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Summary of Thesis

This thesis explores how facial expressions are perceived in the context of an expres-

sive body posture. Previous work has demonstrated that facial expressions can be

biased by the emotion portrayed by an affective body posture. It remains unclear

how these cues are combined in the human brain to form a whole-person percept

of emotion. Additionally, the role of individual differences, and the developmental

trajectories of facial expression and body posture integration remain unknown.

In Chapter 3, I developed a novel psychophysical paradigm to quantify the

influence of body posture on facial expression perception. Body context significantly

biased the perception of facial expressions, but the magnitude of this bias was highly

variable between individuals. This variability was highly correlated with observers’

ability to perceive isolated facial expressions; better facial expression recognition

resulted in less influence of body context.

In Chapter 4, I assessed how body posture influenced perception of facial ex-

pressions in children. I also quantified microstructure of white matter connecting

cortical nodes responsible for face and body processing and related these metrics

to children’s perceptual ability. With increasing age, children’s ability to recognise

facial expressions improved, and the biasing influence of the body context decreased.

Microstructural properties of functionally-defined white matter were found to pre-

dict children’s perceptual abilities.

In Chapter 5, I applied a mathematical model to conceptualise the integration

of facial expression and body posture cues under a cue integration framework. My

results provide novel insights into the integration of face and body cues, such that

the integration was found to be a weighted average of the reliability of observers’
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facial expression and body posture representations.

In summary, the experimental work presented in this thesis has important impli-

cations for understanding real-world social perception, where multiple social signals

must be integrated to create a coherent experience of the social world.
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Impact of Thesis
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Chapter 1

Introduction

Interpreting social cues is an integral component of human communication and behaviour.

A social cue is defined as a signal in either the verbal or non-verbal domain that guides an

individual’s social behaviour (Leekam et al., 2010). In a rich and dynamic sensory world,

the ability to integrate multiple social cues is imperative, and is a sophisticated skill (Zaki,

2013). Facial expressions are one of the most researched social cues; such signals produced

by contraction of facial muscles, signify an emotional state, and upon recognition will

guide an observer’s behaviour and subsequent actions (Calder, 2011). Importantly, facial

expressions are typically encountered with a body posture. A growing consensus illustrates

the relevance of the body posture for conveying emotional expression, in addition to its

role in action-orientated behaviours (de Gelder et al., 2015). The work in this thesis

explores visual processing of high-level social cues, specifically how facial expression and

body posture cues are perceived and integrated.

1.1 The organisation of the visual system

Vision is a complex and important sensory modality in humans (Hutmacher, 2019). The

ability to operate in a complex sensory visual world relies on an extensive network of

neural regions responsible for processing incoming visual information. Understanding

the organisational principles of the visual system is fundamental for the applied research

conducted as part of my PhD, exploring how facial expression and body posture cues

are combined. Given my research focuses on ‘higher-level’ visual cues, emphasis in the

following section is on how the low-level visual systems integrate with the brain networks
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known to be critical in face and body processing.

Visual information from the world reaches the eye as light which is converted into

electrical signals by photoreceptors (Goldstein et al., 2005). This signal is transmitted

to the primary visual cortices and association cortices of the brain (Lu & Dosher, 2014).

The translation of features to form an integrated coherent precept subsequently guides

behaviours and actions.

One dominant model of visual processing describes the transmission of information as

hierarchical (Hubel & Wiesel, 1962). Information processing starts at the retina, proceeds

to the lateral geniculate nucleus (LGN) in the thalamus, before arriving at the primary

visual cortices (V1-V3) (Schyns & Oliva, 1999). The information is fed-forward for further

processing in association regions (V4-V5/MT) and the inferior temporal area. The types

of information that are extracted at different levels of the visual processing stream are

dependent on the neural architecture of the receptive field size in each region [Figure 1.1]

(Herzog & Clarke, 2014). Neurons in lower visual areas (V1 - V3) are sensitive to basic

visual features such as lines and edges and have small receptive fields. Early processing

regions project to later stages of the processing hierarchy, which encode increasingly com-

plex features (Goldstein et al., 2005). At the inferior temporal stage of the ventral stream,

higher-level processing takes place such as whole object recognition.

An influential model for higher-level visual processing is the dual-pathway architecture

(Goodale & Milner, 1992). This posits that there are two interacting streams of ventral

and dorsal information processing beyond V4 linked to object recognition and spatial

localisation respectively (Ungerleider, 1994). These extended areas of the visual processing

system are highly specialised and hierarchically organised.

1.2 Face perception

Faces provide key information about identity, expression, gaze direction and visual cues

about speech, amongst other things (Calder, 2011). Faces are a special category of visual

stimuli, conveying a vast amount of information to the viewer and facilitating social com-

munication (Haxby et al., 2000). In addition to faces being functionally special, the human

brain also has specialised visual processing streams for processing faces, most likely a con-
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Figure 1.1: Hierarchical model of visual processing The schematic illustrates the
hierarchical feed forward model of visual processing. Information processing proceeds
from the retina to the LGN, and then V1 and later visual areas. Early visual areas have
smaller receptive fields and code features such as edges and lines. Higher-level areas have
gradually increasing receptive field sizes and integrate information over lager portions of
the visual field. At higher-levels, such as IT, these regions receive lower level inputs and
encode more complex features, such as faces. Figure recreated from Herzog and Clarke,
2014.

sequence of their social importance (Calder, 2011). Behavioural markers of face-specificity

in neurologically healthy participants has been demonstrated through inverting faces (Kan-

wisher & Yovel, 2006). One of the most robust findings in the face processing literature is

that inverted faces are not recognised as rapidly as upright faces (Kanwisher et al., 1998;

Rossion & Gauthier, 2002). In contrast to other objects, the diminished recognition of

faces when inverted is significantly greater compared to non-face stimuli. This is, in part,

due to faces being processed configurally, unlike other object categories. Configural pro-

cessing refers to processing that involves perception of the relationship between features

in a stimulus (Minnebusch & Daum, 2009). Further evidence to illustrate the importance

of faces is the presence of face-specific neural representations (Kanwisher & Yovel, 2006).

Face perception is often referred to as ‘domain-specific’, as the processing modules in the

brain are thought to be specialised for encoding faces (Kanwisher, 2000). Research from

individuals with prosopagnosia, a disorder characterised by the inability to recognise the

identity of faces, provides further evidence to support the notion for specialised visual pro-

cessing regions for faces. Prosopagnosics display domain-specific face recognition deficits,

whilst other categories of object recognition are preserved, providing evidence for clusters
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of face-specific neurons in the brain (Duchaine et al., 2006).

1.2.1 Facial expression processing

A key feature of effective face processing is the ability to extract emotional expression.

Facial expressions provide information to help guide an observer’s behaviour during social

interactions (Rajhans et al., 2016). Ekman and colleagues pioneered the modern era of

research on facial actions in emotion (Ekman, 1965). They proposed the concept of ‘Basic

Emotion Theory’, which stated that humans have a limited number of biologically and

psychologically basic emotions which they can recognise. Within this framework, it is

assumed that expressions of emotion are brief and coherent patterns of facial muscle con-

traction. These basic emotions fall broadly into six categories: anger, happiness, sadness,

fear, disgust and surprise, and are believed to be universally recognised (Calder, 2011;

Ekman, 1992). Reliable individual differences have been reported in individual’s ability

to recognise facial expressions across the general population (Palermo et al., 2018). The

mechanisms that have been attributed to many factors such as gaze pattern, personal

traits, and anxiety scores (Alharbi et al., 2020; Green & Guo, 2018).

1.2.2 Models for face recognition

The idea that facial identity and facial expression are processed by separate visual routes

has dominated face research for over 20 years and is at the heart of an early prominent

model of face perception. Bruce and Young (1986) were the first to document an account

of face recognition by combining and extending several early models. The term ‘recogni-

tion’ was used very broadly to refer to any kind of stored information from faces. The

framework proposed by Bruce and Young (1986) was purely a functional cognitive account

and did not extend to the localisation of processing in the brain. The cognitive model

posited that seven different types of visual information were extracted from faces: pic-

torial, structural, visually derived semantic, identity-specific semantic, name, expression

and facial speech codes (Bruce & Young, 1986). Representations of the face were com-

pared to stored face-recognition units, where the face was recognised as familiar if there

was a matching of the encoded representation and the stored structural code. Since the

emergence of neuroimaging has become commonplace in cognitive psychology, the early
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cognitive account has been developed and built upon with subsequent research.

A face selective area of cortex is defined as a cortical region that responds more to

faces than any other stimulus category. This ‘response’ amplitude is often measured in

humans using the haemodynamic blood oxygenation level dependant (BOLD) response

to spatially localise cortical regions from functional magnetic resonance imaging (fMRI).

Seminal work from Kanwisher (1997) and colleagues revealed an area in the fusiform

gyrus which was significantly more active when subjects viewed faces compared to objects

(Kanwisher et al., 1997). Further research demonstrated that category specific regions

for faces showed increased activation only when presented upright, demonstrating their

‘gestalt-like’ processing. Regions of cortex which are selective to faces in the ventral

fusiform regions are thought to receive inputs from earlier retinotopic regions (V1-V4)

through axonal projections (Grill-Spector et al., 2018).

Building upon the cognitive account from Bruce and Young (1986), Haxby and col-

leagues (2006) outlined a neuroanatomical framework of face perception which distin-

guished aspects of face processing and their neural representations (Haxby et al., 2000).

This model divides neural face selective regions into a ‘core’ and ‘extended’ system [Fig-

ure 1.2]. Regions in the core network include the fusiform face area (FFA) located in

the lateral fusiform gyrus, the occipital face area (OFA) and the posterior superior tem-

poral sulcus (pSTS). The OFA and FFA were proposed to be involved with processing

the invariant aspects of faces (e.g., facial identity), and the pSTS for changeable aspects

(e.g., facial expression) (Haxby et al., 2000). The extended system incorporates additional

neural regions, such as the anterior temporal regions, amygdala and the limbic system, to

process different kinds of social information from faces. In contrast to the core system,

the network of areas in the extended system has been said to be responsible for encoding

person-specific semantic knowledge and assessing the value of facial expressions.

Recent work investigating the face-selective regions of the brain challenges aspects of

the Haxby model (Duchaine & Yovel, 2015). In 2015, a revised model for face process-

ing [Figure 1.3] was published which modified the framework proposed by Haxby and

colleagues. Research challenged the idea that the FFA was not involved in processing

emotion, with the revised model updating this view to state that the FFA contributes to

the perception of changeable aspects of faces (Wegrzyn et al., 2015). Another key mod-
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Figure 1.2: Haxby model of face perception
The figure highlights the core and extended systems in the Haxby model of face perception.
The regions early in the visual hierarchy (V1-V3) are illustrated in darker grey. Solid
arrows depict relationships between nodes in the core face processing network, and dashed
lines illustrate the connections between the extended network.

ification from the Haxby model was that information from early visual areas is able to

enter the face-processing system via multiple parallel routes, as opposed to just via the

OFA. Notwithstanding the tentative evidence from Haxby and colleagues that the OFA

was the gateway to the face-processing network, patient work revealed that despite lacking

a right OFA, face-selectivity in right FFA and right pSTS was retained and comparable

to controls (Sorger et al., 2007). Using diffusion tensor imaging (DTI) and reconstructing

fibres connecting cortical regions has also revealed direct anatomical connections between

early visual areas and the FFA, further supporting the idea that information can bypass

the OFA to enter the face-processing network (Gschwind et al., 2012; Pyles et al., 2013).

Despite the early evidence for dissociable parallel pathways for identity and emotion, it is

now evident that there is interdependence between the neural processing of these features.

The revised neural framework for face processing led to the understanding that informa-

tion extracted by faces is processed by distributed and interacting modules (Dima et al.,

2018).
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Figure 1.3: Revised model of face perception
A revised model of face perception based on the model proposed by Duchaine & Yovel
(2015). The regions early in the visual hierarchy (V1-V3) are illustrated in turquoise.

In addition to the cortical regions previously noted to be involved in face processing,

the revised model identifies the role of anterior temporal regions in humans. Evidence

from macaque research highlights the importance of the anterior temporal face patch

(ATFP) which displays strong neural responses to presentation of faces in contrast to other

stimuli (Fisher & Freiwald, 2015). In contrast to the facial processing nodes earlier in the

processing hierarchy, the neurons in the macaque ATFP respond invariantly to different

face views, suggesting that the encoding is more of a higher-level representation in this

region (Meyers et al., 2015). In humans, functionally defined ATFP bilaterally evoke more

activity in response to faces than any other category (Harry et al., 2016). In the right

ATFP, Harry and colleagues (2016) also demonstrated an equally strong neural response

to headless bodies. Probing this further, multivoxel pattern analysis (MVPA) revealed

that the voxels encoding face and whole-body responses were significantly overlapping

in the right ATFP. However, this relationship was not shown with faces and headless

bodies. Taken together, these findings support the idea that as information travels through

the ventral visual stream towards the temporal pole, there is increasing convergence of

information streams.
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1.3 Body processing

Many insights into emotion processing in humans have focused on facial expressions. How-

ever, body postures can convey emotional information, and are typically understudied (de

Gelder, 2006). Despite this, research has demonstrated that adults identify emotions

conveyed in body postures with comparable accuracy to performance on facial expression

recognition (Zieber et al., 2014). Importantly, bodies and faces are most frequently encoun-

tered together in space and time and are both biologically relevant, conveying information

about conspecifics (Taylor et al., 2007).

1.3.1 Body posture processing

In 1965 Ekman conducted early investigations into bodies as affective communicators

(Ekman, 1965). Early research exploring body perception sought to uncover if they were

processed in a configurable manner, in a similar way to the face, and if there was a ded-

icated functional neural circuitry responsible for this processing (de Gelder, 2006). A

robust methodology utilised to assess configural processing is the inversion effect; recogni-

tion of inverted bodies was found to be significantly impaired in contrast to upright bodies

(Reed et al., 2003; Robbins & Coltheart, 2012). Recent evidence from magnetic resonance

imaging (MRI) research shows that the selective areas of cortex which respond to bod-

ies are preferentially tuned to whole-bodies over body-parts (Brandman & Yovel, 2014).

However, bodies convey a rich amount of social information about an individual from

the posture, movement and emotional expression and much of the research exploring the

network responsible for this processing highlights that the neural representation is depen-

dent on the attributes being processed (de Gelder, 2006). A framework with interrelated

brain networks has been proposed by de Gelder (2006) for the processing of emotional

body language, referred to as the ‘two-systems’ model of emotion-behaviour connectivity.

Information is thought to be processed in parallel through a subcortial reflex-like network,

and a cortical visuomotor perceptual route. These two systems have connections with the

more frontal regions involved in the body awareness system.
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1.3.2 Neural processing of bodies

Using fMRI in humans, category-selective brain regions have been identified for processing

bodies; namely, the fusiform body area (FBA), extrastriate body area (EBA), and pSTS

(Downing, 2001; de Gelder et al., 2015). The FBA in the mid-fusiform gyrus partially

overlaps with the FFA and has been shown to respond to headless or faceless bodies.

Despite the overlap, on a subject-by-subject basis the peaks of activation to faces and

bodies occupy two close, but distinct, locations (Peelen & Downing, 2005). In the occip-

itotemporal cortex the EBA has been shown to respond more to bodies and body parts,

than other object categories and faces (de Gelder et al., 2015). The response in EBA

has been shown to linearly increase in relation to the proportion of a body posture dis-

played, consistent with part-based processing in EBA, whilst FBA shows a as a step-wise

increase in response amplitude to whole bodies compared to body parts (Taylor et al.,

2007). The pSTS has shown responsiveness to biological motion, but also static images of

bodies implying motion, highlighting its importance for social perception. Application of

transcranial magnetic stimulation (TMS) to the pSTS results in diminished ability of an

observer to distinguish between affective body postures, demonstrating the importance of

pSTS in detecting emotionally salient body postures (Candidi et al., 2011).

1.4 Facial expression processing in context

In our everyday interactions we typically encounter faces in conjunction with a body. The

research on simultaneous perception of face and body cues is still sparse, which limits our

understanding of how facial expressions are encountered in the ‘real world’. The term

‘context’ is used broadly in the literature to refer to any social cue that is external to the

face. For example, it could refer to an environmental scene or an expressive body posture.

In the work that I will discuss and have conducted in this thesis, the term ‘context’ will

be used solely when referring to an affective body posture.

Given the early notion of ‘basic emotions’ it was thought that a facial expression

was readily judged in to a discrete category based on unique muscle signatures. As a

consequence, much research focusing on facial expression perception has relied on decon-

textualised images of faces, as the facial expression itself was believed to be diagnostic.
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Typically, the expressions shown are extreme, and not reflective of the typical displays

of emotion encountered in everyday social interactions. In 2005, Meeren and colleagues

published research demonstrating that observers’ judgements of facial expressions became

biased towards the emotion expressed by a non-congruent body posture (Meeren et al.,

2005). Participants were asked to categorise facial expressions, presented with either a

congruent (e.g., angry facial expression with angry body posture) or incongruent body

posture (e.g., angry facial expression with fearful body posture), as rapidly and accurately

as possible. Concurrent electroencephalography (EEG) was recorded from participants

throughout the task. The behavioural results revealed congruency affected participants’

accuracy and reaction times. When the facial and bodily expressions were incongruent,

participants’ judgement of the facial expressions became biased to the emotion conveyed

from the body posture, and their reaction times were slower. Electrophysiologically, the

P1 amplitude was found to be significantly larger for the incongruent face-body compound

stimuli. The authors claimed that this enhanced P1 component points to rapid and early

extraction of information about the congruency of simultaneously presented facial and

bodily emotional expressions. The P1 component is believed to originate from ‘early’ ex-

trastriate visual areas, which are regions known to be involved with processing changes in

low-level properties (Schindler et al., 2021). Importantly, the congruent and incongruent

stimuli did not differ in their low-level properties, just their emotional content. Taken

together, these behavioural and electrophysiological results indicate that an incongruent

body posture can result in biasing of the facial expression towards the emotion conveyed

by the body posture. Furthermore, their results suggest that detection of congruency

occurs early in the visual processing hierarchy.

More recent work by Aviezer et al. (2008) replicated Meereen’s (2005) finding, demon-

strating facial expression recognition was modulated by an affective body posture (Aviezer

et al., 2008). The use of stimuli expressing anger, disgust, sadness and fear revealed that

the greater the similarity between the emotions presented in the face and body, the larger

the contextual influence of the body; this has been referred to as the confusability effect.

When observers were asked to judge a disgusted facial expression, the participant was

more likely to miscategorise the facial expression as the context, when the body posture

was angry, as opposed to sad or fearful, due to the similarity of the anger and disgust
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expressions. Other work by Aviezer et al. (2012a) presented ecologically valid facial ex-

pressions of defeat and victory in combination with tennis players bodies. When judging

the valence of isolated faces observers failed to rate the affective valence of winners as more

positive than the affective valence of losers. With the addition of the tennis player’s body,

participants’ valence ratings of the facial expressions were biased towards the valence of

the body posture (Aviezer et al., 2012a). This research demonstrates that body context

has a clear influence on how facial expressions are perceived.

A limited amount of published work investigates how facial expressions are influenced

by body posture during development. Mondloch (2012) investigated how emotion from

the face and body are processed in children. 8-year-old children and adults were presented

with fearful and sad facial expressions, on either a congruent or incongruent body posture,

and they were required to make categorisation judgements (Mondloch, 2012). Comparing

congruent trials (sad facial expression and sad body posture), with incongruent trials (sad

facial expression and fearful body), revealed that both children and adults were more

accurate and had faster reaction times when categorising the facial expression in the

congruent task. When incongruent stimuli were presented, the influence of body posture

on categorisation of the facial expression was larger in 8-year-olds than adults (Mondloch,

2012). This provides evidence to suggest that the influence of body posture on facial

expression perception varies with age, and provides a rationale to further explore the

mechanisms underlying facial expression and body posture integration in a developmental

cohort.

1.4.1 Mechanisms for facial expression and body posture

processing

It remains unclear exactly how facial expression and body posture cues are integrated.

Aveizer et al. (2011) asked a group of adult observers to categorise facial expressions

(anger, happiness, sadness, disgust, fear and surprise) presented in the context of an affec-

tive body posture, whilst they were explicitly instructed to ignore the body. Despite these

instructions, observers’ categorisation of the facial expression was still biased by the body

posture. In a follow-up study, participants completed the same emotion categorisation

task, but whilst completing a concurrent memory task, which added a ‘cognitive load’.
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Despite the additional cognitive load, the body posture was still found to influence emo-

tion recognition from the face (Aviezer et al., 2011), implying that face-context integration

occurs unintentionally. In combination with Meeren and colleagues (2005) electrophysi-

ological findings, these results suggest that the integration of emotion information from

the face and body may be ‘automatic’ and occurring early in the visual processing stream

(Aviezer et al., 2012a).

In a study published by Aviezer and colleagues (2012b), they attempted to discern if

the face and body were processed separately and then integrated, or if the whole-person

was perceived as one gestalt. Facial expressions were paired with incongruent body pos-

tures to form ‘whole-people’; however, the face and body were aligned in some trials and

were manipulated to be misaligned in other cases. Their results show that misalignment

resulted in a decreased influence of body context on facial expression perception, which the

authors interpreted as a disruption in the holistic person gestalt (Aviezer et al., 2012b).

This demonstrates that misalignment of the face and body weakens the ‘perceptual unit’,

which lessened the influence of the body context on the face. In addition, they manipu-

lated the physical distance between the face and body in the misalignment trials and no

graded relationship was found between the influence of body context on facial expression

judgement and the distance. This strongly supports the notion that the face and body

are processed as one gestalt unit perceptually.

Recent work challenges the ‘automatic’ and ‘early processing’ view for integration of

face and body stimuli (Teufel et al., 2019). Using a psychophysical adaptation procedure

to emotional faces, Teufel and colleagues (2019) demonstrated that facial expression adap-

tation is unaffected by body posture. This suggests that integration of the facial expression

and body posture happens later in the visual processing stream than has previously been

proposed, and downstream of those regions involved in adaptation (Aviezer et al., 2011;

Meeren et al., 2005).

1.4.2 Integration of social cues in the brain

Much of the research exploring facial expression and body processing in the brain highlights

cortical regions which display specificity in prescribed domains. Only recently has research

begun exploring the interplay between the neural regions in face and body processing.
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Fisher and Freiwald (2015) explored the face and body responsive areas using fMRI in the

macaque brain. The aim of this work was to uncover if face-selectivity is purely driven by

the visual attributes of the stimulus, or if the activation of neural regions is a consequence

of faces indicating the presence of a larger social agent. This study localised face patches

in four monkeys using fMRI which revealed that some face patches responded to both faces

and bodies, whilst the body selective regions were much more category specific repsonding

only to images of bodies (Fisher & Freiwald, 2015). This provides evidence that the

neural activity in certain face areas can be synergistically increased with the addition of

bodies. Cross-species work highlights that similar regions exist in human brains, and with

quantitative topographic modelling, homologous regions can be identified (Rajimehr et al.,

2009). In humans, the ATFP responds strongly to the presentation of faces and whole

bodies. However, ‘parts’ of faces and bodies do not elicit a strong response (Harry et al.,

2016). These findings allude to a hierarchical stream of processing for faces and bodies

along the ventro-occipital temporal cortex.

Distilling literature from sub-disciplines of facial expression and body posture process-

ing, Hu and colleages (2020) recently proposed a theoretical framework for the combined

processing of both cues. At its crux the framework states that the integration of faces

and bodies is mediated by the goal of the processing. A hierarchical functional neural

architecture has been proposed for integration of these cues that retains a degree of sep-

aration between the dorsal and ventral processing streams (Hu et al., 2020). Within this

architecture two centres of integration have been proposed: a ventral semantic integration

hub that is the culmination of posterior to anterior face-body integration, and a social

agent integration hub in the dorsal stream pSTS. This model fits with the ideas proposed

in this thesis regarding the visual integration of facial expression and body posture cues,

and indicates that the anterior temporal lobe and pSTS are important candidates for the

site for integration. Furthermore, this theoretical model supports evidence from Teufel et

al. (2019) for a later site for integration of facial expression and body posture along the

extended ventral visual processing stream (Teufel et al., 2019).

13 Chapter 1



1.5 Cue integration

A perceptual challenge for the human brain is to combine multiple sensory estimates

about the world to guide an observer’s perception and interactions (Trommershauser et

al., 2011). These estimates are always associated with uncertainty due to the noisiness

of neural information-processing (Whiteley & Sahani, 2008). Therefore, to minimise the

uncertainty in sensory cue measurement, observers often combine multiple cues to improve

the reliability of their estimates (Trommershauser et al., 2011). The human brain is

thought to arrive at integrated estimates from sensory cues in an efficient and optimal

manner (Helbig & Ernst, 2007).

Optimal cue integration, based on the maximum-likelihood principle (MLE), predicts

that the relative reliability of the sensory cues determines how much they will contribute

to the integrated representation, and that the integrated estimate should be more reliable

than the individual sensory estimates (Ernst and Banks, 2002). Put simply, more reliable

information is given a stronger role in the final integrated estimate, which is more reliable

than either of the individual cues. These predictions are supported by empirical evidence

from low-level vision research (Bejjanki et al., 2011; Dekker et al., 2015; Ernst & Banks,

2002; Martin, 2016).

In order to understand how humans effortlessly exist in a complex social world, one

must consider one of the most basic perceptual challenges: how does our brain integrate

more complex social signals, like facial expression and body posture? In the real world,

the goal of perception is not to distinguish isolated cues, but to process multiple cues

and form a coherent percept. Based on the principles of cue integration, that have been

applied to understand low-level cue combination, proposals have been put forward that

similar mathematical models may be applied to understand how social cues are integrated

(Zaki, 2013). However, these proposals have not yet been explicitly tested, with part of

the challenge being the difficulty in achieving the necessary control over complex social

stimulus properties.

I L Ward 14



1.6 Aims and overview of thesis

The research in this thesis aims to provide a mechanistic account for the integration

of facial expression and body posture cues [Figure 1.4]. As highlighted, exactly how

these two social cues are integrated to form whole-person representations of emotion still

remains unknown. In Chapter 3, I developed a novel psychophysical paradigm to quantify

how much body posture influenced perception of facial expressions between observers. In

addition, observers’ ability to categorise isolated facial expressions and body postures was

also quantified. A key question I attempted to resolve in this chapter was how observer’s

individual facial expression and body posture representations related to their whole-person

perception of emotion. I found individual differences in the magnitude of the body biasing

effect, such that some observers were more influenced by body context than others. Those

observers’ who were less precise in their ability to discriminate facial expression relied

more on body posture for their facial expression judgments in the whole-person condition,

and vice versa.

Figure 1.4: Thesis summary and main findings

In Chapter 4, I aimed to uncover how changes in facial expression and body posture

recognition across development affect the integration of these signals into a whole-person

percept. Furthermore, in the developing brain, children undergo a prolonged period of

white matter maturation. I assessed if microstructure of white matter tracts connecting

functional nodes of the brain involved in face and body processing was linked to perception

of facial expression, body posture and whole-person cues. I found children’s ability to

recognise facial expressions improved with increasing age, and that the influence of body
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context on the perception of facial expression decreased as children got older. I also found

that children’s facial expression recognition reliability could be predicted by the fractional

anisotropy of white matter tracts connecting OFA and FFA. The research in this chapter

combines psychophysics with functional and diffusion MRI to provide insights into the

emergence of facial expression and body posture perception across development.

In Chapter 5, I applied a cue integration model to determine if facial expression and

body posture are integrated in a statistically optimal manner. The results of this chapter

provide novel insights into the mechanisms underlying integration of facial expression and

body posture cues, suggesting that the integrated representation is a weighted average

of the isolated cues. These results have important implications for our real world un-

derstanding of social perception and the principles that drive the integration of multiple

social signals.

I L Ward 16



Chapter 2

Methods

2.1 Psychophysical approach to perception

The term psychophysics was first coined in 1860 by Gustav Theodor Fechner and is a

sub-discipline of psychology that quantifies the relationship between physical stimuli and

their subjective percepts (Kingdom & Prins, 2010). The use of psychophysical method-

ologies facilitates quantification of the relationship between the physical world and human

perception (Lu & Dosher, 2014). As a methodology, psychophysics can be applied to

many domains, but the ‘classic’ work focuses on early sensory systems (Read, 2015). The

examples I discuss, and the application of these methods in my thesis, are specific to the

visual system.

One focus in psychophysics is measuring the sensitivity of the perceptual system.

Sensitivity can be defined as the minimal physical stimulus change that is detectable

by the observer. By manipulating the physical stimulus, and measuring the resulting

changes in perception, psychologists can characterise the link between input and percept.

This relationship is typically summarised in the form of a psychometric function (PF),

which relates quantitative stimulus properties to the probability of a particular percept

(Read, 2015). Typically, parameters of interest are extracted from the PF that summarise

an observer’s sensory processing. A PF can be fully described by four parameters: the

threshold (α), slope (β), guess rate and lapse rate (Prins, 2013). Two parameters of

interest for characterising the underlying sensory mechanisms are α and β. α specifies

the location of the function along the stimulus dimension and is usually defined by a
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point where a specific level of performance is achieved (Prins, 2013). One example of a

location measure adopted in appearance-based, forced-choice matching tasks, is the point

of subjective equality (PSE). The point of subjective equality (PSE) is defined as the point

at which the stimulus appears perceptually equal to another stimulus or to an internal

standard. At this point, the observer will be as likely to indicate either response option

for a given stimulus level (Kingdom & Prins, 2010). The parameter β determines the

rate of change in the observer’s responses. In the adaptive procedures detailed in the

experimental work in this thesis the guess rate and lapse rate are referred to as nuisance

parameters and are therefore set as fixed values (Kontsevich & Tyler, 1999).

In order to acquire the data to which PFs were fitted for each observer, I used the

psi method (Kontsevich & Tyler, 1999). This adaptive procedure is a Bayesian approach,

optimised for acquisition of both the threshold and slope of the PF (Kontsevich & Tyler,

1999). Essentially, on each trial the psi algorithm selects the stimulus intensity that max-

imises the expected information to be gained by completion of that trial. The efficiency

gained by this approach facilitates estimation of both the slope and threshold with equiva-

lent precision to conventional methods with significantly fewer trials (Kontsevich & Tyler,

1999).

In conclusion, utilising psychophysical methods is advantageous as they allow us to

get closer to the underlying neuronal mechanisms responsible for perception (Read, 2015).

They allow us to determine how sensory information is encoded, and how this information

is converted into perceptual judgements. Changes in perceived stimulus intensity are

believed to be directly related to changes in how sensory neurons encode physical stimuli.

As a methodology, psychophysics is a key tool for quantifying human perception of the

visual world and can provide a window to brain function.

2.2 Face and body processing in the brain:

Magnetic resonance imaging

MRI is a non-invasive scanning technique which utilises a strong static magnetic field

(B0) to acquire images of the human body (Huettel et al., 2014). While important for

many clinical applications, MRI has evolved into an important tool for modern cognitive
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neuroscience as it allows us to explore relationships between brain structure, function and

behaviour.

2.2.1 Basic concepts of MRI

Hydrogen (H1) atoms are composed of a single proton and are highly abundant in the

human body. Each nucleus has an intrinsic ‘spin’, which means when a person is placed in

the magnetic field of an MRI scanner the protons begin to precess. The frequency at which

a proton precesses is referred to as the Larmor frequency (Tubridy & McKinstry, 2000).

Most protons will precess in a low-energy state, aligned with the applied magnetic field.

However, a few will precess in the opposite direction, in a high-energy state. Radiofre-

quency pulses are applied at the resonance frequency of hydrogen to excite the aligned

H1 atoms. This causes protons in the low-energy state to absorb energy and move to a

higher-energy state. Following an excitation pulse, the equilibrium of the state must be

restored. The process of the higher-energy spins returning to the lower-energy state causes

a release of radio-waves, which is what constitutes the magnetic resonance (MR) signal.

Different tissue types in the brain relax at different rates which results in differences in

image intensities for different tissues. Localisation of the signal for image construction

relies on the application of magnetic field gradients, in addition to the B0. These are

secondary magnetic fields which vary as a function of position, causing the resonance

frequency of protons to change according to location. This spatial ‘tagging’ of spins is

used to selectively excite a targeted slab of tissue, as well as create spatially-dependent

differences in frequency and phase within the excited slice of tissue. This in turn allows

for the reconstruction of a three-dimensional image that is sensitive to the local magnetic

environment, which is reflective of the different tissue properties.

2.2.2 Functional MRI (fMRI)

The development of fMRI in the 1990s was an exciting advance, facilitating imaging of

brain activity to identify neural responses to specific stimuli or tasks (Ogawa et al., 1990).

It became apparent that oxygenation levels influenced the magnetic properties of the blood,

and these changes could be quantified using MRI, birthing a new era of neuroimaging

(Huettel et al., 2014).
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Blood oxygenation level dependent (BOLD) fMRI

One of the most common approaches for fMRI, first described in the early-1990s, is BOLD

imaging, which relies on regional differences in cerebral blood flow (Ogawa & Lee, 1990).

By capitalising on the differences in magnetic susceptibility of oxygenated and deoxy-

genated blood, the applications of BOLD fMRI are now vastly utilised as an effective

method to non-invasively capture spatial changes in neural activity in the brain.

Oxyhaemoglobin is formed during respiration when oxygen binds to the haem compo-

nent of the protein haemoglobin in red blood cells. It has no unpaired electrons, however,

when oxygen is released, and deoxyhaemoglobin is formed, the unpaired electrons result

in the molecule becoming strongly paramagnetic. This causes a difference in the magnetic

susceptibility of the blood and the surrounding tissues, which result in differences in sig-

nal decay. Upon neural activation within a local region of the brain, changes in both the

local cerebral blood flow and oxygenation concentration occur, resulting in differences in

the MR signal decay (Glover, 2011). It is important to note that the generation of the

BOLD contrast is much more complex than just relying on blood oxygenation, as it is also

dependent on physiological factors such as blood flow, volume and vasculature (Arthurs

& Boniface, 2002). Early work has indicated that changes in BOLD responses linearly

relate to the underlying neural activity (Logothetis, 2003). In addition, work has been

undertaken to simultaneously record electrophysiological data and fMRI, which revealed

that the BOLD changes reflect the neural changes induced by a stimulus (Hillman, 2014).

High-field fMRI

With MRI being a dominant methodology utilised for investigating the functioning human

brain, advances have seen the advent of higher-field strength scanners. Ultra-high-field

(UHF) MRI refers to static magnetic fields of 7 Tesla (T) and above (Chang et al., 2016).

With UHF scanning, significant advances in spatial resolution have been possible. Typical

voxel dimensions on a 3T system are around 3x3x3mm3 for BOLD fMRI, whilst at UHF

the resolution can reach below 1x1x1mm3. In addition to the improved signal-to-noise

ratio (SNR) at UHF, there are differences in the magnetic susceptibility of the blood

resulting in a concomitant increase in BOLD signal at higher static magnetic field strengths

(Ladd et al., 2018). At 7T, the BOLD signal is more tightly related to the concentration of
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deoxyhaemoglobin in capillaries rather than larger veins, which is thought to more closely

reflect of the neural activity (Chang et al., 2016).

2.2.3 Diffusion MRI

Diffusion magnetic resonance imaging (dMRI) is an established methodology used to

non-invasively characterise tissue properties at the microscopic level (Brun et al., 2019).

Diffusion-weighted imaging (DWI) is based on the principles of random Brownian motion

which describes how molecules are driven by thermal energy and are constantly undergoing

small random fluctuations (Einstein, 1905). The rate of molecular diffusion is different in

different tissues of the brain; in the cerebrospinal fluid (CSF), diffusion of water molecules

is free or isotropic, in contrast to the more restricted, or anisotropic, diffusion of the grey

and white matter (Jones, 2010). By using MRI sequences that are sensitive to differences

in the diffusion of water, images can be produced that have distinct contrasts for different

tissue types, providing insight into the underlying structure of the brain.

The acquisition of DWI requires the application of gradient pulses, which essentially

magnetically labels ‘spins’ carried by diffusing molecules (Jones, 2010). As diffusion driven

displacement of water molecules occurs, the MRI signal becomes attenuated, providing a

quantitative measure for diffusion along a particular gradient direction, referred to as the

diffusion coefficient (D) (Le Bihan & Johansen-Berg, 2012). Diffusion of water is highly

anisotropic in the myelinated white matter, and therefore the changes in D along specific

directions can allow inferences to be made about long-range white matter pathways of the

brain (Le Bihan & Johansen-Berg, 2012).

Diffusion tensor imaging (DTI)

DTI is one of the most commonly utilised applications in neuroscience research to charac-

terise the diffusion of water in the brain (Basser & Pierpaoli, 1996; Jones, 2010). Fitting

the tensor model allows the three-dimensional shape of diffusion to be quantified across

three principle directions within each voxel, thus providing insights into the microstruc-

tural organisation of the brain (Jones, 2010). The three-dimensional shape, and magnitude

of diffusion, is dependent on the underlying brain architecture and physiology (Huisman,

2010). Within the CSF where diffusion is free and equal in all directions, the diffusion
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can be described as ‘isotropic’ and the diffusion tensor represented as a sphere. In white

matter tracts, where the diffusion of water is mainly in the direction parallel to the long

axis of the tract, diffusion is ‘anisotropic’ and can be graphically represented as an ellipsoid

(Huisman, 2010). Diffusion tensor imaging allows anisotropy in the tissue to be accounted

for by using at least six different gradient directions to acquire images (Jones, 2010). This

allows the diffusivities along the principle directions to be calculated. Metrics such as

mean diffusivity (MD), fractional anisotropy (FA), radial diffusivity (RD) and axial dif-

fusivity (AD) can be recovered by fitting the tensor model. One of the most widespread

measures of anisotropy is FA, as it is highly sensitive to microstructural changes and

has shown good correspondence with myelination (Alexander et al., 2007; Beaulieu, 2002;

Choe et al., 2012). Despite FA being referred to as a measure of ‘microstructural integrity’,

it is very non-specific, making it sensitive to multiple microstructural attributes, includ-

ing axon orientational dispersion, axon density, membrane permeability and myelination

(Basser & Pierpaoli, 1996; Winston, 2012).

Tractography

Tractography is an extension of DTI, where directional information from each voxel about

the diffusivity of water is used to generate three-dimensional white-matter maps (Yoga-

rajah et al., 2009). Water molecules are less ‘hindered’ along fibres, compared to per-

pendicular orientations, which means it is possible to infer the long-range white-matter

pathways in the brain based on neighbouring local fibre orientations (Jeurissen et al.,

2017). The advent of tractography allowed the non-invasive study of white-matter tracts

in-vivo for the first time, and is now the methodology of choice to investigate quantitative

MRI parameters in specific fibre bundles (Jeurissen et al., 2017; Yogarajah et al., 2009).

Two predominant tractography algorithms exist: deterministic and probabilistic (De-

scoteaux et al., 2009). Deterministic approaches assume that each voxel has a unique

orientation estimate which can be tracked between voxels resulting in a single pathway

emanating from a starting point (Jeurissen et al., 2017). However, the reality is that each

of these voxel-wise estimates on orientation is subject to a degree of error which is not

considered in deterministic tracking. On the other hand, probabilistic tractography allows

this measurement uncertainty to be characterised resulting in a distribution of possible
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trajectories from a seed region (Jeurissen et al., 2017). This provides an estimate of con-

fidence regarding the tracking of the route with the least hindered diffusion, which can

improve the reliability of tractography in regions with multiple crossing fibres and high

uncertainty (Jbabdi & Johansen-Berg, 2011).

As highlighted above, DTI is one of the most commonly used models for characterising

the diffusivity within a voxel. Despite its widespread application, it is inherently limited

as it is only capable of distinguishing a single fibre population per voxel (Jeurissen et al.,

2017). Hence, voxels with crossing fibre configurations have a low anisotropy index due to

the non-gaussian diffusion of crossing fibres (Descoteaux et al., 2009). Estimates indicate

that up to a third of all white matter voxels in the brain contain multiple fibre crossings

as a consequence of kissing, branching or fanning axons, just to highlight a few examples

(Behrens et al., 2007). To overcome these limitations, ‘higher-order’ fibre modelling meth-

ods have been developed with the ability to estimate multiple fibre orientations per voxel.

Instead of each voxel being represented by a unidirectional ellipsoid, the fibre orientation

distribution function (fODF) represents fibre orientations as a continuous function of a

sphere (Jeurissen et al., 2017). Derivation of fODFs is dependent on advanced imaging

acquisitions which employ a large number of gradient directions at high b-values, where

b-values are proportional to the gradient strength, duration and diffusion time (Berman

et al., 2013). These recent advancements in modelling, in combination with new hard-

ware and acquisitions, overcome the limitations of the crossing fibre problem which makes

tractography more robust.

High-gradient dMRI

The diffusion data reported in Chapter 4, was acquired on a 3TM Connectom Siemens sys-

tem (Siemens Healthcare, Erlangen, Germany) with gradients of 300 mT/m. The stronger

diffusion weightings per unit time result in an improvement in the SNR (Jones et al., 2018).

In comparison to a standard 3T system, where the gradients are typically 80 mT/m the

Connectom’s increased gradient strength improves SNR by approximately 50%. An ad-

vantage of the Connectom system is that stronger diffusion gradients, up to approximately

b=6000s/mm2 can be achieved. Standard research MR systems typically utilise b-values

in the range of 500-1200. By using higher b-values it is possible to get closer to the un-
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derlying biophysical processes, as the signal is predominately coming from within axons

or glial processes at such values (McNab et al., 2013).
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Chapter 3

Individual differences in adult’s

perception of facial expressions in context

3.1 Introduction

A key feature of effective face detection is the ability to extract emotional information

from the expression (Calder, 2011). Facial expressions provide information to help guide

an observer’s behaviour during a social interaction and can aid prediction of conspecifics

actions (Rajhans et al., 2016). However, facial expressions are rarely encountered in iso-

lation, and are typically perceived in conjunction with a body posture. Previous research

on the perception of facial expressions has highlighted the importance of context (Aviezer

et al., 2012a; Aviezer et al., 2008; Hassin et al., 2013; Meeren et al., 2005; Teufel et al.,

2019).

Observers’ judgements of facial expressions have been shown to be biased towards the

emotion expressed by a non-congruent body posture (Meeren et al., 2005). Electrophysio-

logical differences have also been reported in early visual regions when viewing congruent

versus incongruent facial expression and body postures. Meeren et al. (2005) interpreted

this difference as the presence of a rapid and automatic evaluation to assess if the biolog-

ically important emotional information in the face and body was congruent. More recent

work by Aviezer and colleagues (2008) found that an affective body posture influenced

perception of facial expression, such that observers were more likely to perceive a dis-

gusted face as ‘angry’ when presented in the context of an angry body. When participants

were instructed to ignore the body posture when making facial expression categorisations,
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or were given a concurrent working memory task to add cognitive load, body posture was

still found to influence the perception of the facial expression (Aviezer et al., 2011). This

work supports the idea that integration of facial expression and body postures is auto-

matic. However, more recent work challenges the ‘early integration’ view of face and body

stimuli (Teufel et al., 2019). Using an adaptation paradigm, Teufel and colleagues (2019)

provide evidence for later integration of facial expression and body posture, downstream

of early core face perception regions. The argument for integration occurring early in

the visual processing stream conflicts with established models of face recognition which

describe expression processing taking place further downstream.

Despite current attempts to understand at which stage in the processing stream in-

tegration of facial expression and body posture cues takes place, there is a gap in the

literature exploring exactly how these signals are combined. To establish exactly how hu-

mans make judgements about facial expressions in the context of a whole-person, accurate

measurements are required of how the individual face and body cues are represented. To

my knowledge, no published research has quantified how well observers are able to cat-

egorise individual facial expressions and body postures and related this to whole-person

categorisation of facial expressions. Furthermore, much of the current literature relies

on the use of maximum intensity prototype facial expressions; although these faces are

validated from databases, they are frequently not akin to the typical expressions of emo-

tion we encounter in the real world. In the present study, in order to create a graded

continuum of body postures, novel 3D body avatars were created that could be morphed

between different postures. To address limitations in the literature, the current study

adopts psychophysical methods to accurately quantify how observers judge isolated fa-

cial expressions, body postures and facial expressions in the context of an affective body

posture.

In order to get a better understanding about what factors lead to integration of facial

expression and body posture, research must take into consideration both the individual

representations of the two cues, and other higher-order processing differences. Differences

in an individual’s acquired emotional knowledge and experience could play an important

role in integration of emotional social cues. To gain insight into individual differences in

propositional knowledge for emotion I administered the Levels of Emotional Awareness
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Scale (LEAS) questionnaire. Individuals low in emotional complexity, as reflected by a

low total LEAS score, encode and represent emotion in action-oriented terms, whereas

individuals high in emotional complexity are able to process multiple emotional concepts

with more normative recognition of emotion cues in others (Lane et al., 1998; Tavares

et al., 2011). Based on previous research using the LEAS questionnaire, I predicted that

how an individual performs on this questionnaire may be reflective of perceptual abilities

when categorising facial expressions with an expressive body posture (Tavares et al., 2011).

In observers who have lower emotional complexity and are therefore thought to be more

action-oriented, one would expect them to be more influenced by the body posture when

judging the facial expression in the context of a whole-person. In contrast, one would

hypothesise an observer with a higher LEAS score, reflective of more complex emotion

concepts, is less likely to have their judgements of the facial expression affected by an

expressive body posture.

The primary aim of this study was to assess the feasibility of a novel psychophysical

paradigm to quantify how much body posture influenced perception of facial expressions.

In addition, I aimed to determine observers’ ability to categorise isolated facial expressions

and body postures, and relate these representations to whole-person perception of emo-

tion. Furthermore, I also aimed to capture differences in higher-order emotional awareness

between observers using the LEAS questionnaire and determine if these differences were

related to an observer’s perceptual ability for categorisation of social cues.
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3.2 Methods

3.2.1 Observers

A total of 43 näıve observers (9 male) were recruited from both the general population and

Cardiff University School of Psychology undergraduate students. Only neurologically and

physically healthy participants were recruited. All participants had normal or corrected to

normal vision. All participants were over 18 years of age (mean age = 20.68 ± 2.84 years,

range = 18 – 29). Observers provided written informed consent prior to participating.

Experimental protocols were approved by Cardiff University School of Psychology Ethics

Committee, and were in line with the Declaration of Helsinki. All participants were fully

debriefed at the end of the testing session and payment was provided in the form of cash

or course credits.

3.2.2 Stimuli

Throughout my thesis, angry and disgusted expressions were used for the following reasons:

firstly, previous research exploring the influence of body posture on facial expressions has

shown that due to the high ‘confusability’ of these expressions, the contextual influence

is greatest (Aviezer et al., 2008). In the current feasibility study, I wanted to relate

the reliability of the individual facial expression and body posture representations to the

body biasing effect, hence, I aimed to maximally induce this effect with the expressions

selected. Secondly, given that the use of body posture morphs in my study is novel,

I selected expressions that are easily identifiable from a body posture, and would lend

themselves to morphing between postures. Previous research has shown that angry and

disgusted body postures are two of the most readily recognised distinct static postures

from the range of basic expressions (Lopez et al., 2017). Presentation of all stimuli was in

grey-scale with a grey background.

Facial Expressions

Facial expression stimuli were generated using photographs of male actors from the Rad-

boud and NimStim validated sets of facial expressions (Langner et al., 2010; Tottenham

et al., 2009). Four Caucasian male identities were selected. The angry and disgusted
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facial expressions were morphed together for each identity using FantaMorph software

[FantaMorph Pro, Version 5]. This was accomplished using the ‘Face Locator’ feature to

map out the main features of each face. This procedure generated morph continua for

each identity. The morphs changed in increments of 5% between the angry and disgusted

facial expressions for each identity. In total, there were 21 morph levels generated for

each identity between anger and disgust. Each morph was exported from Fantamorph as

an individual image file. For categorisation of the facial expressions in isolation, a mask

blending into the mean grey background was used to remove any external facial features,

such as the hair and ears [Figure 3.1a].

Body Postures

Body posture morphs were weighted averages of two motion captured 3D photorealistic

body avatars expressing anger and disgust (unpublished stimuli from collaborators at

Max Plank Institute Tubingen, 2018). These were created by a male adult actor in a

motion capture suit with motion trackers distributed over the whole body. The poses

for the angry and disgusted postures were based on the stimulus set used in the Aviezer

et al. (2008) study. Visualisation of these postures was achieved using Unity 3D game

engine [Unity, 2018]. Four unique angry and disgusted body postures were generated

by the actor adopting slightly different poses. For each of the identities the individuals

body composition and clothing was different. This resulted in 4 identities, each having

one disgusted and one angry posture. The avatars were morphed between the expressive

postures producing a range of angry and disgusted body posture morphs changing in

increments of 5%, resulting in a total of 21 morph levels per identity. Each body posture

was combined with a facial identity to make a photorealistic ‘whole-person’, and a mean

grey oval was placed centrally over the face to conceal the distinguishing features of the

facial expression [Figure 3.1b].

Whole-person stimuli

To create the whole-person composite stimuli the individual morphed emotional faces were

manually pasted onto the body postures using GIMP [GNU Image Manipulation Program,

Version 2.10]. In order to maximise the influence of body posture on categorisation of
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facial expressions, the morphed facial expressions for each identity were merged with both

fully-angry and fully-disgusted body postures [Figure 3.1c].

Figure 3.1: Experimental conditions
The figure depicts the three experimental conditions: a. Facial expression, b. Body
posture, c. Whole-person conditions. On each trial the stimulus was presented centrally
for 500ms. Observers were instructed to categorise the facial expression in the [a.] facial
expression and [c.] whole-person conditions, and the body posture in the [b.] body posture
condition. Following presentation of the stimuli, response options appeared on screen and
remained until an observer made a response. The response was made with a key press;
observers pressed 1 for anger and 2 for disgust. The next trial commenced following a
500ms inter-trial interval.
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3.2.3 Procedure

Presentation of the task was controlled by custom-written MATLAB [Version 2016b, The

MathWorks, Natwick, MI, USA] code using the Psychophysics Toolbox (Version 3.0.14)

(Brainard, 1997; Kleiner et al., 2007; Pelli, 1997). Observers took part in three conditions:

1. Facial expression categorisation, 2. Body posture categorisation, 3. Whole-person

categorisation [Figure 3.1]. For all conditions the stimulus presentation procedure was

identical. The test stimulus was presented centrally on the screen for 500ms. The images

subtended approximately 15◦ visual angle (vertically) by 10◦ visual angle (horizontally).

Following stimulus presentation, the response options appeared and remained on screen

until the participant made a response. The participants were instructed to make a cate-

gorisation of the stimuli as disgusted or angry, indicating their decision with a key press.

Participants were explicitly instructed to categorise the facial expression, and ignore the

body posture in the whole-person condition, in order to determine how much the body

context biased perception of the facial expression. In the absence of eye-tracking data,

to ensure observers were not just indicating the expression shown in the body posture,

participants were specifically instructed to categorise the emotion presented in the facial

expression. This instruction was the same as other published research in this field (Aviezer

et al., 2008, 2011; Meeren et al., 2005; Teufel et al., 2019). After the key press the next

trial commenced following a 500ms inter-trial interval.

The stimulus level of the morphed facial expressions, body postures and whole-person

stimuli was determined using the adaptive ‘psi’ algorithm (Kingdom & Prins, 2010). The

psi method is considered to be one of the most efficient adaptive methods used for esti-

mating full psychometric functions, thus minimising the overall number of trials required

(Kingdom & Prins, 2010). The total number of trials for the facial expression and body

posture conditions was 100. For the whole-person condition there were 496 trials. Fol-

lowing in-house piloting of the whole-person task, it appeared to be more perceptually

challenging than categorisation of the isolated face and body stimuli, hence the number of

trials was increased to ensure an adequate fitting of psychometric functions. Each of the

four identities were displayed an equal number of times in each condition. The total task

took approximately 30 minutes to complete.

The study design was a repeated-measures block design. The order of the three experi-
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mental conditions was counterbalanced across participants. For each condition the partici-

pant underwent a short training phase at the beginning of the block. For the whole-person

task, observers were instructed to categorise the facial expression and explicitly told to

ignore the body posture. A subset of observers (n=23) completed the LEAS question-

naire (Lane et al., 1990). The LEAS questionnaire is a written performance measure that

requires the subject to articulate in written form how a range of scenarios would make

themselves and another person feel. The questionnaire is composed of 20 vignettes and a

structural scoring criterion was used to identify the emotional terminology utilised by the

participant (Lane et al., 1998). Specific training was undertaken by the experimenter prior

to response scoring on the questionnaire. Observers completed the questionnaire electron-

ically using Qualtrics [Qualtrics, Provo, UT]. The questionnaire took approximately 20

minutes to complete.

3.2.4 Data Analysis

Using custom-written MATLAB code with the Palamedes toolbox (Prins & Kingdom,

2018), PFs were fitted based on a cumulative Gaussian to estimate the PSE and slope

value for each observer, for each condition [Figure 3.2]. Lapse rate was fixed at 0.03; guess

rate was determined by the experimental procedure and was fixed at 0. The steeper the

slope of the psychometric function, the more reliably the observer distinguished between

the morphed stimuli (Kingdom & Prins, 2010). The PSE is the point at which the ob-

server was equally likely to respond disgust or anger to a particular stimulus. The PSE

change in the whole-person condition between facial expression morphs shown with fully-

angry and fully-disgusted body postures reflected the modulation of the facial expression

judgement due to the contextual influence of the body posture [Figure 3.2c]. Goodness-

of-fit of the PFs was assessed using the method described in Wichmann and Hill (2001)

and implemented in the Palamedes toolbox in MATLAB (Prins & Kingdom, 2018). The

procedure allowed estimation of the proportion of deviance values (pDev) obtained from

bootstrapping, that were greater than the deviance value of the original data (Wichmann

& Hill, 2001). Furthermore, visual inspection of PF fitting was assessed independently by

two researchers. Nine participants were excluded from the facial expression condition, one

from the body posture condition and nine were excluded from the whole-person condition

I L Ward 32



based on poor fits of the PF. For subsequent analyses Spearman’s rank correlations were

performed as the data followed a non-normal distribution. To ensure robustness of the

results, Cook’s distance was implemented to ensure data points with large residuals were

removed from the correlations reported.
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(a) Facial expression condition (b) Body posture condition

(c) Whole-person condition

Figure 3.2: Example of psychometric function fitting
For each condition, for every observer, a PF was fitted to their data. The figure shows
an example of one observer’s data for the [a.] facial expression, [b.] body posture and
[c.] whole-person categorisation. In the whole-person condition the green PF shows the
facial expression shown with a 100% angry body posture and the blue PF shows the facial
expression shown with 100% disgusted body posture. The PSE change is shown with the
red arrow. The x-axis reflects the percentage of disgust present in the stimulus presented.
Therefore, at less than 50% disgust, there is a higher percentage of anger present in the
stimulus than disgust. The y-axis depicts the probability of the stimulus being categorised
as disgusted by the observer. The size of the plotted data points reflects the number of
trials at the specific stimulus level, with a larger size indicating more trials at a particular
morph level.
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3.3 Results

3.3.1 Isolated facial expression and body posture categori-

sation

The slope values of the estimated PF provided a measure of how accurately an observer

distinguished between the morphed stimuli; the steeper the slope, the more precise the

individual’s performance. I found a significant positive correlation between the estimated

slopes of the facial expression and body posture conditions (r(s)=0.54, p<0.01) [Figure

3.3]. This suggests that observers who were better at categorising facial expressions were

better at categorising body postures, and vice versa.
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Figure 3.3: Relationship between facial expression and body posture precision
A significant positive correlation was seen between observers facial expression and body
posture precision (r(s)=0.54, p<0.01). The precision for each condition was indexed by
the slope estimate of the individuals PF for each condition. Each point represents one
observer. The 95 % confidence interval is shown with grey shading.
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Despite the strong correlation between observers’ performance on facial expression and

body posture conditions, the estimated slopes for the body posture only condition, were

significantly steeper than the facial expression slopes, as determined with a Wilcox Signed

Rank test (z=1.06, p<0.001) [Figure 3.4]. This indicates that observers performance when

categorising body postures was more reliable than facial expression categorisation.
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Figure 3.4: Estimated slope values from PFs of facial expression and body pos-
ture categorisation
The violin plot displays the estimated slope values for each observer in the facial expression
and body posture conditions. There was a significant difference between the estimated
slope values of the facial expression and body posture conditions (z=1.06, p<0.001). Each
point represents one observer. The distribution of the values is illustrated by the shaded
area, with the overlaid boxplot indicating the median and the interquartile range.

3.3.2 Whole-person categorisation

Body posture was found to significantly influence the perception of facial expressions.

The greater the difference in PSE between psychometric functions from the whole-person

condition, the larger the contextual influence the body posture had on perception of the

facial expressions. When a facial expression was judged with a 100% angry body posture,

a greater amount of disgust was required in the facial expression to perceive the face as

disgusted due to the influence of the affective body [Figure 3.2]. A paired t-test revealed a

significant difference in the PSE for facial expressions presented on 100% angry and 100%
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disgusted body postures (t(33)= 7.21, p<0.001), indicating overall there was a significant

influence of body posture on facial expression perception. Furthermore, I observed large

individual differences in the magnitude of body posture influence on perception of the

facial expression across participants [Figure 3.5]. The PSE change for some observers was

small, indicating that body posture did not influence the perception of facial expressions

much, however for other observers the PSE change was much larger.
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Figure 3.5: PSE change between categorisation of facial expressions on a 100%
angry and a 100% disgusted body posture
The raincloud plot displays the PSE values for the whole-person condition when facial
expressions were presented with a fully-angry or fully-disgusted body posture. A significant
difference was observed between the PSE values when the facial expression was categorised
with a 100% angry and 100% disgusted body posture (t(33)= 7.21, p<0.001). Each line
represents one observer and depicts the change in PSE. The distribution of the values is
illustrated by the shaded area, with the boxplot indicating the median and the interquartile
range.

A significant negative relationship was found between isolated facial expression pre-

cision and the influence of body posture, as indexed with the PSE change (r(s)= -0.397,

p=0.041)[Figure 3.6]. Observers who had more precise facial expression representations

showed less influence of body posture on perception of facial expressions in the whole-
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person condition. No relationship between isolated body posture precision and the mag-

nitude of the PSE change was observed (r(s)= -0.293, p=0.1).
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Figure 3.6: Relationship between isolated facial expression precision and PSE
change
A significant negative correlation was seen between observers facial expression precision
and PSE change (r(s)= -0.397, p<0.05). Each point represents one observer. The 95 %
confidence interval is shown with grey shading.

In order to further understand the relationship between the isolated facial expression

and body posture precision with the magnitude of the body biasing effect, a linear re-

gression model was fitted. Model 1 [Equation 3.1] explained the PSE change simply in

terms of the facial expression precision. Model 2 [Equation 3.2] included the body posture

precision component in the model, as well as facial expression precision.

Model 1: PSE change ∼ Facial expression precision (3.1)

Model 2: PSE change ∼ Facial expression precision + Body posture precision (3.2)

Comparing the Akaike information criterion (AIC) for the two models (Model 1 =

-18.84, Model 2 = -15.33) showed that Model 1 fits the data better, as it has a lower AIC

value. As Model 2 has a different number of parameters, I also used Bayesian information

criterion (BIC) to confirm the findings. BIC penalises model complexity more heavily

than AIC. Model 1 has a lower BIC than model 2 (Model 1 = -14.95, Model 2 = -10.30)
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therefore, Model 1 is considered more likely to be the better fit to, or more representative

of, the data. This indicates that adding body posture precision to this simple linear model

did not improve the prediction of the PSE change.

3.3.3 LEAS

The total LEAS scores ranged from 59 – 85, which is in line with other published work

that administers this questionnaire (Lane et al., 1998). I found no relationship between

PSE change and total LEAS score (r(s)= 0.261, p=0.228). No relationship was observed

between LEAS score and isolated facial expression (r(s)= 0, p=1) or body posture precision

(r(s)= 0.127, p=0.518).
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3.4 Discussion

The results of this study demonstrate the feasibility of applying psychophysical methods

to quantify the influence of body context on facial expression perception. I provide data

quantifying body posture precision, as well as individual facial expression precision, and

the influence of body posture on facial expression perception in whole-person emotion per-

ception. My results demonstrate that an affective body posture influences the perception

of a facial expression; this finding replicates previous published research (Aviezer et al.,

2011; Aviezer et al., 2008; Meeren et al., 2005; Teufel et al., 2019). However, in addition,

I found individual differences in the magnitude of the influence of body context on the

perception of facial expressions. The development of the psychophysical methodology to

assess whole-person perception facilitated the quantification of the extent of body posture

influence on perception of the facial expression through the PSE change. Some observers’

perception of the facial expression was minimally affected by the body context, whilst

others’ perception was heavily biased by the body posture.

The results of the present study show that the precision of the isolated face cue is

related to how much body posture influences the judgement of the facial expression in

whole-person perception of emotion. Observers who had more precise isolated facial ex-

pression representations, displayed less of an influence of body posture on perception of

facial expression in the context of a whole-person. Similarly, observers’ who had less pre-

cise facial expression representations were more influenced by the affective body context.

One potential explanation for this finding is that observers who display poor facial expres-

sion recognition may more readily rely on other social cues to support their categorisation

of faces in the real world. Therefore, in the whole-person condition these observers’ were

more biased by body posture.

Other research has shown that the influence of body posture on facial expression per-

ception is reduced after administration of oxytocin (OT) (Perry et al., 2013). Conversely,

recognition of facial expressions is known to be improved following administration of OT

(Shahrestani et al., 2013). Perry and colleagues (2013) found that the influence of body

posture on perception of facial expression was less in a group of adults that had nasal

administration of OT compared to a placebo group. Although it is unclear what the

underlying mechanism for this is, one possibility is that it could be a consequence of an
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overall enhancement in facial expression recognition. This explanation is supported by my

current findings, where enhancement of facial expression recognition causes observers to

rely less on body posture when perceiving the facial expression in whole-person emotion

perception.

Previous research with older adults has demonstrated that they give the body more

‘weight’ when judging incongruent whole-person displays of emotion (Abo Foul et al.,

2018). This finding has been attributed to an optimal social-expertise strategy (Abo Foul

et al., 2018). It has been suggested that real world facial expressions are typically ambigu-

ous, and the contextual aid of a body posture provides additional information to support

an observer’s judgement. Abo Foul (2018) and colleagues suggest, that in older adults,

adopting this more holistic approach to emotion perception is an advantageous strategy.

My findings in the present study challenge this hypothesis. With normal ageing comes a

gradual decline in cognitive and perceptual abilities, and facial expression recognition is no

exception (Lott et al., 2005; Sullivan & Ruffman, 2004). In the present study, I found that

observers who were most influenced by body posture had poorer facial expression recogni-

tion. Therefore, I would expect that the increased reliance on body context in older adults

is not evidence of social-expertise but could be a consequence of a decline in perceptual

ability of isolated facial expression recognition, resulting in greater reliance on body pos-

ture. To further explore this idea between perceptual ability of the individual cues and the

contextual influence of the body posture, Chapter 4 explores whole-person recognition of

emotion across development in children and adolescents. Children are still developing and

refining their ability to perceive facial expressions (Dalrymple et al., 2017). This provides

an excellent opportunity to probe individual differences, due to developmental stage, in

the relationship between facial expression perception and the contextual influence of body

posture in whole-person emotion recognition.

Individual differences provide a unique opportunity to understand the cognitive mech-

anisms involved in the integration of social information from facial expressions and body

postures (Boogert et al., 2018). Typically, differences between observers are treated as

measurement error, and this ‘noise’ is deemed to be a nuisance parameter (Mollon et al.,

2017). However, the individual differences reported between observers often arise from real

differences in optical, neural and perceptual differences that mediate perception. These
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differences can provide a plethora of information about perception and warrant thorough

investigation. Reporting individual differences here provides a further opportunity to ex-

plore how face and body emotion cues are integrated under a more formal mathematical

framework [Chapter 5]. Findings from the simple linear regression model reported in

the present chapter indicate the PSE change is best predicted by the model that con-

tained the facial expression precision only. This approach is limited as it does not truly

account for the individual differences in perception reported. Adopting a more formal

mathematical model to assess how facial expression and body posture cues are combined

to form whole-person representations, utilising the naturally existing variability between

individuals, motivated subsequent work in Chapter 5 of this thesis.

In addition to perceptual factors, I also captured differences in cognitive factors that

could be affecting perception of expressive stimuli in individuals. In contrast to my hy-

pothesis, no relationship was found between PSE change and observers’ total LEAS score.

Previous work has demonstrated that the higher an individual’s emotional awareness, as

indexed by a higher total LEAS score, the greater one’s capacity to appreciate the com-

plexity of a scenario both in themselves and another (Bajgar et al., 2005; Lane et al.,

1998). One possible explanation for the absence of a relationship in my results could be

a consequence of the small sample size, therefore any interpretation must be made with

caution. Ultimately, however, in the current limited sample the factors captured from

the LEAS questionnaire regarding individuals’ emotional complexity were not related to

observers’ perceptual ability in distinguishing social cues.

One limitation of the present study is the high number of exclusions as a consequence

of poorly fitting PFs. One reason could be due to the specific facial expressions selected.

To probe the mechanism for facial expression and body posture integration under a formal

mathematical framework in subsequent research [Chapter 5], obtaining reliable estimates

of facial expression perception in isolation is critical. Therefore, to ensure observers reach

a certain threshold in performance for future research into cue integration, the research

in Chapter 5 utilises different facial expressions identities. Another advantage of incorpo-

rating novel stimuli is that it allows the subsequent findings to translate to different facial

identities and therefore be generalised further. An alternative explanation for the high

level of exclusions could be a due to the sample of participants. A subset of the participants
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were recruited from the Undergraduate School of Psychology population and were paid

in course credits for their participation. Given the adaptive psychometric methodology

adopted in this study, and the large number of trials, it required participants to be highly

motivated. The performance of some participants’, in comparison to staff that were used

for piloting, and even children using the same task and stimuli [Chapter 4], indicated that

some of these observers’ may not have performed to the best of their ability. To mitigate

these potential confounds from the participant pool in future, for my subsequent research

in adults [Chapter 5], I targeted recruitment to a more motivated sample who received

cash payment.

3.5 Chapter Summary

To summarise, this chapter demonstrates the feasibility of using novel psychophysical

methodology to explore facial expression and body posture integration. I found a signifi-

cant influence of body posture on facial expression judgements; however, I also discovered

large individual differences in the magnitude of this effect. Observers with poorer facial

expression recognition displayed a greater influence of body posture on facial expression

perception when categorising faces in context. In contrast, observers’ who showed a more

precise representation of facial expressions were influenced less by the affective body pos-

ture. These findings motivated the subsequent research in Chapters 4 and 5 of my thesis.

These results have important implications for understanding how humans combine facial

expression and body posture, and provide the foundation for the subsequent research in

my thesis.
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Chapter 4

Functionally-defined white matter

microstructure: Facial expression and

body posture perception in children

4.1 Introduction

The ability to recognise facial expressions develops across childhood. With increasing age,

children become more accurate at detecting subtle changes in facial expressions (Herba

et al., 2006; Thomas et al., 2007). Detecting emotions from facial expressions is thought to

be an essential component of children developing emotional knowledge (Widen & Russell,

2010a). From birth, newborns show a preference for faces over other stimuli (Simion &

Giorgio, 2015), however the process of acquiring an ‘adult-like’ ability to recognise emo-

tion from facial expressions is a protracted developmental process (Gao & Maurer, 2009).

Children are believed to start with two broad categories of positive and negative emotions,

which during development will differentiate into more complex, mature adult categories

of emotion (Widen & Russell, 2010b). Accuracy decoding of the basic expressions has

revealed different developmental trajectories for different expressions (Herba et al., 2006;

Rodger et al., 2015; Widen & Russell, 2010a, 2010b, 2013). Recognition of happiness and

fearfulness is adult-like from early childhood, whilst sadness and surprise show gradual

improvements with increasing age (Rodger et al., 2015). Disgust, anger and neutral ex-

pressions show the steepest improvement in recognition from early childhood (Rodger et

al., 2015). Disgusted facial expressions are the last of the basic expressions to be reliably
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recognised by children, with children younger than 8 years of age mislabelling disgusted

faces as angry (Widen & Russell, 2010b, 2013).

There is sparse research exploring recognition of emotion from body postures across

development (Heck et al., 2018; Ross et al., 2012; Vieillard & Guidetti, 2009). Ross

and colleagues (2012) presented dynamic expressive body posture videos to children and

found steep improvements in performance up to 8.5 years of age, with slower improvements

through late childhood and adolescence. This work highlights that emotion recognition

from body posture is not fully mature by adolescence, similar to facial expression recog-

nition maturation (Ross et al., 2012; Vieillard & Guidetti, 2009). Mondloch et al. (2013)

found that 4-year-olds could categorise fearful or sad body postures above chance, whilst

in 6-year-olds, approximately 70% of the participants performed above chance identifying

the body postures presented. Importantly, in the same task adults were able to identify

the sad and fearful body postures without error (Mondloch et al., 2013).

A limited amount of research has examined the role of body context during facial

expression recognition in children (Leitzke & Pollak, 2016; Mondloch, 2012; Mondloch et

al., 2013; Nelson & Mondloch, 2017; Rajhans et al., 2016). Mondloch (2012) found when

children were asked to categorise facial expressions presented with an incongurent body

posture, their categorisation of the face was more affected by the body posture compared

to adults (Mondloch, 2012). This suggests that children are more influenced by body

context than adults when making facial expression judgements.

In Chapter 3, I found that individual differences in adults’ recognition of isolated fa-

cial expressions determined the extent to which body posture influenced facial expression

perception, such that those who were better at distinguishing facial expressions, were less

influenced by body posture, and vice versa. Given the developmental patterns of facial

expression recognition outlined above, I wanted to assess if the improvement in recogni-

tion could be linked to the influence of body context on perception of facial expressions

in children. Given younger children are less reliable at categorising emotions from facial

expressions, one would expect the categorisation of facial expression in the context of a

whole-person to be heavily biased by the body posture. In contrast, older children and

adolescents are thought to be more reliably able to categorise isolated facial expressions,

therefore, I would expect the influence of body posture on perception of a facial expression
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in older children to be reduced. In addition, I wanted to assess how body posture recogni-

tion develops across childhood and adolescence given the limited developmental research

exploring how visual perception of body postures develops.

At the cortical level, the development of face-specific and body-specific processing re-

gions in the ventral temporal cortex is a protracted process (Golarai et al., 2009). The

proportion of the fusiform cortex with face-selectivity has been shown to be substantially

smaller in adolescents than adults (Golarai et al., 2010; Haist & Anzures, 2017). Interest-

ingly the increase in the spatial extent and intensity of neural responses in the FFA has

been positively correlated with face recognition memory in late childhood (Golarai et al.,

2010), suggesting that development of face recognition ability emerges in parallel with

development of face-selective cortical activity. Work in children uncovering the evolving

cortical changes in body posture processing is limited; BOLD changes in FBA, EBA and

pSTS have been found to be higher in adults compared to children when viewing dy-

namic body stimuli (Ross et al., 2019). Therefore, the evolving cortical response to bodies

across development appears to draw some parallels with the neural development of face

processing in the brain.

Accepted models of face and body processing, specifically for facial expression and body

postures, illustrate the importance of a network of cortical areas for processing these cues

(Duchaine & Yovel, 2015; de Gelder, 2006; Haxby et al., 2000). Studying the white matter

connectivity between cortical regions is particularly important in children, as we know

there is a prolonged period of development. Myelination continues into adolescence and

alters the architecture of white matter tracts (Lebel & Beaulieu, 2011). Changes have been

observed in both volume and microstructural properties of white-matter with age (Mills

et al., 2016; Paus, 2010). Across development the fatty myelin sheath forms around axons,

increasing conduction velocity and refining the synchrony of electrical impulses (Buzsaki,

2004; Fields, 2008). Whilst this myelination is initially accelerated in early childhood,

coinciding with the advent of cognitive skills and abilities, it continues until 20 to 30 years

of age, and undergoes continuous refinements throughout the lifespan (Bartzokis et al.,

2012; Yakovlev & Lecours, 1967).

Ventral face-selective regions are highly interconnected to one another through direct

white matter connections between the cortical regions (Grill-Spector et al., 2017; Gschwind
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et al., 2012). These connections act as the building blocks for transmitting signals to

different cortical nodes in the visual hierarchy which are responsible for extracting distinct

features of faces. Not only do these connections reflect a key information transfer pathway,

the microstructural properties of white matter underpinning face processing have been

linked to face recognition ability. Tavor et al. (2014) reported that face recognition ability

was highly associated with the fractional anisotropy (FA) of the anterior part of the inferior

longitudinal fasiculus (ILF) in the right hemisphere of adults (Tavor et al., 2014). The ILF

is one of the main association bundles projecting through the occipito-temporal cortex,

which connects multiple face perception nodes (Wang, 2018). Specific to emotion, the FA

of the inferior frontal occipital fasiculus (IFOF) has been shown to significantly predict

facial expression recognition ability in adults (Unger et al., 2016). The microstructure

of the uncinate fasciculus (UF) has also been linked to adults ability to decode emotions

from facial expressions (Coad et al., 2017). This clearly highlights that inter-individual

differences in perceptual ability can be reflected in microstructural properties of associative

white matter tracts.

Neurodevelopmental research exploring white matter microstructure and face process-

ing is lacking. However, work has shown that the FA and mean diffusivity (MD) of the

ILF in a cohort of 6 to 23-year-olds was tightly coupled with age-related increases in the

size of functional face selective regions (Scherf et al., 2014). This work highlights the

importance between the structural-functional coupling of the brain regions underpinning

face perception, and illustrates the need for further research linking white matter to per-

ception. However, linking the microstructure of large associative anatomical tracts to

behaviour is inherently limited due to the lack of specificity that can be deduced between

cognition and large white matter bundles. For example, while the FA of ILF has been

found to be correlated with face recognition abilities (Tavor et al., 2014), ILF microstruc-

ture has also been linked to broader social cognition skills and reading ability (Ortibus

et al., 2012; Yeatman et al., 2014). This is unsurprising given the pathway traverses

many functional domains from occipital cortex to the temporal pole. In order to make

specific inferences about the role white-matter microstructure plays in specific aspects of

perception, exploration of the structural connectivity between functionally connected re-

gions of cortex is required. Gomez et al. (2015) combined measurements of white-matter
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connectivity, behaviour and functional selectivity, within subjects, to reveal the interplay

between the structure-function relationships of the brain and visual behaviour. By investi-

gating functionally-defined white matter (FDWM) tracts local to the fusiform face region,

Gomez et al. (2015) found that adults accuracy on a face recognition task was positively

correlated with the local FA of the right hemisphere FDWM tract (Gomez et al., 2015),

demonstrating the usefulness of a targeted approach for identifying functionally-relevant

tracts.

In this chapter, I specifically focus on the white-matter connections between cortical

nodes involved in face and body processing. Based on models of visual processing for facial

expression and body posture, and the expected site of integration of the face and body

cues, this work explores connectivity between functionally-defined category specific ventral

visual regions (OFA, EBA, FFA, FBA), posterior STS (pSTS) and the anterior temporal

lobe (ATL). Research exploring the influence of body posture on facial expression percep-

tion has alluded to the site for integration of face and body cues being late in the visual

processing hierarchy, and anterior to the core face processing regions in the temporal lobe

(Fisher & Freiwald, 2015; Harry et al., 2016; Teufel et al., 2019). Given the limited re-

search exploring body posture processing in the brain, inferences from macaques suggest

that the regions processing faces and bodies in the early inferotemporal cortex are largely

independent parallel networks (Premereur et al., 2016). To this end, I independently

localised the OFA, FFA and pSTS-face in the face network and EBA, FBA and pSTS-

body in the body processing network to explore white matter connectivity between these

functional nodes. Measures of microstructure to quantify differences in underlying tissue

properties were selected to be reflective of different cellular features: fractional anistropy

(FA), mean diffusivity (MD) and spherical mean at high b-value (S̊µ(b = 6000)). FA is

a highly sensitive but non-specific marker of anisotropy within the microstructural envi-

ronment. In complement to FA, MD provides a measure of the average diffusivity within

a voxel (Alexander et al., 2007). In addition, I utilised ultra-strong diffusion gradients

in this study to assess diffusion-weighted signal at high b-values (i.e., b=6000) (Mirza-

alian et al., 2016). Extracellular signal is suppressed at high b-value, resulting in a more

feature-specific marker of axons and/or glial processes in the microstructure (Hagmann

et al., 2010; McNab et al., 2013; Raven et al., 2020; Veraart et al., 2019).
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To summarise, in the current study my aims were twofold; firstly, to examine indi-

vidual differences in facial expression processing in context as a function of development,

and secondly, to link changes in face and body perception of emotion to microstructural

differences in the white matter of the ventral visual system. To address the behavioural

question, I indexed the precision with which observers were able to categorise individual

facial expressions and body posture cues, and related those to the body biasing effect

observed, similar to Chapter 3. In order to specifically target changes in the brain net-

works processing face and body cues, I adopted a functionally-defined approach to extract

white matter pathways connecting cortical nodes known to process faces and bodies. In

turn, I then related the microstructural metrics of these tracts to individual differences in

children’s perceptual performance.
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4.2 Methods

The study described herein was a subset of a larger neurodevelopmental project at Cardiff

University Brain Research Imaging Centre (CUBRIC), assessing the feasibility of scanning

children with high-gradient and ultra-high-field MRI scanners. In addition to the methods

described below, additional diffusion and functional scans were acquired at 3T and 7T.

Children visited CUBRIC on two separate days; on the first visit children were given the

opportunity to acclimatise to the scanner environment in a mock MRI scanner (de Bie

et al., 2010). Following the practice, they were scanned on a 3T Siemens Connectom

system with 300 mT/m gradients. On the second visit children were scanned on a 7T

Siemens Magnetom and took part in cognitive testing outside the scanner. The average

time between the two visits was 20 days (SD ± 35 days).

4.2.1 Observers

A total of 45 typically-developing children (22 female) between 8 to 18 years of age (mean

age = 12.96 ± 3.1) were recruited to take part in the present study. Children were recruited

from the local Cardiff community through schools and public outreach activities. One child

did not complete the 7T MRI component of the study. All children had normal or corrected

to normal vision and were screened to exclude major neurological disorders. All children

underwent an IQ assessment using the 2-subtest Weschler Abbreviated Scale Intelligence

and had IQ values above 86 (Mean score ± SD = 107 ± 14.26, range = 86-145) (Wechsler,

1999). Pubertal stage was determined using parental report on the pubertal development

scale (PDS) (Petersen et al., 1988).

Primary caregivers of children provided written informed consent prior to participat-

ing. Children aged 16 and older also provided their own written consent. Experimental

protocols were approved by Cardiff University School of Psychology Ethics Committee

and were in line with the Declaration of Helsinki. All participants were fully debriefed

at the end of the testing and children were thanked for their participation with Amazon

vouchers and a certificate of participation which included a picture of their own brain.
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4.2.2 Cognitive testing

Stimuli

Children completed the same psychophysical behavioural task as detailed in Section 3.2.2

of Chapter 3. The stimuli used were identical to those previously described, and were

morphed facial expressions, body postures and facial expressions with 100% angry and

100% disgusted body postures.

Procedure

Presentation of the psychophysical task was in in MATLAB [Version 2018b, The Math-

Works, Natwick, MI, USA] with the Psychophysics (Version 3.0.15) Toolbox (Brainard,

1997; Kleiner et al., 2007; Pelli, 1997). The adaptive psychophysical tasks procedure is

as detailed in Section 3.2.3. Children were asked to categorise facial expressions morphed

between anger and disgust, body postures morphed between angry and disgusted body

postures, and morphed facial expressions presented in the context of a whole-person with a

fully-angry or fully-disgusted body posture. In a subset of 8 to 10-year-old participants the

experimenter pressed the key to respond after the child indicated their response verbally.

4.2.3 MRI acquisition

fMRI acquisition

Whole-brain echo-planar imaging (EPI) gradient echo data was acquired on a 7T Siemens

Magnetom (Siemens Healthcare, Erlangen, Germany) (TR/TE=2000/30ms; resolution=

1.5x1.5x1.5mm; 87 slices; multi-band factor=3; TA=9min 18sec). Acquisition was angled

along the anterior commissure and posterior commissure to minimise signal drop out from

the temporal regions. In addition, a B0 field map (TR/TE 1/TE 2=560/5.1/6.12ms;

resolution=3x3x3mm; 44 slices; TA=1min 7sec) was acquired to unwarp the high-field

EPI data. A high-resolution MP2RAGE structural scan (TR/TE=6000/2.7ms; resolu-

tion =0.65x0.65x0.65mm; TA=10min 46secs) was also acquired (Marques et al., 2010). A

SA2RAGE B1 map (TR/TE=2400/0.72ms; resolution=3.25x3.25x6mm; TA=1min 26sec)

was acquired to bias-field correct the MP2RAGE (Eggenschwiler et al., 2012). Retrospec-

tive correction of head movement was used during image acquisition of the MP2RAGE to
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mitigate blurring of the high-resolution data at 7T (Gallichan et al., 2016).

Functional localiser task

For the functional localiser task, participants were presented with grey-scale images of

faces, houses, bodies, and chairs projected onto a mirror mounted on the MRI head coil.

Both male and female faces and bodies were presented. All expressions were neutral.

Images were shown in blocks by stimulus category, and there were two orders of the

task which were counterbalanced across participants. Within each block 15 images were

displayed; each being presented for 800ms with a 200ms inter-stimulus interval. A block

of fixation followed the stimulus category block, and the participant was asked to focus on

the fixation cross displayed centrally on a mean grey screen (15s). For the last second of

the fixation block, the fixation cross turned red to indicate that the next block of images

would commence. In total there were four blocks of each stimulus category. Therefore, for

each stimulus category, 64 trials per condition were presented overall. The participants

were instructed to respond using a key press if the same image was presented twice in

succession (1-back task). The number of repeated trials per block varied between 0 and

3. The average accuracy on the 1-back task was 90% (SD ± 0.18). Button responses were

recorded using a right-hand MR compatible button box. All participants underwent a

short practice of the task before entering the 7T MRI.

dMRI acquisition

Diffusion MRI (dMRI) data was acquired on a 3T Connectom scanner (Siemens Health-

care, Erlangen, Germany) with 300mT/m gradients and a 32-channel radiofrequency coil

(Nova Medical, Wilmington, MA, USA). dMRI data were acquired using a multi-shell

diffusion-weighted EPI sequence with an anterior-to-posterior phase encoding direction

(TR/TE=2600/48ms; resolution=2x2x2mm; 66 slices; b-values=0 (14 vols), 500; 1200

(30dirs), and 2400; 4000; 6000 (60dirs)s/mm2; TA=16min 14sec). One additional vol-

ume was acquired with a posterior-to-anterior phase encoding direction for the purpose

of EPI distortion correction. T1-weighted anatomical images were acquired using a 3D

Magnetization Prepared Rapid Gradient Echo (MP-RAGE) sequence (TR/TE=2300/2ms;

resolution=1x1x1mm; 192 slices; TA=5min 32sec).
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4.2.4 Analysis

fMRI pre-processing

fMRI data processing was carried out using FEAT (FMRI Expert Analysis Tool) in FMRIB

(Functional Magnetic Resonance Imaging of the Brain) Software Library (FSL) (Jenkinson

et al., 2012). High-field functional data was unwarped using the B0 field map generated

from a brain extracted magnitude and phase image in FSL (Woolrich et al., 2001). Reg-

istration to high-resolution MP2RAGE and Montreal Neurological Institute (MNI) space

was carried out using FMRIB’s Linear Image Registration Tool (FLIRT) (Jenkinson et

al., 2002; Jenkinson & Smith, 2001). Functional data was also registered to pre-processed

(skull stripped, bias corrected, neck cropped) 0.65mm3 MP2RAGE structural images,

that were registered to each subject’s DWI from the 3.0T Connectom scanner using Ad-

vanced Normalization Tools (ANTs) (Avants et al., 2011). Two children were excluded

due to failed registration. The registered MP2RAGE images were re-sampled to 1mm3.

This registration step translated the functional data into subject specific dMRI space for

subsequent tractography. Functional data was registered to MNI 1mm3 brain template

to validate the neuroanatomical regions of interest activated in the fMRI task. Motion

correction was performed with FSL’s Motion Correction using FMRIB’s Linear Image

Registration Tool (MCFLIRT); one participant was removed from the analysis due to ex-

cessive motion during the fMRI task. This was identified as movement of more than 2

voxels (3mm) over the scan. The average absolute motion for all participants was 0.74mm

± 0.7. To mitigate the effects of motion in the functional imaging analysis, the estimated

motion traces from MCFLIRT were added to the general linear model (GLM) as nuisance

regressors (Jenkinson et al., 2002). Skull-stripping and removal of non-brain tissue was

completed using Brain Extraction Tool (BET) (Smith, 2002). All data was high-pass tem-

poral filtered with a gaussian-weighted least-squares straight line fitting (sigma=50.0s).

On an individual subject basis spatial smoothing with a Gaussian smoothing kernel with a

Full Width at Half Maximum (FWHM) 4mm was applied to preserve high spatial resolu-

tion (Woolrich et al., 2004). For second-level group analysis of the functional data, spatial

smoothing with a Gaussian smoothing kernel with a FWHM 10mm was applied (Woolrich

et al., 2004). Time-series statistical analysis was carried out using FMRIB’s Improved
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Linear Model (FILM) with local autocorrelation correction (Woolrich et al., 2001).

fMRI data analysis

A univariate GLM was implemented to examine the BOLD response associated with face

and body stimuli. Faces > Houses and Bodies > Chairs contrasts were used to localise cor-

tical regions involved in face and body processing respectively. Region of interests (ROIs)

involved in face processing (FFA, OFA and pSTS-face) and body processing (FBA, EBA,

pSTS-body) were identified on a subject-by-subject basis in subject space. Z-statistic im-

ages were uncorrected and thresholded at p=0.1. The number of subjects where the ROIs

could be reliably identified is listed in the appendix [Appendix: Table 1]. The ROIs were

identified within-subjects to facilitate generation of tracts connecting functionally defined

nodes. As a validation step, the individual ROIs were translated into MNI space and an

average coordinate was determined for each ROI [Table 4.1]. The average coordinates

were comparable to other studies where these regions have been extracted in MNI space

[Appendix: Table 2] (Bona et al., 2015; Harry et al., 2016; Schobert et al., 2018; Spiridon

et al., 2006; Taylor et al., 2007; Vocks et al., 2010). The Euclidean distance was calculated

between each ROI and the average coordinates in MNI space for every child to provide

a measure of how variable the locations were across participants. ROIs were inflated to

10mm in diameter into surrounding WM to be used for functionally-defined white matter

tractography. In addition to these functionally-defined ROIs an anatomical ROI in the

right ATL was manually drawn based on anatomical landmarks because activation in this

region was not reliably identified in subject-specific or group-level analyses. A coronal

plane was drawn in the right temporal lobe extending from the lateral fissure to the ven-

tral surface of the brain (Hodgetts et al., 2015). The anterior-posterior location along the

temporal lobe was determined by positioning the plane just anterior of the position where

the central sulcus meets the lateral fissure.
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ROI x y z σ distance

FFA 38 -43 -20 7.31
OFA 38 -76 -7 11.35

pSTS-face 46 -57 12 6.07

FBA 38 -43 -18 8.08
EBA 41 -78 0 7.65

pSTS-body 44 -59 11 8.98

Table 4.1: Average coordinates for ROIs
The coordinates reported are the average coordinates for the individual ROIs that were
registered to MNI space, allowing the average position to be compared to coordinates
reported in the literature. The Euclidean distance was calculated between each ROI and
the average coordinate for each observer. The standard deviation (σ) is reported to provide
a measure of how variable the ROIs were across observers.

Second-level analysis was carried out using a fixed-effects model in FMRIB’s Local

Analysis of Mixed Effects (FLAME) (Woolrich et al., 2004). Z-statistic images, as defined

from the contrasts of interest, were thresholded using a cluster defining threshold of Z>2.3,

p<0.01, and a corrected cluster significance threshold of p<0.05 (Worsley, 2001). The

FFA and pSTS-face were identified at the corrected cluster threshold. For clusters not

detectable at the corrected cluster significance of p<0.05, uncorrected voxel coordinates

are reported [Table 4.2]. BOLD activation in the left hemisphere did not robustly activate

the cortical ROIs so the subsequent analysis focused on the right-hemisphere.

ROI x y z

FFA 35 -49 -18
OFA∗ 38 -63 -9

pSTS-face 48 -44 8

FBA∗ 36 -43 -21
EBA∗ 44 -80 8

pSTS-body 43 -58 5

Table 4.2: Group-level peak cluster coordinates for functionally-defined ROIs
The coordinates are reported in MNI space for the ROIs. The clusters were defined with
a cluster defining threshold of Z>2.3, p<0.01, and the alpha threshold of p<0.05. The
asterisk denotes the clusters detected at the uncorrected alpha threshold level.
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DWI pre-processing

DWI data quality assurance was performed on the raw diffusion volumes using slicewise

outlier detection (SOLID) to control for motion (Sairanen et al., 2018). DWI data were

pre-processed to reduce thermal noise and image artefacts which included image denoising

(Veraart et al., 2016), correction for signal drift (Vos et al., 2017), motion, eddy current,

and susceptibility-induced distortion correction (Andersson & Sotiropoulos, 2016), gradi-

ent non-linearities, and Gibbs ringing (Kellner et al., 2016). The pre-processing pipeline

was implemented in MATLAB, but depended on open-source software packages from MR-

trix (Tournier et al., 2019) and FSL (Jenkinson et al., 2012).

Tractography

Multi-shell multi-tissue constrained spherical deconvolution (Jeurissen et al., 2014) was

applied to the pre-processed images to obtain voxel-wise estimates of fODFs (Descoteaux

et al., 2009; Seunarine & Alexander, 2014; Tournier et al., 2007; Tournier et al., 2004)

with maximal spherical harmonics order lmax = 8. FDWM tracts were generated be-

tween ROIs within face (OFA to FFA, FFA to ATL, pSTS-face to ATL) [Figure 4.1] and

body networks (EBA to FBA, FBA to ATL and pSTS-body to ATL) [Figure 4.2] in each

subject. Streamlines were generated using a probabilistic algorithm in MRtrix using one

ROI as seeding mask and the second as an inclusion region, following the organisation

of the visual processing hierarchy. All generated FDWM tracts were visually inspected,

and spurious fibres manually removed. Any tracts with less than 20 streamlines were

removed from the subsequent analysis (FFA-ATL: n=1, pSTS-face-ATL: n=1, FBA-ATL:

n=1, EBA-FBA: n=1). Fractional anisotropy (FA), mean diffusivity (MD) and spherical

mean (S̊µ(b = 6000)) metrics were extracted from each tract by averaging over streamlines,

resulting in one metric per tract in each child. FA and MD were derived from diffusion

kurtosis imaging using three shells (b=500, 1200, 2400) to improve the accuracy of the

diffusion tensor metrics (Jensen et al., 2005; Veraart et al., 2011). A unique feature of

the present study is the sensitivity to axonal morphology at b=6000 s/mm2, achieved by

exploiting the ultra-strong gradients, of the Connectom scanner. The spherical mean of

the dMRI signal was computed with high b-value data (Mirzaalian et al., 2016; Veraart

et al., 2019).
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In addition to the functionally defined white matter tracts generated, several anatomically

defined tracts were extracted in the right hemisphere: ILF, IFOF, UF and corticospinal

tract (CST). TractSeg segmentation software (Wasserthal et al., 2019) was used to auto-

matically extract the fibre tracts using the b=6000 s/mm2 shell for each participant. FA,

MD and S̊µ(b = 6000) was determined for each of the anatomically defined tracts.



Figure 4.1: ROIs in face processing network: OFA, FFA, pSTS(face) and ATL
This figure shows the regions in the face network that were used as seeds and/or inclusion regions for tractography in one child’s native space. The
OFA is shown in green, FFA in purple, pSTS(face) in light-blue and ATL plane in dark blue. The ROIs shown are 5mm in diameter for illustrative
purposes and located in the right hemisphere. The top row is an axial cross section moving from inferior to superior slices, from left to right of the
figure. The bottom row illustrates a sagittal view moving from lateral to medial slices from left to right of the figure.



Figure 4.2: ROIs in body processing network: EBA, FBA, pSTS(body) and ATL
This figure shows the regions in the face network that were used as seeds and/or inclusion regions for tractography in one child’s native space. The
EBA is shown in orange, FBA in pink, pSTS(body) in purple and ATL plane in dark blue. The ROIs shown are 5mm in diameter for illustrative
purposes and located in the right hemisphere. The top row is an axial cross section moving from inferior to superior slices, from left to right of the
figure. The bottom row illustrates a sagittal view moving from lateral to medial slices from left to right of the figure.



Statistical analysis

Psychophysical analysis

Using custom-written MATLAB code with the Palamedes toolbox (Prins & Kingdom,

2018), PFs were fitted based on a cumulative Gaussian to estimate a PSE and slope

value for each observer, for each condition. Lapse rate was fixed at 0.03; guess rate was

determined by the experimental procedure and was fixed at 0. The steeper the slope of the

psychometric function, the more reliably the observer distinguished between the morphed

stimuli (Kingdom & Prins, 2010). The PSE is the point at which the observer was equally

likely to respond disgust or anger to a particular stimulus. The PSE change reflected the

modulation of the facial expression judgement due to the contextual influence of body

posture. Goodness-of-fit of the PFs was assessed as detailed in Section 3.2.4. A total of

12 children were excluded from the facial expression condition, 6 children from the body

posture condition, and 17 children from the whole-person condition due to poor fitting of

the PFs.

Pubertal Development

Puberty stage was determined by calculating a combined PDS-Shirtcliff (PDSS) score

(Shirtcliff et al., 2009). A tight positive correlation between age and PDSS score was

found (r(46)=0.85, p<0.0001) [Appendix: Figure 1]. By reporting such a high correla-

tion between age and pubertal development in the current cohort, adjusting subsequent

statistical analysis to account for age captured a significant proportion of developmental

variability.

FDWM with behaviour

To assess the relationship between behavioural metrics and FDWM tracts, a series of

Spearman correlations were performed as data was non-normally distributed. Bonferroni

correction was used to control for multiple comparisons of the six FDWM tracts with a

corrected value of p<0.008 (0.05/6).

Subsequently, the relationship with age between tracts that showed a significant cor-

relation with cognitive performance was disentangled using multiple linear regression. For

the multiple regressions the age variable was mean centred. Given this stage was a sec-

ondary analysis the p-value accepted as significant was p<0.05.
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4.3 Results

4.3.1 Behavioural Results

Isolated facial expression and body posture categorisation

The slope values of the estimated PFs provided a measure of how accurately an observer

distinguished between the morphed stimuli; the steeper the slope, the more precise the

individual’s performance. Performing a Wilcox signed rank test revealed the estimated face

and body slopes were significantly different (z=0.861, p<0.001), indicating that children

were much better at categorising the body postures than the isolated facial expressions

[Figure 4.3]. A positive relationship was found between the estimated slopes of the facial

expression and the body posture conditions (r(s)=0.280, p=0.14), where children who

were better at categorising facial expressions showed better body posture categorisation,

however, this relationship was not significant.
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Figure 4.3: Estimated slope values from PFs of facial expression and body pos-
ture categorisation
The violin plot displays the estimated slope values for each observer in the facial expression
and body posture conditions. There was a significant difference between the estimated
slope values of the facial expression and body posture conditions (z=0.861, p<0.001).
Each point represents one observer. The distribution of the values is illustrated by the
shaded area, with the overlaid boxplot indicating the median and the interquartile range.
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Whole-person categorisation

Body posture was found to have a significant influence on perception of facial expressions

in children. The greater the difference in PSE between psychometric functions in the

whole-person condition, the more influence the body posture had on the perception of the

facial expression in that individual. A paired t-test revealed a significant difference in the

PSE between the facial expressions presented on 100% angry and 100% disgusted body

postures (t(27)= 5.737, p<0.0001), suggesting that overall there was a significant influence

of body posture on facial expression perception in children [Figure 4.4]. Furthermore, I also

observed large individual differences in how much body posture influenced the perception

of the facial expression across observers, similar to my findings in Chapter 3. The PSE

change for some observers was small, indicating that body posture did not influence the

perception of facial expressions much, however for other observers the PSE change was

much larger.

Similar to findings in adults [Chapter 3], I found a negative relationship between PSE

change and facial expression precision, however this did not reach significance (r(s)= -

0.322, p=0.109). Controlling for age in this analysis, still did not result in a significant

relationship (r(s)=-0.322, p=0.124). No relationship was observed between PSE change

and body posture precision (r(s)=-0.126, p=0.546), nor when age was controlled for (r(s)=-

0.126, p=0.566).
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Figure 4.4: PSE change between categorisation of facial expressions on a 100%
angry and a 100% disgusted body posture
The raincloud plot displays the PSE values for the whole-person condition when facial
expressions were presented with a fully-angry or fully-disgusted body posture. A significant
difference was observed between the PSE values when the facial expression was categorised
with a 100% angry and 100% disgusted body posture (t(27)= 5.737, p<0.0001). Each line
represents one observer and depicts the change in PSE. The distribution of the values is
illustrated by the shaded area, with the boxplot indicating the median and the interquartile
range.

Age related changes in performance

A significant positive relationship was found between age and facial expression precision

(r(s)= 0.513, p<0.01) [Figure 4.5a], suggesting that isolated facial expression discrimina-

tion improved with age. Similarly, a borderline significant positive correlation was found

between body posture and age (r(s)= 0.286, p=0.072), again suggesting that isolated body

posture discrimination improved with age [Figure 4.5b]. In contrast, I found a significant

negative relationship between the magnitude of the PSE change and age (r(s)= -0.3923

p=0.0395) [Figure 4.5c]. This suggests that younger children were more influenced by

body posture in their categorisation of facial expressions.
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Figure 4.5: Relationship between age and facial expression precision, body pos-
ture precision and PSE change
The correlation between age and facial expression [4.5a], body posture [4.5b] and PSE
change [4.5c] are shown in this figure. Significant relationships (p<0.05) are indicated
with an asterisk. Age is plotted in years. The precision for each condition was indexed
by the slope estimate of the individual’s PF for each condition. The PSE change was
calculated from the different PSE’s in the whole-person condition when a face morph
was presented with either a fully-angry or fully-disgusted facial expression. Each point
represents one observer. The 95 % confidence interval is shown with grey shading.
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4.3.2 Functionally-defined white matter

Age-related changes in FDWM

There were no significant relationships between FA and any of the FDWM tracts with age

[Figure 4.6]. MD had a significant negative correlation with age in tracts between rEBA-

rFBA (r(33)=-0.44, p=0.0079), pSTSbody-ATL r(36)=-0.47, p=0.0026) and pSTSface-

ATL (r(37)=-0.460, p=0.0032). Moving beyond the tensor measures of microstructure,

the S̊µ(b = 6000) showed significant positive relationships with age in five of the six

functionally-defined tracts (FBA-ATL: r(36)=0.423, p=0.0078; pSTSbody-ATL: r(36)=0.635,

p<0.001; FFA-ATL: r(39)=0.457, p=0.003; OFA-FFA: r(33)=0.473, p=0.004; pSTSface-

ATL: r(37)=0.555, p<0.001). Similar to work already published on this cohort, where

spherical mean was found to be a sensitive marker of age-related changes in microstruc-

ture of large anatomically-defined tracts (Raven et al., 2020), here I demonstrate this is

also the case in targeted functionally-defined white matter tracts.

Perceptual abilities related to FDWM

To look at the relationship between microstructural changes and perceptual abilities, be-

havioural metrics (facial expression precision, body posture precision and PSE change)

were correlated with FA, MD and S̊µ(b = 6000) of the extracted FDWM tracts from the

face and body network [Figures 4.7, 4.8, 4.9 ]. A significant positive correlation was found

between facial expression precision and FA of the OFA-FFA tract (r(s)=0.584, p=0.005)

[Figure 4.7]. Furthermore, body posture precision and S̊µ(b = 6000) of OFA-FFA were

found to be significantly positively correlated (r(s)=0.623, p<0.001) [Figure 4.8]. Finally,

a significant negative correlation was found between S̊µ(b = 6000) pSTSbody-ATL and

PSE change (r(s)=-0.593, p=0.003) [Figure 4.9].

As a validation measure, I related the perceptual performance for facial expression

precision, body posture precision and PSE change to several large anatomical tracts that

traverse the ventral visual stream (ILF [Appendix: Figure 2]; IFOF [Appendix: Figure 3];

UF [Appendix: Figure 4]) and the CST [Appendix: Figure 5] as an additional control tract

outside the visual processing stream. No significant relationships were reported between

the microstructural metrics of these large tracts and any of my behavioural measures (all
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p>0.09) [Appendix: Figures 6, 7 and 8], demonstrating the specificity of FDWM tract

metrics to identify individual differences related to perception.
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Figure 4.6: Relationship between microstructure and age, grouped by FDWM tract and coloured by metric
For each of the correlation plots the age is plotted in years along the x-axis, and the y-axis shows the value of the metric. FA is shown in the top
panel in purple, MD in the middle panel in orange and S̊µ(b = 6000) in the bottom panel in blue. The tracts from the face network are shown
on the left panels, and body on the right. The Pearson’s rank correlation coefficient and p-value are indicated for each relationship. Significant
relationships are indicated with an asterisk (p<0.008, following Bonferroni correction). The 95 % confidence interval is shown with shading.
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Figure 4.7: Relationship between microstructure and facial expression precision, grouped by FDWM tract and coloured by metric
For each of the correlation plots the x-axis displays the logged facial expression precision, and the y-axis shows the value of the metric. FA is shown
in the top panel in light-blue, MD in the middle panel in medium-blue and S̊µ(b = 6000) in the bottom panel in dark-blue. The tracts from the
face network are shown on the left panels, and body on the right. The Spearman’s rank correlation coefficient and p-value are indicated for each
relationship. Significant relationships are indicated with an asterisk (p<0.008, following Bonferroni correction). The 95 % confidence interval is
shown with shading.
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Figure 4.8: Relationship between microstructure and body posture precision, grouped by FDWM tract and coloured by metric
For each of the correlation plots the x-axis displays the logged body posture precision, and the y-axis shows the value of the metric. FA is shown in
the top panel in dark-red, MD in the middle panel in medium-red and S̊µ(b = 6000) in the bottom panel in orange. The tracts from the face network
are shown on the left panels, and body on the right. The Spearman’s rank correlation coefficient and p-value are indicated for each relationship.
Significant relationships are indicated with an asterisk (p<0.008, following Bonferroni correction). The 95 % confidence interval is shown with
shading.
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Figure 4.9: Relationship between microstructure and PSE change, grouped by FDWM tract and coloured by metric
For each of the correlation plots the x-axis displays the logged PSE change, and the y-axis shows the value of the metric. FA is shown in the
top panel in light-green, MD in the middle panel in medium-green and S̊µ(b = 6000) in the bottom panel in dark-green. The tracts from the
face network are shown on the left panels, and body on the right. The Spearman’s rank correlation coefficient and p-value are indicated for each
relationship. Significant relationships are indicated with an asterisk (p<0.008, following Bonferroni correction). The 95 % confidence interval is
shown with shading.



To disentangle age-related effects in the FDWM tracts whose metrics showed significant

correlations with behavioural performance, I ran separate multiple linear regressions. The

three relationships assessed were: facial expression precision predicted by OFA-FFA(FA),

body posture precision predicted by OFA-FFA(S̊µ(b = 6000)) and PSE change predicted

by pSTSbody-ATL(S̊µ(b = 6000)). The results of the regression analysis allowed for ex-

ploration of both age-related changes in brain microstructure, and specific microstructural

changes reflecting perceptual abilities.

Facial expression precision

The FA of OFA-FFA [Figure 4.10] was found to be a significant predictor of facial ex-

pression precision (F1,20=10.95, p<0.01), with the model explaining 32.2% of the variance

as indicated with the adjusted R2. When age was added as a predictor to the model,

the model improved to explain 43.7% of the variance (F2,19=9.14, p<0.01). This sug-

gests that having OFA-FFA (FA) and age in the model explains more of the variance

in facial expression precision, than was predicted by the microstructural metric alone.

Both age (Bage=0.09, p=0.036) and OFA-FFA(FA) (Btract=10.18, p<0.01) were found to

significantly contribute to the model [Table 4.3]. This demonstrates that the FA of the

OFA-FFA tract significantly predicts an individual’s facial expression precision, even when

adjusted for age.
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Figure 4.10: Example of FDWM tracts: OFA-FFA
Examples of functionally-defined tracts connecting OFA and FFA are shown in one child.
In the top panel the tracts can be visualised in the coronal, sagittal and axial planes
[4.10a]. The tracts can be seen with directional colour encoding in the sagittal plane, in
the bottom left panel [4.10b]. A 3D view of the tracts can be seen in the bottom right
panel [4.10c].

Table 4.3: Regression output: Facial expression precision, fractional anisotropy
of OFA-FFA, and age
The table shows the regression outputs for the model with facial expression precision
and tract microstructure (OFA-FFA(FA)) in the first column, and the facial expression
precision predicted by the tract microstructure (OFA-FFA(FA)) and age in the second
column. The coefficient estimates, confidence intervals and significance levels for each of
the predictors in the models are shown. The significant p-values (p<0.05) are indicated
in bold text. The R2 and adjusted R2 were used to assess the model fit.
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Body posture precision

The spherical mean of the OFA-FFA tract significantly predicted the body posture pre-

cision (F1,26=6.00, p=0.021), however the model only explained 15.6% of the variance.

Adding age to the model improved the overall fit of the model to explain 19.3% of the

variance and was significant (F2,25=4.22, p=0.026) [Table 4.4]. However, in this model

S̊µ(b = 6000) of OFA-FFA (Btract=14.11, p=0.170) and age (Bage=0.06, p=0.153) were

not found to be significant predictors. One explanation for the fact that the spherical mean

of OFA-FFA and age were not significant predictors when both in the model, could be an

artefact of their high correlation with one another (r(s)= 0.470, p=0.004). Given both of

these predictors showed a significant correlation, multicollinearity was assessed using the

variance inflation factor (VIF); the value for each of the predictors was 1.35, suggesting

collinearity was present in the model, therefore these results should be interpreted with

caution.

Table 4.4: Regression output: Body posture precision, spherical mean of OFA-
FFA and age
The table shows the regression outputs for the model with body posture precision and
tract microstructure (OFA-FFA(S̊µ(b = 6000))) in the first column, and the body posture
precision predicted by the tract microstructure (OFA-FFA(S̊µ(b = 6000))) and age in the
second column. The coefficient estimates, confidence intervals and significance levels for
each of the predictors in the models are shown. The significant p-values (p<0.05) are
indicated in bold text. The R2 and adjusted R2 were used to assess the model fit.
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PSE change

PSE change was found to be significantly predicted from the S̊µ(b = 6000) of the pSTS(body)-

ATL tract [Figure 4.11] (F1,19=4.85, p=0.04), with the S̊µ(b = 6000) of pSTS(body)-ATL

tract accounting for 16.1% of the explained variability in PSE change. For this relation-

ship adding age to the model did not improve the overall model fit and it was no longer

found to be significant (F2,18=2.34, p=0.13), with the adjusted R2 decreasing by 4.3 %

[Table 4.5]. Again, there was a high correlation between both predictors (r(s)= -0.475,

p=0.015). The VIF for both predictors was 2.44, which is high enough to cause concern

for multicollinearity. Therefore, these results must be interpreted with caution due to

the high correlation between spherical mean of pSTS(body)-ATL and age. To interpret

the contribution of both microstructural predictors and age in this instance may be more

appropriate independently. I found a significant negative correlation between PSE change

and age (r(s)= 0.3923, p=0.0395), a significant negative correlation between PSE change

and pSTS(body)-ATL (S̊µ(b = 6000) (r(s)=-0.57, p=0.008) and a significant positive cor-

relation between pSTS(body)-ATL (S̊µ(b = 6000) and age (r(s)=0.62, p<0.0001).

Figure 4.11: Example of FDWM tracts: pSTS(body)-ATL
Examples of functionally-defined tracts connecting pSTS(body) and ATL are shown in
one child. In the top panel the tracts can be visualised in the coronal, sagittal and axial
planes [4.11a]. The tracts can be seen with directional colour encoding in the sagittal
plane, in the bottom left panel [4.11b]. A 3D view of the tracts can be seen in the bottom
right panel [4.11c].
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Table 4.5: Regression output: PSE change, spherical mean of pSTS(body)-ATL
and age
The table shows the regression outputs for the model with PSE change and tract
(pSTS(body)-ATL(S̊µ(b = 6000))) in the first column, and the PSE change predicted
by the tract microstructure (pSTS(body)-ATL(S̊µ(b = 6000))) and age in the second col-
umn. The coefficient estimates, confidence intervals and significance levels for each of the
predictors in the models are shown. The significant p-values (p<0.05) are indicated in
bold text. The R2 and adjusted R2 were used to assess the model fit.
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4.4 Discussion

In the present chapter, children’s perception of facial expressions was found to be signif-

icantly influenced by the presence of a body posture; younger children showed a greater

biasing effect than older children. Furthermore, isolated facial expression recognition abil-

ity improved with increasing age. Individual differences in the microstructural properties

of functionally-defined white matter tracts underpinning face and body processing net-

works were found to be predictive of children’s perceptual abilities.

4.4.1 Behavioural results

Children’s facial expression recognition was found to significantly improve with increasing

age. These results support previous research showing that with increasing age, children

become better at detecting subtle differences between facial expressions (Dalrymple et

al., 2017). For the first time, I show that body posture recognition also increases with

increasing age. However, it is important to note that this relationship was only borderline

significant and subsequent research is required to confirm this finding.

Body posture was found to significantly influence the perception of facial expressions

in children. These results demonstrate that children’s facial expression judgements were

biased by an affective body posture; the magnitude of the body biasing effect diminished

with increasing age. To my knowledge, this is the first work to look at the influence

of body posture on facial expressions across development. Previous work has focused

on children of a particular age and compared their performance to adults (Mondloch,

2012; Mondloch et al., 2013). In contrast, my current results illustrate how the body

biasing effect changes across the course of development. My findings support previous

developmental work exploring facial expression processing in context; Mondloch (2012)

found that children’s judgements of facial expressions were more affected than adults by

the presence of an incongruent body posture. A limitation of the Mondloch (2012) work

is that isolated facial expression and body posture recognition ability in the children was

not reported. In the current chapter, I demonstrate that younger children were more

influenced by context than older children, and that there are improvements in how well

the individual cues are recognised with increasing age. This pattern of results echoes the
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findings reported in Chapter 3. In adults, I found that observers with less precise facial

expression recognition were affected more by the body posture when categorising facial

expressions in the context of a whole-person. The current results in children show the

same pattern across development, highlighting that the representation of the individual

cues is important in determining how they are integrated.

The current approach has several limitations, one being the use of only anger and

disgust expressions. Therefore, the conclusions drawn regarding development of isolated

facial expression and body posture processing must be interpreted with caution. In order

to generalise these findings further, subsequent research is required with additional ex-

pressions. Despite this, the selection of angry and disgusted expressions was based upon

previous research (Aviezer et al., 2008), in order to understand how body context influ-

enced perception of facial expressions in children. Furthermore, previous research has

shown that angry and disgusted body postures are two of the most readily recognised

distinct static postures from the range of basic expressions (Lopez et al., 2017), hence

their selection for this novel paradigm in children.

4.4.2 Functionally-defined white-matter

In the current work, individual differences in microstructure of functionally-defined white

matter tracts were found to be related to individual differences in children’s perceptual

abilities. Facial expression precision was found to be predicted by the FA of OFA-FFA

tract and age. Early models of face processing in the brain segregated processing of faces

into dorsal and ventral streams, with changeable and invariant aspects being encoded

in each respectively (Haxby et al., 2000). Facial expressions are classified as changeable

features of faces, therefore the predominant view has been that the neural processing of

facial expressions is restricted to dorsal regions, such as pSTS. However, more recent fMRI

research has highlighted the importance of regions in the ventral stream, namely the FFA in

processing of facial expressions (Duchaine & Yovel, 2015; Ganel et al., 2005). The revised

model of face processing proposed by Duchaine and Yovel (2015) suggests the FFA also

plays a role in the processing of changeable aspects of faces. More recently the distinction

between dorsal and ventral streams has been suggested to be better represented by the

processing of ‘motion’ and ‘form’ information respectively (Bernstein & Yovel, 2015).
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The ventral stream, which includes the FFA, is suggested to be important in extracting

‘form’ from static face images, which includes expression. Furthermore, recent multivariate

functional MRI has provided evidence for encoding of facial expression information in face

responsive regions of the fusiform cortex (Dima et al., 2018; Muukkonen et al., 2020). My

current finding, where microstructural properties of the fibre tracts connecting OFA and

FFA were predictive of facial expression recognition ability in children, provides support

for these revised models of face perception in the brain, with the ventral stream playing a

key role in the processing of expression.

Clinical research has also demonstrated the importance of white-matter pathways in

the ventral temporal region for facial expression processing. In a large sample of patients

with brain lesions, damage to the IFOF was found to significantly predict the overall facial

expression recognition impairments in patients (Philippi et al., 2009). This work further

illustrates the functional importance of the ventral temporal stream for visual process-

ing of facial expressions, highlighting the role of white matter tracts in facial expression

perception in these regions. Although I found no evidence for a relationship between

microstructural metrics of ILF or IFOF and children’s perceptual abilities, my results

show that a more targeted, functionally-defined approach to extracting white matter tract

microstructural metrics provides evidence for a strong relationship with facial expression

perception.

Finding that the microstructure (FA) of tracts connecting OFA and FFA, is reflective

of individual differences in children’s facial expression recognition, adds to the growing

consensus of research appreciating the importance of the white matter pathways under-

pinning face processing more generally in the ventral visual system. This work builds upon

Gomez et al. (2015) where a correlation between the FA of FDWM local to face-selective

cortex in the right temporal lobe and facial identity recognition was reported in adults.

Taken together, this research highlights the importance of a targeted approach to explore

local white-matter connectivity, with functional relevance to cognition. Furthermore, my

current work highlights the feasibility of a targeted approach to explore developmentally

relevant changes in white matter microstructure that are predictive of perception.

The spherical mean of OFA-FFA tracts was found to predict individual differences in

children’s body posture recognition. In contrast to the emerging field researching white
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matter underpinning face perception, to my knowledge no published literature has sought

to uncover the relationship between white matter and body posture recognition. Given the

proximity of the cortical regions involved in face and body processing, it is to be expected

that the white matter connections involved in face and body perception may be partially

overlapping (Peelen & Downing, 2005). This does not conflict with the idea that face and

body processing remain segregated until later in the ventral visual stream, rather it just

highlights the limitations in the resolution and specificity of dMRI. Tractography is ulti-

mately limited as it is a modelling approach used to estimate the underlying white matter

architecture based on the movement of water in the brain. It may be methodologically

impossible, at present, to disentangle the unique face and body networks in-vivo due to

their proximal cortical locations. I found no evidence for a relationship between children’s

body posture precision and any of the tracts connecting body processing regions. Given I

found a relationship between body posture precision and tracts connecting OFA-FFA, it is

likely a consequence of overlapping white matter architecture, or could support the notion

that networks underpinning face and body perception are not as distinct as hypothesised

(Arcaro et al., 2020). Importantly, facial expression precision was shown to correlate with

FA, and body posture precision with S̊µ(b = 6000) of OFA-FFA; demonstrating that the

relationships observed were reflective of different features of the underlying architecture.

Previous work has highlighted that spherical mean captures age related changes in mi-

crostructure (Raven et al., 2020), therefore caution must be made when interpreting the

relationship with body posture and spherical mean of OFA to FFA tracts.

An alternative hypothesis emerging from non-human primate research posits that po-

tentially face and body processing regions are not as segregated as previously thought.

Recent monkey work has highlighted that the neurons involved in category specific pro-

cessing, are in fact less tuned to individual categories but are also sensitive to object

relationships (Arcaro et al., 2020). Using direct neuronal recordings Arcaro et al. (2020)

demonstrated that the cells in face processing regions of the middle lateral, and posterior

lateral, inferior temporal cortex respond to images of complex scenes, that lacked faces

but indicated where the face ought to be. This resulted in the discovery that face-selective

neurons could respond to stimuli where contextual cues, such as a body, indicated a face

should be. Although currently in macaques, parallel non-invasive research in humans is
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warranted to explore the neural influence of context in category specific regions responsible

for face and body processing.

The results presented here suggest the integration of facial expression and body posture

cues occurs downstream of pSTS. I found that the spherical mean of tracts extending from

the pSTS to anterior temporal lobe were predictive of how much body context biased

children’s perception of facial expressions. The role of the pSTS has been attributed to

both face and body processing, with a key role in dynamic face perception and motion

detection (Basil et al., 2017; Downing, 2001; Duchaine & Yovel, 2015; Haxby et al.,

2000). Furthermore, the pSTS has been highlighted as critical in visuomotor perception

of emotional body language (de Gelder et al., 2015). O’Toole et al. (2002) proposed

that the pSTS plays an important role in identification of social context when perceiving

dynamic facial expressions. This work, in combination with the current results identifying

a relationship between the microstructure of the pSTS to ATL and influence of body

context, allude to the importance of the connectivity in this region for processing the

contextual relevance of faces and bodies. This finding aligns with behavioural theories

for integration of facial expression and body posture; Teufel et al. (2019) proposed that

integration of facial expression and body posture cues occurs downstream of core face

perception regions like pSTS and FFA.

Compilation of human and non-human primate research has culminated with a recent

proposal for a third visual pathway, in addition to the established notion of dorsal and

ventral streams (Pitcher & Ungerleider, 2021). The structural connectivity of the third

pathway is believed to extend laterally from early visual cortex, to V5, pSTS and anterior

STS. The ‘third pathway’ has been proposed to be specialised for for the dynamic aspects

of social perception (Pitcher & Ungerleider, 2021). Causal evidence for a direct anatomical

connection between pSTS and anterior portions of STS has been shown using concurrent

TMS and fMRI (Pitcher et al., 2017). In adults, following application of TMS to the

pSTS, the neural response to moving faces was diminished in both the pSTS and anterior

STS. The results in the current study, finding that the influence of body context on

facial expression perception could be predicted by the S̊µ(b = 6000) of pSTS-ATL(body),

supports the proposal from Pitcher et al. (2019) that this pathway plays an important

role in social perception, and adds to the consensus that integration of facial expression
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and body posture cues takes place later in the visual processing hierarchy.

A unique feature of the current study is the sensitivity to axonal morphology and glial

processes gained using specialised hardware (3T Connectom scanner), which I assessed in

combination with tensor measures of microstructure. Myelination is known to contribute

to the functional characteristics and information relay speed between particular regions,

which is typically thought to be reflected in FA changes (Etxeberria et al., 2016). However,

myelination, axonal packing, axon coherence and fibre diameter can all contribute to

the FA, highlighting limitations in the microstructural specificity of changes associated

with FA (Beaulieu, 2002; Jones et al., 2013). With this in mind, it is unsurprising that

age-related changes in the FA of functionally-defined white matter were not observed,

particularly due to the cross-sectional design. Many studies that report changes in FA,

with increasing age, are longitudinal large-scale studies with more power to detect these

changes (Lebel & Beaulieu, 2011). In contrast to the FA metrics, I utilised high b-value

diffusion data to provide an insight into axonal properties of the tissue. At high b-values,

such as b=6000s/mm2, the spherical mean relates strongly to specific information about

intracellular microstructure, including the axon diameter (Veraart et al., 2020). The

spherical mean metric for the majority of the FDWM tracts was found to be positively

correlated with age. Other developmental research comparing classic DTI measures with

models of intra-neurite space (Neurite density index (NDI)), revealed a strong correlation

between NDI and age (Chang et al., 2015); NDI has been found to explain more variance

in white-matter microstructure with age than fractional anisotropy (Genc et al., 2017;

Mah et al., 2017).

Given intracellular measures appear to be reflective of age-related changes, subsequent

work should account for additional tissue changes, such as myelin, to enable researchers

to further disentangle general developmental changes from individual differences. Recent

empirical work has provided evidence of microstructural proliferation driving changes in

high-level visual areas involved in face processing across development (Gomez et al., 2017).

Gomez et al. (2017) found improvements in face recognition that were correlated with

tissue development in the fusiform face-selective regions of cortex of children. In contrast

to the dominant model of synaptic pruning thought to be driving developmental changes in

brain tissue in infants (Huttenlocher & de Courten, 1987), Gomez et al.’s (2017) research
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shows that in later childhood differential patterns of maturation across the cortex emerge,

which are likely driven by microstructural proliferation in multiple cortical compartments

(Gomez et al., 2017). Potential candidates for this proliferation are cell bodies, dendritic

structures and myelin sheaths. It is a well established finding that cortical thickness

decreases over childhood whilst there is a concurrent increase in the total volume of white

matter (Mills et al., 2021). In deep cortical layers and at the cortical boundary, the

quantity of myelin has been reported to increase with age across adolescence (Paquola

et al., 2019; Whitaker et al., 2016). These dynamic deep layer cortical regions are the

targets of axonal projections which are known to play a critical role in connecting regions

of the cortex via white matter pathways. In future, by combining measures about myelin,

with intracellular measures and more non-specific markers as indexed by FA, it may be

possible to gain additional insight into what neuronal changes are driving changes in

performance. Several factors are likely to be at play, as suggested recently by Grill-Spector

et al. (2017), where face perception in the brain is likely dependent on a combination of

functional activity, local white-matter properties and the microstructural properties of the

grey-matter cortical regions (Grill-Spector et al., 2017).

4.5 Chapter Summary

In the present chapter I provide data quantifying the influence of body context on facial

expression perception across development. I found that with increasing age, children were

significantly less biased by an affective body posture when judging a facial expression.

An accompanying increase in isolated facial expression recognition was also found with

increasing age. This finding supports the results discussed in Chapter 3, where adults who

had less precise facial expression representation, were more influenced by body posture in

the whole-person emotion perception. The results in the current chapter echo this finding

in a developmental cohort, suggesting that changes in the influence of body context on

facial expression perception across development are largely driven by age-related changes

in isolated facial expression perception. These findings have important implications for

our understanding of visual processing of facial expression and body postures, in addition

to having wider reaching impacts for social cue processing more broadly across childhood
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and adolescence.

In addition to the novel behavioural findings, I also adopted a targeted functionally

defined white matter analysis strategy to specifically explore the connectivity between

cortical nodes involved in face and body processing in the brain. Microstructural changes

in functionally-defined face and body networks were found to be predictive of children’s

perceptual ability; specifically, facial expression precision was related to FA of tracts link-

ing OFA and FFA. This result demonstrates the importance of fusiform regions for facial

expression processing and highlights feasibility of exploring individual difference in per-

ception that are related to white matter microstructure. Body posture precision and

S̊µ(b = 6000) of tracts linking OFA and FFA, and PSE change with S̊µ(b = 6000) of tracts

connecting pSTS(body) and ATL, were also found to be related. Furthermore, I also

reported specific developmental sensitivity to intracellular morphology in FDWM. Taken

together, this research uncovers developmental differences in facial expression and body

posture processing and their integration, and also highlights the functional specificity of

white matter connectivity underpinning face and body processing in the developing brain.

This research paves a way for subsequent work to explore the interplay between behaviour

and microstructure in a hypothesis driven manner.
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Chapter 5

Perceptual processing of facial expression

and body posture cues: A social cue

integration framework

5.1 Introduction

The human brain must combine multiple sensory estimates about the world to guide

perception (Trommershauser et al., 2011). Our estimates about the world are always

associated with uncertainty because neural information processing is noisy (Whiteley &

Sahani, 2008). In order to minimise the uncertainty in sensory cue measurement, observers

often combine multiple cues to improve the reliability of their estimates (Trommershauser

et al., 2011). This combination is typically conceptualised within a cue integration frame-

work that allows us to formally assess how our brains utilise multiple sensory estimates

to arrive at a stable and robust percept of the world (Bejjanki et al., 2011; Dekker et

al., 2015; Ernst & Banks, 2002; Martin, 2016). Optimal cue integration, based on the

maximum-likelihood principle, predicts that the relative reliability of the sensory cues

determines how much they will contribute to the integrated representation, and that the

integrated estimate should be more reliable than the individual sensory estimates (Ernst &

Banks, 2002). These predictions are supported by empirical evidence from low-level vision

research (Ernst & Bülthoff, 2004; Landy & Kojima, 2001). Cue integration has recently

been proposed as a key feature of complex social cognition, as this relies on the interaction

between multiple environmental signals and information processing streams (Zaki, 2013).

I L Ward 84



Despite the theoretical proposal, to my knowledge, no published research demonstrates

the application of cue integration modelling to higher-order social cues. The principles

of understanding how we are able to make social inferences from complex social cues,

are akin to the senses. The interplay between incoming sensory signals and information

processing streams is an essential component of social cognition (Zaki, 2013). In low-level

vision the use of formal models has been successful in providing a deep and mechanistic

understanding of information-processing (Backus et al., 1999; Jacobs, 1999). Applying the

models and insights from low-level vision to processing of complex stimuli such as faces,

holds the promise of providing similar insights into the processes underpinning high-level

social perception.

In Chapters 3 and 4 of this thesis, I demonstrated the important role of body context

in perception of a facial expression. Typical encounters with facial expressions in the real-

world are in conjunction with a body posture. Therefore, it is important we understand

how our brain effortlessly integrates these social cues to form whole-person representations.

In the present chapter, facial expression and body posture integration is conceptualised

under a cue integration framework to determine if human behaviour is consistent with

maximum likelihood estimation (MLE) predictions. I make two key quantitative predic-

tions: firstly, observers’ who have more precise facial expression representations than body

posture representations will be less affected by the body context in whole person percep-

tion. This is because more reliable cues contribute more to the integrated representation.

Secondly, the observer’s integrated whole person representation should be more reliable

than either of the individual sensory cues. Within this framework, optimality has to be

defined perceptually (Cormack, 2005), where optimality is defined as the precision of the

response the observer is making based on the incoming sensory evidence.

The cue integration framework has been developed as a model to explain perceptual

information-processing, rather than post-perceptual decision-making stages. Therefore,

prior to fitting the model, I aimed to provide evidence to support the idea that the inte-

gration of facial expression and body posture is truly perceptual. In addition to a task

in which observers were asked to categorise facial expressions using verbal labels, as pre-

viously described [Chapter 3 & 4], I also tested performance in a task, in which response

options were non-verbal. Instead of selecting the words ‘disgust’ or ‘anger’, observers had
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to choose between angry or disgusted facial expressions or body postures. Previous re-

search has suggested that the use of a non-verbal response option is a better way to assess

if a process is perceptual, as observers do not need to rely on their verbalisation ability

(Palermo et al., 2013).

To summarise, the goal in the present work was to determine whether integration of

facial expression and body posture cues was consistent with predictions from a formal cue

integration framework, based on the maximum likelihood principle. In addition, I provide

new evidence to support the hypothesis that the influence of body posture on perception

of facial expressions is perceptual.
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5.2 Methods

The behavioural paradigm used in this work was a modified version of the task detailed in

Chapter 3. Modifications to the methodology described in Section 3.2 are detailed below.

5.2.1 Observers

A total of 38 näıve observers (14 male) were recruited from the general population. Only

neurologically and physically healthy participants were recruited. All participants had

normal or corrected to normal vision. All participants were over 18 years of age (mean

age = 29.3 ± 8.15, range = 18-54). Observers provided written informed consent prior

to participating. Experimental protocols were approved by Cardiff University School of

Psychology Ethics Committee, and were in line with the Declaration of Helsinki. All

participants were fully debriefed at the end of the testing session and payment was provided

in the form of cash.

5.2.2 Stimuli

Facial expression stimuli were generated using photographs of male actors from the Rad-

boud and Karolinska Directed Emotional Faces validated sets of facial expressions (Langner

et al., 2010; Lundqvist et al., 1998). Angry and disgusted expressions were selected for

four Caucasian male identities. These identities differed from those used in Chapters 3 and

4. For each identity, the fully-angry and fully-disgusted facial expressions were morphed

together using FantaMorph software [FantaMorph Pro, Version 5]. This procedure gener-

ated morph continua for each identity. The morphs changed in increments of 5% between

the angry and disgusted facial expressions resulting in 21 morph levels for each identity.

For categorisation of the facial expressions in isolation, a mask blending into the mean

grey background was used to remove any external facial features, such as the hair and

ears. The body postures used were identical to those detailed in Section 3.2.2 of Chapter

3. Whole-person stimuli were created by manually pasting the individual morphed emo-

tional faces onto fully-angry and fully-disgusted body postures using GIMP [GNU Image

Manipulation Program, Version 2.10].
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5.2.3 Procedure

Presentation of the task was controlled by custom-written MATLAB (Version 2016b) code

using the Psychophysics Toolbox (Version 3.0.14) (Brainard, 1997; Kleiner et al., 2007;

Pelli, 1997). Observers took part in three conditions twice, once with verbal response op-

tions, once with non-verbal response options: 1.Facial expression categorisation, 2.Body

posture categorisation, 3.Whole-person categorisation [Figure 5.1]. Observers were asked

to categorise a test stimulus as either angry or disgusted in facial expression, body posture

and whole-person conditions. For the whole-person condition, observers were explicitly

instructed to judge the facial expression and ignore the body posture. The stimulus pre-

sentation was as detailed in Section 3.2.3, however the response options were different for

the present task. For the verbal response options, following test stimulus presentation,

the words ‘Anger’ and ‘Disgust’ were presented on either the left or right hand side of the

screen [Figure 5.1a]. The observer was instructed to select the word that categorised the

test stimulus presented on that trial. To respond, observers pressed a key corresponding

to the location of the word. The location of the words appearing on the left or right hand

side of the screen was counterbalanced within each task. For the non-verbal response

options the procedure was the same, except the response options displayed were images

of fully-angry and fully-disgusted stimuli [Figure 5.1b]. The response choice stimuli op-

tions displayed for the facial expression and whole-person conditions were isolated facial

expressions, and body postures for the body posture condition. The identity displayed for

the response choice stimuli was different from the identity of the test stimulus.

The study design was a repeated-measures block design. The order of the six experi-

mental conditions was counterbalanced across participants. For each task the participant

underwent a short training phase at the beginning of the block.
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(a) Verbal response option conditions (b) Non-verbal response option conditions

Figure 5.1: Experimental conditions
The figure depicts the six experimental conditions: 1. Facial expression categorisation (verbal), 2. Body posture categorisation (verbal), 3. Whole-
person categorisation (verbal), 4. Facial expression categorisation (non-verbal), 5. Body posture categorisation (non-verbal), 6. Whole-person
categorisation (non-verbal). On each trial the stimulus was presented centrally for 500ms. Observers were instructed to categorise the facial
expressions in the facial expression and whole-person conditions, and the body posture in the body posture conditions. Following presentation of
the stimuli, response options appeared on screen and remained until an observer made a response. The verbal response options were the words
‘Anger’ and ‘Disgust’ [5.1a], and the non-verbal response options were angry and disgusted expressions of the image category the observer was
required to categorise [5.1b]. The next trial commenced following a 500ms inter-trial interval.



5.2.4 Analysis

Using custom-written MATLAB code with the Palamedes toolbox (Prins & Kingdom,

2018), PFs were fitted based on a cumulative Gaussian to estimate the PSE and slope

value for each observer, for each condition. Lapse rate was fixed at 0.03; guess rate was

determined by the experimental procedure and was fixed at 0. The steeper the slope

of the psychometric function, the more reliably the observer distinguished between the

morphed stimuli (Kingdom & Prins, 2010). The PSE is the point at which the observer

was equally likely to respond disgust or anger to a particular stimulus. The PSE change

reflected the modulation of the facial expression judgement due to the contextual influence

of body posture. Goodness-of-fit of the PFs was assessed visually and by using the method

described in Wichmann and Hill (2001) and implemented in the Palamedes toolbox in

MATLAB (Prins & Kingdom, 2018). This resulted in three observers being excluded

from the facial expression verbal and non-verbal conditions, one from the body posture

verbal and non-verbal conditions, six from the verbal whole-person, and five from the

non-verbal whole-person condition. For the MLE model fitting, observers were required

to have complete data across all conditions, therefore a total of 26 observers were included

in the modelling analysis.

Cue integration model

From the psychophysical data, I calculated how each of the individual face and body cues

contributed to the whole-person percept, and how reliable this integrated whole-person

representation was.

The estimated slopes of the psychometric functions for the face- and body-only condi-

tions provided a measure of the reliability of the isolated representations, on a subject-by-

subject basis. Given the high correlation between observers’ performance on verbal and

non-verbal versions of the facial expression, body posture and whole-person conditions,

the data was pooled across the two experiments. The average estimated slope and PSE

was determined for each PF for each condition on an individual subject basis. The amount

of sensory evidence associated with a particular stimulus can be represented as a Gaussian

curve, with a tall, narrow distribution indicating a more reliable cue (Jeffery et al., 2016).

The PSE is the point at which an observer is as likely to indicate that the stimuli
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shown was angry or disgusted. In my observer model, this point is considered to index

an observer’s fixed internal criterion. If the amount of sensory evidence exceeded the

internal criterion, the observer indicated that the stimulus was disgusted. However, if it

fell below this criterion the stimuli was categorised as angry. The discrimination threshold

is the difference between the PSE, and the observer’s performance when the probability

of categorising the response as disgust equates to 0.76. This difference corresponds to the

standard deviation of the underlying representation [Figure 5.2].
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Figure 5.2: Facial expression condition: Observer model and link to perfor-
mance
The figure depicts the perceptual process and how it is linked to performance for one
participant. When viewing a facial expression morph the visual system generates a rep-
resentation that contains ‘sensory evidence’ for the amount of disgust versus anger in the
stimulus. The more disgust a stimulus contains the greater the amount of sensory evidence
for disgust, as indicated by the shaded portion of the distribution. The top panel is an
example of a morph with approximately equal amounts of anger and disgust in, and the
middle panel shows the sensory evidence associated with a stimulus containing a higher
percentage of disgust. The observer is thought to compare the amount of sensory evidence
against an internal criterion, illustrated by the solid blue line that extends across all three
panels. If the sensory evidence exceeded the criterion, the observer would categorise the
stimulus as disgusted. If the evidence did not exceed the criterion, the stimulus would
be categorised as angry. The observer’s resulting psychometric function, shown in the
bottom panel, allows the estimation of the underlying facial expression representations:
the difference threshold at 0.76 performance is equivalent to the standard deviation (σ) of
the underlying facial expression representation. σF is the standard deviation of the facial
expression representation. This is illustrated in the figure with the orange arrow.
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For each observer, a theoretical face weight (WF (T )) value was calculated to predict

how much the facial expression cue contributed to the whole-person integration. Based on

the maximum likelihood principle, the influence of facial expression on the whole-person

representation was theoretically derived from the standard deviation of the empirically

measured isolated face and body cues:

WF (T ) =

1
σ2
B

( 1
σ2
B

+ 1
σ2
F

)
(5.1)

The term σF denotes the standard deviation of the facial expression representation,

and σB of the body posture representation. The more reliable the representation, the

steeper the PF, and the smaller the standard deviation. The theoretical body weight

(WB(T )) was calculated using an equivalent approach, but as the combined weights of the

face and body equate to 1 (WF (T ) +WB(T ) = 1), for the remainder of the chapter, I refer

to the WF (T ).

Based on performance in the whole-person condition, the theoretical predictions for the

face weights were compared to the empirical data [Figure 5.3]. To calculate the empirical

weights, which were the weights that the observers actually used in the whole-person

condition, the visual system was assumed to be an unbiased estimator, in line with the

majority of work in this area (Scarfe, 2020). This means that the average estimate for a

given cue was equivalent to the stimulus level that was presented. The empirical weighting

of the face cue in the whole-person representation was calculated by:

WF (E) =
PSEF − EB

d
with d = EF − EB (5.2)

Where PSEF is the point-of-subjective-equality of the isolated face condition, EF is

the stimulus level of the face morph at the PSE in the whole-person condition, and EB

is the stimulus level of the body posture, which was fixed at either 100% angry or 100%

disgusted in the whole-person condition. The empirical weighting of the face cue was

first calculated for the averaged (verbal and non-verbal) face presented with an angry

body posture, and then for the face presented with the disgusted body. An average was

then taken of these two values to determine the theoretical face weight from the empirical

whole-person condition, shown above.

93 Chapter 5



From the isolated face and body cues, the theoretically predicted reliability of the

whole-person percept was estimated by determining the standard deviation of the inte-

grated whole-person representation (σWP ).

σWP (T ) =

√
σ2F × σ2B

(σ2F + σ2B)
(5.3)

Therefore, the theoretically predicted reliability is:

RWP (T ) =
σ2F + σ2B

(σ2F × σ2B)
(5.4)

Finally, the empirically-measured reliability of the whole-person representation was

derived directly from the estimated slope of the whole-person PF. The empirical whole-

person reliability was defined as:

RWP (E) =
1

σ2WP

(5.5)

This facilitated comparison between the predicted reliability of the whole-person inte-

gration, calculated from the face and body cues, with the empirical values.
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Figure 5.3: Whole-person condition: Observer model and link to performance
Panel A displays example stimuli for the facial expression condition, and the whole-person condition. Panel B and C illustrate the perceptual
process, and the link with performance in two separate observers. The observer in panel B has a more reliable facial expression (orange) than body
posture representation (blue), the observer in panel C shows the opposite relationship. The sensory evidence associated with the whole-person
representation (purple) is achieved by integrating face and body representations according to the MLE principle. The face weight is represented by
WF , and the body weight by WB. The weights were both multiplied by a constant (d) [Equation 5.2].



5.3 Results

5.3.1 Isolated facial expression and body posture categori-

sation

Observers could reliably distinguish between angry and disgusted facial expressions and

body postures, as indexed by the estimated PF slope values, for both the verbal and non-

verbal conditions. A paired t-test revealed no significant difference in the facial expression

precision between the verbal and non-verbal response tasks (t(34)=1.119, p=0.27), or be-

tween the body posture verbal and non-verbal response tasks (t(36)=0.087, p=0.931), sug-

gesting observers’ reliability was not different for the verbal and non-verbal response tasks

[Figure 5.4]. Observers’ precision, when categorising facial expressions in isolation, was

highly correlated between the verbal and non-verbal response tasks (rs=0.634, p<0.001).

For the body posture condition, there was also a strong positive correlation between ob-

servers’ performance for the verbal and non-verbal response tasks (rs=0.540, p<0.001).

These strong positive correlations indicate that observers’ performance in categorising the

individual facial expression and body posture cues was consistent, regardless of response

option type.
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Figure 5.4: Estimated slope values from PFs for facial expression and body posture categorisation for verbal and non-verbal
response option tasks The violin plots display the estimated slope values for the facial expression [5.4a] and body posture conditions [5.4b] for
the verbal and non-verbal response option tasks. No difference was observed between the facial expression precision for the verbal and non-verbal
response tasks, or for the body posture precision. Each point represents one observer. The distribution of the values is illustrated by the shaded
area, with the overlaid boxplot indicating the median and the interquartile range.



5.3.2 Whole-person categorisation

Body posture was found to have a significant influence on facial expression perception

in both the verbal and non-verbal whole-person conditions. A Wilcoxon signed rank test

revealed a significant difference in the PSE values between the facial expressions presented

on 100% angry and 100% disgusted body postures for the verbal response option condition

(z=1.39, p<0.0001), suggesting that overall, there was a significant influence of body

posture on facial expression perception [Figure 5.5a]. For the non-verbal condition, a

paired t-test also revealed a significant difference between the PSE of facial expressions

presented with a 100% angry and 100% disgusted body postures (t(32)= 4.923, p<0.0001)

[Figure 5.5b]. This clearly illustrates that regardless of response option type, body posture

significantly biased observers’ perception of the facial expression. These results suggest

that the biasing effect is truly perceptual, as even when facial expressions were presented

as response options following the test stimulus, observers selected the expression that

captured the perceived facial expression, biased by the body posture. The PSE change

was highly correlated between the verbal and non-verbal response option for the whole-

person condition (rs=0.499, p<0.01) [Figure 5.6].
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(b) Non-verbal change in PSE

Figure 5.5: Change in PSE between facial expression judgements on a 100% angry and a 100% disgusted body posture The raincloud
plots display the PSE for the facial expression morphs presented with an angry or disgusted body posture from the whole-person condition for the
verbal [5.5a] and [5.5b] non-verbal response option tasks. The distribution of the values is illustrated by the shaded area, with the boxplot indicating
the median and the interquartile range. Each line represents one observer and depicts the change in PSE.
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Figure 5.6: Relationship between PSE change for verbal and non-verbal re-
sponse options
The correlation plot displays the relationship between the PSE change for the verbal and
non-verbal response options. The PSE change was highly correlated between the ver-
bal and non-verbal response option tasks (rs=0.499, p<0.01). Each point denotes one
observer, and a smoothed linear regression line is shown in blue with a 95% confidence
interval shaded.

A significant negative relationship was found between isolated facial expression pre-

cision and the influence of body posture on facial expression perception for the verbal

response option tasks (rs=-0.494, p<0.01). This result echoes my findings from Chapter

3, demonstrating that observers’ who had very precise facial expression representations

were less influenced by the body posture when judging the facial expression in the whole-

person condition, and vice versa. For the non-verbal conditions, a negative trend was found

between facial expression precision and PSE change, however it did not reach significance

(rs=-0.297, p=0.09).

No relationship was found between body posture precision and PSE change for the

verbal conditions (rs=-0.159, p=0.38), but a significant negative relationship was found

for the non-verbal conditions (rs=-0.426, p=0.014).
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5.3.3 Reaction times

For each observer, the average reaction time (RT) was calculated per condition by av-

eraging the RTs over each trial. The RTs were found to be slower for the non-verbal

conditions, compared to the equivalent verbal conditions (Face: t(34)=-8.802, p<0.0001;

Body: t(36)=-4.374, p<0.0001; Whole-person: t(29)=-7.336, p<0.0001) [Figure 5.7]. This

suggests that task demands for the non-verbal response options were more challenging,

thus requiring more time for the observers to respond. However, even with the slower

RTs, and a greater ‘decision time’, a significant influence of body posture on perception of

facial expressions is still seen. This result adds additional support to the argument that

the body context effect is truly perceptual. Comparing the RTs between the facial expres-

sion condition and whole-person condition for the verbal response options, there was no

significant difference in RTs (t(30)=-1.367, p=0.182). The same was also true for the non-

verbal facial expression and whole-person condition (t(32)=0.607, p=0.548). This finding

indicates, that on average, observers’ judgement of a facial expression was not significantly

slower in the presence of a body posture within the verbal or non-verbal response option

tasks. If a difference had been observed, it could have indicated that the overall effect

of body posture influencing perception of the facial expression was due to differences in

RTs. The fact that a difference is not observed further supports the argument that body

posture biasing facial expression perception is truly perceptual.

101 Chapter 5



1.5

2.0

2.5

3.0

Fa
cia

l e
xp

re
ss

ion
 (V

er
ba

l)
Fa

cia
l e

xp
re

ss
ion

 (N
on

−V
er

ba
l)

Bod
y p

os
tu

re
 (V

er
ba

l)
Bod

y p
os

tu
re

 (N
on

−V
er

ba
l)

W
ho

le−
pe

rs
on

 (V
er

ba
l)

W
ho

le−
pe

rs
on

 (N
on

−V
er

ba
l)

R
ea

ct
io

n 
tim

e 
(s

ec
on

ds
)

Figure 5.7: Average reaction times
The violin plot displays the average reaction time for each observer, calculated by averaging over all trials. Each condition is shown in a separate
violin with the verbal and non-verbal response option tasks displayed side-by-side. Each point represents one observer. The distribution of the
values is illustrated by the shaded area, with the overlaid boxplot indicating the median and the interquartile range.



5.3.4 Cue integration modelling

I found a significant positive correlation between the theoretically calculated face weights,

and empirically determined face weights, on a subject-by-subject basis (r(24)=0.5309,

p<0.01) [Figure 5.8a]. This suggests that observers performed in a manner predicted by

a MLE cue integration model. However, there was a significant difference between the

theoretical and empirical values (t(25)=14.71, p<0.0001), with the empirical face weights

being higher than the theoretical weights. This suggests that there was a deviation from

optimality, such that observers were weighting the face cue as more reliable (or the body

cue as less reliable) in real-life than would be predicted by MLE for an optimal observer.

For the whole-person precision, the empirical and theoretical calculations were found to

be significantly positively correlated (r(24)=0.4151, p=0.0350) [Figure 5.8b]. Furthermore,

the values were found to be significantly different from one another (t(25)=-7.17, p<0.001).

Again, this indicates that observers deviated from optimality, as the reliability of the

empirically measured integrated representation was lower than predicted. Under a MLE

cue integration model, the integrated representation is predicted to be more reliable, as

it makes use of the uncertain sensory cues to form a more precise estimate about the

integrated percept. However, in the current application of the model, this is not the

case. The whole-person precision was not always found to be greater than either of the

individual cues [Figure 5.9].
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(b) Relationship between theoretical and empirical whole-person precision

Figure 5.8: Comparison of MLE cue integration theoretical predictions with empirical values
The correlation plots displayed show the relationship between the predicted and empirical face weights [5.8a] and whole-person reliability [5.8b] The
dashed red line in both plots illustrates the expected relationship for an optimal observer. Each point represents one observer.
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Figure 5.9: Reliability of face, body and whole-person cues
The estimated slope values are shown for each observer for the face, body and whole-
person. The steeper the slope of the PF, the more reliable the estimation, therefore the
smaller the standard deviation (σ). Each line connects one observer’s reliability across
for each of the representations. Based on MLE predictions, the whole-person precision
(integrated representation) should be more reliable than either of the individual cues.
In the current results, the whole-person representation is not always more reliable than
the individual face and body cues. A box and whisker plot illustrates the median and
interquartile range of the data for each representation.

In summary, the predictions made about the weighting of the face cue, and the whole-

person reliability were highly correlated with the empirical calculations. However, these

results also demonstrate that observers’ performance was not optimal as defined by MLE.
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5.4 Discussion

In the present chapter I demonstrate the successful application of a formal mathematical

cue integration model for facial expression and body posture integration. Finding a re-

lationship between the theoretical predictions and the empirical values for both the face

weights and whole person reliability suggests that the model captures some aspects of

this integration. However, a systematic deviation between the model and empirical data

was observed, suggesting the model is missing crucial components of how humans inte-

grate these social signals. These results reveal that observers’ typically weight the facial

expression cue as more reliable than predicted, or conversely treat the body posture cue

as less reliable. Taken together, this means that observers’ deviate from optimality when

integrating facial expression and body posture cues. In addition, I provide evidence to

support the claim that the influence of body posture on facial expression perception is

perceptual. Adopting a within-observer design, I show that regardless of response option

(verbal or non-verbal), the body biasing effect emerges, and there is a tight relationship

between the verbal and non-verbal response option tasks.

Matching tasks are believed to be more perceptual than labelling tasks, as they sim-

ply require participants to discriminate between expressions on the basis of the visual

properties alone (Palermo et al., 2013). Using verbal labels as response options requires

additional verbalization of responses, which is thought to be more cognitively demanding

due to the requirement of additional vocabulary skills. Previous empirical work comparing

response option types in expression categorisation tasks has been mixed; some work finds

no correlation between verbal and non-verbal facial expression labelling abilities (Croker

& McDonald, 2005), whilst other work finds a tight correlation between facial expression

labelling with verbal and non-verbal options (Addington & Addington, 1998). In the

present study, I found a tight relationship between the verbal and non-verbal response op-

tions for isolated facial expression and body posture conditions, suggesting that observers’

categorisation ability was unaffected by the format of the response option. Interestingly,

the reaction times for the non-verbal tasks were significantly slower than the verbal equiv-

alent, however no difference was observed in the categorisation of the expressions. In

addition, I also found a strong positive correlation between the verbal and non-verbal

response options for the influence of body context on facial expression perception. This
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within-observer evidence suggests the claim made by previous authors that the body bi-

asing effect is truly perceptual. However, the magnitude of PSE change appeared to be

smaller in the non-verbal iteration of the task. One explanation for this finding could be

a consequence of the task demands. Observers were required to select a facial expression

that best captured the emotion displayed from the facial expression presented with an ex-

pressive body posture. Whilst a different identity was shown in the response choice stimuli

to the test stimulus in order to minimise observers using a matching strategy, this cannot

completely mitigate the possibility participants were still trying to use some element of

matching between the choice and response options. One indication of this could be seen

with the slower RTs observed in the non-verbal condition. To further mitigate this possi-

bility, subsequent research could consider using non-verbal stimuli that are more different

to the test stimuli, for example, expressions which are non-Caucasian or non-male.

It has been proposed that there is a distinction between two types of visual process-

ing; a perceptual process where information about the visual input is extracted, followed

by a higher-level decision making process evaluating the relevance of the visual informa-

tion related to goals and expectations, and then generation of an appropriate behavioural

response (VanRullen & Thorpe, 2001). Empirically disentangling the stages underlying

conscious perception is one of the challenges modern psychology faces. In the current work

the influence of body posture on facial expression perception is believed to be perceptual

due to the evidence presented in this chapter and previous work (Aviezer et al., 2011;

Meeren et al., 2005; Teufel et al., 2019), however it should be highlighted that other at-

tention or decision making processes could be at play and should be assessed in subsequent

research.

Despite the observed deviation from optimality in the current work, I found a sig-

nificant positive correlation between the theoretical model predictions and the empirical

values for the face weights and whole-person precision. Therefore, conceptualising whole

person integration under a MLE framework does provide some insight into how face and

body cues are combined, suggesting that the integrated whole-person representation is a

weighting of the reliability of the isolated face and body cues. One advantage of the current

model fitting was the use of naturally occurring variability between participants for the

MLE calculations. Typically, cue integration modelling relies on experimentally manipu-
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lating the stimuli within observers to determine how differences in reliability contribute to

perception. In Chapters 3 and 4, large individual differences in the magnitude of the body

biasing effect were found. Individual differences reported between observers often arise

from real differences in optical, neural and perceptual differences that mediate perception

(Mollon et al., 2017). Therefore, using naturally occurring variability between observers’,

the model captures real world individual differences between individuals’ perceptual ex-

periences, thus aligning closer to the underlying ecological mechanism of whole-person

emotion perception.

Multisensory information is believed to be integrated in the brain according to the

incoming sensory cues’ relative reliability (Helbig & Ernst, 2007; Meijer et al., 2019).

Single unit recordings in macaques have shed light onto the neuronal correlates of cue

integration (Fetsch et al., 2013). Fetsch and colleagues (2013) report that neurons in

the dorsal medial superior temporal area of the macaque were modulated by changes in

cue reliability across time. Although in Festsch’s paradigm cue integration was across

visual and vestibular senses, this work provides direct evidence for a neuronal mechanism

mediating the mathematical combination of cues. Therefore, the fact that the theoretical

predictions for the relative contribution of the face cue to the whole-person representation

were highly correlated with the empirical measurements, provides some insight into the

statistical inference of the brain when solving this sensory challenge.

One explanation for the empirical face weighting being higher than theoretically pre-

dicted by MLE integration, could be a consequence of the task. Despite the model con-

ceptualising integration as a ‘whole-person’ cue, observers’ were specifically instructed to

categorise the facial expression and ignore the body posture. Therefore, the fact that the

empirical face weights were higher than the theoretical predictions, could be a reflection of

the task demands. This could indicate that observers’ have cognitive access to re-weighting

cues, despite their sensory reliability, as a function of the task demands. One approach

to further explore this proposal would involve a modification of the current study, where

the whole-person condition would consist of body posture morphs presented with 100%

angry or 100% disgusted facial expressions. Observers would be explicitly instructed to

categorise the body posture in this whole-person task. If observers were able to re-weight

the incoming information depending on the task demands, as I have suggested from the
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current results above, I would expect the empirical body posture cue to be given a higher

weighting in this iteration of the study.

An alternative explanation for the observed deviation from optimality could be that

my definition of optimality does not capture the real complexity of the task. In contrast to

low level visual cues, where MLE modelling is commonplace, the information which must

be integrated from higher-order social cues is perceptually rich. In the instance of facial

expression and body posture cues, each individual has distinct previous experience with

such cues. Given the complexity of assessing these additional cognitive factors, it may be

more suitable to assess the integration of these cues under another framework that allows

explicit modelling of such prior assumptions.

Furthermore, there are some disparities between classical descriptions of cue inte-

gration in the literature and its implementation in the present chapter to model higher

order-social cues. In adults, typically under a MLE cue integration framework, the in-

tegrated estimate is a third entity and a consequence of ‘fusion’. This fusion results in

loss of access to the individual cues (Hillis, 2002; Nardini et al., 2010). A challenge with

the application of a cue integration framework to whole-person integration of facial ex-

pression and body posture, is that the integrated percept is not a separate third entity;

participants were instructed to judge the face in the context of a whole-person. I also

found that the integrated precision of the whole-person estimate was not always higher

than the reliability of the individual cues. One of the predictions of MLE cue integration

is that the combined representation should be more reliable than either cue alone (Ernst

& Banks, 2002). In order to overcome some of the limitations of the present work, future

research should assess the suitability of other frameworks to model the integration of facial

expression and body posture. One alternative framework to consider is a causal inference

model. Causal inference is the process of inferring whether one event was caused by an-

other and is a problem the human perceptual system must solve (Shams & Beierholm,

2010). Cue integration models assume that different signals are all caused by the same

source, therefore model how the nervous system combines these signals under assumed

unity. To this end, MLE models estimate the integration based on a weighted average

of the estimate for each cue and does not consider any prior information. However, in

the real world multiple sensory signals can have multiple sources and do not ‘fuse’ as cue
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integration depicts. To overcome these limitations a Bayesian framework, such as causal

inference, should be explored for future research.

5.5 Chapter Summary

In the present chapter, I applied a MLE model of cue integration to determine if the

integration of facial expression and body posture cues was statistically optimal. I illustrate

that the integrated emotion percept of a whole-person can be predicted by combining

the weighted reliability of the individual face and body cues of emotion. In Chapter

3, I reported a relationship between facial expression precision and the magnitude of

the body biasing effect. In the current work, I developed this further to illustrate the

reliability of the face cue not only correlates with whole-person perception, but contributes

to the integrated representation as a weighted average of the cues underlying sensory

reliability on a subject-by-subject basis. Taken together, the results in this chapter have

impacts for understanding the neural processing of facial expression and body posture

cues and appreciating the complexity of higher order social cue processing in the brain.

Future work is needed to optimise the framework for combination of higher-order social

cues, considering the complexity of the signals. This work is the first of its kind, to my

knowledge, to apply a mathematical framework to the integration of facial expression

and body posture cues and furthers the current state of the literature to provide a more

mechanistic account for the integration of facial expression and body posture cues.
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Chapter 6

General Discussion

In the following discussion I will highlight the key findings from each of my experimental

chapters, discuss the relevance of the findings, and highlight their implications in the wider

context of emotion perception more generally.

6.1 Overview of thesis results

In Chapter 3, I provided empirical evidence demonstrating that facial expression percep-

tion can be biased by an affective body posture, and the magnitude of this bias is variable

between observers. The reliability with which an observer could categorise facial expres-

sion morphs between anger and disgust was found to be negatively correlated with the

magnitude of the body biasing effect, such that observers’ who were more reliably able

to categorise isolated facial expressions were less influenced by body posture, and vice

versa. In turn, observers’ who had less precise isolated facial expression representations

were more biased by the body posture in the whole-person condition. This research quan-

tified the influence of body posture on facial expression perception, as well as measuring

the reliability of isolated facial expression and body posture representations. The results

highlight evidence for a relationship between individual cue reliability and whole-person

representation.

In Chapter 4, I explored whole-person perception across development. Previous re-

search has highlighted that children’s ability to categorise facial expressions improves with

increasing age (Herba et al., 2006; Thomas et al., 2007). Specifically, the ability to de-

tect subtle differences in morphed facial expressions improves with age (Dalrymple et al.,
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2017). In Chapter 4, I replicated this finding, showing that in 8 to 18-year-olds the ability

to recognise emotion from morphed facial expressions of anger and disgust significantly im-

proved with increasing age. Interestingly, I also found that with increasing age, children’s

judgements of facial expressions were less biased by an affective body posture. These find-

ings echo my results from Chapter 3; as isolated facial expression recognition improved,

the influence of body context on facial expression perception decreased. In Chapter 4, I

also provide evidence for the first time, to my knowledge, that children’s recognition of

body postures improves with increasing age.

The work in Chapter 4 also uncovers microstructural changes in functionally-relevant

white matter that were predictive of children’s individual differences in facial expression,

body posture and whole-person perception. It has previously been established that face

and body processing is dependent on an extended network of brain areas. Therefore, to

explore changes in white-matter specifically related to the perception of these cues, I de-

lineated the tracts connecting key cortical nodes involved in face and body processing.

This resulted in a network of functionally-defined white matter tracts for face and body

processing encompassing regions in the visual processing hierarchy that have been asso-

ciated with having category-specific neural responses to faces or bodies. The fractional

anisotropy of tracts connecting occipital face area and fusiform face area was predictive

of individual differences in facial expression recognition in children. This work provides

support for recent functional MRI accounts indicating that the ventral visual stream plays

an important role in facial expression processing, and is not exclusively dedicated to iden-

tity processing (Dima et al., 2018; Duchaine & Yovel, 2015). In addition to changes in

fractional anisotropy in relation to facial expression perception, a metric more sensitive

to intracellular signal, the spherical mean, was found to reflect developmental changes of

tracts in both the face and body networks. The spherical mean provides some insight into

the underlying biophysical changes that could be driving development in these functional

circuits across adolescence.

In Chapter 5, I applied a formal mathematical model for cue integration to determine

if observers integrated facial expression and body posture cues in a statistically optimal

manner. Based on the principle of MLE, it is thought that more reliable cues contribute

more to the integrated representation. To determine if this was the case in whole-person
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perception, I generated theoretical predictions about how much the face and body cues

should contribute to the integrated representation under an ideal observer model, and

compared these to my empirical data. I found a tight correlation between the theoretical

and empirical calculations for both how much the face cue contributed to the integrated

percept, and for the precision of the whole-person representation. These results indicate

that a cue-integration framework goes some way to conceptualise how the human brain

makes sense of the noisy social world, and integration of face and body cue appears to

be dependent on a weighted average of the reliability of the incoming sensory cues. How-

ever, despite this observed relationship, a deviation from optimality was found. Namely,

observers typically weighted the face cue as more reliable empirically, than would be pre-

dicted from cue integration modelling. Alternatively, observers may have been weighting

the body posture as less reliable in real life than theoretically predicted. In addition,

the empirical whole-person precision was found to be lower than theoretically predicted.

Therefore, observers were not found to be performing in an ‘optimal’ manner, with this

work raising interesting questions regarding the mechanisms responsible for integration

of face and body cues. The work in Chapter 5 capitalises on individual differences ob-

served to provide a mechanistic understanding of how the human brain integrates facial

expression and body posture cues, and to my knowledge is the first formal mathematical

framework which has attempted to model the perception of higher-order visual social cues

in this way.

6.2 Clinical relevance

Difficulties in facial expression perception are characteristic of several psychiatric and neu-

rological conditions (Calder, 2011). Brewer and colleagues (2017) explored how contextual

cues from body postures influenced facial expression perception in a group of individu-

als diagnosed with Autism spectrum disorder (ASD). People with ASD are believed to

employ more ‘local processing’ strategies to cope with incoming information, to the detri-

ment of global processing. Brewer et al. (2017) hypothesised that as a consequence of

local processing strategies, observers with ASD should be less affected by body posture

in their perception of the face. Surprisingly, despite explicit instructions to disregard the
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body context, the ASD group were biased by the body posture to a similar extent as

typically developing (TD) controls (Brewer et al., 2017). The work in my thesis may

provide insights into why no differences were observed between ASD and TD participants

in the Brewer et al. (2017) study. Throughout my thesis, I have consistently found an

association between the reliability of the isolated facial expression representations and the

influence of body context. My work would suggest a reinterpretation of Brewer et al.’s

(2017) result to be a consequence of the equivalent reliability of isolated facial expression

cues in ASD effectively ‘cancelling’ any reduction in the influence of body posture due to

their enhanced local processing. The literature regarding isolated facial expression pro-

cessing in autistic individuals is limited, with some research reporting deficits, whilst other

work does not (Keating & Cook, 2021). In order to understand whole-person processing of

emotion in ASD, it will be important to characterise individual differences in responses to

the individual cues, as well as to the whole-person cues. Such an approach is more likely

to provide insights into the mechanisms underlying integration of these social signals in

ASD.

Another very different clinical condition with known difficulties in emotion perception

is frontotemporal dementia (FTD). FTD is a relatively uncommon type of dementia that

causes a broad range of symptoms including changes in behaviour, language, executive

control and motor symptoms (Olney et al., 2017). Kumfor et al. (2018) explored con-

textual processing of faces in patients diagnosed with two variants of FTD: behavioural

variant FTD (bvFTD) and semantic variant, also referred to as semantic dementia (SD).

Facial expression recognition in both bvFTD and SD was found to be impaired relative to

a control group (Kumfor et al., 2018). When presented with an incongruent facial expres-

sion and body posture, the bvFTD group were found to make more miscategorisations

of the facial expression than either SD patients or controls. This shows an interesting

behavioural distinction in contextual processing between subgroups of FTD patients, with

bvFTD patients seemingly over-reliant on the contextual cues of the body posture despite

having similarly impaired facial expression perception as the SD group. In contrast to

my results where isolated facial expression recognition was found to be predictive of the

contextual influence of body context, these clinical findings suggest a different mechanism

could be at play between different types of FTD. In bvFTD, atrophy of the right temporal
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lobe is associated with changes in behaviour, personality and emotion processing (Olney

et al., 2017). In SD patients, temporal lobe atrophy is left hemisphere dominant with

observed deficits being language-based with a progressive loss of semantic knowledge. The

fact that observers with bvFTD are more affected by the context in face perception as

reported by Kumfor et al. (2018), and are known to have atrophied temporal lobes, pre-

dominantly in the right hemisphere, provides support for a key role of the right anterior

temporal lobe in integration of face and body cues. To summarise, work with FTD pa-

tients indicates that the mechanism for integration of facial expression and body posture

may be different in this clinical presentation and subsequent research exploring contextual

processing of facial expressions in a range of neurological conditions is warranted.

6.3 Integration of facial expression and body pos-

ture cues

There remains conflict in the literature regarding exactly how facial expression and body

posture cues are integrated. Some researchers claim that the face and body are processed

as ‘gestalt’ unit, and this processing is automatic and occurs early in the visual system

(Aviezer et al., 2011; Meeren et al., 2005), whilst more recently Teufel (2019) and col-

leagues have challenged this early integration account. Using an adaptation paradigm,

Teufel et al. (2019) found evidence for late integration of facial expression and body

posture cues, downstream of early core face perception regions, such as FFA and pSTS.

Work exploring both spatial and temporal alignment disruption of facial expression

and body posture cues highlights that the body biasing effects can be affected (Aviezer

et al., 2012b; Lecker et al., 2017). When a facial expression was misaligned from the

body posture, the affective posture was no longer found to bias the perception of the face

(Aviezer et al., 2012b). Lecker et al. (2017) introduced a short temporal delay between

facial expression and body posture presentation, and even with immediate sequential pre-

sentation of the cues, the body context effect was diminished (Lecker et al., 2017). Taken

together, these studies indicate that face and body emotion cues are processed as one

whole-perceptual unit, and breaking this form disrupts processing. However, despite work

exploring if the face and body are processed as one-unit, limited work aims to resolve if the
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body context effect is truly perceptual or is a consequence of post-perceptual processes. In

Chapter 5, I provide empirical within-observer evidence to suggest that the body biasing

effect is truly perceptual. Modifying the response options in one version of the task to

include non-verbal options, thought to be a better marker of perception (Palermo et al.,

2013), I found that body context biased observers’ perception of facial expression percep-

tion regardless of response option type. Even with slower response times in the non-verbal

whole-person task, observers were still found to be affected by the body posture in their

perception of the facial expression. These findings combine to support the notion that the

effect of body context on facial expression perception is truly perceptual.

A recent review paper from Hu et al. (2020) proposed a theoretical model for facial

expression and body posture processing in the brain [Figure 6.1]. They proposed that

there are two sites for integration in the brain, a visual semantic integration hub and a

social agent hub, which depend on the task to be accomplished and the stage of neural

processing (Hu et al., 2020). The dorsal social agent hub encompasses the pSTS and

anterior STS and is thought to play a role in biological motion and multi-modal person

integration. The ventral visual semantic hub extends from early regions such as EBA

and OFA to face and body selective regions in the fusiform cortex, culminating in high-

level person perception in the ATL. These ideas align with the Hub-and-Spoke model for

semantic memory and conceptual knowledge, which suggests the ATL plays a critical role

in representing information in an amodal manner (Patterson & Lambon Ralph, 2016).
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Figure 6.1: Proposed model of the neural hierarchical structure that underlies
face and body integration
A theoretical model proposed by Hu and colleagues (2020) for the neural processing of
faces and bodies. The two proposed sites for integration are illustrated with the dorsal
social agent hub shown on the top panel and the visual semantic hub on the bottom.
Figure recreated from Hu et al., 2020.

Despite these ideas regarding the site for integration of facial expression and body

posture being alluded to in the literature, the mechanism for integration remains unknown.

In Chapter 3, I found that the worse an observer’s isolated facial expression representation,

the greater the biasing influence of the body context on their perception the face. These

results suggest that the reliability of the individual cue encoding may be important in

determining the integrated whole-person representation. One proposed mechanism for

individual differences in categorisation of isolated facial expressions has been attributed

to an observers’ gaze patterns and personal traits (Green & Guo, 2018). One striking

finding is that higher anxiety traits have been associated with improved recognition of

emotion across a range of expressions. In addition, personal traits have also been shown

to underlie differences in facial expression recognition, for example it has been shown

that individuals who have more aggressive tendencies are more likely to categorise an

ambiguous facial expression as angry (Penton-Voak et al., 2013). Surprisingly, in Chapter

3, I did not find a relationship between individuals’ ability to recognise isolated facial

expression cues, body posture cues or the magnitude of the influence of body posture on
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facial expression. Further work should aim to resolve if there are links between personal

traits and individual differences in whole-person perception.

In Chapter 5, I formally assessed how the reliability of the individual facial expression

and body posture cues are combined in whole-person perception. Adopting a MLE cue

integration framework, I sought to assess if observers’ integration of facial expression

and body posture was as predicted from this model. Whilst this framework reflected some

features of the integration, a deviation from optimality was observed, suggesting the model

was missing crucial components of how humans integrate these social signals. Importantly,

the MLE model only accounts for the incoming sensory information in the final perceptual

estimate. Given the complexity of social cues, additional frameworks should be considered

that account for the additional demands of processing facial expression and body posture

cues. A Bayesian approach to person perception has recently been proposed to combine

expectations about the environment with sensory evidence (Clifford et al., 2015). Such

a framework is useful in considering additional factors, beyond sensory input, that affect

perception.

6.4 Processing of facial expression and body

posture cues in the brain

Functional analogies have been drawn between key cortical processing nodes in the face

and body processing system. For example, the EBA involved in body processing, and face

sensitive OFA, are both relatively early processing regions in the face and body networks.

Interestingly, there are regions of overlap between neural regions that process bodies, and

those that have been associated with the perception of faces (Downing, 2001). Areas of

cortex which are functionally specialised for face processing have also been shown to be

modulated by body stimuli (Cox, 2004). Cox and colleagues (2004) presented blurred faces

with body postures and found that the neural response in the FFA was comparable to the

response evoked when viewing high-resolution non-blurred faces. When the blurred face

stimuli were presented in isolation the neural response was attenuated, clearly highlighting

the importance of the contextual information, for the detection of a ‘face’. More recent

research has demonstrated that representation of face and body stimuli along the ventral
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visual stream to the anterior temporal lobe (ATL) is hierarchical (Collins & Olson, 2014;

Harry et al., 2016; Song et al., 2013). This research supports a convergence of face and

body information along a visual hierarchy extending from the occipital cortex to the

anterior temporal pole.

In addition to fMRI evidence, direct recording from implanted electrodes in the ventro-

occipital temporal cortex in humans has confirmed face selectivity along the hierarchy,

even in ATL (Jonas et al., 2016). Non-human primate work has also provided further

insight into the networks of face and body processing in the brain, revealing hierarchical

networks responsible for the processing of faces and bodies, supporting the recent findings

in humans (Arcaro et al., 2020; Fisher & Freiwald, 2015; Premereur et al., 2016). This

work is important due to the methodological challenges associated with scanning anterior

temporal regions of the brain in humans and supports the recent proposal from Hu et

al. (2020) depicting the importance of the anterior temporal regions for whole-person

representation.

6.5 Development of facial expression and body

posture recognition

In Chapter 4, I found that between the ages of 8 to 18 years, children’s ability to recognise

facial expressions significantly improved. When presented with facial expressions morphed

between anger and disgust, older children were able to detect a difference in the expression

from smaller changes in the stimulus. These findings are in line with other research

exploring the development of facial expression perception (Dalrymple et al., 2017; Herba

et al., 2006; Thomas et al., 2007). In addition, I also found an increase in the precision

with which children were able to categorise body postures; with increasing age, children

became better at categorising body postures. Very limited previous work has explored

the development of body posture recognition (Mondloch, 2012; Ross et al., 2019). My

results suggest that emotion recognition from face and body cues appear to show similar

developmental patterns, however additional work is required to determine at which age

children reach ‘adult-like’ abilities.

Furthermore, I demonstrate how the influence of body posture on facial expression
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perception changes across development. In Chapter 4, I report that the influence of body

context on facial expression categorisation decreases with increasing age. In other words,

younger children’s facial expression judgements were found to be more biased by an affec-

tive body posture than older children. Taken together with the increase in isolated facial

expression recognition observed with increasing age, this work supports the hypothesis

proposed in Chapter 3, suggesting that the more precise the isolated facial expression

representation, the smaller the body biasing effect. Albeit, in children, this relationship

appears to be driven by age. My results in Chapter 4 challenge the proposal put forward by

Abo Foul et al. (2018). They posited that older people adopt an optimal social expertise

strategy when making whole person judgements of emotion, and are therefore more biased

by the body posture, as they have learnt that facial expressions are typically ambiguous,

hence, strategically give the body posture more weight. If this social expertise strategy

was an adequate explanation of the body context effect, in my current work in children,

one would predict younger children would be less biased by body posture, as they have not

yet learnt to rely on the body posture cue. In fact, I show the opposite relationship, sug-

gesting the social expertise hypothesis cannot explain the influence of body context across

human development and ageing. Instead, as detailed in my thesis, the reliability of the

isolated facial expression representation appears to be the important factor in determining

the magnitude of the body biasing effect, not an observer’s experience with whole-person

cues per se.

Fractional anisotropy of white matter tracts connecting OFA and FFA was found to

significantly predict facial expression recognition abilities in children [Chapter 4]. Even

when accounting for age, the microstructure of tracts between occipital and fusiform face

areas was found to be predictive of individual differences in facial expression ability. This

work has important implications for understanding complex relationships between white

matter microstructure and perception, using a targeted methodology. In contrast to as-

sessing perceptual performance in relation to large white matter tracts, the approach taken

in Chapter 4 targeted white matter connectivity between cortical nodes known to be in-

volved in face and body processing; this is a novel approach to explore face perception

in the developing brain. In addition to the methodological novelty, these results provide

important insights into facial expression processing networks in children. In contrast to
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the early models of face processing, where features were thought to be segregated into

changeable and invariant features, via the dorsal and ventral streams respectively (Haxby

et al., 2000), my results highlight the importance of the ventral visual stream for facial

expression processing. My results align with contemporary models of facial expression pro-

cessing, highlighting the importance of the fusiform cortex for facial expression perception

(Duchaine & Yovel, 2015; Ganel et al., 2005).

In addition to DTI metrics traditionally used to quantify microstructure of white

matter, in Chapter 4, I also reported the spherical mean, a measure thought to be more

sensitive to intracellular features. In previous work, the spherical mean has been shown to

reflect age-related changes in the microstructure of large white matter tracts (Raven et al.,

2020), and here I extend this finding to demonstrate its sensitivity to age in functionally-

defined white matter tracts. Due to the tight relationship between the spherical mean of

FDWM and age, interpretation of the importance of these tracts in relation to age-related

changes in behaviour must be made with caution. For instance, the spherical mean of

tracts connecting pSTS to ATL was found to significantly predict individual differences in

the influence of body posture on facial expression perception. This result aligns with other

published work discussing the site for integration of facial expression and body posture

(Hu et al., 2020; Teufel et al., 2019), and suggests that connectivity from pSTS to anterior

STS may be important for contextual integration. However, due to relationships with age

observed in both the spherical mean of these tracts from pSTS to ATL, as well as between

age and contextual influence, one cannot be conclusive about the behavioural relevance of

this tract. In order to further disentangle the relationships between age-sensitive markers

of white matter with developmental changes in perception, additional features, such as

myelin, should be accounted for in subsequent research. Furthermore, exploring FDWM in

adults would mitigate the additional developmental factors, and changes in microstructure

would be more likely to be reflective of individuals’ perceptual processes.

6.6 Limitations and future directions

One of the limitations of the work in my thesis is the use of only angry and disgusted

displays of emotion. Anger and disgust were explicitly selected due to their high ‘confus-
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ability’ as determined from previous research (Aviezer et al., 2008), therefore generating

reliable and measurable influences of body posture on perception of facial expressions.

Given that I aimed to quantify the influence of body context on facial expression percep-

tion and relate this to the reliability of individual differences in face and body emotion

encoding, it was particularly important that expressions were chosen to maximise these

effects. Furthermore, the ability to reliably recognise emotions from static body posture

displays is challenging, however, anger and disgust have been found to be reliably recog-

nised (Lopez et al., 2017). Therefore, the selection of anger and disgust was also driven by

the ability to create reliably recognisable body posture displays which could be morphed

with one another and not create unnatural postures within the morph range. In Chapter

4, I report improvements in children’s ability to recognise facial expressions and body

postures with increasing age. In order to make broader claims about overall emotion per-

ception development across childhood, subsequent research should utilise additional facial

expressions and body postures, such as fear and surprise, for example. However, for the

research herein, to uncover how context influences facial expression perception in children

this is not an issue.

Another limitation relating to the stimuli used was the use of all male expressions of

anger and disgust in this thesis. Male facial expressions were selected for several reasons:

previous work in this field opted for the use of male facial expressions (Aviezer et al., 2008;

Aviezer et al., 2012b; Mondloch, 2012; Teufel et al., 2019), which allowed comparison

between my research and other published literature. Secondly, different expressions can

be embodied in different ways between genders. A male body posture displaying anger

is thought to be more ‘stereotypically’ angry than a female body posture (Kret et al.,

2013), with similar effects being found for facial expressions of anger (Harris et al., 2016).

Future research should explore the influence of body context on facial expression with both

male and female displays of emotion. In the same vein, in the current work in children

[Chapter 4] the stimuli used were adults’ facial expressions and body postures. Previous

work has revealed an ‘own-age bias’ such that children recognise children’s faces more

accurately than adult faces (Hills & Lewis, 2011). Subsequent work disentangling the

body biasing effect should consider the use of children’s facial expressions to determine

if children’s performance is different when perceiving emotions of other children in the
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context of whole person perception.

The work in this thesis focused on the influence of body context on facial expression

perception. In Chapter 5, I refer to this as the ‘whole-person’ representation, however

it is important to note that observers were explicitly instructed to identify the facial ex-

pression displayed, ignoring the body. As demonstrated from cue integration modelling,

observers typically weighed the face cue as more reliable in their integrated whole-person

representation than theoretically predicted. One explanation for these results, could be a

consequence of the task requiring observers to categorise facial expression in the whole-

person task. To further understand how facial expression and body posture cues integrate,

research should assess how facial expression influences perception of body postures. Scarce

research explores the effect of facial expression on the perception of a body posture (Reed

et al., 2018). Recently it has been shown that when observers are asked to judge body

postures, the facial expression can influence the perception of the body postures in a

bidirectional manner, with the confusability of the expressions in the face and body de-

termining how likely the contextual effect is to occur (Lecker et al., 2020). A limitation

of the Lecker et al. (2020) study is that 100% expressions were used, instead of graded

morphs. In order to fully appreciate the complexity of real-world social interactions, sub-

sequent work should aim to uncover the interplay between the face and body cues further

by exploring if and how, facial expressions can influence body posture perception using

morphed expressions.

In the comparison between facial expression precision and body posture precision, as

reported in Chapter 3 and 4, observers’ performance has been found to be highly cor-

related. This does indicate that observers who had high facial expression precision also

had high body posture precision; However, caution must be taken when interpreting these

results due to the differences in image properties of the face and body stimuli. Despite

the morph levels in the two conditions being physically equated, the perceptual expres-

sion in these cues may not be equivalent. For instance, while a physically 70% disgusted

face morph may be perceived as disgusted the majority of the time, a 70% disgusted

body morph may be perceived as disgusted 100% of the time. In order to further ex-

plore similarities and differences in how individuals perceive facial expressions and body

postures, additional research should be undertaken to ‘scale’ the relative perceived inten-
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sities of facial expression and body posture cues in order to equate the stimuli for further

comparison. One approach that could be taken to explore this is magnitude estimation.

Magnitude estimation is a psychophysical approach in which subjects assign a numerical

value to physical stimuli (Stevens, 1956). The magnitude estimation procedure requires

subjects to judge and assign numerical estimates to the perceived strength of a stimulus.

Highly reliable judgments can be achieved for a whole range of sensory modalities, such

as brightness, loudness, or tactile stimulation. For the application herein to facial expres-

sion and body posture, observers would be required to assign values proportional to the

intensity of the expressions perceived across the stimuli enabling the perceived intensity

of the expressions to be scaled to one another.

Importantly, in the real-world facial expressions and body postures are dynamic. Re-

search has shown that the influence of body posture on facial expression is enhanced with

the use of dynamic incongruent stimuli in both children and adults (Nelson & Mondloch,

2017). Therefore, to mirror the complexity of whole-person processing in research settings,

future work should consider the use of dynamic facial expressions and body postures.

An open question which follows on naturally from the work in this thesis is the trans-

formation and integration of facial expression and body posture cues at the cortical level,

as well as the time course of integration of these stimuli. Although previous research

has suggested ATL as a probable location encoding whole-person representations, to my

knowledge none of these studies have looked at the integration of emotional information

from body and face. Future research could employ powerful multivariate fMRI analysis

techniques to uncover the site for integration of facial expression and body posture cues

in the brain. Utilising the psychophysical methodology I developed, in combination with

multivariate fMRI, may determine how facial expression and body posture signals are

transformed along the visual processing pathway. In contrast to typical univariate fMRI

analysis, multivariate analysis enables detection of patterns of activity across all voxels in

different regions of the brain (Haxby, 2001). Representational similarity analysis (RSA)

is a multivariate technique where brain-activity measurements (across multiple modali-

ties) can be compared to models of behaviour by comparing activity-pattern dissimilarity

matrices (Kriegeskorte, 2008). For each brain region a dissimilarity matrix is constructed

comparing the neural activity patterns associated with pairs of conditions. In addition, the
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behavioural similarity between observers’ responses can also be constructed to produce a

representational dissimilarity matrix (RDM). Comparison of RDMs between behavioural

performance and different neural ROIs could subsequently determine the neural basis for

perception along the visual ventral stream. Based on the proposed models for face and

body integration (Harry et al., 2016; Hu et al., 2020), one would hypothesise neural re-

gions early in the visual processing stream, such as the OFA, will be sensitive primarily

to the physical features of facial expressions irrespective of context; different facial ex-

pressions will evoke distinct neural patterns irrespective of body posture. Regions found

later in the visual hierarchy, such as anterior temporal lobes, will instead display patterns

of activity capturing the perceived emotion biased by the body posture, indicating that

the information has been integrated into a whole-person global percept. An advantage of

RSA is the projection of data into the same geometric space, so subsequent research could

also consider the temporal evidence associated with integration of face and body cues, in

conjunction with the spatial data, by acquiring EEG or magnetoencephalography data.

Furthermore, this design could be employed in a developmental cohort to provide insight

into the development of facial expression and body posture integration in children.

6.7 Conclusion

In summary, the research in this thesis provides novel insights into the processing and

integration of facial expression and body posture cues. Spanning from children to adults,

my results uncover individual differences in the perception of facial expressions in the

presence of a body posture. Furthermore, variation between observers was found to be

attributed to an individual’s reliability in encoding isolated facial expressions. Represen-

tations of facial expression, body posture and whole-person reliability were found to be

related to microstructure of functionally relevant white matter tracts in face and body

networks in children. Taken together, this thesis supports the hypothesis suggesting the

influence of body context on facial expression perception is a truly perceptual effect and

integration of these cues is dependent on the reliability of the isolated face and body cues,

providing a more mechanistic understanding of the integration of facial expression and

body posture. In turn, the work in this thesis paves the way for subsequent research to
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further explore the hierarchical nature of whole-person processing along the ventral visual

stream. In conclusion, this thesis has important implications for our understanding of

real-world individual differences in social perception.
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Appendices

ROI Number

OFA 37
FFA 43

pSTS(face) 41
EBA 39
FBA 40

pSTS(body) 39

Table 1: Number ROIs for OFA, FFA, pSTS(face), EBA, FBA and pSTS(body)
identified
For each ROI the number of participants this region could be identified in is listed.
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ROI x y z Source

OFA 46 -75 -3 Bona et al., 2015
17.8 -88.9 -11.3 Spiridon et al., 2006
44 -80 -14 Schobert et al., 2018
44 -76 -12 Harry et al., 2016

FFA 31.6 -57.2 -10.4 Spiridon et al., 2006
40 -55 -12 Schobert et al., 2018
42 -52 -24 Neurosynth: Fusiform face

43.3 -49.6 -20.5 Harry et al., 2016
EBA 32.6 -77.3 2.4 Spiridon et al., 2006

32 -67.6 6 Spiridon et al., 2006
-42 -64 6 Vocks et al., 2010
46 -70 0 Neurosynth: Body

FBA 40 -48 -22 Vocks et al., 2010
38 -41.2 -17 Taylor et al., 2007

pSTS 54 -42 6 Neurosynth: Posterior superior
50 -47 13 Schobert et al., 2018

Table 2: Coordinates from literature for ROIs
The table lists coordinates for OFA, FFA, EBA, FBA and pSTS extracted from publica-
tions and Neurosynth [https://neurosynth.org/analyses/]. The search terms used in the
Term-based meta-analyses are listed in the source column. All coordinates listed are in
MNI space.
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Figure 1: Relationship between age and PDSS score
Children’s age shown with Pubertal Development Scale Shirtcliff score. Age is shown on
the y-axis in years. A tight positive correlation between age and PDSS score was found
(r(46)=0.85, p<0.0001). Each point represents one observer. The distribution of the
values is illustrated by the shaded area, with the overlaid boxplot indicating the median
and the interquartile range.

Figure 2: Inferior longitudinal fasiculus
Example of the anatomically defined ILF in one child. In the left panel the tract can be
seen in coronal, sagittal and axial planes with directional colour encoding.
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Figure 3: Inferior frontal occipital fasiculus
Example of the anatomically defined IFOF in one child. In the left panel the tract can be
seen in coronal, sagittal and axial planes with directional colour encoding.

Figure 4: Uncinate fasiculus
Example of the anatomically defined UF in one child. In the left panel the tract can be
seen in coronal, sagittal and axial planes with directional colour encoding.
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Figure 5: Corticospinal tract
Example of the anatomically defined CST in one child. In the left panel the tract can be
seen in coronal, sagittal and axial planes with directional colour encoding.
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Figure 6: Relationship between microstructure and facial expression precision,
grouped by white matter tract and coloured by metric
For each of the correlation plots the x-axis displays the logged facial expression precision,
and the y-axis shows the value of the metric. FA is shown in the top panel in purple,
MD in the middle panel in pink and S̊µ(b = 6000) in the bottom panel in green. The
Spearman’s rank correlation coefficient and p-value are indicated for each relationship.
The 95 % confidence interval is shown with shading.
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Figure 7: Relationship between microstructure and body posture precision,
grouped by white matter tract and coloured by metric
For each of the correlation plots the x-axis displays the logged body posture precision,
and the y-axis shows the value of the metric. FA is shown in the top panel in purple,
MD in the middle panel in pink and S̊µ(b = 6000) in the bottom panel in green. The
Spearman’s rank correlation coefficient and p-value are indicated for each relationship.
The 95 % confidence interval is shown with shading.
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Figure 8: Relationship between microstructure and PSE change, grouped by
white matter tract and coloured by metric
For each of the correlation plots the x-axis displays the logged PSE change, and the y-
axis shows the value of the metric. FA is shown in the top panel in purple, MD in the
middle panel in pink and S̊µ(b = 6000) in the bottom panel in green. The Spearman’s
rank correlation coefficient and p-value are indicated for each relationship. The 95 %
confidence interval is shown with shading.
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