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Abstract

The analysis of contemporary genomic data typically operates on one-dimensional pheno-

typic measurements (e.g. standing height). Here we report on a data-driven, family-informed

strategy to facial phenotyping that searches for biologically relevant traits and reduces

multivariate 3D facial shape variability into amendable univariate measurements, while

preserving its structurally complex nature. We performed a biometric identification of

siblings in a sample of 424 children, defining 1,048 sib-shared facial traits. Subsequent

quantification and analyses in an independent European cohort (n = 8,246) demonstrated

significant heritability for a subset of traits (0.17–0.53) and highlighted 218 genome-wide sig-

nificant loci (38 also study-wide) associated with facial variation shared by siblings. These

loci showed preferential enrichment for active chromatin marks in cranial neural crest cells

and embryonic craniofacial tissues and several regions harbor putative craniofacial genes,

thereby enhancing our knowledge on the genetic architecture of normal-range facial

variation.
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Author summary

The human face is a highly variable trait composed of distinct features, each influenced by

genetic and environmental factors. The strong genetic component is primarily evidenced

by the facial similarity between identical twins and the clear facial resemblances within

families. Over the past decade, a powerful methodological toolbox of computational and

statistical genetics has been developed to study the genetic architecture of complex traits.

However, these methods typically require one-dimensional phenotypic measurements

(e.g. width of the nose or spacing between the eyes) that fail to accurately describe 3D

facial shape. In this paper, we learn from 3D facial data itself, a series of relevant traits that

are guided by the facial similarity observed between sibling pairs. Importantly, while pre-

serving the structural convolution of the face, these traits also fit the requirements as input

to the well-established statistical tools. In doing so, we have identified many genetic loci

that are associated with a wide range of facial features. Some of these regions contained

genes related to embryonic facial development, and craniofacial malformations. An

improved understanding of the genetic basis of facial shape can have several important

applications, for example in developmental biology, medical genetics and forensic

sciences.

Introduction

Systematic characterization of facial morphology is important in a variety of domains such as

anthropology, medicine, and genetics [1,2]. It has the potential to provide insight into human

evolutionary processes [3], to facilitate surgical planning and outcome assessment [4,5], and to

guide syndrome delineation [6], among others. However, fully capturing complex multipartite

traits like human 3D facial shape is not straightforward. Traditionally, this has been done

using simple anthropometric measurements (e.g. linear distances, angles, and ratios) or princi-

pal components (PCs) that are derived from specific points, called landmarks, on a set of two-

dimensional (2D) or three-dimensional (3D) facial images [7–16]. However, simple geometric

features such as distances fail to capture the full morphological complexity of human 3D facial

shape and a priori selection of traits rarely takes into account biological knowledge. As an

alternative, Claes et al. [17] recently proposed an open-ended description of facial variation,

thereby avoiding any preselection of individual traits. However, highly multivariate pheno-

types do not lend themselves to many of the standard tools available in statistical and quantita-

tive genetics, and the number of follow-up analyses therefore remains limited.

To address the current limitations, we propose to prioritize, in a supervised and data-driven

manner, specific facial traits of interest within the multidimensional facial space, in order to

reduce the complexity of 3D facial shape into genetically informed and therefore biologically

relevant facial traits. In this context, families are potentially informative, as the similarities

among family members clearly indicate a heritable component of facial shape [18,19]. Follow-

ing Fig 1, we aimed to identify facial traits that are shared among sibling pairs in a biometric

matching experiment of siblings. Subsequent scoring of a large, separate genotyped cohort for

the sib-shared traits provides for the conversion of complex 3D structures into their univariate

equivalents so that well-established, open-source bioinformatics tools [20–23] could be applied

for further investigation. We sought to identify genetic variants contributing to variation

among the sib-shared traits through genome-wide association analysis (GWAS), highlighting

a combination of novel and previously identified genetic loci. We further investigated these

loci in the context of early craniofacial development and morphogenesis and examined the
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genetic overlap among sib-shared facial traits. Our analyses have revealed a large number of

genetic variants affecting facial traits shared by siblings, illustrating their biological relevance

and further enhancing our understanding of the genetic basis of human facial shape.

Results

Global-to-local facial segmentation

Facial variation was studied at multiple levels of scale by subdividing facial shape into 63 hier-

archical segments. First, homologous spatially dense quasi-landmark configurations

(n = 7,160) were established by the mapping of a generic template mesh onto the images

[1,24]. Subsequently, facial shape was hierarchically clustered into a series of global-to-local

facial segments in a data-driven manner by grouping quasi-landmarks that are strongly corre-

lated in a large European cohort. We then applied principal component analysis (PCA) to con-

struct a multidimensional shape space for each facial segment independently, the dimensions

of which characterize facial variation [17,25]. These segments each captured different aspects

of facial shape, representing the full face (segment 1), midface (segment 2) and outer face (seg-

ment 3), as well as variations in smaller regions near the philtrum (quadrant I), nose (quadrant

II), lower face (quadrant III) and upper face (quadrant IV) (Fig 2A).

Biometric sibling matching

Since siblings are likely to share facial features due to close kinship, biologically relevant traits

can be extracted from phenotypically similar sibling pairs. We aimed to identify these pairs

and derive their overlapping facial features through a biometric identification setup, which

essentially involves the comparison of facial shape between siblings in the context of multiple

facial comparisons with unrelated individuals (Fig 2B). To this end, we used 3D facial images

from a total of 273 sibling pairs (78 brother-brother, 79 sister-sister, 116 brother-sister) from

194 nuclear families of self-reported European ancestry (SIB cohort; S1 Table). Individual

faces can be described as single points within the multidimensional space constructed per

facial segment. Faces that appear to be more similar are closer together within this space, so

that distance metrics can be used to measure similarity [26]. Different distance and angle-

based measures were quantified, either defined in a Euclidean space (ED, EA) or Mahalanobis

space (MD, MA), the latter where each dimension was weighted in terms of its variance

[26,27]. In brief, the lower the distance or angle between two points, the greater the similarity

between those individuals.

The ability of the different similarity measures to identify siblings was tested in a biometric

identification task. In a one-to-many setup, faces were matched against a gallery of candidates

for individual and combined facial segments. The rank-k% identification rate then indicates

the proportion of times the true sibling was present in the top-k% matches as determined by

the similarity score [28]. Therefore, matching at a low rank-k% signifies facially close-to-iden-

tical siblings. Overall matching performance of siblings was summarized via cumulative match

characteristic (CMC) curves (Figs 2B and S1), where high identification rates and a steep slope

of the curve at higher ranks (i.e. low rank values) indicate better performance [29]. To account

for the effect of gallery size on the identification performance, results were plotted as a percent-

age of rank rather than absolute rank values (S2 Fig). In general, angle measurements outper-

formed distance measurements and performance could be further increased by adjusting for

the variances of the PCs in the Mahalanobis space (S1A Fig). Hence, in this study the Mahala-

nobis angle (MA) was the preferred similarity measure, with the true sibling occurring within

the top-1%, top-10% and top-20% candidates in 36.81%, 77.47% and 89.19% of the full-face

matching experiments, respectively. While matching at the global, full-face level consistently
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performed better than individual per-segment matchers (R1MA,fullface = 36.81%; Fig 2B), an

increase in performance was observed when all segments branching from the full face (i.e. seg-

ments 1–63) were combined (R1MA,combined = 44.32%; S1B Fig). The complete list of matching

results for the different similarity measures and segments is provided in S2 Table.

Data-driven selection of sib-shared traits

Siblings could be matched with varying levels of accuracy depending on the similarity measure

and facial features (global-to-local) being tested (Figs 2B and S1). These results suggest that

many siblings share one or multiple features in the face, while others look rather different.

Derivation of the sib-shared traits was focused on sibling pairs that matched near perfectly

(within the top-1%) in any of the segments. We defined the final trait as the average shape of a

particular sibling pair within a given segment, highlighting the facial features they have in

common, i.e. those that were informative for accurately matching the siblings, while masking

their dissimilarities.

A total of 1,048 traits were extracted across all segments, each of them representing a partic-

ular facial feature shared by a specific pair of siblings. Visual representations of the sib-shared

traits are available online [30]. The 1,048 traits comprised 322 independent traits [31] due to

the hierarchical and overlapping construction of the facial segments and the presence of

STUDY COHORT

SIBLING-INFORMED
FACIAL PHENOTYPING

GENETIC ANALYSIS

SIB UK US

EURO

GWAS QC &
IMPUTATION

EUROPEAN-DRIVEN
FACIAL SEGMENTATION

MA-BASED
TRAIT SCORING

SIBLING MATCHING

TRAIT EXTRACTION

SNP- BASED HERITABILITY GWAS META-ANALYSIS
GENETIC

CORRELATION

LOW-FREQUENCY
VARIANT

ANALYSIS17 - 53% 218 (38) facial-associated loci

univariate description of
complex facial shape

sib-shared facial traits
(n = 1,048)

8,246 participants
~ 7,500,000 SNPs

1,906 participants 
recruited by PITT

1,990 participants
recruited by PSU

784 participants
recruited by IUPUI

3,566 participants
424 children from
194 nuclear families
(273 sibling pairs)

Fig 1. Workflow of the study.

https://doi.org/10.1371/journal.pgen.1009528.g001
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multiple sibling pairs per nuclear family. Facial regions that were more often shared between

siblings included the orbital and nasal area as well as the mandible (Fig 3A). From the total of

273 sibling pairs, 218 pairs (60 brother-brother, 66 sister-sister, 92 brother-sister) were used at

least once to define the traits, belonging to 160 out of 194 nuclear families. The remaining 55

pairs with poor matching behavior were omitted. No sex effect was observed in the matching

of siblings (S3 Fig). That is, relatively equal numbers of same-sex and different-sex pairs were

selected (Fisher’s exact test p-value = 0.88) since sexual dimorphism was corrected for during

image preprocessing. Similarly, matching of pairs was independent of the age difference of

their individuals (two-sample t-test p-value = 0.87).

Reduction of 3D facial shape to univariate measurements

Sib-shared traits can be described as vectors within the multidimensional shape space, extend-

ing from the global mean shape to the average facial shape of both siblings (S4 Fig). Moving

further along this direction would produce a more exaggerated version (caricature) of the sib-

ling average, while projecting it in the opposite direction of the global mean generates the

inverse or anti-face [32]. In contrast with traditional linear measurements (e.g. distances),

each direction or trait may affect multiple parts in the face at once, thus preserving the multi-

variate and multipartite nature of facial shape. New individuals can also be scored along the

sib-shared traits, where the score continuously measures the presence or absence of that partic-

ular facial trait in all individuals (S4 Fig). To this end, we used two independently collected

samples of unrelated individuals with European ancestry (EURO) originating from the United

States (US, n = 4,680) and the United Kingdom (UK, n = 3,566) with genome-wide common

variants available (S1 Table). First, SIB and EURO facial images were aligned in dense corre-

spondence, ensuring that homology was established among the 7,160 quasi-landmarks [1,24].

Subsequently, univariate scores were generated by computing the MA between each trait vec-

tor and the EURO faces (S4 Fig), since this metric best captured facial trait similarity (S1 Fig).

Fig 2. Global-to-local matching of siblings. (A) Global-to-local segmentation of 3D facial shape obtained using hierarchical spectral clustering of the EURO

cohort. Segments are colored per quadrant, represented by the roman numerals. (B) Phenotypically similar sibling pairs were identified in a biometric

identification setup, which involves the comparison of facial shape between siblings and with unrelated individuals. Matching performance using different

similarity measures and facial features was evaluated using cumulative match characteristic (CMC) curves. Plotted is the percentage of sibling pairs that were

correctly identified (y-axis) within the top-k% matches (x-axis) using the Mahalanobis angle. Curves are colored based on the facial features that were used to

match siblings. For each quadrant, the highest and lowest identification rates per rank are shown, with the area between the two shaded.

https://doi.org/10.1371/journal.pgen.1009528.g002
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Positive and negative scores corresponded to individuals whose identity vectors [27] were in

similar (‘face’) or opposite (‘anti-face’) directions, respectively.

Genetic determination of sib-shared facial traits

Heritability. Narrow-sense heritability of the 1,048 sib-shared traits was estimated from

single-nucleotide polymorphisms (SNPs) using GCTA [20,33]. Significance was evaluated

according to the false discovery rate (FDR)-adjusted threshold (pFDRUS < 3.6 x 10−3; pFDRUK

< 2.2 x 10−3), with significant SNP-based heritability estimates ranging from 0.17 to 0.42 in

the US cohort and 0.24 to 0.53 in the UK cohort (S3 Table). Higher values were found on aver-

age for traits defined in the global face, nasal area and around the nasolabial folds (S5 Fig).

Fig 3. Genetic loci associated with the sib-shared traits. (A) Number of sib-shared traits extracted per facial segment,

corresponding to the number of sibling pairs that matched close to perfect within a given segment using the

Mahalanobis angle. A total of 1,048 traits were extracted across all 63 segments, comprising 322 independent traits.

The structure of the rosette plot corresponds to the polar dendrogram displaying the facial segments in Fig 2A. (B)

Ideogram of the genetic loci that contribute to variation in the sib-shared traits, as identified by the association analysis

of genome-wide common variants, depicted by circles and squares (i.e. overlapping and novel loci, respectively), and

exome-wide low-frequency variants, depicted by triangles. For each locus, the color of the symbol represents the

quadrant in which the top associated effect (i.e. lowest p-value) was observed.

https://doi.org/10.1371/journal.pgen.1009528.g003
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Low SNP-based heritability was observed for traits in small, locally defined areas around the

cheeks, philtrum, forehead and chin.

Genetic association study. We conducted a genome-wide association scan (GWAS) on

all 1,048 sib-shared traits in the US and UK cohorts separately and meta-analyzed the resulting

p-values using inverse variance-weighting [22,34] (Figs 3B and S6). We identified a total of

8,944 SNPs at 218 independent loci that reached the threshold for genome-wide significance

(p< 5 x 10−8), of which 2,749 SNPs at 38 loci had p-values lower than the study-wide threshold

adjusted for the effective number of independent tests (p< 1.55 x 10−10; S4 Table). The 218

lead SNPs individually explained on average 0.4% and up to 1.6% of the phenotypic variation

for individual sib-shared traits. Together, they explained 5.0% to 10.2% for individual traits

and approximately 6.6% of the total full-face variation. The LocusZoom plots of the 218

genome-wide significant findings and their associated facial effects are illustrated online [30].

A total of 548 sib-shared traits (52.3%, n = 219 independent traits [31]) were associated

with at least one of the 218 genome-wide significant loci, providing 197 traits (18.8%, n = 116

independent traits) that reached the threshold for study-wide significance. Detected associa-

tions involved traits in a variety of facial segments, most of them representing variations in the

nose (S7 Fig). Several loci showed significant associations with more than one facial region,

while others had very localized effects (e.g. the tip of the nose) only [30]. Among the 218 loci,

109 (37 study-wide) overlapped with or were nearby (within 500 kb) the results of prior associ-

ation studies of normal-range facial phenotypes, providing further support regarding their

involvement in facial variation. In addition, we identified 109 loci (1 study-wide) not previ-

ously reported in related GWAS literature, some of which harbor putative craniofacial genes

as implicated from human malformations (S4 Table).

In addition to the GWAS meta-analysis, we also studied genetic associations with low-fre-

quency variants (MAF < 0.01) using a gene-based testing approach in a subset of the US

cohort (PITT) with exome-wide data available (n = 1,906) (S1 Text). A total of 53 genes passed

the exome-wide significance threshold (p< 3.94 x 10−6), yet none surpassed the strict study-

wide significance level adjusted for the number of independent tests (p< 1.22 x 10−8) (Fig 3B

and S5 Table). Of these 53 exome-wide significant signals, five could be linked to genes associ-

ated with diverse craniofacial phenotypes (S1 Text).

Embryonic origin of craniofacial variation. We performed gene ontology analysis using

GREAT [35] to study enrichment of biological processes and relevant phenotypes in the vicin-

ity of the 218 genome-wide significant lead SNPs. A significant enrichment was observed for

terms related to craniofacial development and morphogenesis (S8 Fig). In addition, our analy-

sis implicated several limb-related processes and phenotypes. Common pathways to both facial

and limb development are further evidenced by some ‘cranio-digital’ syndromes [36,37].

We next sought to identify tissues and cell-types enriched for active regulatory regions near

the 218 genome-wide significant lead SNPs. We used ChIP–seq for histone H3 on lysine 27

(H3K27ac), a mark of active regulatory elements, from diverse cell types as described previ-

ously [25]. H3K27ac signals near the lead SNPs were most enriched in CNCCs, a transient,

embryonic population of cells that give rise to most structures of the craniofacial complex

[38,39]. Enrichment was also found for other embryonic craniofacial tissues at different stages

of craniofacial development (within first 8 weeks of gestation), suggesting both an early embry-

onic origin and lasting signals through craniofacial development, respectively (Fig 4).

Genetic and phenotypic correlations. We explored both phenotypic and genetic correla-

tions among the sib-shared traits using GCTA (S9 Fig and S6 Table) [20]. High absolute phe-

notypic and genetic correlations, within and between facial segments, were found together (S9

Fig: diagonal), consistent with the observation that many of the loci identified influence multi-

ple aspects of facial morphology. In addition, environmental factors might also contribute to
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the observed phenotypic correlations, i.e. for those pairs of traits that had little genetic overlap

(S9 Fig: upper left corner).

We also investigated the genetic overlap between our derived facial traits and publicly avail-

able non-facial traits and diseases (n = 38; S7 Table) using cross-trait LDSC [21,40] (S2 Text).

However, given the relatively modest sample size of the combined EURO cohort (n = 8,246),

standard errors for genetic correlations were fairly large (mean = 0.27) and no significant

values could be observed after adjustment for multiple testing (p< 4.09 x 10−6; S10 Fig and

S8 Table).

Discussion

Over the past decade, a versatile toolbox of computational and statistical genetics methods and

accompanying open-access software has been developed to investigate the genetic architecture

of complex phenotypes. Examples include, but are not limited to, genome-wide association

scans followed by fine mapping [41], rare variant mapping (e.g. burden tests) [23,42], and esti-

mations of SNP-based heritability (e.g. linear mixed models) [20,33] as well as genetic correla-

tions across multiple phenotypes (e.g. LD-score regression) [21,40]. Unfortunately, the

deployment of these powerful tools onto the human face is hampered by the multivariate and

multipartite nature of facial variability. To overcome this shortcoming, we developed a family-

informed strategy for facial phenotyping that reduces 3D facial shape to univariate measure-

ments in a supervised manner, though without resorting to arbitrary and subjective trait

selection.

We set up a biometric identification experiment leading to the identification of phenotypi-

cally similar sibling pairs from which their overlapping facial traits were derived, each repre-

senting global or local aspects of facial morphology that were informative for accurately

matching the siblings. Individuals from additional cohorts, independent of their genetic back-

ground, can then be scored on the sib-shared traits by measuring the angle between the new

individual and the vector of the sib-shared trait, in a common coordinate system. Simulta-

neously, complex 3D facial structures are converted into univariate descriptors, allowing for

the application of contemporary genomic tools. Although traditional univariate, anthropomet-

ric measures will remain a valuable resource because of their widespread use and simplicity,

Fig 4. Preferential activity in CNCCs and embryonic craniofacial tissues. Boxplots of the distribution of H3K27ac

ChIP-seq signals in 20 kb regions around the 218 genome-wide significant lead SNPs in various adult, embryonic and

in vitro–derived cell types. Samples corresponding to CNCCs (blue), embryonic craniofacial tissue (orange) and

surface ectoderm (green) are highlighted.

https://doi.org/10.1371/journal.pgen.1009528.g004
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they fail to capture the full morphological complexity of 3D facial shape. In contrast, sib-shared

traits defined in this work may affect multiple parts in the face at once, thereby preserving its

multivariate and multipartite nature. Alternative strategies exist to reduce complex shape to

univariate traits such as PCA, where each individual PC constitutes a unique facial trait. How-

ever, PCA does not necessarily imply biological relevance, whereas the use of traditional epide-

miological approaches (e.g. family-based designs) to drive facial phenotyping facilitates a focus

on facial traits that are genetically determined [26,43].

In the biometric identification task, the MA as similarity measure correctly identified the

greatest number of siblings from among their peers. Note that, although we use self-reported

kinship, the presence of half-sibs or unrelated pairs will have little to no effect as they most

likely will not be selected in the matching experiment. Two main observations were made:

angular measurements outperformed distance measurements; and Mahalanobis metrics were

more discriminative than Euclidean metrics. These results are in line with previous research

that demonstrated the role of the angle between vectors, encoded as deviations from a global

average, in the perception of facial similarity rather than physical distances [27,32,44]. More-

over, normalization by the standard deviation of each PC in the Mahalanobis space allowed

for the reduction of large sources of variation while smaller sources were amplified, so that all

types of variation captured by each PC contributed equally when similarity was evaluated

[26,27]. O’Toole et al. [45] stated that lower PC dimensions (i.e. those associated with small

eigenvalues) convey useful information for distinguishing faces from one another and hence

guide recognition. An increased matching performance thus suggests that, besides identity-

specific information, family-specific features are encoded in the lower dimensions as well. In

view of these results, we used the MA as a metric to score individuals along a given trait direc-

tion, thereby neglecting the magnitude of vector. However, the inclusion of the magnitude via

distance-based metrics may be valuable beyond the study of normal-range facial variation, for

instance within in a clinical context since some dysmorphologies are observed at the extreme

ends (distance-based) of the normal spectrum of variation [46,47].

Facial similarity between siblings was studied in the context of different global-to-local

facial segments, determined by the structural variations in the EURO reference space. The

EURO cohort was chosen as a reference because of its larger sample size in comparison with

the SIB cohort, yielding a more robust segmentation of the face of which existing variations

are more accurately described following PCA in combination with parallel analysis (S11 Fig).

Furthermore, matching of siblings was independent from the selected reference space, either

EURO- or SIB-based, when an equal number of dimensions was considered. In contrast, the

lower number of PCs originally retained in the SIB reference space following parallel analysis

reduced the matching performance, so that the selection of the EURO cohort as a reference is

preferred (S11D Fig).

Although matching at the global, full-face level performed better than any individual local

matcher, the highest identification rate was achieved through the integration of information

across segments. Specifically, almost half of the sibling pairs (44.32%) could be matched within

the top-1% when segment-wise MA-corrected features were combined. The improvement of

multibiometric systems over unibiometric systems is well-known as they consolidate multiple

sources of evidence compensating for the limitations in performance of individual matchers

[48]. In other words, siblings will still be matched if they have some, but not all, features in

common. This also corresponds to the expected degree of phenotypic resemblance between

relatives [49] and highlights the added value of the global-to-local segmentation approach. In

this work, we simply concatenated the feature sets of all segments branching from the full face

into one single vector, thereby neglecting their correlation structure [50]. However, diverse

feature selection methods and fusion techniques exist [48]. In automatic kinship verification
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literature, accuracies of above 90% are achieved this way [51,52]. In these studies, researchers

seek to determine the kin relationship given a pair of 2D images using different feature-based,

metric learning and deep learning approaches [51–54]. However, maximizing the performance

was not the main focus of this study. Instead, we aimed to identify facial traits that are geneti-

cally driven starting from known kin relationships. In this context, we sought to identify obvi-

ously matching sib-pairs.

In previous work, we used biometric authentication methods to establish multiple ‘face-to-

DNA’ classifiers, each predicting DNA-encoded aspects (e.g. sex, genomic background, indi-

vidual genetic loci) from facial shape in order to match given faces against a DNA profile [29].

Similarly, we can construct a ‘face-to-face’ classifier as an alternative to the current selection of

phenotypically similar siblings based on rank-1% identification rates. For example, a classifier

can be trained on the facial similarity between pairs of children for individual and combined

segments. When applied to an independent test set of faces, the classifier outputs the probabil-

ity that the similarity score provided was derived from a pair of siblings. Higher probability

signifies greater phenotypic similarity, from which sib-shared traits can be derived. However,

classification tasks require the data to be partitioned into proper training and test sets, which

reduces the data sample size to work on for specific parts. For example, in such a scenario and

in this work only the test data (typically a substantial lower percentage of the total dataset) is

eligible for defining sib-shared traits as input to subsequent analyses. Therefore, the number of

facial traits as input to the GWAS is very likely to be less, since the likelihood of closely resem-

bling sib-pairs goes down with lower sample size.

Interestingly and affirmative of the proposed methodology, facial regions that were more

often shared between siblings (e.g. chin, orbital and nasal region) coincide with regions of high

heritability as described independently in previous work [19]. Similarly, average heritability

estimated from SNPs was higher for traits defined in the global face and nasal region, consis-

tent with the literature [19,55–57]. Low-to-moderate estimates for traits defined in the regions

near the chin and forehead were observed, whereas greater heritability was estimated from

twin and family data in these regions using a similar UK cohort [19,58]. This discrepancy

could be attributed to the difference in study design (e.g. family or population-based), as SNP-

based heritability only provides a lower bound of heritability that is tagged by common SNPs

resulting from the genotyping and imputation efforts.

In a genome-wide meta-analysis, we observed 38 study-wide significant loci associated with

normal-range facial morphology in individuals of European descent. An additional 180 loci

surpassed the conventional genome-wide threshold of significance. Given that association sig-

nals close to this threshold are likely to be enriched for genuine signals [59], we report on the

full list of 218 loci reaching genome-wide significance. The strongest, study-wide significant

signals were found for loci that have been replicated multiple times by independent studies,

both within and across different populations. Examples include the well-established genetic

regions surrounding TBX15 [15,17,25,60], PAX3 [7,8,14,15,17,25,60], RUNX2 [9,14,17,25,60],

SOX9 [15,17,25,60,61], PAX1 [9,10,15,25] among others. In addition, promising candidate

genes were found near several of the genome-wide significant regions. For instance, the

17q24.1 region was associated with self-reported chin dimpling in the study of Pickrell et al.

[60]. This same region showed an association in the current study (p-value = 3.71 x 10−8),

though the effect was located near the area surrounding the nostrils (trait 339, segment 8). The

nearest gene, AXIN2, plays a critical role in craniofacial and axial skeleton development of

mice [62,63]. The lead SNP rs8080680 is an eQTL of AXIN2 in blood (GTEx), and overlaps

with promoter and enhancer epigenetic marks in many cell types [64]. An association with

morphology of the upper lip (trait 763, segment 38) and nasal bridge (trait 376, segment 10)

was found in the 9q22.31 region (p-value = 2.39 x 10−8). Previous GWAS also identified
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associations of the same region with aspects of nasal morphology [15,25,60]. The lead SNP

rs4275276 is an intron variant of ROR2, in which mutations were found to cause a severe skele-

tal dysplasia known as Robinow syndrome-1 (OMIM 268310). Multiple dysmorphic facial fea-

tures have been described in patients with Robinow syndrome-1 including frontal bossing,

hypertelorism, long philtrum, triangular mouth and a broad nose [65], consistent with the

associated effects observed in our GWAS. In a mouse model, Ror2 has been shown to play a

crucial role at multiple sites during organogenesis, providing a developmental basis for the dis-

tinct clinical features and anomalies described for Robinow syndrome [66,67].

In addition to the replicated findings, we also identified a total of 109 loci (1 study-wide)

that did not overlap with the results of prior GWAS on normal-range facial variation. The

1q25.3 region showed a study-wide significant association (p-value = 6.12 x 10−11) with down-

turning corners of the mouth (trait 609, segment 25). Among the genes within 500kb of the

lead SNP rs6695444, CACNA1E is a potentially relevant candidate gene. Mutations in the

CACNA1E cause developmental and epileptic encephalopathy (DEE; OMIM 618285), a severe

and genetically heterogeneous neurodevelopmental disorder characterized by characterized by

refractory infantile-onset seizures, severe hypotonia, and profound developmental impairment

[68]. Although facial dysmorphism has been described for DEEs caused by mutations in differ-

ent genes, the link with craniofacial morphology and DEE caused by mutations in CACNA1E
is less clear. In the study of Helbig et al. [68], macrocephaly was often present in patients with

CACNA1E mutations, but no other dysmorphic facial features could be observed. Among the

novel genome-wide significant loci, some harbor genes known to play a role in craniofacial

development or malformations. For example, we observed a signal near FOXE1 (rs113771540,

p-value = 4.29 x 10−8) associated with nose (trait 548, segment 21) and chin (trait 625, seg-

ments 6) morphology, and a peak spanning EPHA3 (rs73137393, p-value = 4.49 x 10−8)

showed an association in the buccal region (trait 422, segment 12). FOXE1 and EPHA3 are

both orofacial clefting candidate genes [69,70] and have not been associated previously with

normal-range facial features. Furthermore, several genes near the GWAS signals have been

implicated in human congenital syndromes with craniofacial manifestations. For example, a

genome-wide significant association with forehead prominence (trait 447, segment 14) was

found in the 20p11.23 region (p-value = 4.78 x 10−8). The lead SNP rs6136885 is an intronic

variant of the RIN2 gene. Mutations in this gene were found to cause RIN2 syndrome, for-

merly known as macrocephaly, alopecia, cutis laxa and scoliosis (MACS) syndrome (OMIM

613075), which is a rare connective tissue disorder characterized by multiple facial and skeletal

anomalies [71,72]. Macrocephaly has been described as a clinical feature in some patients,

which also corresponds to the facial effect observed in our GWAS. The 8q23.3 region near

RAD21 showed an association (rs4876648, p-value = 3.21 x 10−8) with variation in the tip of

the nose (trait 224, segment 5). Mutations in RAD21 result in Cornelia de Lange syndrome

(OMIM 614701), a developmental disorder characterized by mild intellectual disability and

several facial dysmorphisms [73].

With reference to the study of White et al. [25], in which the same population cohort

(EURO) was used, a considerable degree of overlap in the associated genetic loci was observed

(n = 100 genome-wide, n = 37 study-wide significant), though both studies also identified a

number of distinct regions. The difference between both approaches is that White et al. [25]

ran a GWAS on multivariate phenotypes using canonical correlation analysis (CCA). Whereas

CCA allows for an open-ended description of facial variation, that is, it extracts the facial

effects most correlated with the genotypes, we here searched for specific traits of interest

within each facial segment prior to the association scan. Although the percentage of variance

explained by the sib-shared traits per segment was generally high (up to 96%), phenotypic vari-

ations present in the philtrum and chin regions were described to a lesser extent (S12 Fig).
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Moreover, decomposition of the H3K27ac signals into those generated by overlapping and

novel loci (S13 Fig) demonstrated that enrichment for multipotent, undifferentiated CNCCs,

consistent with an earliest embryonic origin, was primarily driven by loci also identified by

White et al. [25]. Interestingly, our non-overlapping SNPs showed preferential activity for

other relevant embryonic craniofacial tissues that represent progressively later (though still

within the first two months of gestation) timepoints in facial development and would thus

contain greater amounts of CNCC-derived chondrocytes and osteoblasts, among other cell-

types. These findings suggest that the extracted facial traits, which seem to segregate strongly

in families, might represent features that form later in craniofacial development. Hence, the

use of family-informed strategies alongside an open-ended approach may reveal additional

insights into the genetic architecture of complex traits.

When focusing on the genetic correlation among sib-shared traits, we found substantial

overlap of genetic variants contributing to variation in these traits. These correlation patterns

were in line with the phenotypic correlation, as one could expect from the relationship

between both for human traits [74]. Moreover, they also reflect the close embryological rela-

tionship of human facial variability. Genetic variation associated with facial morphology might

also contribute to various other traits and disease. For example, distinct patterns of facial varia-

tion have been described in the literature for various neurodevelopmental and neuropsychiat-

ric disorders with large genetic heterogeneity such as epilepsy [75], autism spectrum disorder

[76], schizophrenia [77], and bipolar disorder [78]. Given the univariate nature of the sib-

shared facial traits, cross-trait LD score regression (LDSC) can be applied to estimate the

genetic overlap with non-facial traits, but much larger sample sizes are required to achieve ade-

quate statistical power [21,40]. Therefore, at the current sample size (n = 8,246), standard

errors were large (mean = 0.27) and no significant correlations could be observed (S2 Text).

SNP-based heritability and association signals suggest that common genetic variants con-

tribute to variation in sibling-derived facial traits. As expected, higher SNP-based heritability

estimates were found on average for traits that surpassed the threshold for genome-wide sig-

nificance in our GWAS (two-sample t-test p-value = 4 x 10−4 (US) and 5 x 10−4 (UK)). How-

ever, there still is great overlap in the heritability range between traits that did or did not lead

to significant findings when testing for genotype-phenotype associations (S14 Fig and S9

Table). This also limits our ability to further prioritize sib-shared facial traits in terms of their

genetic determination in order to reduce the multiple testing burden. The lack of significant

GWAS findings for a subset of traits shared by siblings (47.7%) might be attributed to a lack of

power to detect variants with weak phenotypic effects, epistatic interactions among variants

not picked up by GWAS, and common environmental factors shared by family members.

Especially the latter is an important source of bias in family-based designs [49]. In addition,

the familial occurrence of particular facial traits such as a square chin [79] suggests that facial

features are determined by major gene effects in addition to polygenic effects. Since both com-

mon and rare variants can be passed on from parent to child, both can be the reason for sib-

lings to look alike, but the current single SNP-based association approach only supports the

identification of common variants. Therefore, we complemented our GWAS with an exome-

wide analysis of low-frequency variants, identifying 53 exome-wide significant associations of

which eight could be linked to genes associated with diverse craniofacial phenotypes (S1 Text).

However, none of the genes tested surpassed the threshold for study-wide significance at the

current sample size in the PITT subcohort (n = 1,906; S5 Table).

In conclusion, we describe a data-driven strategy to facial phenotyping, supervised by the

phenotypic resemblances between siblings. Traits of interest were then followed up with exten-

sive qualitative analysis using diverse bioinformatics resources. We demonstrate that variabil-

ity of the sib-shared traits is low to moderately heritable and identify a total of 218 genome-
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wide (38 study-wide) significant loci associated with normal-range facial morphology. Not

only do we provide additional support for numerous previously reported loci, we also identify

109 new genome-wide significant signals (1 study-wide), some of them harboring promising

candidate genes as implicated from human craniofacial malformations. Moreover, our analy-

ses indicate a preferential activity of the novel loci in embryonic craniofacial tissue compared

with CNCCs, suggesting their action in further differentiated cell-types of the face including

osteoblasts and chondrocytes, further complemented by their involvement in limb develop-

ment as evidenced by gene ontology analysis. A number of follow-up analyses were conducted

on the derived set of univariate sib-shared features, such as the analysis of low-frequency vari-

ants and genetic correlations using GCTA and LDSC (S1 and S2 Texts). However, only weak

associations could be observed, which highlights the need for sample size to increase power.

Multivariate methods have been proven to be extremely powerful in dissecting the genetic

architecture of craniofacial variation through GWAS for even modest sample sizes [17,25].

Applied to the current sibling-based design, univariate investigations can be followed up with

the segment-wise merging and combined analysis of traits derived from a single sib-pair in a

multivariate setting. In line with our observation from the biometric matching of siblings

using combined segments, we might expect a similar increase in performance and hence statis-

tical power. With regard to potential follow-up studies, a continuing investment in the devel-

opment of multivariate equivalents to already-existing tools will therefore be of great value to

the field. In addition, focusing on specific phenotypes and families, in combination with

sequencing technologies, will further enable the identification of rare variants and dominant

patterns of inheritance. Such phenotypes can not only be derived from phenotypically similar

sibling pairs, as proposed in this study, but extended pedigrees and faces from patients pre-

sented with a syndrome might be of great value. Finally, these findings should be followed-up

by further replication efforts in larger samples in addition to functional studies in order to elu-

cidate the biological mechanisms that control facial development, with numerous applications

in the clinic and beyond.

Materials and methods

Ethics statement

Ethical approval was obtained at each recruitment site and all participants gave their written

informed consent prior to participation. For individuals under 18 years of age, written consent

was obtained from a parent or legal guardian. For the SIB sample, the following ethics approval

was obtained: Ethics Committee Research UZ/KU Leuven (S56392: ML10285). For the PITT

sample, the following local ethics approvals were obtained: Pittsburgh, PA (PITT IRB

#PRO09060553 and #RB0405013); Seattle, WA (Seattle Children’s IRB #12107); Houston, TX

(UT Health Committee for the Protection of Human Subjects #HSC-DB-09-0508); and Iowa

City, IA (University of Iowa Human Subjects Office IRB #200912764 and #200710721). For

the PSU sample, the following local ethics approvals were obtained: Urbana-Champaign, IL

(PSU IRB #13103); New York, NY (PSU IRB #45727); Cincinnati, OH (UC IRB #2015–3073);

Twinsburg, OH (PSU IRB #2503); State College, PA (PSU IRB #44929 and #4320); Austin, TX

(PSU IRB #44929); and San Antonio, TX (PSU IRB #1278). For the IUPUI sample, the follow-

ing local ethics approval was obtained: Indianapolis, IN and Twinsburg, OH (IUPUI IRB

#1409306349). For the UK sample, ethical approval for the study (Project B2261: “Exploring

distinctive facial features and their association with known candidate variants”) was obtained

from the ALSPAC Ethics and Law Committee and the Local Research Ethics Committees.

Informed consent for the use of data collected via questionnaires and clinics was obtained

from participants following the recommendations of the ALSPAC Ethics and Law Committee
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at the time. Consent for biological samples has been collected in accordance with the Human

Tissue Act (2004).

Sample and recruitment

Our study included one family-based (SIB) and one population-based (EURO) cohort. The

basic demographic features of both cohorts are provided in S1 Table. For the SIB cohort, data

from 647 children from 358 nuclear families were obtained. Families were recruited through

various media channels at the Center for Human Genetics (University Hospital of Leuven, Bel-

gium) and at Technopolis, the Flemish Center for Science Communication, Belgium. 3D facial

surface scans were available for all children and questionnaires providing information on

demographic factors (e.g. sex, age, self-reported ancestry), general physical characteristics (e.g.

height, weight), and family relationship were completed by a parent. Only full siblings of self-

reported European ancestry, aged 5 to 15 years (median age = 9), were retained for analysis. A

further reduction was done by excluding participants with missing data on any of the afore-

mentioned variables and participants with poor quality images. The final study sample con-

sisted of 424 children from 194 nuclear families, containing 273 unique sibling pairs (78

brother-brother, 79 sister-sister, 116 brother-sister; S1 Table). The number of siblings per fam-

ily ranged from 2 to 5.

The EURO cohort (n = 8,246) included 3D facial images and genotype data of four inde-

pendent samples, three originating from the US and one from the UK, each composed of unre-

lated individuals of European ancestry [25] (S1 Table). The US dataset included samples

obtained through different studies at the University of Pittsburgh (PITT), Pennsylvania State

University (PSU), and Indiana University-Purdue University Indianapolis (IUPUI). Informa-

tion on demographic factors (e.g. sex, age, self-reported ancestry) and general physical charac-

teristics (e.g. height, weight) were available for all US participants. Individuals were excluded if

they reported a personal or family history of any birth defect or syndrome affecting the head

or face, a personal history of any significant facial trauma or facial surgery, or any medical con-

dition that might alter the structure of the face. A further reduction was done by excluding par-

ticipants with missing genotype data, missing covariates, or 3D image artifacts. Lastly, only

individuals of European descent were retained, which we identified through projections into a

principal component (PC) space constructed using the 1000G Phase 3 dataset (see below). The

final PITT sample included 1,906 unrelated individuals (aged 3 to 40 years, median age = 23)

from the 3D Facial Norms repository [80]. The final PSU sample consisted of 1,990 unrelated

individuals (aged 18 to 88 years, median age = 24). For the IUPUI sample a total of 784 unre-

lated individuals (aged 7 to 78 years, median age = 19) met all quality-control criteria.

The UK dataset was derived from the Avon Longitudinal Study of Parents and Children

(ALSPAC), a UK-based birth cohort study [81,82]. A total of 14,541 pregnant women with an

expected delivery date between 1 April 1991 and 31 December 1992, were initially recruited.

Extensive information and biological samples have been collected from these mothers and

their offspring at various time points, of which details can be found on the study website

through a fully searchable data dictionary (http://www.bris.ac.uk/alspac/researchers/data-

access/data-dictionary/). Here, 3D facial images, genotype data and self-reported information

on age, sex, height, and weight were available for 3,566 unrelated adolescents (aged 14 to 17

years, median age = 15).

Genotyping, quality control, imputation and population structure

PITT participants were genotyped on the Illumina OmniExpress + Exome v1.2 array, plus

4,322 investigator-chosen SNPs included to capture variation in specific regions of interest
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based on previous studies of the genetics of facial variation. For the PSU sample, participants

were either genotyped on the Illumina Human Hp200c1 BeadChip or on the 23andMe v3 and

v4 arrays. Participants from the IUPUI sample were genotyped on the Illumina’s Infinium

Multi-Ethnic Global-8 v1 array. Standard data cleaning and quality assurance procedures were

performed based on the GRCh37 (hg19) genome assembly using PLINK 1.9 [83]. Specifically,

samples were evaluated for concordance of genetic and reported sex, evidence of chromosomal

aberrations, genotype call rate (--mind 0.1), and batch effects. SNPs were evaluated for call

rate (--geno 0.1), Mendelian errors, deviation from Hardy-Weinberg genotype proportions

(--hwe 0.01), and sex differences in allele frequency and heterozygosity.

Genotypes in the PITT, PSU and IUPUI samples, separately, were imputed to the 1000

Genomes Project Phase 3 reference panel [84]. First, pre-phasing of haplotypes was performed

in SHAPEIT2 [85], and imputation of nearly 40 million variants was performed using the

Sanger Imputation Server [86] with the Positional Burrows-Wheeler Transform (PBWT) pipe-

line [87]. SNP-level (INFO score < 0.8) and genotype per participant-level (genotype

probability< 0.9) filters were used to omit poorly-imputed variants. Finally, a single US cohort

(n = 4,680) was obtained by merging the subsamples and filtering the SNPs based on missing-

ness across individuals (--geno 0.5), minor allele frequency (--maf 0.01), and Hardy-Weinberg

equilibrium (p< 1 x 10−6), ultimately resulting in 7,417,619 SNPs for analysis [25].

European individuals in the US cohort were selected using principal component analysis

(PCA) of approximately 450,000 SNPs, after excluding from the imputed data all indels, multi-

allelic SNPs, and SNPs with low MAF (� 0.1), and SNPs in linkage disequilibrium (50 bp win-

dow, 5 bp step size, 0.2 correlation threshold) from the 1000G Phase 3 dataset. A k-nearest

neighbor algorithm was used to assign a 1000G population label to each US participant, and

those with the 1000G European label of CEU, TSI, FIN, GBR, and IBS were selected for analy-

sis only [25].

For the UK dataset, genotype information was obtained directly from the ALSPAC data-

base. Because restrictions are in place against merging the ALSPAC genotypes with any other

genotypes, these were held separately during the analysis. UK participants were genotyped on

the Illumina HumanHap550 quad chip platform by Sample Logistics and Genotyping Facilities

at the Wellcome Sanger Institute and LabCorp (Laboratory Corporation of America), sup-

ported by 23andMe. Genotypes were subjected to standard quality control methods. SNPs

were evaluated for minor allele frequency (removed if < 0.01), call rate (removed if < 0.95),

and deviation from Hardy-Weinberg genotype proportions (removed if p< 5 x 10−7). Individ-

uals were excluded on the basis of gender mismatches, minimal or excessive heterozygosity,

disproportionate levels of individual missingness (removed if > 3%), and insufficient sample

replication (removed if IBD < 0.8). Only individuals of European descent, compared to the

HapMap II dataset by way of multidimensional scaling analysis, were kept for imputation.

SHAPEIT2 [85] was used for pre-phasing of haplotypes and imputation against the 1000

Genomes Phase 1 reference panel (Version 3) [88] was performed using IMPUTE2 [89]. The

final UK sample consisted of 3,566 individuals with 8,629,873 SNPs for analysis [25].

3D facial imaging and shape variables

3D facial image acquisition. 3D facial surface images were acquired from all participants

using two digital stereophotogrammetry systems and one laser scanning system, applying stan-

dard facial image acquisition protocols [2]. For the PITT sample, 3D images were obtained

with the 3dMDface camera system (3dMD, Atlanta, GA). Image data of the IUPUI sample

were acquired using the Vectra H1 (Canfield Scientific) system, and both 3dMDface and Vec-

tra H1 systems were used for the SIB and PSU samples. For the UK dataset, 3D facial images
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were captured with the Konica Minolta Vivid (VI900) laser scanners (Konica Minolta Sensing

Europe Company, Milton Keynes, United Kingdom).

Spatially dense facial quasi-landmarking and quality control. Dense surface registration

was performed in Matlab 2017b using the MeshMonk toolbox [1]. In essence, standardized

spatially dense quasi-landmark configurations were established by non-rigidly mapping a sym-

metric template composed of thousands of points (n = 7,160) onto the images [24]. All datasets

(SIB, US, UK) were processed separately with the same template, thereby creating homology

between the three study cohorts.

Imaging and mapping errors, presented as outlier faces, were detected by a two-step quality

control. First, deviations of a face from the global, within-cohort, average were converted to z-

scores and images with a z-score larger than 2 were manually checked [17]. A second exclusion

criteria involved the percentage of correspondence outliers reported by the MeshMonk tool-

box [1], arising from the presence of artifacts such as holes in the facial surface. Similarly,

images with scores reflecting a large proportion of outliers were manually checked and

removed if necessary.

Standardized and quality-controlled images were aligned in dense correspondence (posi-

tion, orientation, and size) by generalized Procrustes analysis (GPA). This was done for origi-

nal and reflected configurations combined, with the latter constructed by changing the sign of

the x-coordinate [90]. The average of an original and its reflected configuration constitutes the

symmetric component of facial variation, while the difference between the two constitutes the

asymmetric component of facial variation. Because faces display bilateral symmetry, aspects of

symmetry and asymmetry are preferably considered separately when examining facial shape

[91]. Although patterns of asymmetry may be informative, in this work we concentrate on the

symmetric component only.

Global-to-local facial segmentations. A single EURO cohort was obtained by combining

and GPA-aligning the US and UK datasets. We used this large cohort [25] as a reference to

perform global-to-local segmentations of the face. Because all individuals, including the SIB

cohort, were processed with the same facial template, SIB participants could be projected into

the corresponding EURO shape space.

For the three datasets (SIB, US, UK) separately, symmetrized facial shapes were first

adjusted for the confounders of sex, age, age2, height, weight, facial size and camera system

[92] in a partial least-squares regression (PLSR, function plsregress from Matlab 2017b). An

additional correction for population structure was performed for both US and UK datasets by

including the first four genetic PCA axes (i.e. ancestry axes) in the PLSR model. Next, global-

to-local segmentations (Fig 2A) of adjusted faces were performed by grouping vertices that are

strongly correlated, characterized by Escoufier’s RV coefficient [93], in a hierarchical spectral

clustering approach [17]. Per segment, facial shapes were aligned through GPA, followed by

PCA combined with parallel analysis to adequately capture significant facial variations with

fewer PCs. In this way, a shape space was established for each segment independently while

their integration was preserved through the hierarchical construction. The same segmentation

was applied to the SIB dataset and participants were brought into a common global-to-local

coordinate system through projections of the SIB shapes into the EURO reference space.

Data-driven selection of facial phenotypes by matching siblings

Measures of facial similarity and sibling matching. Individual faces can be described as

single points or vectors within a multidimensional space, whose dimensions characterize facial

variation [27,32] (S4 Fig). Image similarity between faces within the PCA space was measured

in four ways: Euclidean distance (ED), Mahalanobis distance (MD), Euclidean angle (EA), and
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Mahalanobis angle (MA). The ED is the simple straightforward linear distance between two

points, whereas MD is the variation-normalized version of ED [26]. Normalization was

achieved by dividing the PC scores of the SIB cohort by the standard deviation of each PC.

Angle-based measurements refer to the cosine distance between two points, treated as vectors,

and can be computed from the cosine of the included angle between those vectors. In sum, the

lower the distance or angle between two points, the greater the similarity between those

individuals.

The ability of the similarity measures introduced above to match siblings was tested using a

biometric identification setup for individual and combined segments. The multidimensional

PC scores constituted the facial features of each participant for each facial segment. Shape

information was combined by concatenating the Euclidean or Mahalanobis-corrected feature

sets of multiple segments (segments 1–63) into a single feature vector per participant, similar

to feature level fusion in multibiometric systems [48], after which the distance and angle were

computed.

In a one-to-many setup, the identification task aimed to identify the one true sibling among

a gallery of faces. The gallery was built from the combination of the corresponding sibling and

all non-relatives present in the SIB cohort. When multiple (>2) siblings per family existed, the

matching experiment was repeated for each pair provided that all other relatives were omitted.

Per segment, a total of 546 experiments (2 x 273 unique pairs, as both members of a sibling

pair were used as the query image in a separate round) were performed with gallery sizes vary-

ing from 417 to 423. In essence, similarity between the query image and all possible candidates

in the gallery was measured and ranked in decreasing order from the most likely to least likely

candidate. A final score was assigned per experiment reflecting the position of the true sibling

in the sorted gallery list. The performance was assessed via cumulative match characteristic

(CMC) curves, which plots the cumulative rank-k% identification rate for different values of k.

High identification rates and a steep slope of the curve at higher ranks (i.e. low rank values)

indicated better performance [29].

Selection of sib-shared traits. Per segment, sibling pairs were selected if they matched

close to perfect (within the top-1%) in the identification task using MA, as this measure per-

formed best in the sibling matching, and when they scored within the lowest 2.5 percentile for

the measured similarity. The second constraint was imposed to differentiate between the

matching on similarity and distinctiveness (e.g. atypical features) [44] as the latter might form

discrete clusters in shape space. In addition, matching behavior had to be symmetric. That is,

both selection requirements should have been met regardless of which member of the sibling

pair was chosen as the query image. In total, 218 sibling pairs met all selection criteria in at

least one facial segment. We defined the final phenotype as the average facial shape of a partic-

ular sibling pair within a given segment for which good matching behavior was observed, rep-

resented by a vector with reference to the overall EURO mean shape. A total of 1,048 traits

were defined across all sibling pairs and facial segments, each of them highlighting the facial

features, either global or locally defined, that were informative for accurately matching the sib-

lings. The 1,048 sib-shared traits comprised 322 independent traits [31] due to the hierarchical

and overlapping construction of the facial segments and the presence of multiple sibling pairs

per nuclear family.

Conversion of sib-shared traits to univariate scores and genetic analyses

Conversion of sib-shared traits. Complex shape transformations, encoded by the sib-

shared traits, were converted into simple univariate phenotypes so that well-established tool-

boxes could be used to assess genetic contributions to the traits. This was achieved by scoring
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unrelated individuals along the vectors that make up the sib-shared traits. Scores were gener-

ated by computing the MA between the trait vector and all EURO individuals, as this measure

best captured facial similarity in the matching of siblings, and represented the variation of the

sib-shared traits in the EURO cohort (S4 Fig). Individuals whose corresponding vectors had a

similar orientation (small angle), independent of their magnitude, received scores close to 1

([0 1] interval). In contrast, negative scores ([–1 0] interval) were assigned to individuals

whose vectors were in opposite directions (large angle).

Estimation of SNP-based heritability. For the US and UK datasets separately, SNP-based

heritability (h2
SNP) of the sib-shared traits was estimated using GREML implemented in the

GCTA package [20,94]. We fitted a linear mixed model with two variance components, includ-

ing the full genetic relationship matrix between individuals estimated from the SNPs, and the

residual variance. The proportion of the total variance explained by all SNPs provided a mea-

sure of the narrow-sense heritability. We determined the false discovery rate (FDR) p-value

threshold at p< 3.6 x 10−3 and p< 2.2 x 10−3 in the US and UK cohorts, respectively.

Genome-wide association meta-analysis. Similar to the adjustment of facial phenotypes,

imputed genotypes were corrected for the effects of sex, age, age2, height, weight, facial size,

camera system [92], and the first four genetic PCA axes using PLSR. We fitted a linear regres-

sion model (function regstats from Matlab 2017b) under an additive genetic model to test for

associations between each SNP and each of the sibling-derived phenotypes. For SNPs on the X

chromosome, males were coded 0/2 to be on the same scale as 0/1/2 females. Analyses were

performed separately for the US and UK cohorts and the resulting p-values were combined in

a meta-analysis via inverse variance-weighting [22,33].

We used the conventional threshold of p< 5 x 10−8 to claim genome-wide statistical signifi-

cance. Given the expected number of correlated traits due to the hierarchical design of the

facial segmentation and the existence of multiple sibling pairs within a single family, the

threshold for study-wide significance was determined at p< 1.55 x 10−10 (i.e. p< 5 x 10−8

divided by 322), corresponding to an adjustment for the number of independent phenotypes

estimated from the eigenvalues of the phenotypic correlation matrix [31].

Because of the large number of signals considered, we used the relatively automated peak

detection criterion based on genomic position solely. SNPs that reached the genome-wide

threshold were grouped using a 1Mb window. For each region, the lead SNP was defined as

the SNP with the lowest p-value for any of the derived traits, resulting in a total of 221 peaks.

These peaks were followed up with examination of patterns of linkage disequilibrium (LD)

[95], leading to the identification of three regions where association signals were spanning a

very large region in the genome. These cases were subsequently merged, refining our results to

218 lead SNPs, all below the genome-wide threshold.

Genes 500 kb up- and downstream of the lead SNPs were identified using the

Table Browser of the UCSC Genome Browser [96]. We first investigated whether these genes

had any craniofacial relevance by searching the PubMed and OMIM [97] repositories and by

looking at the overlap with existing facial GWAS literature. Here, overlap was determined by

considering the same +/- 500 kb window around each lead SNP (similar to the definition of

peaks) and by investigating LD between the identified and previously reported lead SNPs

using LDlink [98]. When no biological plausible candidates were identified, we used FUMA

[99] to assign the most likely candidate gene(s) using preset parameters. For each of the lead

SNPs, biological functions were annotated using GREAT [35].

Cell-type-specific enhancer enrichment. Chromatin activity in the vicinity of the lead

SNPs was quantified using H3K27ac ChIP-seq signals from approximately 100 different cell

and tissue types, including human CNCCs [100], fetal and adult osteoblasts [101–103], mesen-

chymal stem cell-derived chondrocytes [101], dissected embryonic craniofacial tissues [104],
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and iPS-derived surface ectoderm [105], as described in detail by White et al. [25]. As part of

this study, we added data from in-vitro-derived surface ectoderm [105]. To compare H3K27ac

signals between cell-types in an unbiased manner, we divided the genome into 20 kb windows,

and calculated H3K27ac reads per million from each aligned read (bam or tagAlign) file in

each window using bedtools coverage. After quantile normalization (using the normalize.

quantiles function from the preprocessCore package), we selected the windows containing

each of the lead SNPs, random SNPs matched for minor allele frequency and distance to the

lead SNPs using SNPsnap [106] and Crohn’s disease-associated SNPs from the NCBI-EBI

GWAS catalog [107], the latter serving as a positive control.

Phenotypic and genetic correlations. We estimated the Pearson’s phenotypic correlation

coefficients among the sib-shared traits. To estimate the genetic correlation between sib-

shared traits that is tagged by SNPs, we conducted a bivariate GREML analysis [108,109] of

corrected phenotypes in the US and UK datasets separately, as implemented in GCTA [20].

We determined the FDR p-value threshold at p< 1.07 x 10−5 and p< 1.00 x 10−5 in the US

and UK cohorts, respectively.

Supporting information

S1 Fig. Biometric identification results. Cumulative match characteristic curves of (A) the

full-face (segment 1) and combined segments for the different similarity measures and (B)

individual local matchers and combined segments using the Mahalanobis angle. The diagonal

line represents random performance. ED, Euclidean distance; EA, Euclidean angle; MD,

Mahalanobis distance; MA, Mahalanobis angle.

(TIF)

S2 Fig. Biometric identification versus gallery size. Rank-k and rank-k% identification rates

for varying gallery sizes based on the full-face matching of siblings using the Mahalanobis

angle. The experiment was repeated 1,000 times, with mean identification rates represented by

the solid (rank-k) and dashed (rank-k%) lines, and the minimum and maximum performance

indicated by the shaded area. For rank-k% matchings, results are plotted for gallery sizes of

100 and above. In case of rank-1% identification, results are valid only for multiples of 100 as

ranks cannot have non-integer values, explaining the decreasing/increasing pattern observed.

(TIF)

S3 Fig. Biometric identification results for different sex-based groups. Cumulative match

characteristic curves of individual local matchers for the three sex-based groups (n = 78

brother-brother, n = 79 sister-sister, n = 116 brother-sister). Facial similarity was determined

using the Mahalanobis angle. The diagonal line represents random performance.

(TIF)

S4 Fig. Supervised scoring of individuals onto sib-shared traits. (A) Illustration of a multi-

dimensional facial space using PCA, and (B) supervised scoring of individuals onto a specific

shape direction coding for the sib-shared trait, depicted by the blue nasal shape. Positive scores

indicate the presence of facial features similar to those shared by siblings, while negative scores

correspond to features opposite to the sibling pair (left y-axis). The score distribution for all

EURO participants is plotted on top of the histogram (right y-axis).

(TIF)

S5 Fig. Mean heritability of the sib-shared traits per facial segment. Mean phenotypic vari-

ance explained by commons SNPs in the US cohort and UK cohort. SNP-based heritability

(h2
SNP) of the 1,048 sib-shared traits was estimated using GCTA and average values per
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segment are plotted on top of each node. The structure of the rosette plot corresponds to the

polar dendrogram displaying the facial segments in Fig 2A.

(TIF)

S6 Fig. Manhattan plot of genetic variants associated with the sib-shared traits. Combined

Manhattan plot of the sib-shared traits, highlighting the novel and overlapping loci in red and

blue, respectively. Per SNP, the lowest meta-analysis p-value across all 1,048 traits is plotted.

The solid horizontal line represents the genome-wide significance threshold (p< 5 x 10−8)

and the dashed horizontal line represents the study-wide threshold (p< 1.55 x 10−10).

(TIF)

S7 Fig. Genome-wide significant associations per facial segment. (A) Number of genome-

wide significant loci that showed an association with one (or multiple) of the sib-shared traits,

defined within a particular segment. (B) Proportion of sib-shared traits defined per facial seg-

ment (%) that showed an association with at least one of the 218 genome-wide significant loci.

The structure of the rosette plot corresponds to the polar dendrogram displaying the facial seg-

ments in Fig 2A.

(TIF)

S8 Fig. GREAT analysis of the 218 genome-wide significant loci. Top 15 gene ontology

enrichment of biological process GO terms, human phenotypes and mouse phenotypes. Plot-

ted is the binomial test FDR (blue) and binomial enrichment (orange).

(TIF)

S9 Fig. Genetic and phenotypic correlations among sib-shared traits. Relationship between

genetic correlation p-values (x-axis) and the phenotypic correlation (y-axis) in the US and UK

cohort. Pairwise correlations between traits that were derived from the same family were

excluded. Rp, phenotypic correlation; Rg, genetic correlation.

(TIF)

S10 Fig. Genetic correlations between sib-shared traits and non-facial traits and diseases.

Pairwise correlations between facial and non-facial traits that reached nominal significance

(p< 0.05), computed using cross-trait LDSC. Facial traits are sorted per quadrant, corre-

sponding to the polar dendrogram displaying the facial segments in Fig 2A.

(TIF)

S11 Fig. EURO- and SIB-based reference space. Hierarchical facial segmentation and num-

ber of significant principal components determined by parallel analysis in the (A) EURO

(n = 8,246) and (B) SIB (n = 424) cohort. (C) Number of significant components retained by

parallel analysis in varying, randomly generated subsets of the EURO cohort. (D) Cumulative

match characteristic curves for full-face matchings (segment 1) of siblings based on the Maha-

lanobis angle in a EURO-based (solid line) and SIB-based (dashed line) reference space. In the

‘SIB70’ space (dotted line), the number of dimensions is equal to the original EURO reference

space. ED, Euclidean distance; EA, Euclidean angle; MD, Mahalanobis distance; MA, Mahala-

nobis angle.

(TIF)

S12 Fig. Variance explained by the sib-shared traits per facial segment. The amount of vari-

ation explained by the sib-shared traits expressed as percentage for each facial segment. The

structure of the rosette plot corresponds to the polar dendrogram displaying the facial seg-

ments in Fig 2A.

(TIF)
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S13 Fig. Preferential activity in CNCCs and embryonic craniofacial tissues. Shown are the

boxplots of the distribution of H3K27ac ChIP-seq signals in 20 kb regions around the (A) 218

lead SNPs, (B) 100 overlapping SNPs and (C) 118 non-overlapping SNPs in various adult,

embryonic and in vitro–derived cell types. Overlap was determined with reference to the study

of White et al. [25], who utilized the same European study cohort in a multivariate GWAS.

Samples corresponding to CNCCs (blue), embryonic craniofacial tissue (orange) and surface

ectoderm (green) are highlighted.

(TIF)

S14 Fig. SNP-based heritability and genome-wide associations of the sib-shared facial

traits. Link between SNP-based heritability and (A) study-wide (‘SW’) and (B) genome-wide

(‘GW’) significance of sib-shared traits in the GWAS meta-analysis. Traits that didn’t reach

statistical significance in the GWAS are coded as ‘0’; traits that were associated with at least

one of the identified loci are coded as ‘> = 1’. The two-sample t-test p-value is plotted on top

of each panel, with significant values indicated in bold.

(TIF)

S1 Table. Summary of the study cohort.

(XLSX)

S2 Table. Biometric identification results for individual and combined segments. R1, rank-1%

identification rate; R10, rank-10% identification rate; R20, rank-20% identification rate; ED,

Euclidean distance; EA, Euclidean angle; MD, Mahalanobis distance; MA, Mahalanobis angle.

(XLSX)

S3 Table. SNP-based heritability of the sib-shared traits. Significant heritability estimates

are indicated in bold. h2
SNP, SNP-based heritability; SE, standard error.

(XLSX)

S4 Table. Genome-wide association of common variants with sib-shared facial traits in the

discovery samples (US, UK) and combined meta-analysis. The column ’Best Trait’ repre-

sents the index (1–1,048) of the sib-shared trait in which the lowest meta p-value (’Best P-

value’) was found, together with the corresponding segment and quadrant in which the origi-

nal trait was defined (’Best Segment’ and ’Best Quadrant’). MAF, minor allele frequency; SE,

standard error.

(XLSX)

S5 Table. Gene-based association of low-frequency variants with sib-shared facial traits in

the PITT subsample. NumVar, number of variants tested per gene.

(XLSX)

S6 Table. Genetic correlations among the sib-shared traits. Pairwise genetic correlations in

the US cohort (lower/left triangle) and UK cohort (upper/right triangle). Standard errors are

displayed between brackets.

(XLSX)

S7 Table. Overview of publicly available traits and diseases tested for correlations with the

sib-shared traits.

(XLSX)

S8 Table. Genetic correlations between sib-shared traits and non-facial traits and diseases.

Rg, genetic correlation; SE, standard error.

(XLSX)
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S9 Table. SNP-based heritability and genome-wide associations of the sib-shared facial

traits. Statistical significance is indicated in bold.

(XLSX)

S1 Text. Exome-wide low frequency variant analysis.

(PDF)

S2 Text. Genetic correlation between sib-shared traits and non-facial traits and diseases.

(PDF)
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