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Abstract 

— Strip breakage is an undesired production failure in cold rolling. Typically, conventional studies focused on cause analyses, and existing data-

driven approaches only rely on a single data source, resulting in a limited amount of information. Hence, we propose an approach for modelling 

breakage using multiple data sources. Many breakage-relevant features from multiple sources are identified and used, and these features are 

integrated using a breakage-centric ontology which is then used to create knowledge graphs. Through ontology construction and knowledge 

embedding, a real-world study using data from a cold-rolled strip manufacturer was conducted using the proposed approach. 
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1. Introduction 

As a fundamental industry sector, the steel industry is of 

great importance to the economy. Regarding the steel-making 

process of strip products, cold rolling is a secondary rolling 

operation after hot rolling with the aim to reduce the thickness 

and achieve desired mechanical properties using hot-rolled 

coils. During this cold rolling process, there are a number of 

production failures, among which the strip breakage is one of 

the most undesired failures resulting in severe consequences 

from roll damage to production delay [1]. Previous studies of 

the retrospective root cause analysis on strip breakages using 

physical or metallurgical methods have proved that the causes 

of strip breakage are diverse, which can be summarised into 

multiple facets [2-4]. 

With the rapid development of data collection techniques, a 

huge amount of data can be collected along the workflow of 

cold-rolled strips production. For this manufacturing process, 

data can be collected from multiple sources such as the hot-

rolled coil (HRC), which is the incoming feedstock, annealing 

and pickling (A&P) process, emulsion record, the mill record 

during cold rolling and so on. Under this data-rich environment, 

to deal with this undesired production failure, the data-driven 

approaches [3, 5-9] is attracting attention. According to 

previous studies on strip breakages causes, regarding the 

occurrence of this failure, there are various reasons and 

scenarios all over the production process. In this context, the 

aforementioned data-driven approaches, which rely on a 

limited number of data sources, are usually not able to capture 

the complexity of such an intricate phenomenon [10]. With the 

aim to capture the functioning of this production failure, 

breakage-relevant data from multiple sources should be utilised 

collectively to cover the versatility of this failure. 

However, breakage-relevant data are heterogeneous and are 

collected from a multitude of different providers along the 

manufacturing workflow in different formats. To incorporate 

multi-sourced data under the context of vast existing domain 

knowledge on strip breakage causes, we have proposed the use 

of ontology and knowledge graph technologies to create an 

integrated dataset for query and analysis of breakage-relevant 

data. Ontology is defined as a model describing structured and 

unstructured information through entities, properties, and the 
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way they related to each other. As a semantic model, ontology 

can define and describe a wide variety of the entities, features 

and properties existing in a specified domain [11].  By using 

the knowledge concerning strip breakage analysis, a proper 

breakage-centric domain ontology ensures the formalisation of 

knowledge, making knowledge being readable for humans and 

computer methods [12]. Even though there are other 

approaches for knowledge representation such as taxonomies, 

logical models and topic maps, these schemas lack the ability 

to link between various concepts in multiple ways compared 

with ontology. 

Subsequently, this breakage-centric ontology can serve as 

the representational foundation for the creation of the 

knowledge graph. Specific instances of each ontological 

relationship can be created using the tabular data as well as the 

breakage-centric ontology. This ontology serves as a model for 

the knowledge graph to capture breakage-relevant data by 

describing the structure of the knowledge in this specific 

domain. Compared with previous studies, more sources that are 

relevant to breakage, such as HRC, A&P, emulsion and cold 

rolling process, are considered in this work. With the creation 

of an integrated graph-structured dataset, data from 

heterogeneous sources can be fused under an ontological 

relationship. After the transformation of tabular data into the 

form of knowledge graphs, embedding methods can be applied 

to project the graph to a dense vector for breakage modelling.    

The remainder of this paper is structured as follows. In 

Section 2, a systematic literature review of the strip breakage 

causes was first conducted, followed by a review on knowledge 

graphs creation using ontologies and knowledge graph 

embeddings. The flowchart of strip breakage modelling using 

the knowledge graph is introduced in Section 3. In Section 4, 

an experimental study using real-world data is reported to 

demonstrate the effectiveness of the proposed approach. 

Section 5 concludes and outline the future works of this study. 

2. Literature review 

2.1. Cold rolling process and strip breakage 

For the manufacturing of cold-rolled strips, cold rolling is 

aiming at reducing strip thickness to a customer desired gauge, 

achieving the desired mechanical properties of the rolled strips 

and providing good shape with the desired surface finish. 

Within this process, the hot-rolled strip is rolled between two 

work rolls that are rotating, and a better metallurgical and 

mechanical property compared with the hot-rolled strip is 

achieved through this secondary rolling operation [13]. 

During the cold rolling process for strip products, several 

undesired production failures could occur. Among these 

failures, strip breakage has severe consequences such as work 

and backup rolls damage, yield loss and production delay [8]. 

By summarising related studies on the cause analysis of strip 

breakage, the causes can be concluded into four different 

facets.  

The first type of possible breakage causes is material related 

issues. The hot-rolled coil (HRC) is the feedstock of the cold 

rolling process. The undesired physical or chemical properties 

of HRC can result in a breakage [14]. To be specific, previous 

work has discovered that there is a higher possibility for coils 

to break if any non-metallic material such as protective slag or 

oxide scale is inclusion in steel during the hot rolling 

process [15]. For the impurity of the strip, it was proved that 

the impurity has a negative impact on the homogeneity of the 

steel strip, which can contribute to a breakage [4]. Another 

work discovered that the material hardness and hardening 

through the deformation of cold rolling have an impact on the 

yield stress, which is an essential parameter when considering 

breakage [16]. In terms of the incoming HRC, apart from the 

chemical and physical properties, the surface condition, shape, 

and flatness of the strip derived from the roll gap model are the 

potential causes of strip breakage as well [17]. Other than HRC, 

the emulsion which acts as the coolant and lubrication also 

plays an important role in the occurrence of strip breakage 

according to the friction model, which describes the friction 

between the roll surface and strip using parameters such as strip 

speed, roll and strip surface roughness and lubrication [18]. 

Moreover, the conditions of stability and reliability of the hot 

rolling process are also proved to be influential with possible 

strip breakage [19]. 

Specifically, for electrical steel, the strips are annealed and 

pickled before cold rolling. For this process, hot-rolled coils 

anneal followed by water quench to control the precipitation of 

grain growth inhibitors. In addition, shot blast and pickle will 

be conducted to remove the scale of the strip, which will have 

an impact on the strip surface condition as well [20]. 

Secondly, equipment malfunction, especially the rolling 

mill, is proved to be another facet for breakage causes. In a 

previous case study [21], the strip is broke and crushed to the 

other side due to an inter-frame tension deviation resulted from 

mill malfunction. Another research [22] discover that the 

levelness and verticality of the steering roll of the uncoiler and 

the piston rod elongation of the hydraulic gauge control (HGC) 

system are potential causes for strip breakage. In addition, strip 

breakage can be caused by an unexpected high servo valve 

adjustment resulting from the defects of backup roll bearing 

[23]. Under this unexpected adjustment, the pressure 

fluctuations on both entry and exit sides are different, which 

results in tension deviation, which is a significant cause for 

breakages.  

Thirdly, rolling operation such as inappropriate parameter 

settings were analysed to be the representative causes for strip 

breakage in some recent works. It has been concluded that the 

opposite effect will occur with the reduction of rolling speed, 

which can increase the risk of a strip breakage [4]. In a related 

study [23], the authors discovered that an inappropriate tension 

match between the entry and exit side leads to a large 

deformation on one side of the strip. Another study discovered 

that inappropriate tension and roll separating force setting 

caused by unreasonable HGC control is the main cause for 

breakage [24]. Moreover, the variation of specification such as 

maximum gauge, width and yield stress should be compensated 

during the rolling operation; otherwise, the breakage is more 

likely to occur [25]. 

Fourthly, the rolls such as the work rolls and backup rolls of 

the mill are proved to relevant with breakage in related works 

[3, 22, 26]. The roll wear applies an adverse effect on the shape 

of strips, which can further result in a strip breakage [3]. 
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According to the roll wear model, which calculates the time-

dependent thermal contours of the rolls [26], the roll contour 

and roll temperature have an impact on the roll wear. In terms 

of the roll contour, the bending model, which describes the roll 

bend, roll contour and flattening between the work roll and 

support roll, should all be taken into consideration for the 

calculation of bending. In addition, both the convexity degree 

and diameter disparity of the work rolls have been discovered 

to be possible causes for strip breakage [22]. Another research 

discovered that imperfections of the backup rolls and working 

rolls could result in uncontrolled mill resonance, which is the 

main cause for strip breakage [27].  

2.2. Knowledge graphs creation using ontologies 

In terms of knowledge representation and management, 

ontology utilised pre-defined classes and properties to express 

knowledge and relationships in an understandable format for 

both machine and human [28]. However, only the general 

entities or concepts that share the same properties are described 

in an ontology rather than the description of a specific 

individual in a specified domain. Ontologies have been applied 

in a number of works, from the recommendation system [29] 

to product family design [30, 31]. 

Compared with ontology, the knowledge graph is the 

manifestation of the ontology to the specific content. It is a 

specialised graph of the things we want to describe by capturing 

related data with ontological relationships. This graph can link 

multi-sourced data with the integration of structured and 

unstructured information [32].  

Even though there are differences between ontology and 

knowledge graph, an ontology that serves as a framework to 

model the content of multiple data sources can be applied to 

create a knowledge graph. Recently, ontology has been used as 

a solid tool to construct a knowledge graph in a lot of works 

[33-36]. Accepted terminologies and genomic reference 

versions are used as sources for knowledge graph creation [33]. 

In this work, the creation process is defined as a data integration 

system for these sources. Subsequently, the RDF mapping 

language (RML) and the Function Ontology (FnO), which 

define how the ontology concepts are populated with data from 

the sources, were used among data sources and domain 

ontologies for knowledge graph creation. In another work on 

drug-drug interaction prediction [35], an integrated knowledge 

graph was used as a tool to incorporate multiple data sources. 

The creation of this knowledge graph was conducted by fusing 

information from existing knowledge bases and scientific 

literature. Moreover, an air traffic management (ATM) 

knowledge graph was created using the ATM ontology 

constructed by NASA [36]. This ontology defines key classes 

of entities for the management of the air traffic system and 

serves as the representational foundation for the subsequent 

knowledge graph.  By populating a huge amount of historical 

infrastructure, flight, and weather data into this ATM ontology, 

a corresponding knowledge graph was generated with instances 

derived from real-world ATM data sources. 

2.3. Knowledge graph embeddings and their application in 

machine learning 

By transforming the knowledge into latent vector space 

representations, knowledge graph embedding algorithms 

enable an easy way to feed knowledge into machine learning 

algorithms and improved the modelling performance by 

introducing connected features [37]. Typically, embedding 

algorithms are divided into two different approaches, which are 

semantic matching-based models and transitional distance-

based algorithms. In terms of the former approaches, a 

semantic transitional distance is used to capture the relational 

semantics of the knowledge graph embeddings. For the latter, 

entity and relation vectors interact via addition and subtraction. 

Typically, the machine learning tasks on knowledge graph 

can be divided into four main categories, which are node 

classification, link prediction, community detection and graph 

classification [38]. For node classification, the objective is to 

predict the missing types of the nodes given the relationships 

network and node features. For link prediction, the goal is to 

predict whether there is a connection between two nodes [39]. 

In terms of community detecting, the task can be regarded as 

clustering of the nodes within a single graph [40]. For graph 

classification, multiple instances of different graphs are given 

to train the model on them [38]. 

3. Methodology 

In this paper, as shown in Figure 1, a multi-sourced 

modelling approach for strip breakage using ontology and 

knowledge graph is proposed. In the first stage, a multitude of 

breakage-relevant data from different sources is collected. 

Then, based on our previous work [2], the breakage-centric 

features were identified and used as the concepts for ontology 

construction. By a systematic review of breakage causes, a 

lightweight breakage-centric ontology is generated in stage 2. 

Lastly, by populating the multi-sourced data into this ontology, 

the graph-structured data are embedded for graph 

classification. 

 
Fig.1. The flowchart of the proposed methodology. 
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4. Case Study  

4.1. Data description 

 In this experimental study, the data was provided by an 

electrical steel manufacturer where a reversing mill is equipped 

for the cold rolling process. The grain-oriented electrical steel  

(GOES) is an iron alloy with a high silicon content (up to 3%). 

This element reduces magnetic losses by increasing the 

electrical resistivity of the material. As a higher concentration 

of silicon results in brittleness of the strip during cold rolling, 

breakages are more likely to occur for the manufacturing of 

these strips [3]. 

Fig.2. The whole and a zoom-in fragment of the lightweight breakage-centric ontology 
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According to our previous study [2], data sources 

considering relevant with breakage are identified in Table 1. 

Table 1. Details of breakage-relevant data sources  

Data sources Number of selected 

features 

Representative features 

Hot-rolled coils 15 
Chemical content, Gauge, 

Crown, quench temperature. 

Annealing and 

Pickling process 
8 

Annealing temperature, 

Jetflow speed. 

Emulsion 9 
Dirt result, pH, Conductivity, 

Chloride index. 

Cold rolling 

process 
17 

Rolling speed, Tension, 

Measured slip. 

 A subset of the historical data, which was stored in a tabular 

format covering the production period of six months, was 

collected. For this dataset, 1324 coils were collected; 368 of 

them were labelled as "break" while the rest were "good". 

4.2. Lightweight breakage-centric ontology construction 

It can be concluded from the comprehensive review of 

breakage causes in Section 2.1 that the causes of strip breakage 

are varying considerably. Hence, in terms of modelling strip 

breakage using a data-driven approach, it is necessary to fuse 

data from multiple sources to generate collective information 

on this production failure. Given all the domain knowledge on 

the causes of strip breakage, it is possible to integrate data from 

various resources using this knowledge. 

Typically, without close collaboration with domain experts, 

it is not easy to construct an ontology under a domain 

environment from scratch [41]. To specify domain knowledge, 

a lightweight breakage centric ontology is created by a 

systematic review on the cause's analysis of this failure. 

The ontology was build using the Grafo software. The aim 

is to create an ontology to populate the tabular data from multi-

sourced breakage-relevant data. The fragment of lightweight 

breakage-centric ontology based on the manufacturing process 

of cold-rolled electrical strips is shown in Figure 2.  

In this study, the proposed ontology is in a three-layer 

concept hierarchy. The upper-most layer of the concept 

categories is constituted with concepts of the top-level 

breakage-centric ontology, which is the blue circles showing in 

the figure. The domain concepts relating to the breakage causes 

are subtypes of these meta-categories, represented in the green 

circle. For the bottom level, the application concept categories 

(i.e., the identifies features) are instances of the breakage-

centric domain concept. 

4.3. Generating knowledge graph using breakage-centric 

ontological relationship 

The breakage-centric knowledge graph is constructed from 

four different structured data sources consisting of different 

data formats, which are databased tables, spreadsheets, and tab-

based text format. These data were transformed into resources 

description framework (RDF) triples compatible with the 

breakage-centric ontology using the Grafo software. 

Subsequently, these triples were loaded into the triple store 

using GraphDB software. GraphDB is a graph database 

software compliant with RDF and SPARQL specifications. It 

supports open APIs based on project and enables fast 

populating of linked data [36]. Multi-sourced breakage-

relevant data was populated into this ontology using this 

software. The knowledge is represented by the subject-

predicate-object format triples. Within these triples, the 

predicate indicates the relationship between an entity pair 

which is the subject and the object.  

4.4. Knowledge graph embedding and Graph classification 

With the aim to transform the information from this graph 

in a format suitable for the breakage modelling using machine 

learning, embedding techniques should be applied to transform 

the graphs into a vector space representation. Since the scope 

of this study is to propose the overall approach for KG 

generation and modelling rather than algorithms exploration, 

one popular approach, GRAPHSAGE [42] with global mean-

pooling, was selected for knowledge graph classification. To 

be specific, the batch size was set as "32" with a learning rate 

of "0.01", the optimizer was set as the "Adam", and the loss 

function was section as the "binary cross-entropy". 

In the context of graph classification, given a labelled graph 

dataset 𝐺 where 𝑦𝑖  is the label of 𝐺𝑖, the purpose of the task is 

to learn a function 𝑓: 𝐺 → 𝑦 that maps the graph to its label.  

Compared with the coils under smooth-rolling operations, 

the coils which broke during rolling can be regarded as the 

minority. Therefore, considering the imbalance of the dataset, 

the area under the ROC curve (AUC) was applied as the 

performance metrics [43].  

After fusing data from different blocks using the ontological 

relationships, the GRAPHSAGE graph-based approaches 

using graph classification achieved a performance of "0.603" 

in terms of AUC. Even though the data from multiple sources 

are integrated under the ontological relationship, the 

classification performance is barely satisfactory.  

One possible reason could result from the relationship of a 

lightweight breakage-centric ontology, where the structural 

information between identified features has not been fully 

exploited yet. In addition, as a preliminary study using 

knowledge graph, the configuration of the various graph 

classification approaches needs to be further explored. 

5. Conclusions and future works 

In this study, we have described the process towards 

developing a knowledge graph resource using a lightweight 

domain-specific ontology for the modelling of a multi-faceted 

production phenomenon in the cold rolling process, including 

a preliminary case study on the classification of graphs 

generated through this approach. 

In terms of our future works, connected graph features that 

represent the structural characteristics of the graph will be 

considered to enhance machine learning performance. Besides, 

to enhance the ability of linking and reasoning for a 

complicated situation, future work will focus on extending the 

breadth and depth of breakage-centric ontology. 
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