due to this test-set containing little topological
change. With the exception of Ren et al. [155], most methods perform poorly on
test-set 4. This is likely to be due to the higher degrees of non-isometry exhibited.
The performance of Ren et al. [155] may be due in part to the use of a region-
level correspondence method [100] for initialisation, since the correspondence method
works particularly well on homogeneous shapes.
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Figure 7.13: Cumulative error curves for each test set, (a) test-set 0, (b) test-set 1,
(c) test-set 2.
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Figure 7.13: Cumulative error curves for each test set, (d) test-set 3 and (e) test-set 4.
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7.6 Conclusion

In this chapter, a new benchmark dataset of non-isometric non-rigidly deforming
shapes has been proposed to evaluate the performance of shape correspondence meth-
ods. To ensure greater accuracy, ground-truth correspondences were established by
asking multiple specialists to annotate the animals. The performance of a variety
of methods was evaluated using this dataset. Whilst traditional measures of corre-
spondence accuracy are useful, they do not show the full picture of a correspondence
method’s performance. To address this, a new measure of correspondence coverage
has been developed. The coverage measure helps quantitatively indicate the sparsity
and distribution of correspondences. Ren et al. [155] was found to achieve the great-
est accuracy, as well as a high degree of surface coverage, making it the overall best
method in this scenario.

Both Melzi et al. [133] and Marin et al. [127] present semi-automatic methods that
achieve superior accuracy compared to the fully-automatic methods. Though not eval-
uated here, in the paper of Groueix et al. [74]—a data-driven shape correspondence
method—the authors make use of an out-of-the-box blend skinning model [224] for
training. It would be interesting to see how well this method performs on this dataset
where there are animals that have not been observed in the trained model.

As the accessibility of 3D scene capturing tools increases, there is a greater need
for high-quality datasets that may be used for benchmarking and training purposes.
Restrictive copyrights on existing works make the curation of such datasets challeng-
ing. Websites such as Sketchfab and AIM@SHAPE-VISIONAIR Shape Repository
provide simple licenses that make it clear what the original creator permits and may
enable further datasets to be produced.

The coverage measure formulated here offers important insights into the perfor-
mance of shape correspondence methods. It can be directly incorporated into many
existing benchmarks—such as those mentioned in Section 3.6. In the case of [43],
where a dense ground-truth correspondence is known between near-isometrically de-
forming shapes, it is possible to modify the measure to normalise its output coverage
based on an approximation of the total corresponding area. This may help ensure a
fair comparison of collections of shape pairs.

This work provides a point of reference on the performance of state-of-the-art
methods. The results demonstrate that non-isometric deformation remains a chal-
lenging shape matching problem, and further research is still required. This dataset
could be extended to include a training facility. The performance of learning-based
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methods on unseen animals would be particularly insightful as a measure of general-
isation.

7.7 Summary

This chapter identified that many correspondence datasets exist for humans, however
the degree of non-isometry is relatively low—making it difficult to assess how suitable
a benchmarked method will perform on other datasets. For the purposes of this
chapter, it was suggested that the category of quadrupeds is a suitable superset for
evaluating greater non-isometries. A collection of quadruped shapes was curated
from online sources. Ground-truths were established by experts. Then, numerous
state-of-the-art registration and shape correspondence algorithms were benchmarked
on the dataset. As well as the standard error measure used in the evaluations in
Chapters 4, 5 & 6, a novel measure that quantifies the distribution and sparsity of
correspondences was proposed. In the discussions of the results, the new measure was
shown to enhance the analysis possible on the correspondence data.
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SIGGRAPH ’13, pages 21:1–21:14. Association for Com-
puting Machinery, July 2013. ISBN 978-1-4503-2339-0.
doi:10.1145/2504435.2504456

[55] 3.5.2
R. M. Dyke, Y.-K. Lai, P. L. Rosin, and G. K. L. Tam. Non-
rigid registration under anisotropic deformations. Computer
Aided Geometric Design, 71:142–156, May 2019. ISSN 0167-
8396. doi:10.1016/j.cagd.2019.04.014

[109] 3.5.5
K. Li, J. Yang, Y. K. Lai, and D. Guo. Robust non-rigid regis-
tration with reweighted position and transformation sparsity.
Transactions on Visualization and Computer Graphics, 25
(6):2255–2269, June 2018. doi:10.1109/TVCG.2018.2832136

[200] 3.5.4
M. Vestner, Z. Lähner, A. Boyarski, O. Litany, R. Slossberg,
T. Remez, E. Rodolà, A. M. Bronstein, M. M. Bronstein, R.
Kimmel, and D. Cremers. Efficient deformable shape corre-
spondence via kernel matching. In International Conference
on 3D Vision, 3DV ’17, pages 517–526. IEEE, October 2017.
doi:10.1109/3DV.2017.00065

[67] 3.5.9
D. Ezuz and M. Ben-Chen. Deblurring and denoising of maps
between shapes. Computer Graphics Forum, 36(5):165–174,
August 2017. ISSN 0167-7055. doi:10.1111/cgf.13254

[159] 3.5.8
E. Rodolà, L. Cosmo, M. M. Bronstein, A. Torsello, and
D. Cremers. Partial functional correspondence. Computer
Graphics Forum, 36(1):222–236, January 2017. ISSN 0167-
7055. doi:10.1111/cgf.12797

[155] 3.5.10
J. Ren, A. Poulenard, P. Wonka, and M. Ovsjanikov. Con-
tinuous and orientation-preserving correspondences via func-
tional maps. Transactions on Graphics, 37:248:1–248:16, De-
cember 2018. doi:10.1145/3272127.3275040

Table 7.4: The methods evaluated by the dataset described in this chapter, continued
in Table 7.5.
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Reference Section Method
[127] 3.5.12

R. Marin, S. Melzi, P. Musoni, F. Bardon, M. Tarini,
and U. Castellani. CMH: Coordinates manifold harmon-
ics for functional remeshing. In Eurographics Workshop on
3D Object Retrieval, 3DOR ’19, pages 63–70. The Euro-
graphics Association and John Wiley & Sons, Ltd., 2019.
doi:10.2312/3dor.20191063

[133] 3.5.13
S. Melzi, J. Ren, E. Rodolà, A. Sharma, P. Wonka, and
M. Ovsjanikov. ZoomOut: Spectral upsampling for ef-
ficient shape correspondence. Transactions on Graph-
ics, 38(6):155:1–155:14, November 2019. ISSN 0730-0301.
doi:10.1145/3355089.3356524

[167] 3.5.7
Russian3DScanner. Wrap 3.4, June 2019. URL https://
www.russian3dscanner.com/

Table 7.5: The second part of the list of methods evaluated in this chapter.

Table 7.6: A summary of the test sets completed by participants, which are marked
with a tick. The absence of a tick indicates the test set was not completed. In the
case of Melzi et al. [133] & Marin et al. [127], test-set 2 was the only test set with
topologically consistent meshes of the same genus.

Test-set
Method 0 1 2 3 4
R3DS Wrap 3 X X X X X
Ezuz and Ben-Chen [67] X X X X X
Rodolà et al. [159] X X X X X
Ren et al. [155] X X X X X
Bouaziz and Pauly [27] X X X X X
Li et al. [109] X X X X X
Vestner et al. [200] X X X X X
Dyke et al. [55] X X X X X
Melzi et al. [133] X
Marin et al. [127] X
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Table 7.7: AUC results from the overall geodesic error of each method.

Method AUC
R3DS Wrap 3 0.708996
Ezuz and Ben-Chen [67] 0.697713
Rodolà et al. [159] 0.606127
Ren et al. [155] 0.747115
Bouaziz and Pauly [27] 0.743213
Li et al. [109] 0.717810
Vestner et al. [200] 0.610986
Dyke et al. [55] 0.726690
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Chapter 8

Automatic orbital measures in CT
scans using non-rigid registration

Overview

This chapter considers the use of non-rigid registration for the particular application
of computing quantitative measures on non-rigid skull models. The problem and
contributions of this chapter are clarified in Section 8.1. A description of the proposed
registration pipeline is given in Section 8.2. The pipeline is applied to the relatively
large dataset described in Section 8.1, the performance of which is examined using two
quantitative measures in Section 8.3. Section 8.4 summarises the work undertaken in
this chapter and shares some concluding thoughts.

8.1 Introduction

The problem considered here is the measurements of planarity and asymmetry in
the orbits of skulls. Skulls typically have two orbits that compose the two eye sock-
ets. This work particularly focuses on accurately establishing correspondence on the
frontier between the orbit and the frontal, zygoma, and maxilla bones (see Fig. 8.1).
From an anthropometric perspective, this is an interesting problem that will help
establish whether asymmetries of the face are caused by genetic or environmental
factors. A review of registration methods that seek to align non-rigidly deforming
skulls is undertaken in Section 3.9.

There are several key challenges that must be addressed to solve this problem.
The main challenge that must be overcome is that of establishing a correspondence
between a template and a target skull. Skulls have few geometric features, and ex-
hibit topological changes and non-isometry—combined, these cause many generalised
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Figure 8.1: An illustrative diagram indicating the approximate location of the orbit.
The dashed line represents the orbit on the human skull.

shape correspondence methods to perform poorly. Therefore, a bespoke non-rigid reg-
istration method that is suitably robust to such challenges is required. Furthermore,
due the computation time required for registration and shape correspondence algo-
rithms to process high-resolution meshes, low-resolution representations are required.
Typically, correspondences are described at a per-vertex level. However, simply us-
ing this to transfer correspondences between shapes can lead to a significantly lower
accuracy, with template points being projected to their nearest vertex.

Another problem is the representation of orbits. Physically, the orbit is a continu-
ous ring around the eye socket, which can be intuitively imagined but can be difficult
to describe in a computationally suitable manner. Parametric representations can
be difficult to formulate, with guarantees of all parts of the curve being located on
a discrete surface. For this work, a discretised representation of a curve is used to
simplify this problem.

To obtain optimal results during surface registration it is important to appropri-
ately condition the registration algorithm used. Relevant local geometric properties
(e.g., surface normals and Gaussian curvatures) are considered and used to promote
good matches in corresponding regions.

For the layperson, locating orbits can be challenging. Therefore, for the purposes
of this work identifying where the orbit actually is, is important. To ensure a rea-
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sonable localisation eleven postgraduate orthodontic students were asked to mark
16 points that lie on the frontier of each orbit on ten skulls. A total of 32 points were
marked on each skull. One labeller’s results were discarded as many of their markers
were found, during tests, to be erroneous outliers. This was likely due to insufficient
training using the annotation software. Still, the relatively small sample of ten expert
labellers is sufficient in this context as experts tend to be consistent.

By fitting cyclic splines to the expert labels at each orbit and then selecting the
median spline based on a distance measure (described in Section 8.2.2), ground-truth
orbits were produced in a representative manner. Each expert was asked to mark
points on the orbit; first the uppermost point, then the lowest point, the point farthest
to the right, the point farthest to the left, the midpoint between the uppermost point
and right point, and so forth.

Dataset The dataset consists of 1,475 unlabelled scans and ten labelled scans that
were annotated by ten experts. The data was captured using cone-beam computerised
tomography (CBCT). Each scan was cropped to exclude areas surrounding the back of
the skull, including the parietal bone, and bones approximately below half way down
the neck, or cervical spine. Rather than working directly on the original volume
data, a reconstructed representation of the skull surface was used. Each surface was
reconstructed using a marching cubes method [122], with each mesh comprising of
≈4,000,000 faces.

For the protection of the individuals in this study, no identifiable craniofacial
information that was collected is included in this thesis.

Contributions The main contributions of this work are as follows:

• Development of a set of tools and a framework for transferring information to
new skulls, which may be more broadly applied to other collections of meshes.

• An evaluation of the accuracy of the proposed method compared against the
performance of a sample of experts.

8.2 Method

The pipeline used to address the problem in Section 8.1 is described here. An overview
of the pipeline is illustrated in Fig. 8.2. In the first stage, the mesh of each skull in
the database is simplified by discarding disconnected components and reducing the
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number of faces, this helps to reduce the time required to process each skull, see
Section 8.2.1 for more detail. The second stage (Section 8.2.2) is applied to each of
the skulls that has been annotated by experts. For each expert, the positions of their
labels are used to produce a closed discretised spline. A distance measure is then
used to quantify the similarity between the spline of each expert and another expert’s
spline from the same skull. By applying this distance measure to all combinations of
expert splines the medoid error can be used to select a spline that is representative
of the experts’ labels from the same skull. Due to the computation of the spline,
parts of the discretised curve may be distant from the mesh surface; therefore, the
discretised curve is projected to sub-vertex locations on the surface of its originating
mesh. After this stage, it is possible to transfer the discretised spline from the mesh
processed in the previous stage to an unlabelled mesh. To do this, a modified N-
ICP pipeline is first used to register the meshes. Then, to improve the accuracy
of the results, the mean-value coordinates (MVC) method—a common approach to
compute generalised barycentric coordinates—is used to transform the spline to the
unlabelled skull. By applying this process to just the labelled skulls, it is possible to
establish a suitable template, this is discussed in Section 8.2.3.

Preprocessing Orbit generation Orbit registration

Extract single
component

Remeshing

Spline
generation

Select
median spline

Spline
projection

N-ICP on
coarse mesh

MVC

Figure 8.2: An overview of the proposed orbit registration pipeline.

8.2.1 Data preparation (preprocessing)

Due to the large size of the dataset that needed to be processed, it was important
to save time where possible. To reduce the amount of extraneous information being
processed any small disconnected components were removed. For some skulls, the
soft tissues in the neck provided sufficient spacing between the neck and skull. This
produced discontinuity between the two parts, which was exploited to preserve the
skull’s geometry, discarding the neck component. The resulting model was then
simplified using a popular mesh simplification technique [70] to reduce the requisite
computation time. This process was applied to each model in the dataset.
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Figure 8.3: An illustrative diagram highlighting the neck bone geometry that is typi-
cally excluded due to its separation from the skull, causing a disconnected mesh. The
ruby area represents the neck supporting the human skull.

8.2.2 Orbital landmark interpolation

One notable challenge with the landmarks collected from experts was landmark drift
along areas of sharp curvature. While participants were instructed to place land-
marks at specific points on the orbital frontier (e.g., top, bottom, left, right, etc.),
landmarks representing the same location could be placed at a significant distance
from each other; however, in many cases the placement was still on, or close to, the
orbital boundary, and therefore acceptable for the purposes of this work. To make
the landmarks of the experts comparable, markers were interpolated to produce a
continuous line that intersected each point smoothly.

Spline generation By fitting a natural cubic spline curve to a sequence of points
with the same start and end point, it is possible to produce a closed ring. To ensure
landmark points are ordered sequentially, an algorithm designed to solve the Trav-
elling Salesperson Problem is employed. Since there were only 16 points per eye,
the computation time is sufficiently quick. Once the spline is computed, a discrete
representation containing ≈1,000 points is produced.

Spline distance measure To compare the quality of splines, a one-way measure
of error is adopted. First, the nearest neighbours between a source spline s and a
target spline t. are determined using a k-d tree. Denote by N the set of pairwise
correspondences, and (i, j) ∈ N means tj ∈ t is the correspondence point of si ∈ s.
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Then, for a given point on the source spline, the distance to the corresponding point
on the target spline is measured and weighted by the distance to the two adjacent
points (wi,i−1 and wi,i+1) of the source spline point i. The sum of weighted distances
is then computed over all source spline points. This may be formally written as

Espline =
1

2

∑
(i,j)∈N

di,j ‖wi,i−1‖+ di,j ‖wi,i+1‖ .

The definition above is essentially a discretisation of
∫
p
d(s(p))dp, where s(p) is a

point on s and d(s(p)) measures the Euclidean distance from s(p) to the target. The
weights wi,i−1 and wi,i+1 were required as there is no guarantee that the discretised
points on the spline curve are equidistant. This technique is illustrated in Fig. 8.4.
The resulting error measured for both the left and right orbit is combined to produce
a single error value for the pair of orbits.

i

j − 1

j

j + 1

di,j

wi,i−1

wi,i+1

Figure 8.4: An illustration of the method used to measure the error between source
point i and a discretised spline curve (..., j − 1, j, j + 1, ...).

Median spline selection For each skull, the error measure described was used to
gauge which pair of interpolated orbits best represented the ten experts’ selection.
The medoid was used due to its innate quality of being highly robust to noise and
outliers.

Spline projection Due to the method used to compute the spline curve, there
is no guarantee that the curve will lie on the surface of the skull—except where
the curve intersects an expert’s landmark. For each labelled skull, the pair of me-
dian splines are projected onto the surface of the respective skull. However, simply
projecting each point to the nearest point on the surface of the skull leads to unde-
sirable discontinuities where a point is projected to the incorrect surface. Due to the
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Figure 8.5: An illustration of a correctly projected discretised spline over a one-ring
neighbourhood. All adjacent points typically share the same face or are on an adjacent
face.

reconstruction method used, this was a common occurrence, which often produced
thin walls representing the two sides of the skull bone. To address this problem, an
iterative optimisation approach, extending [6], was used.

An efficient point-to-triangle distance technique by Eberly [59] is used to initially
project points onto the surface of the mesh. In sequence, each point representing the
curve is then checked for continuity by ensuring each adjacent point lies within a given
neighbourhood—the neighbourhood size may depend on how dense the discretised
spline is, and how coarse the representation of the skull is. Where a point is identified
as discontinuous from the previous point, a new segment is created. If subsequent
points are continuous with this anomalous point, they are included in the same new
segment.

To fix the disharmonious projections, the largest segment is selected—this is as-
sumed to be correct. A point adjacent to the endpoint of the largest segment is
projected correctly by limiting the possible projections to the neighbourhood of the
current endpoint. Once re-projected, this new point is added to the largest selected
segment and is considered to be the new endpoint. This process is repeated until all
points form a circular and continuous projected path (illustrated in Fig. 8.5).

Since the spline points tend to be close to the surface already, this process requires
few iterations. As described in Chapter 3, the original method by Amberg et al. [6]
incorporates an affine matrix-based regularisation term, which is used here. The
problem is further constrained by treating the original landmark points provided by
the experts as hard correspondences.
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8.2.3 Template selection

The aim of this step was to find a skull that would achieve the lowest orbit registration
error amongst the experts’ labelled skulls. This skull would be considered the best
representation to use as a template for registering the unlabelled dataset. A represen-
tative skull was selected from the set of labelled skulls by using the distance between
a predicted spline—produced using the registration pipeline—and the ground-truth
spline as a measure of error.

Since there were only ten labelled skulls to choose from, each skull was registered
to all the other skulls using an extended non-rigid registration pipeline [27]. This gave
a total of P (10, 2) = 90 pairs of permutations. Once all permutations were registered,
the spline of each skull was transferred to all nine targets. The error between the
transferred splines and the average splines was computed. The skull that achieved
the lowest overall error was then selected as the template (see Fig. 8.6).
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Figure 8.6: A registration error matrix illustrating the orbit alignment error of reg-
istering all manually labelled skulls against all of the other manually labelled skulls.
Skull no. 3 & 5 achieve notably poor results both as the source and as the target scan.
In the case of skull no. 3, the spline produced is misaligned. In the case of skull no. 5
the top of the skull is cut off just above the orbit, which is significantly inconsistent
with the other skulls.

A more elaborate template can be constructed through the use of techniques such
as statistical shape models. However, this was not the main focus of this work, and
this approach was found to produce adequate results.
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8.2.4 Surface registration

To improve the surface registration results on skulls, with a particular focus on the
orbit, extensions to the traditional N-ICP implementation [27] are proposed.

Closest point criterion Due to the thin-walled structure of the skulls in the
dataset, typical N-ICP methods are inadequate, as they often misalign interior and
exterior walls. To help distinguish between thin walls, vertex normal information is in-
corporated. A k-d tree, which for point matching typically contains three-dimensional
data for nearest neighbours (i.e., k = 3), is used, combining the point’s positional
information and directional information (k = 6). An additional term γ is used to
weight the normal information. This additional term is varied from a low to high
value (0, 10) throughout the stages of registration. This ensures that normal infor-
mation is not considered when the source and target surfaces are far apart, but only
used to refine the registration results when the surfaces are closer together.

Data term An additional binary term has been added to promote the alignment
of points with similar curvature. To ensure this term does not penalise too many
matches during the initial steps, only matches that are more than three standard
deviations away from the mean are considered to be outliers and removed.

Epoint−to−point =
∑

(i,j)∈C

wi ‖x′i − yj‖2

2 ,

where,
δi = |κX − κY | ,

δ̄ =
1

|C|
∑

(i,j)∈C

δi,

σ2 =
∑

(i,j)∈C

(
δi − δ̄

)2
,

wi =

{
1− δi

δ̄+3σ
, if δi ≤ δ̄ + 3σ

0, otherwise
,

C is the set of correspondences, (i, j) ∈ C means the source point with existing
transformation applied x′i ∈ X corresponds to target point yj ∈ Y , and κXi , κYj are
the Gaussian curvatures of points xi of surface X and yj of surface Y respectively.

Various techniques to incorporate vertex normal information into the energy term
were qualitatively assessed to identify an accurate orbit registration.
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Orbit transfer While efficient, the proposed registration approach would take an
infeasible amount of time to process all 1,475 unlabelled scans at their original density
(≈4,000,000 faces per model). Therefore, to reduce the time required to process the
data, each scan was remeshed to a reduced number of triangles. Specifically two sets of
registration results were produced using two configurations where meshes comprised
of 50,000 faces and 100,000 faces respectively.

Once all the coarse meshes were registered, the orbits were deformed between the
two poses using barycentric interpolation. When compared with a nearest neighbour
approach, this interpolation method was slightly slower but improved the accuracy
of the predicted results when benchmarked using the labelled data as the ground-
truth (see Fig. 8.7). Due to the use of coarser representations, this also helped
produce smooth orbits. For this work a classical approach was selected [91]. In the
experiments undertaken, this method provided superior results to a more complex
approach by Lipman et al. [114]. [91] was also significantly faster, as it did not
require the additional computation of surface normals for the deformed cage.
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Figure 8.7: A comparison of the performance of using a barycentric interpola-
tion method [91] vs. a naïve transportation method—nearest neighbour—on scans
remeshed to 50,000 faces.

8.2.5 Quantitative measures

Two measures were incorporated to quantify salient characteristics of each pair of
orbits.
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Planarity A similar approach to that by King et al. [99] is used to measure how
planar a pair of orbits combined. Preliminary results from a genome-wide association
study (GWAS) determined this measure did not produce any significant results.

Asymmetry To more directly determine the difference between the left and right
orbits, one orbit is reflected along the axis of symmetry and rigidly aligned to the
other. The alignment is optimised using an iterative approach, which incorporates
the spline error measure discussed in Section 8.2.2. The formulated optimisation is
terminated by a stopping criterion that ensures the two orbits are sufficiently aligned.

8.3 Results

To determine the statistical significance of the results, two-sample t-tests were per-
formed to determine whether the data from the ground-truth (i.e., the manually
labelled data) and from the estimates belong to the same distribution. Furthermore,
paired t-tests were used to help find whether the two configurations used to predict
the orbit locations belong to the same distribution.

Formally, for comparing the ground-truths and the predicted results, the hypothe-
ses are defined as:

H0 : µground-truths = µestimates, and

H1 : µground-truths 6= µestimates.

While for directly comparing the estimates:

H0 : µestimatesa = µestimatesb , and

H1 : µestimatesa 6= µestimatesb .

The estimates of planarity and asymmetry were produced for 1474 of the 1475
scans, the excluded shape was reserved to be the template. The 10 labelled skulls
were used to produce the resulting distributions for the ground-truths. Of note is
that, when comparing the predicted results to the ground-truths, the observed power
is low due to the small sample of ground-truth data. This means that H0 is likely to
be accepted, despite H1 potentially being correct.
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8.3.1 Planarity

The planarity measure, described in Section 8.2.5, is applied to the two configurations
used for estimating the location of the orbits as well as the ground-truths. The results
of applying the measure are summarised in Fig. 8.8. A planarity value of zero indicates
that the orbits lie on the same plane; whereas, anything greater than zero indicates
the orbits are non-planar.

Table 8.1: Workings for unpaired parametric two-sample Student t-tests and a paired
t-test used to calculate the value of t. This is used to measure the dissimilarity
between the orbital planarity results of the ground-truths and estimates. The value
t is then compared with the respective critical values to determine the statistical
significance of the result.

Group
Sample
mean (x̄)

∑n
i (xi − x̄)2 Variance (s2)

No. of
samples (n)

Ground-truths 0.725450 0.008418 0.0008418 10
Est. (50,000 faces) 0.740499 0.765195 0.0005191 1474
Est. (100,000 faces) 0.737048 0.982426 0.0006665 1474
Combined s2 t

G-t/50,000 (unpaired) 0.0005220 -2.075877
G-t/100,000 (unpaired) 0.0006686 -1.413631
50,000/100,000 (paired) 0.0001166 12.2557

G-t/estimates Value
Significance level (α) 0.05
Df. (ν) 1482
Critical value ±1.961566

Estimates/estimates Value
Significance level (α) 0.05
Df. (ν) 1473
Critical value ±1.961576

Since the data for both the ground-truths and the estimates is known to come from
the same population, the variance is treated as the same. Therefore, the number of
degrees of freedom is calculated as ν = n1 + n2 − 2.

t =
x̄1 − x̄2√
s2( 1

n1
+ 1

n2
)
,

where

s2 =

∑n1

i (xi − x̄1)2 +
∑n2

j (xj − x̄2)2

ν
.

When using triangular meshes with 50,000 faces, we observe that the value t
exceeds the lower critical value at α = 5%. Therefore H0 is rejected and we accept H1

as true. For meshes with 50,000 faces, we conclude that there is a significant difference
between the planarity measured for the ground-truth orbits and the predicted orbits.
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However, in the case of meshes with 100,000 faces, the conclusion differs. Since
the value t is between the critical values, there is not enough evidence to reject the
null hypothesis. We conclude that the difference between the planarity measured for
the ground-truth orbits and the predicted orbits is not significant enough.

As the predicted results identically sample the same sources, it is possible to per-
form a paired t-test. This equates to a one-sample Student t-test calculated on the
difference between the measured planarity of the pairs of orbits computed for the
same skull. In this case, the number of degrees of freedom is calculated as ν = n− 1

where n = n1 = n2. Since the value t exceeds the upper critical value, there is suffi-
cient evidence to reject the null hypothesis and to accept the alternative hypothesis.
Therefore, we conclude that there is a significant difference between the planarity
measured for the predicted orbits with 50,000 faces and the predicted orbits with
100,000 faces.

Since the conclusions for each resolution compared with the ground-truths differ,
this may indicate that coarse representations consisting of 50,000 faces are not enough
for measuring planarity. This is confirmed by comparing the predicted orbit planarity
with 50,000 and 100,000 faces, where the statistical power is high and the value t
is found to be beyond the critical value threshold. For 100,000 faces, there is not
enough evidence to prove that the distributions differ; however, it is still not possible
to declare with confidence that the distributions are equal.
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Figure 8.8: A histogram illustrating the planarity results of the predicted orbit reg-
istration pipeline using meshes with 50,000 and 100,000 faces. The mean of the
ground-truth scans is also shown.
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8.3.2 Asymmetry

The asymmetry measure, described in Section 8.2.5, is applied to the two configu-
rations used for estimating the location of the orbits, as well as the ground-truths.
The results of applying the measure are summarised in Fig. 8.9. An asymmetry
value tending towards zero indicates that the orbits are highly symmetrical, whereas,
anything greater than zero indicates an asymmetry.

Table 8.2: Workings for unpaired parametric two-sample Student t-tests and a paired
t-test used to calculate the value of t. This is used to measure the dissimilarity
between the orbital asymmetry results of the ground-truths and estimates. The value
t is then compared with the respective critical values to determine the statistical
significance of the result.

Group
Sample
mean (x̄)

∑n
i (xi − x̄)2 Variance (s2)

No. of
samples (n)

Ground-truths 0.052451 0.002576 0.0002576 10
Est. (50,000 faces) 0.122380 0.729652 0.0004950 1474
Est. (100,000 faces) 0.120441 0.774286 0.0005253 1474
Combined s2 t

G-t/50,000 (unpaired) 0.0004941 -9.9149389
G-t/100,000 (unpaired) 0.0005242 -9.3589902
50,000/100,000 (paired) 0.0002465 4.7431

G-t/estimates Value
Significance level (α) 0.05
Df. (ν) 1482
Critical value ±1.961566

Estimates/estimates Value
Significance level (α) 0.05
Df. (ν) 1473
Critical value ±1.961576

Each of the significance tests performed found a notable difference between the
asymmetry results of each pair of groups at α = 5%. The value of t for each test
was found to be outside of the respective critical values. Therefore, H0 is rejected
and is H1 accepted. We conclude that there is a significant difference between the
asymmetry measured for the ground-truth orbits and the predicted orbits.

From the hypothesis tests performed on the asymmetry results, we can conclude
that the results are sufficiently dissimilar. This indicates that the results of the
registration for measuring asymmetry in faces are not accurate enough. Since the
paired t-test comparing the results of the 50,000 faces to the 100,000 faces also rejected
H0, this indicates that the representation may be too coarse.
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Figure 8.9: A histogram illustrating the asymmetry results of the predicted orbit
registration pipeline using meshes with 50,000 and 100,000 faces. The mean of the
ground-truth scans is also shown.

8.4 Conclusions

In this work a novel pipeline to automatically estimate the location of a pair of orbits
on a skull mesh has been described. The proposed pipeline has a direct application on
anthropological research. Two measures that help characterise orbital discrepancies
are used to determine the performance of the novel pipeline.

This work identifies that for this particular application 50,000 faces is not enough
to produce accurate registration results. Unfortunately, due to the significant amount
of time required to process all of the data, it was not possible to run tests with more
than 100,000 faces. Ideally, further tests would be conducted to identify an acceptable
number of facets for consistent orbit transfer between meshes.

The MVC method is incorporated to help compensate for the imprecision caused
by coarse representations. There may be scope to improve the accuracy of the ob-
tained results, with further research into the initialisation, template selection, and
registration still required. Other issues, such as inconsistent cuts and overfitting, also
affected the quality of the results observed. All models had the forehead cut along
the horizontal plane manually. In the case of a few models, the cuts were significantly
different from the template, which in some cases, caused the forehead geometry of
the template to collapse. It may be possible to address this issue by disregarding
correspondences that are too far apart, keeping the regularisation of such areas high.
Furthermore, the problem of overfitting was observed in the results. Due to the
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relaxation of the local regularisation term, in some cases the template skull was over-
fitting to geometric errors in the target skull. This registration error would then be
propagated into the final estimated spline.

Preliminary tests indicate the use of a novel deep learning technique to predict
an initial set of correspondences may help enable faster convergence to the correct
solution. Furthermore, for meshes with more than 100,000 faces, a faster N-ICP
implementation is required to produce results in a feasible amount of time.

No qualitative results are shown in this work due to the sensitive nature of the
data. A notable observation about the predicted orbits from this pipeline was that
points near the nasal bone were highly varied in both the expert results and predicted
results. This was possibly due to the lack of curvature in this area. Also, expert results
appeared to have a higher accuracy, yet a lower precision than the proposed pipeline
with a greater number of outliers. This could be due to the level of training and the
amount of experience the experts had with the annotation software.

8.5 Summary

In this chapter, the automatic measurement of asymmetries localised on the orbit of
a skull was identified as a problem that requires attention. A large dataset of hu-
man skull meshes obtained using CBCT and reconstructed using a marching cubes
approach was described. A bespoke pipeline that is designed to register skull orbits
for large datasets was implemented. The large dataset was processed, and the perfor-
mance of the method was compared with the ground-truths by conducting Student
t-tests on planarity and asymmetry measures. Additionally, the results obtained us-
ing meshes that were simplified to 50,000 faces and 100,000 faces were compared.
Based on the results in this chapter, we found that simplifying the skulls to 50,000
faces is insufficient for accurately registering a skull’s orbits. Further evaluation is
still required to determine whether 100,000 faces is sufficient.
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Chapter 9

Conclusions

Overview

The aim of this thesis was to investigate several under-researched issues related to
non-rigid registration. In this chapter: The work undertaken in this thesis is sum-
marised in Section 9.1. The key research from each contribution chapter is reviewed
in Section 9.2–9.6. Finally, Section 9.7 discusses future work.

9.1 Summary

A systematic literature review into non-rigid registration and shape correspondence
techniques was conducted. The investigation highlighted an absence of literature that
addresses the problems of large and non-isometric deformation.

The development of a generalised registration pipeline for this little studied prob-
lem led to the discovery of the inadequate state of current evaluative benchmarks
in the area of non-rigid registration and shape correspondence. Additionally, a re-
view of evaluative benchmarks identified that there was a disproportionate number of
anthropomorphic datasets. These datasets were found to be disorganised and, there-
fore, valuable information that could be extracted by using a structured approach
was absent.

This discovery led to the development of three datasets, each designed with dis-
tinct goals in mind. While manifesting as theoretical challenges, each of these datasets
help measure performance characteristics that must be considered when seeking to ad-
dress real-world problems. Furthermore, through the development of the first dataset,
a need for a descriptive quantitative measure of correspondence sparsity was identi-
fied. This was subsequently addressed in Chapter 7 where a measure was proposed
and applied to a novel dataset.

168



9.2. NON-RIGID REGISTRATION UNDER ANISOTROPIC DEFORMATIONS

In the final contribution chapter, the problem of utilising non-rigid registration for
a real medical application was investigated. This led to the development of a bespoke
registration pipeline.

9.2 Non-rigid registration under anisotropic defor-
mations

Chapter 4 presented a fully automatic registration method for handling locally non-
isometric deformations. Due to its complexity, the problem of non-isometry had
received little focus, with most existing techniques assuming deformations to be
(near-)isometric. While this assumption is adequate for some scenarios, there are
many occasions where deformations are non-isometric.

Based on the evaluations undertaken in Chapter 4, as well as the additional eval-
uations performed in Chapters 5, 6 & 7, it is important to emphasise the use of the
correct method for the correct scenario. The aim of the work in Chapter 4 was to
develop a generalised registration pipeline; however, if a problem is well-constrained
with suitable training data available, a data-driven approach can potentially achieve
better results.

The work aimed to address the non-isometric deformations during registration. A
limitation of the proposed implementation is that it relies on SHOT, which requires
local deformations to be isometric. To improve performance, the use of a descriptor
that is compatible with locally non-isometric deformations and has good specificity
would be desirable.

9.3 SHREC’19: Shape correspondence with isomet-
ric and non-isometric deformations

In Chapter 5, a novel dataset that categorises shape pairs by the type of deformation
exhibited was proposed. Real scans were captured of an articulated wooden man-
nequin and an articulated wooden hand model. To induce different types of deforma-
tion, the surface of the mannequin and hand model were covered in textile materials
with distinct stretch properties. The type of deformation exhibited was used to form
a hierarchical structure for the dataset, which provided insightful information about
the performance of a method for different types of deformation. Such a granular
organisation had not previously been used in shape correspondence benchmarks.
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This dataset was used to compare several state-of-the-art registration and shape
correspondence methods. Overall, a registration method [109] that was designed to
handle small amounts of locally non-isometric deformation between isometric areas
performed the best. However, a data-driven approach [74] was applied to the non-
isometric portion of the dataset, and was found to achieve superior results. A baseline
method (N-ICP [27]) was found to perform well in scenarios where traditional shape
descriptors failed due to low-detail homogeneous surfaces.

9.4 SHREC’20: Shape correspondence with
physically-based deformations

Presented, in Chapter 6, was a novel dataset that considers a range of challenging
poses. Real scans were captured of a stuffed toy rabbit, filled with different internal
materials. For each internal material, a scan was captured in each of the poses
considered. Most existing shape correspondence datasets only contain human shapes
with limited deformation, which are restricted by the internal skeleton. The proposed
dataset exploited an object that is capable of extreme poses that are not typically
possible in humans, and therefore are typically overlooked.

One unexpected discovery of the work undertaken was the superior performance
achieved by using N-ICP to compute the initial correspondences rather than other
state-of-the-art feature-based approaches. In such scenarios where deformation is
limited and surfaces have a good initialisation, traditional N-ICP is efficient and can
provide adequate results.

The method that performed the best overall was a data-driven approach. This
approach was accurate and economic—only requiring a trivial annotation of a tem-
plate scan to create a deformable model. Ren et al. [155] was found to perform
the best of the fully automatic approaches. Two methods performed particularly
poorly [159, 200], while both methods have desirable properties for this particular
scenario (i.e., Rodolà et al. [159] support partial correspondence, and Vestner et al.
[200] support non-isometric deformation) the methods rely on robust feature matching
using the SHOT descriptor. SHOT was found to be sensitive to locally non-isometric
deformations; therefore, it was not possible to establish good feature matches.
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9.5 SHREC’20: Shape correspondence with non-
isometric deformations

Chapter 7 proposed a novel dataset consisting of a range of quadruped mammals
with varying physical forms. A range of real and synthetic scans were collected from
various online sources. Ground-truth correspondences were established by finding a
concordant position for labels placed by three volunteers with expertise in geometry
processing and animal studies. Unlike the datasets in Chapters 5 & 6, the shapes
selected had simple poses and challenging non-isometries that naturally occur between
the corresponding regions of each animal. Furthermore, a novel evaluation metric was
proposed to measure the density and distribution of correspondences on a surface.

An evaluation of several state-of-the-art methods was undertaken. Overall, Chap-
ter 7 finds that Ren et al. [155] had the greatest accuracy. The method [155] achieved
the second-best coverage score; however, this was still considerably worse than the
coverage achieved by Vestner et al. [200]. While [200] achieves a lower accuracy,
the estimated correspondence was the closest to bijective. Depending on the appli-
cation, the inferior accuracy of the method may be an acceptable trade-off for the
near-bijective output.

It is possible to further extend the proposed dataset by sourcing new data from
existing repositories. When extending a dataset with someone else’s work, it is im-
portant to consider the restrictions imposed by the original copyright-holder. This
can impose restrictions on how the data may be used, and in some cases third-party
distribution may not be possible.

9.6 Automatic orbital measures in CT scans using
non-rigid registration

In Chapter 8, the problem of extracting information about the orbit of a large
database of unlabelled skulls was examined. A representative skull was selected to
be a template from amongst a small set of labelled scans. It was then possible to
estimate the relative position of orbits on the unlabelled scans using the labelled
template through a novel pipeline. Due to the size of the database, it was neces-
sary to reduce computation time through the use of coarse representations of the
original scans. To prevent inaccuracies when transferring orbits that had a finer rep-
resentation, a barycentric interpolation method was used. This was shown to reduce
alignment errors of the splines compared to the ground-truths.
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A set of hypothesis tests were performed to compare the ground-truths to the
estimated measures of planarity and asymmetry for 50,000 and 100,000 faces. Due
to the small sample size for the ground-truths, the tests did not have a sufficient
power level to confidently conclude that any estimated results belonged to the same
distribution as the ground-truths. However, it was possible to say, with a degree of
certainty, that the results of planarity measure using 50,000 faces was not enough. In
the case of measuring asymmetry, neither 50,000 or 100,000 faces produced sufficiently
accurate results. Subsequent paired tests, which had high power levels, confirmed that
scans that were remeshed to 50,000 faces were not sufficient for measuring planarity
or asymmetry.

The results indicate that further examination of this problem is necessary. The
main limitation of the current pipeline is the N-ICP implementation that is used.
A faster implementation would make it possible to use scans that are less coarse.
Additional ground-truth data should be collected to improve the power of the relevant
hypothesis tests.

9.7 Future work

The work undertaken in this thesis has helped to progress the area of non-rigid reg-
istration; however, these problems are not considered to be solved and more work is
necessary. Some potential avenues for future work are suggested in each respective
contribution chapter (see Chapters 4, 5, 6, 7 & 8). Further thoughts are given here.

9.7.1 Registration techniques

Further development of techniques to handle non-isometric deformation are required.
The evaluations undertaken in Chapters 5, 6 & 7 demonstrate that there is scope to
improve upon the current state-of-the-art. Challenging deformations that have not
previously been considered were introduced in the dataset proposed in Chapter 6.

For problems in many domains, deep learning has been proven to produce superior
results in comparison with hand-crafted methods. While conventional shape descrip-
tors are sensitive to non-isometries, numerous learning-based descriptor methods have
been proposed, which show promising results in this area [81]. However, with respect
to intrinsic deep learning models, most approaches fail to generalise sufficiently [34].
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9.7.2 Datasets

With regards to future work on the topic of this thesis, much work is needed on devel-
oping suitable benchmarks that enable the development and evaluation of registration
and correspondence techniques for different scenarios. Particularly, further study of
how various materials deform and how these might fit or contradict the assumptions
of current registration and correspondence methods is required. Also, many shape
descriptors have been developed to handle cluttered scenes [89, 194, 209]; however,
most existing registration and correspondence methods use data that is reasonably
clean. There is little work that evaluates the performance of shape correspondence
techniques on cluttered scenes containing non-rigidly deforming shapes [44]. The
handling of cluttered scenes is important for many real-world applications, therefore
further research into this area is required. With regards to evaluative datasets, there
remains scope for a clutter scene database of real scans undergoing varying degrees
and types of deformation.

As mentioned in Chapter 3, there is a distinct scarcity of training data for deep
learning methods. Such facilities are necessary to ensure parity when comparing the
performance of deep learning methods against hand-crafted approaches.

There is scope for further evaluation measures to be developed. An intuitive
measurement of accuracy vs. the characteristics of a deformation (e.g., isometry)
would provide a greater understanding of how a technique fares with a particular
challenge.

9.8 Closing words

This chapter concludes the work that has been conducted for this thesis. Over the
previous decade, isometry has been a popular problem in this area. Recently, the
problem of non-isometry has received greater attention, and promising progress has
already been made. As this work has demonstrated, there are many other challenges
for future registration methods to solve. However uncertain the future direction of
research in this area may be, research into non-rigid registration over the next decade
will hopefully lead to some exciting new developments.
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Appendix A

Citation count search terms

The data for this figure was acquired from Thomson Reuters’ Web of Science.
The following search terms were used: TOPIC: (non-rigid AND shape AND

correspondence) OR TOPIC: (non-rigid AND registration) AND TOPIC:

(Geometry processing) OR TITLE: (shape AND correspondence)

The results were refined by excluding the following categories: WEB OF SCIENCE

CATEGORIES: ( TELECOMMUNICATIONS OR NEUROIMAGING OR PHYSICS ATOMIC

MOLECULAR CHEMICAL OR AUDIOLOGY SPEECH LANGUAGE PATHOLOGY OR IMAGING

SCIENCE PHOTOGRAPHIC TECHNOLOGY OR NEUROSCIENCES OR BEHAVIORAL

SCIENCES OR RADIOLOGY NUCLEAR MEDICINE MEDICAL IMAGING OR BIOCHEMICAL

RESEARCH METHODS OR ENGINEERING BIOMEDICAL OR BIOTECHNOLOGY APPLIED

MICROBIOLOGY OR CARDIAC CARDIOVASCULAR SYSTEMS OR OPTICS OR SURGERY OR

DENTISTRY ORAL SURGERY MEDICINE OR ACOUSTICS OR ECOLOGY OR PSYCHOLOGY

OR MEDICAL INFORMATICS OR FISHERIES OR PSYCHOLOGY EXPERIMENTAL OR

GENETICS HEREDITY OR NANOSCIENCE NANOTECHNOLOGY OR GEOCHEMISTRY

GEOPHYSICS OR PHYSICS CONDENSED MATTER OR MARINE FRESHWATER BIOLOGY OR

NUCLEAR SCIENCE TECHNOLOGY OR OPHTHALMOLOGY OR BIOPHYSICS OR

ORTHOPEDICS OR EVOLUTIONARY BIOLOGY OR PALEONTOLOGY OR FOOD SCIENCE

TECHNOLOGY OR LINGUISTICS OR MEDICAL LABORATORY TECHNOLOGY )

Other details: Timespan: All years. Indexes: SCI-EXPANDED, CPCI-S,

ESCI.

It should be noted that due to the limited index content and search terms, this
does not fully represent all literature in the areas of non-rigid shape correspondence
and non-rigid registration. This data is included merely to provide an indication of
recent trends in the area.
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