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Abstract

The resonant-state expansion is a perturbation theory that allows the accurate

calculation of the resonant states of a photonic system by using a complete set of

resonant states of a basis system. This thesis pioneers a new research direction of

existing rigorous perturbative theory to any periodic photonic system described

by Maxwell’s wave equations. This method provides new and unique tools for

describing the interaction of light in periodic systems which are not available

through other methods.

The resonant states are found in frequency space for planar periodic systems

which presents a major complication to the resonant-state expansion due to

the branch cuts that are present in the frequency plane due to the dispersion

relation between the frequency and the wavevector of the modes. We solve this

by discretising the cuts into a series of artificial resonant states that lie along

the cuts. These are then treated on equal footing with regular resonant states.

Additionally, the resonant-state expansion method allows for a deeper un-

derstanding of the formation of the photonic crystal resonant states as it treats

these modes as a superposition of all modes of the basis system. Specifically,

we look at the bound states in the continuum, unusual modes which remain

localised to the system despite existing in a strongly coupled system which con-

tains leaky modes. The resonant-state expansion allows us to formulate mathe-

matical conditions for these modes to form, as well as being able to distinguish

between different classes of these modes.
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Chapter 1

Introduction

Photonic crystal structures exhibit a number of fundamental optical proper-

ties, such as strong confinement and Bragg scattering of light, which can be

used, e.g., for light propagation control in grating couplers [1], photonic inte-

grated circuits [2, 3] and beam splitters [4]. The band structure of an idealised

photonic crystal (PC), infinitely extended in all directions, is already very com-

plicated [5]. Planar PC systems provide an opportunity for the light trapped

within an optical waveguide (WG) to couple to the photonic continuum outside

the system [6–9], which makes finding the light eigenmodes of a PC slab an even

more challenging task.

The resonant-state expansion (RSE) method allows the calculation of the

eigenmodes of photonic systems - also known as resonant states (RSs) - from

a set of (preferably analytically known) solutions of another, similar system by

treating the system of interest as a perturbation. As of writing this thesis, the

RSE has been applied to finite open optical systems of different geometry and

dimensionality [10–13], as well as to homogeneous [14, 15] and inhomogeneous

planar waveguides [16]. This thesis presents for the first time that an application

1



of the RSE to a photonic crystal uses a homogeneous slab as a basis which

contains up to several thousand modes and crucially, includes of all branch cuts

in the complex frequency plane.

Current well-known computational methods include the finite-difference in

time-domain, finite-element and Fourier modal method. In this thesis, it is

necessary to compare the results of the RSE to one of these known methods to

prove its effectiveness and ultimately, its superiority. We will use the scattering

matrix method (SMM) [6,7], also known in the literature as the Fourier modal

method [17–20]. One of the main advantages of the RSE over these methods is

the guarantee of the completeness of the set of RSs of the target system given

a complete set of basis modes.

Other advantages include: the simplicity of the method - requiring only

a single diagonalisation of a matrix, the computation time which is orders of

magnitude faster than other methods [12], the flexibility of the method - the

RSE is able to accurately describe large perturbations and the added insight into

the formation of the RSs of complex systems by describing them as a perturbed

set of RSs of a simple system.

1.1 Resonant states

Resonant states (RSs) are discrete solutions to Maxwell’s wave equation (MWE)

with outgoing boundary conditions [21]. RSs were first used by Gamow in

1928 [22] to describe the tunnelling of an alpha particle out of an atomic nucleus

during radioactive decay and later by Siegert [23]. The concept of RSs (also

known as “quasi-normal modes”) is widely used in the literature as a natural

tool for understanding the optical properties of micro- and nano-resonators, see

e.g. a recent review [24]. These states have, in general, complex frequencies with

a negative (or zero) imaginary part. This means that the associated electric field
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for these modes have exponentially growing amplitudes as the field leaves the

system which, at first, may seem unintuitive or unphysical but this is merely

a consequence of the decaying nature of these fields, meaning that portions of

the field that left the system at an earlier time will naturally have a larger

amplitude than later portions. This is a characteristic property of the RSs,

which can cause leakage of energy out of the system over time with the lifetimes

of the modes given by the inverse of their imaginary part. Physically, the RSs

describe the culmination of all the constructive and destructive interferences of

the fields within the system due to the multiple reflections at the surfaces.

1.1.1 A simple illustration: RSs of a homogeneous slab

Consider a slab of dielectric material which is infinite in two dimensions and

finite in the third. The slab has constant permittivity and permeability and is

suspended in a vacuum. This is the homogeneous dielectric slab which is an

important system for this work as it’s RSs are used as a basis. This system

supports resonant states which can be excited by an incident electric field. The

simplest case of the RSs in this system is when the electric field is normal to the

surface of the slab in which case the RSs eigenfrequencies will all be complex

with the same imaginary part and evenly spaced along the real direction in the

complex plane. These modes can be found analytically due to their simplicity.

The solutions are split into an odd and even case (note that this is true even

for non-normal incidence), for a given parity the mth mode is given by:

−i
a
√
µε

(arctan(
√
µε) + imπ) for odd modes (1.1)

−i
a
√
µε

(
arctan(

1
√
µε

) + imπ

)
for even modes. (1.2)
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While the parity of the mode is important and will appear in several equations

later, the odd and even modes are shown in the spectrum together with no

distinction between them.

Every RS’s eigenfrequency has an imaginary part and therefore they all

radiate into the far-field i.e they all have travelling solutions outside of the

system. This describes these modes as leaky as they radiate energy away from

the system over time, this type of mode is also known as Fabry-Perot (FP)

modes. The imaginary part of the frequencies of the modes are all negative which

indicates that the associated electric fields decay over time which reinforces the

picture of RSs described earlier in which portions of the field that left the system

at an earlier time have more energy than later portions.

If we now change the incident electric field so that it is encountering the sur-

face of the slab at an angle, different RSs are excited. The incoming electric field

wavevector is described by it’s z- and x-direction components (perpendicular to

and parallel to the slab respectively). The x-direction wavevector is labelled p

and is such that p = 0 corresponds to normal incidence. The RSs for p 6= 0 are

no longer evenly distributed in the real direction and no longer have identical

imaginary parts. As the angle of incidence futher deviates from normal, the

frequencies of the RSs ”bend” toward the real axis until there are several modes

lying on the real axis itself. These modes, which have zero imaginary part, do

not radiate to the far-field and thus do not leak energy out of the system over

time and have only exponentially decaying fields outside of the system. These

are known as WG modes which cause confinement of energy to the system. It

should be noted that these modes are not directly excited by the incident field

since they would require an imaginary z-direction wavevector.

Figure 1.1 shows the spectrum of RSs in this case which consists of the real

frequencies of the WG modes and the complex frequencies of the FP modes. As
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can be seen, the frequency Re(ω)= ±5 (in this particular case, since the in-plane

wavevector is set to 5 which will be discussed further) separates the FP modes

from the WG modes. This defines the terms open and closed: the system is said

to open at frequencies where FP modes exist and closed at frequencies where

only WG modes exist.

Figure 1.1: Eigenfrequencies of the resonant states of a homogeneous dielectric

slab corresponding to normal (p = 0) and non-normal incidence (p = 5), the

orange lines highlight the cuts for the p = 5 case. The slab has half-width a

and permittivity of ε = 6.

The WG modes are created through total internal reflection and physically

cannot be excited from fields outside of the slab as that would violate time-

reversal symmetry since energy would enter the system but never be able to

leave, creating a one-way interaction.

The positions and linewidths of resonances in optical systems can be mod-

ified by, for example modifying the permittivity. This makes RSs of particular

importance for sensing applications, ranging from sensing the refractive index

and chirality of a medium [25–27] to biosensing of individual molecules and
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atoms [28–30]. RSs have found their application also in miniature lasers [31]

and low-loss guiding of light in photonic crystal fibers [2], to name a few.

1.1.2 Branch cuts

The separation of the WG modes from the FP modes also has a more significant

meaning. In optical systems there exists a dispersion relation between the fre-

quency of the light and it’s wavevector. The frequencies and wavevectors of the

RSs are generally complex which can lead to branch cuts since the dispersion

relation contains a square root:

k =
√
ω2 − p2 (1.3)

(for more details see Ch. 2). This branch cut is the line that separates WG

modes from FP modes although in general there is a large degree of freedom in

choosing the path that the cut takes, it is specifically chosen to point vertically

downward from the branch points (Re(ω)= ±5 in the example above) to infinity.

These branch cuts present a major challenge for the RSE, which takes ad-

vantage of residue theorem which requires Green’s function to be holomorphic

everywhere except for a finite number of poles. Residue theorem asserts that

a contour integral in the complex plane can be evaluated by the summation of

the residues of all poles lying within the contour. The discontinuity introduced

by the cuts forces the contour to distort and introduces to the sum of residues

additional integrals taken along the cuts. These cuts are therefore present in

the basis alongside the spectrum of RSs. In order to treat these cuts, they are

discretised into a series of artificial cut modes which are placed along the cut and

added to the basis [11, 16]. This was done for a photonic crystal perturbation

in the frequency plane for the first time in this work [32]. Properly weighted,

these modes asymptotically converge to the same result as the integrals as the
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number of cut modes reaches infinity and can be treated as though they are

regular RSs. Physically, the effect of these modes are present in the photonic

crystal transmission spectrum as Rayliegh-Wood anomalies corresponding to

the opening of new diffraction channels into free space [33,34].

In addition to creating a discontinuity which affects the contour integral used

in residue theorem, the presence of cuts also creates another problem. The cuts

split the complex plane into the two Riemann sheets with the RSs distributed

across both sheets. This creates a choice for which sheet should be used as the

basis for the RSE. Clearly, the sheet that contains the RSs which produce results

that agree with the observable parameters (namely the transmission spectrum)

should be used. It should be noted that the modes on the other sheet, although

unphysical, can also be used as a basis. This will obviously produce a different

set of perturbed modes but the accuracy of the method remains the same. It is

however, more natural to use the physical sheet. The modes on the other sheet

are then labelled anti-WG and anti-FP modes to distinguish them from WG and

FP modes. Anti-FP modes are completely unphysical since their frequencies are

complex with a positive imaginary part which would lead to an exponentially

increasing temporal part of the electric field suggesting that the system gains

energy over time as it leaks energy into the surrounding environment. The

spectrum of modes from both sheets are shown together in frequency space in

Fig. 1.2.

As mentioned, to determine which sheet is the physical sheet we use the ob-

servable transmission spectrum. The transmission spectrum directly correlates

to Green’s function in an optical system which is central to the derivation of the

RSE (derivation in Ch. 2) and is therefore what we use in Appendix C where

we show that the Mittag-Leffler form of the GF matches the analytic.
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Figure 1.2: Figure from [14] showing the resonant states for a homogeneous di-
electric slab in frequency space. Shown are the different classes of RSs: Fabry-
Perot mode (blue cross), waveguide mode (black diamond), anti-waveguide
mode (green circle) and leaky modes (green star). Green indicates modes which
are on the non-physical Riemann sheet. The insert shows the cut which seper-
ates waveguide modes from Fabry-Perot modes.
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1.2 Bound states in the continuum

In a photonic crystal, there is a mixing of all possible Bragg harmonics causing

coupling between all modes including guided modes coupling to leaky modes al-

lowing them to communicate to the radiation continuum outside the system [6].

Intuitively, this would lead to the conclusion that guided modes are not possible

in a photonic crystal since all modes have some pathway to the outside but in

reality, modes can remain localised within the system despite their frequencies

lying in the continuum. These are known in the literature as bound states in the

continuum (BICs), first proposed by von Neumann and Wigner [35] in quantum

systems but recently have been observed in optics [36]. The BICs are theoret-

ically not seen in the transmission spectrum since they are entirely real and

are therefore only present in the spectrum as infinitely thin delta functions. In

practice, we can only satisify the conditions for quasi-BICs - very high Q-factor

modes - which can be seen in the spectrum as sharp lines which is useful in

applications such as lasers [37,38], sensing [39] and filtering [40]. These peculiar

modes have gained a lot of interest in recent years [41–50].

Fundamentally, BICs are formed when a mode is somehow forbidden from

communicating with leaky modes which would otherwise allow them to leak

energy through their coupling. There are two types of BICs with different for-

mation mechanisms: accidental BICs (A-BICs) and symmetry-protected BICs

(S-BICs). S-BICs are formed in systems with one or more symmetries which

creates a spectrum of RSs of different parities. Coupling between these different

parity modes can be forbidden and if a guided mode is forbidden to couple to

leaky modes then it will remain guided and not communicate with the con-

tinuum outside the system. S-BICs are robust in that they only require the

system to be symmetric and their bound nature is not dependant on other sys-

tem parameters. Of course in practice, either type of BIC is difficult to realise
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since they require ideal conditions (perfectly normal incidence would be hard to

produce, for example.)

A-BICs are formed not by a forbidding of communication between modes

but instead via an accidental cancellation of outgoing fields at the edges of

the system caused by the destructive interference of many scattered waves. A-

BICs are very sensitive to material parameters and require careful tuning to be

expressed as opposed to the S-BICs, which exist for a large range of material

parameters (as long as normal incidence is maintained).

Despite the differences in formation both BICs interact with light in the

same way as WG modes: they do not allow the energy they contain to leave the

system. These two types of BICs are not easily distinguished from one another

in the literature, usually being separated by simply breaking the symmetry of

the system thereby destroying any S-BICs. In this work however, we have used

the resonant-state expansion to provide mathematical definitions for both cases

of BICs.

1.3 Resonant-state expansion

The resonant-state expansion (RSE) is a novel rigorous approach developed in

electrodynamics [13] for calculating the RSs of an optical system. Using a com-

plete set of the RSs of a simpler system as a basis, the RSE performs a mapping

of Maxwell’s wave equation onto a linear eigenvalues problem, which determines

the RSs of the complex system of interest. In addition to a higher numerical

efficiency compared to other computational methods, such as finite-difference

in time-domain, finite-element, and Fourier modal method, as demonstrated

in [12, 16], the RSE provides an intuitive physical picture of resonant phenom-

ena, capable of explaining features observed in optical spectra. Also, unlike

other approaches, the RSE guarantees the completeness of the set of the RSs
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found within the selected spectral range, provided that the basis set used as

input for the RSE is also complete. The latter is easy to achieve and to verify

when choosing the basis system to be analytically solvable. Other approaches,

in turn, are not able to guarantee that all relevant modes are found and that

there are no spurious solutions. The effect of other modes, not included in the

optical spectrum, is commonly treated as a background contribution adjusted

with a number of fit parameters [51,52].

The RSE not only allows for the calculation of RSs in complex systems but

also gives some insight into the formation of such modes. The RSE can easily

show how each of the basis modes contributes to each perturbed mode, which

can explain some of the behaviour of the modes like for example, why some WG

modes become leaky and others can remain localised as BICs. Additionally, the

RSE is a computationally lightweight method allowing for it to be run, in some

cases, thousands of times in the time it takes for other methods to run once.

This allows us to trace out mode positions as system parameters are changed,

while technically possible to do with any method, the RSE allows for this to be

done in a reasonable time frame.

The RSE treats the modes of complex systems as having a contribution

from all modes of the basis system. We can also calculate the electric field for

perturbed modes in much the same way as the modes themselves: as a weighted

summation over all the basis electric fields. The electric fields of photonic crystal

modes can be quite complex due to the mixing of all modes. With the RSE, we

have access to the weights of the basis fields which allows us to break down these

complicated fields into a series of simple, analytical and easier to understand

fields.

The RSE is an asymptotically exact method where the error decreases as

the size of the basis increases; including more modes in the basis increases the
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accuracy of the perturbation. The basis is defined by a circle in the frequency

plane within which all basis modes and cuts are taken into account. As men-

tioned before the influence of each basis mode behaves like a Lorentzian so the

addition of far away basis modes has a diminishing effect with the perturbed

modes at the centre of the basis having the lowest error and modes at the edge

of the basis being very poorly perturbed.

1.4 Established Methods

There are several established methods used to simulate photonic crystals which

will be briefly described here for comparison to the RSE. The methods to be

described in more detail are the finite difference in the time domain (FDTD)

method and the guided mode expansion (GME). The scattering matrix method

is also a popular choice, but this is described in detail in Appendix F.

1.4.1 Finite Difference in Time Domain

The FDTD method was first described by Yee in 1966 [53]. It functions rather

differently to the RSE method but is nevertheless a popular choice to describe

light in photonic crystals.

In the FDTD method, Maxwell’s equations are solved iteratively through

finite steps in space and time. A grid is defined over the system with the grid

spacing given by (∆x,∆y,∆z) and temporal spacing of ∆t. Maxwell’s equations

describe the magnetic (H) and electric (E) fields in terms of derivatives of one

another:

∂(µH)

∂t
+∇×E = 0

∂(εE)

∂t
−∇×H = j

(1.4)

12



where j is the source current.

It is therefore possible to solve for the electric field using the magnetic field

and using that result to calculate the magnetic field in the next instant and so

on until the fields are described in the full spatial and temporal extent.

The derivatives are solved using the finite difference method:

df

dx
≈ f(x+ ∆x)− f(x)

∆x
(1.5)

where the grid spacing defined earlier is used as the difference, ∆x.

The approximation in Eq. (1.5) converges to the true derivative as ∆x→ 0.

Thus, the grid spacing would need to be chosen to be as fine as possible at

the cost of computation time. The FDTD method can clearly only provide a

simulation over a finite space and so boundary conditions need to be chosen ac-

cordingly. For infinite systems, a perfectly matched layer (PML) can be used to

completely cancel reflected solutions as the simulation boundary thus providing

a good approximation for a boundless system.

The FDTD method is very different to the RSE method, which uses the

concept of resonant states instead of directly calculating the fields in the system.

The FDTD method is limited by the spatial and temporal truncation in the

calculation whereas the RSE method in limited in the inverse space: wavevector

and frequency. The main drawback of the FDTD method is the computation

time which can become excessively long for large computational domains. One

of the main advantages of the RSE is it’s computational simplicity, leading to

short computation times.

1.4.2 Guided Mode Expansion

The guided mode expansion (GME) is the most similar existing method to the

RSE [54]. The basic description of the method is fundamentally the same as the
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RSE: given a set of basis modes and a perturbation to the system, the GME can

calculate the optical modes for the perturbed system. Many of the equations

are also similar; the perturbed modes are found via an eigenvalue equation. The

crucial difference between the two methods is that the GME relies solely on the

guided modes of the system, not taking into account any leaky modes unlike

the RSE which takes into account all modes of the system.

The GME is still able to calculate scattering modes in the perturbed system

by investigating the coupling between guided modes and scattering modes. This

allows for an approximation of the Q-factor, and thus the imaginary part of the

mode eigenfrequency. The GME is a perhaps more natural method since it only

considers real modes without the added abstraction of complex resonant states

and cut modes, however this added complexity allows the RSE to perform well

with a wider variety of perturbations since it allows for the treatment of lossy

systems.

The calculation of the Q-factor in the GME assumes that the coupling be-

tween scattering modes is negligible compared to the coupling between guided

modes and scattering modes. This assumption works well for low loss systems

(which are typically the systems of interest) but becomes inaccurate for lossy

systems. The RSE can calculate the modes of lossy systems more accurately

since the basis set of modes already includes the leaky information through the

Fabry-Perot modes without the need for an additional approximation.

Overall, the GME represents a special case of the RSE where only guided

modes are included in the basis under the assumption that the system losses

are low.
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1.5 Green’s Function of a linear operator

The RSE perturbs RSs of a simple system to the RSs of a complex system. The

RSE ultimately gains this property from Green’s function which can be used to

find a function g(x), using only the knowledge of Green’s function G(x, x′) and

a source term f(x′). For a linear operator L(x) where L(x)f(x) = g(x), Green’s

function is defined as: L(x)G(x, x′) = δ(x − x′). Green’s function can be used

in the following way:

g(x) =

∫
G(x, x′)f(x′)dx′ (1.6)

The resonances of a photonic system are the equivalent to the resonances

of an oscillator e.g a bell. When a bell is struck, the intensity of the produced

sound decays exponentially over time. Likewise, we can excite a photonic system

with some incident electric field and we can produce outgoing electric fields

which decay exponentially over time. This is represented mathematically by

the intensity, I(t) = I0 exp (−Γt) where I0 is the initial intensity and Γ is the

decay rate. The amplitude of this decaying intensity at the frequency Ω is given

by I = |A|2 and can be represented by A(Ω) = A0 exp (−iΩt− Γ
2t ).

To find the resonances of such a system, we Fourier transform this amplitude

which is given in the form: A(ω) = B(ω)/(ω − ωn) where ωn = Ωn − iΓn/2 are

poles of the amplitude in frequency space, these are the RSs of the photonic

system, the frequencies and electric fields of which are in general complex with

real part Ω and imaginary part Γ/2.

1.6 Green’s dyadic of an optical system

We now need to translate this general description of the resonances into some-

thing specific to a photonic system which we achieve by using Green’s function
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(GF) of Maxwell’s wave equation (MWE).

Maxwell’s wave equation can be described in matrix form [55]:

 ω
c ε −∇×

−∇× ω
c µ


 E

iH

 = ~J (1.7)

where ∇× is the three dimensional curl operator, E and H are the electric and

magnetic field vectors and ~J is the source current which is made up of an electric

part ~Je and magnetic part ~Jm. This can be written in a compact form:

M̂ ~F = ~J. (1.8)

The definition of GF is given by:

M̂(r;ω)Ĝ(r, r′;ω) = Îδ(r− r′), (1.9)

which we can then use to define the field vector ~F :

~F (r;ω) =

∫
dr′Ĝ(r, r′;ω) ~J(r′;ω). (1.10)

We know that ~F has poles which are the eigenfrequencies of the RSs. The

source term ~J has no poles so therefore the RSs must be poles of the GF. This

allows the GF to be represented as a sum over the RSs using Mittag-Leffler’s

theorem (see Appendix B where we derive the ML form of the GF) which is a

crucial property of the GF and provides the foundation for the resonant-state

expansion.
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1.7 Complex Analysis

The fundamental mathematical basis for this thesis is the understanding of

complex numbers and the complex plane. Namely, the RSE is heavily dependant

on Cauchy’s integral theorem and Mittag-Leffler’s theorem. These concepts are

crucial to the understanding of the derivation of the RSE.

1.7.1 Cauchy’s Integral Theorem

In this section we will prove Cauchy’s integral theorem which shows that for an

analytic function - any that can be written as a convergent power series - f(z)

and a contour C which forms a closed loop, the contour integral vanishes:

∮
C

f(z)dz = 0 (1.11)

Firstly, we use an intermediate step showing that
∮
C
zndz = 0 for integer

n 6= −1 which we will need for the proof.

Consider the complex function f(z) = zn where n 6= −1. Also consider the

contour integral of f(z) along a contour C which is a circle of radius r > 0 about

z = 0 taken in the positive (anti-clockwise) direction:
∮
C
f(z)dz. Since the

integration is taken along a circle it is convenient to parameterise the function

as z = reiθ and dz = ireiθdθ, the integral then becomes:

∮
C

zndz = irn+1

∫ 2π

0

ei(n+1)θdθ

= irn+1[i(n+ 1)]−1
[
ei(n+1)θ

]2π
0

= 0 for n 6= −1 (1.12)

which is a result that is independent of r.
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Now we can prove Cauchy’s integral theorem (Eq. (1.11))using the Cauchy-

Goursat proof [57]. We subdivide an arbitrary closed contour C into a series of

squares as in Fig. 1.3

Figure 1.3: Schematic showing the subdivision of a contour C into a series of
squares describing subcontours Cj . Image is from [57].

The integral along C is then given as a sum over each of the squares, Cj :

∮
C

f(z)dz =
∑
j

∮
Cj

f(z)dz (1.13)

where the integrals along interior lines cancel since each line has two integrals

coming from neighbouring Cj , but in opposite directions.

We define δj(z, zj) as the difference between the derivative at an interior

point within the contour Cj , zj , using the grid spacing and the true derivative

using dz:
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δj(z, zj) =
f(z)− f(zj)

z − zj
− df(z)

dz

∣∣∣∣
z=zj

(1.14)

so that δj(z, zj)→ 0 as the grid spacing becomes finer. We solve Eq. (1.14) for

f(z) and then integrate along Cj :

∮
C

f(z)dz =

∮
C

(z− zj)δj(z, zj)dz+
df

dz

∣∣∣∣
z=zj

∮
C

(z− zj)dz+ f(zj)

∮
C

dz (1.15)

Using Eq. (1.12), we know that
∮
C
dz = 0 and

∮
C
zdz = 0 which leaves:

∮
Cj

f(z)dz =

∮
Cj

(z − zj)δj(z, zj)dz. (1.16)

Introducing the condition:

|δj(z, zj)| < ε, (1.17)

where ε is an arbitrary small quantity which implies the condition:

∣∣∣∣∣∣
∑
j

∮
Cj

f(z)dz

∣∣∣∣∣∣ < Aε (1.18)

where A is a term of the order of the area enclosed by Cj . We are now free to

let ε→ 0 which leads to Cauchy’s integral theorem:

∮
C

f(z)dz = 0. (1.19)

This has the consequence that the integral of an analytic function is inde-

pendent of the path taken, depending only on the end points.

1.7.2 Residue Theorem

In extension to this is the meromorphic function which is a holomorphic function

(satisfies Cauchy-Riemann conditions) except for a countable number of poles.
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A contour integral around a pole z0 does not obey Eq. (1.19) which only holds

for analytic functions. Instead let us consider the Laurent expansion of the

meromorphic function f(z):

f(z) =

∞∑
n=−∞

an(z − z0)n. (1.20)

We apply a contour integral about the point z0 to each of these terms:

an

∮
(z − z0)ndz = an

(z − z0)n+1

n+ 1

∣∣∣∣z1
z1

= 0 for n 6= −1 (1.21)

where due to Eq. (1.19) we can replace the contour integral with just the end-

points, which are obviously the same point for a closed contour (this is actually

only possible if the function is holomorphic and it can be shown that this is

satisfied for all n 6= −1). Such an integral clearly evaluates to zero. However,

the denominator presents a problem in the case of n = −1 where we instead

parameterise the problem as z = reiθ:

a−1

∮
(z − z0)−1dz = a−1

∮
ireiθ

reiθ
dθ = 2πia−1 (1.22)

In summary:

1

2πi

∮
f(z)dz = a−1 (1.23)

So for a function f(z) containing a pole z0, a contour integral which contains

that pole is simply equal to the n = −1 coefficient of the Laurent expansion of

the function, a−1 which is known as the residue of f(z) at z = z0.

In fact, for a simple pole (a function is said to have a simple pole if the

coefficients of the Laurent series, an are zero for n < −1, that is it is a pole of

order 1) the definition of the residue for the pole z0 can be given by:
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Res(f, z0) = lim
z→z0

(z − z0)f(z) (1.24)

Eq. (1.23) is easily extended to a contour integral containing several poles, zn

with residues Res(f, zn):

∮
f(z) = 2πi

∑
n

Res(f, zn) (1.25)

1.7.3 Mittag-Leffler Theorem

Residue theorem states that the contour integral about a pole of a function is

equal to the residue of the pole. Mittag-Leffler theorem asserts that the function

itself can be described by a sum over all its poles, zn:

f(z) =
∑
n

Res(f, zn)

z − zn
. (1.26)

This is the form of the Mittag-Leffler theorem for f(z →∞) = 0.

The function f(z) has a number of fixed poles which cannot be altered except

by altering f(z). Instead we create a new pole at ζ which can be modified freely

allowing us to explore the pole structure of the function. We therefore construct

the function f(z)/(z − ζ) where z = ζ is not a pole of f(z) [58]. So the whole

function f(z)/(z − ζ) has poles at z = zn and at z = ζ.

The poles are ordered such that |z0| < |z1| < |z2| · · · < |zN | so there exists a

circle CN that contains all the poles up to zN and no others. The radius of the

circle CN is given by RN where RN →∞ as N→∞

By taking a contour integral of f(z)/(z− ζ) along CN and using Eqs. (1.24)

and (1.25):
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1

2πi

∮
CN

f(z)

z − ζ
dz = Res

(
f(z)

z − ζ
, ζ

)
+

N∑
n

Res

(
f(z)

z − ζ
, zn

)

= lim
z→ζ

(
(z − ζ)f(z)

z − ζ

)
+

N∑
n

lim
z→zn

(
(z − zn)f(z)

z − ζ

)

= lim
z→ζ

f(z) +

N∑
n

(
lim
z→zn

[
(z − zn)f(z)

]
lim
z→zn

1

z − ζ

)

= f(ζ) +

N∑
n

Res(f, zn)

zn − ζ
. (1.27)

We ultimately want an expression for f(ζ) which will become the left hand side

of Eq. (1.26). To do this we want to remove the contour integral in Eq. (1.27),

this is possible if the integrand is in a specific form which we achieve by setting

ζ = 0:

1

2πi

∮
CN

f(z)

z
dz = f(0) +

N∑
n

Res(f, zn)

zn
(1.28)

and taking the difference between Eqs. (1.27) and (1.28):

1

2πi

∮
CN

f(z)

(
1

z − ζ
− 1

z

)
dz =

f(ζ) +

N∑
n

Res(f, zn)

(
1

zn − ζ
− 1

zn

)
− f(0). (1.29)

Now it can be shown that the integral on the right hand side of the above

equation is equal to zero as N → ∞. We define the maximum value of |f(z)|

which is when z is taken on the contour CN which has a radius RN where

|f(RN )| = M .
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Therefore:

∣∣∣∣ 1

2πi

∮
CN

f(z)

(
1

z − ζ
− 1

z

)
dz

∣∣∣∣ =

∣∣∣∣ ζ2πi
∮
CN

f(z)

z(z − ζ)
dz

∣∣∣∣
≤ |ζ|

2π

M

RN (RN − |ζ|)
2πRN

∝ 1

RN

→ 0 for N →∞ (1.30)

where we have used the triangle inequality for contour integrals: |
∫
C
f(z)dz| ≤

ML where L is the length of the contour C, which in this case is given by 2πRN .

Again, the above is only true is f(z →∞) = 0.

Now we can rearrange Eq. (1.29) using N →∞ and substituting ζ → z:

f(z) = f(0) +
∑
n

Res(f, zn)

(
1

z − zn
+

1

zn

)
. (1.31)

This is the general form of Mittag-Leffler expansion, however in this thesis

we will be expanding a function f(z) → 0 as z → ∞, which will lead us to

Eq. (1.26). If we investigate this in the above equation:

f(∞) = 0 = f(0) +
∑
n

Res(f, zn)

(
1

∞− zn
+

1

zn

)
0 = f(0) +

∑
n

Res(f, zn)

zn
. (1.32)

Thus, Eq. (1.31) modifies to Eq. (1.26). This is an exact form which converges

to the analytic form of f(z) as the number of poles in the summation increases.

Shown for illustration in Fig. 1.4 is the analytic [Eq. (C.3)] and Mittag-Leffler

form of Green’s function of Maxwell’s wave equation for the homogeneous di-

electric slab at normal incidence. The poles of this GF are the RSs shown in
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Fig. 1.1. It can be seen that the Mittag-Leffler form of the GF converges to the

analytic form as the number of poles in the summation, N is increased. The

Mittag-Leffler form of the GF is discussed further in Appendix B.

Figure 1.4: The Mittag-Leffler form of the GF for the homogenous dielectric

slab against the real frequency, ω shown with 1 pole, 7 poles, 15 poles and 93

poles in the summation with ε = 6 and a = 1. Also plotted is the analytic form

of the GF with z = −z′ = 0.5, given in Appendix B.

1.8 Normal incidence RSE for homogeneous per-

turbations

To demonstrate the underlying simplicity of the RSE method, we can derive a

simple form of the RSE for normal incidence and homogeneous perturbations to

the permittivity or permeability as discussed in [55]. This form is much simpler
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than the photonic crystal RSE (PC-RSE) derived in the next chapter since the

normal incidence does not include any cuts and the homogeneous perturbation

does not cause coupling between Bragg harmonics.

This simple example will use a homogeneous dielectric slab as a basis system

to which we apply a homogeneous perturbation to the permittivity. The slab is

infinite in the x- and y-directions and has width 2a in the z-direction. The slab

is suspended in a vacuum (ε = 0) and light is incident from the z-direction.

We start with the wave equation for the electric field:

(εω2 + ∂2
z )E(z) = 0 (1.33)

where ε is the permittivty of the slab, ω is the frequency of the field and E(z)

is the y-direction electric field.

We add a perturbation to the permittivity, ∆ε(z) so the wave equation

becomes:

(εω2 + ∂2
z )E(z) = −ω∆ε(z)E(z). (1.34)

Using the GF, we can solve for the electric field:

E(z, ω) = −ω
∫
G(z, z′, ω)∆ε(z)E(z′, ω)dz′. (1.35)

We can then use the Mittag-Leffler theorem to write the GF in a spectral form:

G(z, z′, ω) =
∑
n

Res(G,ωn)

ω − ωn
(1.36)

It is shown in Appendix B that Res(G,ωn) = En(z)En(z′)/ωn where En are the

electric fields for the unperturbed system which are properly normalised as:

2εs

∫ a

−a
E2
n(z)dz − E2

n(a) + E2
n(−a)

ikn
= 1, (1.37)

25



which is required by the ML theorem. By also using the expansion E(z) =∑
n cnEn(z), Eq. (1.35) becomes:

∑
n

cnEn(z) = −ω
∑
n

En(z)

ω − ωn

∑
m

Vnmcm (1.38)

where Vnm is a perturbation matrix given by:

Vnm =

∫
En(z)∆ε(z)Em(z)dz (1.39)

By equating coefficients at En(z) we arrive at the homogeneous, normal

incidence RSE:

(ω − ωn)cn = −ω
∑
m

Vnmcm (1.40)

where the eigenvalues ω are the frequencies of the perturbed system.

Using Eq. (1.40), we can apply a perturbation to the permittivity of a ho-

mogeneous dielectric slab. We apply the perturbation to the system described

in Fig. 1.1 by increasing the permittivity from ε = 6 to ε = 7 i.e ∆ε = 1 and

∆µ = 0. We can see in Fig. 1.5 that the positive perturbation to the permittiv-

ity causes a simple change to the modes. This is a simple evolution due to the

simplicity of the system, in later chapters this evolution of modes will become

much more complex.
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Figure 1.5: RSs of a homogeneous dielectric slab with the permittivity of the

basis system ε = 6 (blue) and permittivity of the perturbed system ε = 7

calculated via the RSE Eq. (1.40) (red).

1.9 Layout of this thesis

We will first show the derivation of the RSE specifically for photonic crystals,

called the PC-RSE. This will be for a general system with a periodic perturba-

tion naturally described by a Fourier series.

We will then focus on a specific photonic crystal modelled as a homogeneous

dielectric slab with a cosine perturbation to its permittivity. We will find the

RSs of the photonic crystal in frequency space by using a homogenous slab as a

basis. The results of the RSE will be compared to the SMM which is considered

as an exact result.

We can then investigate the origin of these modes by slowly varying system

parameters and tracking the mode positions and by investigating the weights of

each of the basis mode contributions to a selection of perturbed modes.

We will then expand on those results by investigating the BICs of the system
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and using the RSE as a tool to explain the origin of these modes and also how

the morphology of the electric field changes as a mode “passes through” a BIC

with system parameter changes.
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Chapter 2

Formalism of the PC-RSE

In this chapter we will present the formalism of the resonant-state expansion

method for a photonic crystal using a homogeneous dielectric slab as a basis. In

the previous chapter, the RSE method was derived for a homogeneous perturba-

tion which was fairly straightforward as a homogeneous system does not scatter

light. Here, we will be introducing a periodic perturbation which will scatter

light and greatly increase the complexity of the problem since we now have to

introduce the concept of coupled Bragg channels. Additionally, we must deal

with the branch cuts which would prevent the resultant RSs from converging to

the correct solutions if not properly treated.

2.1 Formulation of problem

Consider a PC slab occupying the region |z| 6 a, where z is the coordinate

in the growth direction. Assuming the permittivity and the permeability are

isotropic everywhere, the electric field E, magnetic field H, and the frequency

ω of a given RS of the PC slab satisfy the following Maxwell equations (using
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the speed of light as c = 1)

∇×E = ω(µ+ ∆µ)iH , (2.1)

∇× iH = ω(ε+ ∆ε)E , (2.2)

which have to be solved together with outgoing wave BCs outside the PC slab.

Here, we have explicitly separated the total permittivity (permeability), periodic

in x-direction with the period d, into a homogeneous part ε(z) (µ(z)) and a

periodic part ∆ε(x, z) (∆µ(x, z)), obeying

∆ε(x+ d, z) = ∆ε(x, z) , ∆µ(x+ d, z) = ∆µ(x, z) . (2.3)

For the purpose of a clearer illustration of our approach, we consider the case

of the transverse electric (TE) and transverse magnetic (TM) polarisations not

coupled to each other, which is achieved by assuming that the y-component

of the in-plane momentum is zero. We note, however, that generalisation to

the case of a non-zero y-component of the momentum and to 2D periodicity of

the PC slab is straightforward, and the whole formalism remains essentially the

same as presented here.

Since the TE and TM polarisations are not coupled, each polarisation can

be treated separately. However, due to the symmetry of Maxwell’s equations

(2.1) and (2.2) with respect to a simultaneous exchange of E↔ iH, ε↔ µ, and

∆ε↔ ∆µ, it is sufficient to treat only one of the two polarisations, for example,

the TE polarisation, while retaining the permeability in all results, even if all

the constituent materials are non-magnetic.

For the TE polarisation, Maxwell’s equations (2.1) and (2.2) reduce to

(M̂ + ∆M̂)F = 0 , (2.4)
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where the vector field F is formed from three nonvanishing components of the

electric and magnetic fields,

F =


Ey

iHx

iHz

 , (2.5)

and

M̂(x, z;ω) = ωP̂ (z)− D̂(x, z) , (2.6)

∆M̂(x, z;ω) = ω∆P̂ (x, z) (2.7)

are linear operators, consisting of the generalized permittivity [55]

P̂ (z) =


ε(z) 0 0

0 µ(z) 0

0 0 µ(z)

 , (2.8)

the curl operator

D̂(x, z) =


0 ∂z −∂x

−∂z 0 0

∂x 0 0

 , (2.9)

and the perturbation

∆P̂ (x, z) =


∆ε(x, z) 0 0

0 ∆µ(x, z) 0

0 0 ∆µ(x, z)

 . (2.10)

Note that the polarisation matrices, P̂ and ∆P̂ are non-dispersive. Frequency

dispersion can be included but would require a reformulation of the PC-RSE in
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accordance with [56].

2.2 Derivation of central PC-RSE equation

Owing to the periodicity in the x-direction, the wave function F obeys Bloch’s

theorem,

F(x+ d, z) = F(x, z)eipd , (2.11)

determining the quasimomentum p in the x-direction. We therefore solve the

Maxwell equations (2.4) for the given p, using a periodic dyadic Green’s function

(GF) Ĝp(x; z, z′) of the homogeneous slab:

F(x, z)=−ω
d

∫
d

dx′
∫
dz′Ĝp(x− x′; z, z′)∆P̂ (x′, z′)F(x′, z′), (2.12)

where
∫
d
dx implies integration over any period interval. This GF has the same

value of p and satisfies Maxwell’s equations with a periodic array of sources:

L̂(x, z;ω)Ĝp = 1̂δ(z − z′)d
∑
m

eipmdδ(x− x′ −md) , (2.13)

where m is an integer and 1̂ is the 3 × 3 unit matrix. Using Bloch’s theorem

again, the periodic GF can be written as

Ĝp(x; z, z′) =
∑
g

Ĝp+g(z, z′)ei(p+g)x , (2.14)

where

g =
2πm

d
where m = 0,±1,±2..., (2.15)

and Ĝp(z, z′) is another, x-independent GF of the homogeneous slab satisfying

an equation

L̂p(z;ω)Ĝp(z, z′) = 1̂δ(z − z′) , (2.16)
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with a modified operator

L̂p(z;ω) = ωP̂ (z)− D̂p(z) , (2.17)

which consists of the homogeneous generalized permittivity P̂ (z) given by Eq. (2.8)

and the curl operator D̂p(z) given by Eq. (2.9) with ∂x replaced by ip: D̂p(z) =

D̂∂x→ip.

The homogeneous GF Ĝp can be written, using the Mittag-Leffler (ML)

theorem [57], in terms of the RSs of the homogeneous slab,

Ĝp(z, z′) =
∑
n

∫ Fn(z; p)⊗Fn(z′;−p)
ω − ωn

(2.18)

where
∑∫

represents the sum over the RSs of the homogeneous slab, supple-

mented with an integral over the branch cuts that are caused by the square root

in the wave vector when using ω-representation (see Appendix B). Fn(z; p) is

the vectorial wave function of the RS n of the homogeneous slab, satisfying

Maxwell’s equation

L̂p(z;ωn)Fn(z; p) = 0 (2.19)

and outgoing BCs, and ωn is the RS eigenfrequency. Equation (2.18) is valid if

the RSs are normalised according to a general normalisation condition [55, 59]

applied to the homogeneous planar system,

1 =

∫ z2

z1

F†n · P̂Fndz +
(
E†n × iH′n − E ′n × iH†n

)
· ez
∣∣z2
z1
, (2.20)

where ez is the unit vector in the z-direction, z1 and z2 are two arbitrary

coordinates outside of the system, such that z1 6 −a and z2 > a, and F†n(z; p) =

Fn(z;−p) is the adjoint field. En and Hn in Eq. (2.20) are, respectively, the

electric and magnetic fields of the RS n, combined together into the vector
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Fn = {En, iHn} having in general six components which are reduced to only

three for TE or TM polarisation, in accordance with Eq. (2.5); E ′n and H′n

are the frequency derivatives of the analytic continuation of the fields En and

Hn into the complex frequency plane (for more details see [12, 55]). Note that

in addition to all the RSs lying on the “physical” Riemann sheet of complex

frequency, the ML series Eq. (2.18) includes also cut modes, not obeying Eqs.

(2.19) and (2.20) which is explained further below in Ch. 2.3.

Substituting Eq. (2.14) into Eq. (2.12) and using the ML expansion Eq. (2.18),

we obtain, owing to the completeness of the basis and in agreement with Bloch’s

theorem, an expansion of the wave function F of the RS of the PC slab into the

RSs of the homogeneous slab,

F(x, z) =
∑
g

∑
n

∫
cgnFn(z; p+ g)ei(p+g)x , (2.21)

where the expansion coefficients are given by

cgn = − ω

ω − ωgn
1

d

∫
d

dxe−i(p+g)x

×
∫
dzFn(z;−p− g) ·∆P̂ (x, z)F(x, z) . (2.22)

Then, substituting the expansion Eq. (2.21) into Eq. (2.22), we arrive at the the

key equation of the PC-RSE:

ω
∑
g′

∑
n′

∫ (
δnn′δgg′ + V gg

′

nn′

)
cg
′

n′ = ωgnc
g
n , (2.23)

in which δij is the Kronecker delta, and the matrix elements of the perturbation

are defined as

V gg
′

nn′ =

∫
Fn(z;−p− g) ·∆P̂g−g′(z)Fn′(z; p+ g′)dz (2.24)
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with ∆P̂g(z) being the Fourier coefficients of the generalized permittivity per-

turbation,

∆P̂g(z) =
1

d

∫
d

∆P̂ (x, z)e−igxdx . (2.25)

Note that in Eqs. (2.22) and (2.23), we have added index g to ωn in order

emphasize the dependence of the basis RS frequencies on the Bragg channel

number g.

Equation (2.23) presents a matrix eigenvalue problem, linear in ω (the eigen-

frequency of a perturbed RS of the PC slab) and can be solved simply by di-

agonalizing a complex symmetric matrix. This equation is very similar to the

RSE equation for a finite open optical system [13]. However, the main difference

between the two is that Eq. (2.23) contains a summation over all Bragg chan-

nels, labeled by the index g. Also, the contribution of the cuts, denoted by the

integral, is included in Eq. (2.23), in the same way as it was done in the RSE

applied to 2D open optical systems [11] or to inhomogeneous waveguides [16].

Note that the RSE has been recently formulated for PC systems [59, 60],

in a form of a perturbation theory treating some modifications of the already

existing periodic structure, i.e. using a PC slab as a basis system. It has

been applied so far to either weak perturbations, limiting the RSE basis to

a single mode [60], or to moderate perturbations of quasi-degenerate modes,

limiting the basis to such a pair of modes [59]. In the present work we consider

instead a homogeneous basis containing up to several thousands of modes of the

homogeneous basis. This choice of the basis presents a significant advantage in

implementation of the RSE. For example, all different Bragg channels are fully

isolated in the homogeneous basis, whereas a PC basis has all these channels

already coupled together. This has, in particular, a dramatic consequence on

inclusion of the branch cuts in the basis, which is impossible to do in practice

with Bragg channels mixed up as in the PC basis. Furthermore, owing to the
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simplicity of the basis system used in the present approach, all the basis RSs

and cut modes are found analytically.

2.3 Branch cuts in frequency

As mentioned above, the dispersion relation between the wavevector k and the

frequency ω causes branch cuts in the complex plane. The dispersion is given

by

k =
√
ω2 − p2 (2.26)

which produces cuts at ±p. These cuts have a real effect on the transmission

spectrum of a photonic crystal which are visible as Rayliegh-Wood anomalies

corresponding to the opening of a diffractive order [33, 34]. The Mittag-Leffler

theorem used to generate the spectral form of the GF in (2.18), requires that

the GF be holomorphic everywhere except for a countable number of poles. The

presence of cuts introduces a discontinuity which violates this requirement but

this can be accounted for with a contour integral taken around the cut which is

shown in Appendix B. For the RSE however, we need to discretise the cuts in

order to generate artificial RS-like cut poles which can be added to the basis.

The discretisation of the cuts is done following the procedure described in

[11,16]. For each parity s, the cut with the branch point at ω = p is divided into

Nc intervals bounded by [ω̃ν , ω̃ν+2], where ν is even (odd) for s = + (s = −),

with a weight given by

Ws =

∫ ω̃ν+2

ω̃ν

√
|σs(ω)|dω , (2.27)

where σs is the cut weight function. The integral is taken along the cut starting

at the branch point: ω̃1 = ω̃2 = p. The cut is split into intervals in such a

way that Ws is the same for each interval (for the given parity s). Within each
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interval, an artificial cut mode is defined at the frequency ων , given by

ων =
1

Cν

∫ ω̃ν+2

ω̃ν

σs(ω)ωdω (2.28)

with ν = 1, 2, . . . , 2Nc, where s = (−1)ν and

Cν =

∫ ω̃ν+2

ω̃ν

σs(ω)dω . (2.29)

Applying the same discretisation to the other cut with the branch point at

ω = −p and extending the ν numbers to negative integers, we have now defined

a series of artificial cut modes which lie along the cut and will compensate for

the discontinuity introduced by the dispersion relation.

These cuts are then added to the basis which modifies Eq. (2.23) to:

ω
∑
n̄g′

(
δn̄n̄′δgg′ + V gg

′

n̄n̄′

)
cg
′

n̄′ = ωgn̄c
g
n̄ (2.30)

where the sum-integral
∑∫

has been replaced by a regular sum with index n̄

labeling both the RS and the cut modes.

2.4 Conclusion

In this chapter, we derived the central RSE equation for a photonic crystal sys-

tem described by a periodic perturbation to either the permittivity or perme-

ability of another photonic system. We used the Green’s function of Maxwell’s

wave equation to equate the fields of the perturbed system with those of the

basis system. Mittag-Leffler theorem then allowed us to represent the Green’s

function as a summation of its poles in frequency space which are defined as the

resonant states of the system.
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Additionally, we have shown that the branch cuts in the complex plane due to

a square root in the dispersion relation between frequency and wavevector cause

complications to the RSE by splitting the resonant states across two Riemann

sheets. We solve this by discretising the cuts themselves into a series of artifical

cut poles which lie along the cuts. These artificial poles are then added to the

basis resonant states.
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Chapter 3

PC-RSE applied to a

photonic crystal slab

Now that we have derived the PC-RSE, we will be applying it to a specific

system. We apply the RSE to a photonic crystal characterised by a permittiv-

ity described by a cosine wave. A homogeneous dielectric slab with constant

permittivity will be used as a basis system, this is the system described in

Ch. 1.1.1. To this, the cosine permittivity is treated as a perturbation on top

of the homogeneous slab.

We will then compare the results of the RSE to a well-known method: the

scattering matrix method, described in detail in Appendix F, in order to verify

the accuracy of the PC-RSE.
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3.1 PC-RSE applied to a 1D-periodic photonic-

crystal slab for TE polarisation

We now use the PC-RSE derived in Ch.2 for finding the RSs of a nonmagnetic,

non-dispersive PC slab with a periodic modulation of the permittivity. In this

case, the perturbation matrix in the TE polarisation simplifies to

V gg
′

nn′ =

∫
Egn(z)∆εg−g′(z)E

g′

n′(z)dz (3.1)

where

∆εg(z) =
1

d

∫
d

∆ε(x, z)e−igxdx (3.2)

and Egn(z) is the electric field (directed along y) of the homogeneous-slab RS with

index n and momentum p+ g along x where p is the in-plane wavevector where

p = 0 corresponds to normal incidence. In general, this RS is a solution of the

Maxwell wave equation (B.7) with the outgoing boundary condition Eq. (B.15)

and the normalisation given by Eq. (B.16), see Appendix B. Here, we have added

index g to the electric field Egn and the eigenfrequency ωgn, in order to distinguish

different Bragg channels contributing to the PC-RSE.

Note that in order to treat a permittivity perturbation in the TM polariza-

tion, one should instead set ∆ε = 0 in Eq. (2.24) and use ∆µ for the modulation

of the permittivity, along with replacements iHx → Ex and iHz → Ez in the

unperturbed wave function Fn(z; p).

As a basis system, we choose a homogeneous dielectric slab in vacuum, of

thickness 2a, permittivity ε > 1, and permeability µ = 1. The full permittivity

profile of the slab system is given by Eq. (C.1), and the basis RSs and cut

densities are provided in Appendix C. Within the slab, |z| 6 a, the electric
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fields of the RSs and cut modes are described by the same functions

Egn(z) = Bgn(eiq
g
nz + (−1)ne−iq

g
nz) (3.3)

where the field must be normalised as a consequence of the Mittag-Leffler form

of Green’s function:

2

∫ a

−a

(
Egn(z)

)2

ε(z)dz −

(
Egn(a)

)2

+
(
Egn(−a)

)2

ikgn
= 1 , (3.4)

which is derived in Appendix B.

This results in the normalisation constant, Bn which is given by:

(
Bgn

)−2

= 8(−1)n

εa+
ip2(εµ− 1)

kgn
((
qgn
)2 − µ2

(
kgn
)2)

 . (3.5)

The mode parity is determined by the parity of n via the coefficient (−1)n

taking the values of +1 or −1. The eigenfrequencies ωgn are determined by

the secular equation (C.7) for the RSs and by Eq. (2.28) for the cut modes.

Furthermore, the link between the mode frequency ωgn and the wave number kgn

in vacuum and qgn in the medium is provided by the following light dispersion

relations:

(ωgn)2 = (kgn)2 + (p+ g)2 , (3.6)

ε(ωgn)2 = (qgn)2 + (p+ g)2 (3.7)

where it is now clear to see that there are branch cuts at ω = ±(p+ g).

Now that we defined the system parameters, we can apply the cut discreti-

sation described in Ch. 2.3. The cut weight function is given by Eq. C.11. The

artificial cut modes ων are designed to be used alongside the RSs ωn, therefore
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Figure 3.1: Schematic of the perturbed system – photonic crystal slab of the
total thickness 2a, periodically modulated in x direction, with period d, within
the layer of thickness 2b at the center of the slab.

the electric fields for the cut modes have the same form as in Eq. 3.3 which can

be combined using a new index n̄:

En̄(z) = Bn̄(eiqn̄z + (−1)n̄e−iqn̄z), |z| 6 a (3.8)

where

n̄ =


n for RSs

ν for cut modes

(3.9)

but with a different normalisation constant:

Bn̄ =


Bn for RSs

Bν =
√
ωνCν for cut modes

(3.10)

where Cν is defined in Eq. (2.29).

Using Eq. (2.29), we can graphically show in Fig. 3.2 how these artificial cut

modes compensate for the cut, comparing σν(ω) with Cν/∆ων , where ∆ων is

roughly the distance between neighboring cut poles. We compare the cut poles
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to the equation for the cut weights given by (see Appendix B):

σ±(ω) =
1

4π

µ2k

(µ2k2 − q2) cos(2qa)± (µ2k2 + q2)
. (3.11)

0 . 0 0 . 5 1 . 00 . 0 0 0

0 . 0 0 2
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Figure 3.2: Cut weights σ± (solid and dashed lines) as functions of the imaginary

part of the frequency along the cut, for different values of p as given, along with

the discretized cut pole values Cν/∆ων (circles). Each cut parity contains 22

poles. ε = 6 and d = 2π/5.

3.2 Basis for the PC-RSE

The full basis for the PC-RSE consists of an infinite number of RSs and cut

modes, taken for all Bragg channels g = 2πm/d, where m = 0,±1,±2.... Any

periodic perturbation ∆ε(x, z) = ∆ε(x+ d, z), introduces coupling between the

basis states belonging to different Bragg channels, so that in order to obtain
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the exact result one needs to take all of them into account simultaneously. In

practice, we introduce a truncation, limiting the number of RSs and cut modes

for each Bragg channel as well the number of Bragg channels themselves. We

do both truncations by introducing a single real parameter ωmax which defines

a circle |ω| < ωmax in the complex frequency plane containing the basis RSs

and cut modes included in the PC-RSE. For a fixed ratio of the number of RSs

and cut modes in the basis, the total number of modes scales as ω2
max due to

the linearly increasing number of channels and the linearly increasing number

of modes per channel as ωmax increases which combine to create a quadratic

dependence on ωmax. The set of included RSs, defined in this way, typically

contains a large number of WG modes. In fact, only the m = 0 channel consists

of equidistant FP modes which we call in the following leaky modes. All other

channels contain WG modes having real frequencies ωgn within the intervals

(p + g)/
√
ε < |ωgn| < (p + g). The number of WG modes within each channel

grows linearly with g, with the total number increasing quadratically with g.

The WG modes are separated from FP modes by series of cut poles of the GF

which are positioned vertically down below the branch points at ω = ±(p+ g).

For Re(ω) > p + g and Re(ω) < −(p + g), there are two infinite series of FP

modes for each Bragg channel. All this means, in particular, that for a given

radius ωmax, the basis includes 2M + 1 ≈ ωmax
√
εd/π channels, most of which

consist of only WG modes.

For the purpose of verification of the PC-RSE by comparing it with the

scattering matrix method (SMM), which is presented in Ch. 3.5 below, we use

however a different criterion: we limit the number of Bragg channels to |m| 6M ,

where M is a fixed number, and truncate the RSs and cut modes independent

of M , i.e. using the same number of cut modes for each selected channel. This

is done in order to avoid a computationally expensive root searching within the
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Figure 3.3: Basis RSs and cut poles (used for comparison of the PC-RSE with
SMM) for ε = 6, α = β = 0, and M = 5 leading to 11 Bragg channels in the
basis, each channel labelled with index m. The frequencies of the RS and cut
modes of channels m and −m are identical.

SMM related to the increase of the S-matrix size with M . Clearly, for adequate

comparison, it is essential to keep the truncation number M the same for both

PC-RSE and SMM. However, the necessity to keep M low demonstrates the

major weakness of the SMM.

The PC-RSE basis used for the comparison with the SMM is illustrated in

Fig. 3.3, for p = 0 and M = 5, showing the eigenfrequencies of both the RSs and

cut modes for all selected 11 Bragg channels. Clearly, for p = 0, the positive- and

negative-m channels are degenerate (giving the same RS eigenfrequencies), and

both degenerate channels must be included in the basis. Additionally, there are

now 2M cuts with discretized cut modes added to the basis. These cut modes

are also degenerate for the same reason as the RSs.

45



3.3 Cosine modulation of a homogeneous slab

For illustration purposes and also for the ease of comparison with the SMM,

the perturbation of the homogeneous slab is taken in the most simple harmonic

form:

∆ε(x, z) =

(
α+ β cos

2πx

d

)
Θ(b− |z|) , (3.12)

where Θ(z) is the Heaviside step function, b 6 a, and α and β are some pa-

rameters (see Fig. 3.1). We note, however, that the RSE can equally deal with

any other shape of the periodic perturbation, not requiring the separation of

variables which the perturbation in the form of Eq. (3.12) possesses. The SMM

in turn, requires this separation. In fact, the transfer matrices that form the

scattering matrix are calculated layer-by-layer through the system (see [7]).

Therefore any system changing smoothly in the growth direction will be ap-

proximated by a stack of slices homogeneous in z, which are ideally infinitely

thin.

For the perturbation given by Eq. (3.12), the matrix elements take the fol-

lowing explicit form:

V gg
′

n̄n̄′ = Bgn̄B
g′

n̄′ (2αδgg′ + βXg−g′) bZ
gg′

n̄n̄′ , (3.13)

where

Xg = δg,g1
+ δg,g−1

(3.14)

with g±1 = ±2π/d and

Zgg
′

n̄n̄′ =
(

1 + (−1)n̄+n̄′
)

sinc
[(
qgn̄ + qg

′

n̄′

)
b
]

(3.15)

+
(

(−1)n̄ + (−1)n̄
′
)

sinc
[(
qgn̄ − q

g′

n̄′

)
b
]

(3.16)

with sinc z = sin z/z.
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For homogeneous perturbations, used in Appendix D for the RSE verification

and comparison of the k- and ω representations, we use α 6= 0 and β = 0. For

all periodic perturbations we instead take α = 0 and β 6= 0, so that all the

matrix elements Eq. (3.1) within the same channel (g = g′) are vanishing since

∆ε0(z) = 0, according to Eq. (3.2). This property yields a quick convergence

of the PC-RSE. In fact, since the diagonal elements of the perturbation matrix

are all zeros, the first-order contribution of the PC-RSE is vanishing [12]. Then

the lowest-order non-vanishing contribution of the perturbation can only be

quadratic in V gg
′

nn′ , making its overall effect quantitatively small and the PC-

RSE converging quickly to the exact solution.

3.4 RSs of a PC slab

We now show the RSs for a PC slab calculated using Eq. (2.30). Fig. 3.4 shows

the basis modes found above, as well as the PC modes and the SMM results

which will be used in the next section for verification. We see significant modi-

fication of the modes when the perturbation is applied. The m = 0 basis modes

which were previously evenly spaced and had the same imaginary part are now

much more perturbed. For a low real frequency however, the m = 0 modes are

much less affected by the perturbation. This can be explained by their distance

to other modes which reduces their influence.

In the basis, oppositely signed channels e.g m = ±1 are degenerate due to

the normal incidence of the system. When the perturbation is applied however

this degeneracy is broken and the modes of opposite signed are combined into

even and odd basis states which are perturbed differently. Of particular inter-

est are the WG, the eigenfrequencies of which lie on the real axis. When the

perturbation is applied and the degeneracy broken, the frequency of one mode

within the pair remains real valued while the other gains an imaginary part.
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Figure 3.4: (a) RS frequencies of a PC slab with ε = 6, α = 0, β = 1, b = a/2,
and d = 2πa/5, calculated for M = 5 using the PC-RSE (N = 1998, F = 1)
with and without cut modes (red and green crosses) and the SMM (blue squared
with dots). Unperturbed RSs and both unperturbed and perturbed cut modes
are also shown (black circles with dots, black and blue dots, respectively). (b)
Zoom of (a) showing RSs near and on the real axis.
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The former is the phenomenon of the bound state in the continuum which is

separated from the other modes in the spectrum which are coupled to the pho-

tonic continuum outside and are therefore leaky. The other mode in this pair

are the quasiguided modes, named due to their high, but not infinite, Q-factors.

These modes will be examined in more depth in later sections.

Included as part of the basis are the artificial cut modes. Since these are

treated just like any other basis mode, they too produce perturbed modes.

While these modes seem artificial, placed here only due to the mathematics of

the branch cut, they represent real effects in the transmission spectrum called

Rayleigh-Wood anomalies which are due to the opening of a new diffraction

order. These perturbed cut modes positioned along the same cut lines at

Re (ωa) = 5 and 10, but shifted vertically with respect to their unperturbed

positions (compare red and black points). This is a remarkable property of the

PC-RSE to leave the cuts unchanged but the cut weight redistributed. This

allows us to find the dyadic GF of a PC system which is not possible by other

means.

3.5 Verification of the PC-RSE

We now use the SMM as a proven method for finding RSs of a PCS as a verifi-

cation for the RSE. We first consider a homogeneous dielectric slab in vacuum.

Taking ε = 6 and pa = 5 as an example, we demonstrate numerically in Ap-

pendix C a quick convergence with the basis size N of the ML series for the

GF to its exact values, given by the analytic formula Eq. (C.3). We show in

particular that both k- and ω-representations of the GF (the first without and

the second with cuts in the basis) converge in the same way, with the absolute

error scaling as 1/N2. The contribution of the cuts to the ML expansion in

the ω-representation is taken into account in this case in a form of a numerical
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integration.

We then apply in Appendix D the RSE to a uniform perturbation of the

homogeneous slab for p 6= 0, demonstrating for both k and ω representations

a quick convergence of the RSE to the analytic solution available for the core-

shell geometry used, with the relative error for the wave numbers scaling as

1/N3. The RSE in the k representation essentially reproduces the results of [14].

However, the RSE in ω representation is applied to homogeneous systems for the

first time. In this representation, the cut contribution is taken into account in

the RSE in the form of a subset of artificial cut modes obtained by a numerical

discretisation of the cuts and added to the basis. The procedure of the cut

discretisation is described in detail in Appendix D.2. These cut modes are then

used in the PC-RSE.

Now, in order to verify the PC-RSE, we consider the periodic perturbation

Eq. (3.12) with α = 0, β = 1, d = 2aπ/5, and b = a/2. The unperturbed system

is a homogeneous slab in vacuum of thickness 2a and permittivity ε = 6. Its RSs

and cut modes for TE polarisation and p = 0 are shown in Fig. 3.3. Perturbed

RSs of the PC slab, calculated via the PC-RSE (with and without cut modes)

and by the SMM, are shown in Fig. 3.4 along with all the unperturbed RSs and

cut modes present in the displayed spectral range. As already mentioned in

Sec. 3.2, the same truncation of the Bragg channels with M = 5 was used for

both the PC-RSE and SMM.

While the periodic perturbation is not small (β = 1), leading to a consider-

able modification of the RSs, one can see in Fig. 3.4 a very good visual agreement

between the SMM and the PC-RSE, even when no cut modes are included in

the basis (green crosses ×). In fact, in this case, there is only a slight discrep-

ancy between the two calculations seen for some RSs close to the cuts (see e.g.

region 3 in Fig. 3.4(b)). These discrepancies are fully removed when cut modes
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are included in the PC-RSE (red crosses +).

To quantify the agreement between the PC-RSE and SMM we study the

relative error for the RS frequencies, which is shown in Fig. 3.5(a). Increasing

the basis size N , the error does not improve for some RSs near the cuts, if the

cut modes are not included in the basis. Including the cuts, the relative error

gradually decreases for all RSs, as the basis size grows. Interestingly, the cut

modes do not contribute to all the RSs evenly, and some RSs close to the cuts

show rather small errors, which do not improve much when the cut modes are

included.

We also show in Fig. 3.5(b) the relative error of the PC-RSE with respect

to itself for a larger basis size, using the single truncation parameter ωmax, as

described in Sec. 3.2. We take in particular the eigenfrequencies calculated for

the total basis size of Ntot ≈ 12000 as the “exact” values in finding the errors

shown in Fig. 3.5(b) for different basis sizes. Here Ntot = N+FN , where N and

FN are, respectively, the number of RSs and cut modes in the basis. We study

the dependence on F of the relative error in Appendix D.2 (see Fig. D.2(c)) and

show that F ≈ 1 presents an optimal value for determining the RSs within a

rather wide spectral range. This value of F is thus used in the calculations

presented in this section.

Looking at the dependence of the error on the basis size, presented in

Fig. 3.5(b), we see that the error decreases by roughly an order as the basis

size doubles, which is close to the 1/N3 dependence observed for effective 1D

systems treated by the RSE [10, 12, 13]. This demonstrates a high efficiency

of the PC-RSE. In fact, its slowest element is matrix diagonalisation for which

the compute time scales as N3. More important is however the overall level of

errors: Even for 26 RSs and no cut modes in the basis, the perturbed RSs of

the PC slab are calculated with the accuracy of about or less than 10−3. The
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Figure 3.5: (a) Relative error of the PC-RSE compared to the SMM result,
taking the latter as “exact”, calculated with and without cut modes, for different
basis sized as labeled, F = 1, and parameters of the PC slab as in Fig. 3.4. The
basis consists of the closest to the origin modes, with the same number of modes
for each Bragg channel, for M = 5. (b) Relative error of the PC-RSE using the
N ≈ 6000 result as “exact”, for the same PC slab and the basis size as labeled.
The basis consists of all RSs and cut modes within the circle |ω| < ωmax in the
complex frequency plane. ε = 6, β = 1, d = 2π/5 and b = 0.5a.
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same level of errors is seen in Fig. 3.5(a) when cut modes are not taken into

account, for a large number of RSs found within a much wider spectral range.

This can be understood by the already mentioned fact that all diagonal elements

V ggn̄n̄ = 0, leading to the effect of the perturbation vanishing in first-order, and

therefore to a rather low level of corrections and errors.

A large number of the RSs shown in Fig. 3.4(a) seem to have the imaginary

part of the eigenfrequency close to zero. To see this more clearly, we zoom in

the view of the imaginary part in Fig. 3.4(b) by a factor of 100. This allows

us to distinguish two types of modes. The first type is known as bound states

in the continuum (BICs), which can be further split into accidental BICs (A-

BICs) and symmetry protected BICs (S-BICs), which are discussed in Ch. 5.

These modes, much like WG modes in a planar waveguide, have strictly zero

imaginary part and therefore infinite Q factor or lifetime. However, unlike the

WG modes, BICs lie in the spectral range where they could (but in reality do

not) communicate with the photonic continuum outside of the system. The

second type we call quasiguided modes (QGMs) [7] which usually have a very

small but nonzero imaginary part of the eigenfrequency (high Q factor), as

compared to e.g. FP modes. This is again due to the dominant role of the WG

modes in their formation, like for the BIC, while the small imaginary part is

caused by the coupling between the WG and leaky modes, see Ch. 4 below for

a more detailed analysis of both types of RSs.

We also see in Fig. 3.4(b) some failures of the SMM, showcasing the superi-

ority of the RSE method. The SMM ultimately relies on the Newton-Raphson

method of finding the poles of the S-matrix [7, 61]. This means that it uses a

small but finite tolerance playing the role of the parameter. If the mode split-

ting is below the tolerance level, the SMM is unable to resolve them, such as

in region 2 of Fig. 3.4(b). Reducing the tolerance can fix this issue, however,
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with a potential to generate at the same time spurious solution at another place,

such as in region 1 of Fig. 3.4(b). The RSE in turn does not require a tolerance

and returns the correct number of RSs in a selected region, neither missing any

modes nor producing any spurious solutions. This is an important and unique

property of the RSE, following from the completeness of the basis used. Owing

to its linearity in ω, the RSE always returns as output a set of perturbed modes

which is also complete. Furthermore, the number of perturbed modes is always

equal to the number of basis modes used.

3.6 Non-normal incidence

Until now, the in-plane wavevector p was always set to 0, corresponding to

a normal incidence electric field exciting the system. However, we have been

careful to derive all equations for any value of p and so non-normal incidence

requires no further changes to the formulation. The only complication is that

there are now no longer degenerate modes which were previously arising from

opposite signed values of g which are identical since only g2 appears in the

equations for k. However, with non-zero p the values of (p + g)2 and (p − g)2

are now different for the same value of g and the degeneracy is lifted. This also

means that the positive and negative channels open at different frequencies and

so the cuts are also no longer degenerate.

The m = 0 channel has now also gained a cut at Re(ωa) = 3 and so there is

no longer a channel that is open for all frequencies which will have consequences

for the formation of BICs, discussed later in Ch. 5. In fact, we can see in

Fig. 3.6(a) that there are three WG modes below the frequency of the first cut

(which belongs to the m = −1 channel at Re(ωa) = 2). These all belong to the

m = 0 channel with the m = −1 channel containing no WG modes at all.

The first three m = 0 channel WG mode frequencies remain real when the
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perturbation is applied. These would appear to be BICs, but in this case these

modes exist below the opening of any channels. In the normal incidence case,

the m = 0 channel was open at all frequencies which provided a pathway to the

outside for all modes, those that did not become leaky in the presence of these

modes when the perturbation was applied were then labelled BICs since there

must be some mechanism separating them from the continuum. In the non-

normal incidence case however, the m = 0 channel is not open at all frequencies

and those modes that lie below the opening of this channel are intrinsically

separated from the continuum and thus are not labelled BICs but are instead

WG modes.

Fig. 3.6(b) shows the relative error of the RSE method for various basis sizes

when compared to a much larger basis (N = 3268) just like Fig. 3.5. The RSE

converges at the same rate as normal incidence showing the flexibility of the

RSE method. Note the remarkable accuracy ( 10−3) attained for a very small

basis size of N = 6.

3.7 Other parameters of the system

We finally study the dependence of the RS frequencies calculated via the PC-

RSE and their errors on the two structural parameters of the PC slab: the

half-width of the core layer b and the period of modulation d, while keeping

ε = 6, α = 0, β = 1, and p = 0 as before.
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Increasing b from half-width (b = a/2) to the full-width value (b = a) does

not lead to any significant changes in the spectrum, as one can see in Fig. 3.7(a).

The relative error is however getting sensitive to b as b → a. In fact, the error

in Fig. 3.7(b) shows that the case of b = 0.95a can produce up to an order of

magnitude higher errors (relative to the SMM) compared to the system with

b = 0.5a. The reason for this increase is related to the ML series changing its

convergence properties on the borders of the system, which requires a further

study. Presently, it prevents the PC-RSE from being used with exactly b = a.

Figures 3.8 and 3.9 show the RS frequencies and the relative error for the

period of modulation d, respectively, 5 times smaller and 5 time larger than that

used for Fig. 3.4 (d0 = 2πa/5). Such changes to the period modify the spectrum

of the RSs dramatically, so for instance, in the first case the number of RSs

per cut is much larger than in Fig. 3.4 and in the second case – much smaller.

Nevertheless, the PC-RSE is working equally well in all these cases, as we can

see from almost the same level of errors.

3.8 Other Periodic Perturbations

So far, we have only considered the perturbation of the permittivity to be a

cosine wave. This is the simplest case for a photonic crystal, however the RSE

can handle more complex perturbations. As it was derived in Ch.2, the RSE

can handle any perturbation which can be described by a Fourier series. The

only modification to the RSE is the ∆εg−g′ term in 3.1, all other terms remain

identical to the cosine perturbation described so far. This demonstrates the

flexibility of the RSE since any change to the perturbation would require an

entirely new calculation in other methods but we are able to use the same basis

system for multiple perturbations.

Here, we show the case for a square wave perturbation which is a much more
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realistic system compared to a cosine wave. The square wave is given by the

Fourier series:

∆ε(x) = β
4

π

∞∑
n=1,3,5...

1

n
sin
(nπx

d

)
(3.17)

where β is behaving as a perturbation strength parameter like with the cosine

perturbation.

Such a perturbation would obviously require an infinite amount of Fourier

terms to describe which is not possible to consider. The amount of Fourier terms

will be truncated to a finite amount. The exact number of terms considered

depends on the number of Bragg harmonics considered in the basis system since

the Fourier terms would need to fit inside the perturbation matrix, V gg
′

nn′ . This

was already discussed in the cosine perturbation section, where we consider all

Bragg harmonics within a circle in the frequency plane |ω| < ωmax. Thus, the

accuracy of the Fourier series is controlled by the parameter ωmax. Fig. 3.10

shows the RSs eigenfrequencies for a square wave perturbation as calculated

by the PC-RSE and the relative error for various basis sizes compared to the

PC-RSE with a large basis size.

The RSs eigenfrequencies are similar to those of the cosine wave perturba-

tion. This is to be expected since most of the parameters (basis permittivity,

perturbation period, perturbation strength etc.) are the same and also the basis

is the same. The square wave perturbation still supports BICs and quasi-BICs.

The PC-RSE performs exactly the same as with a cosine perturbation, still

demonstrating a 1/N3 convergence where N is the number of basis modes.
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Figure 3.10: (a) Basis states (blue circles) and resonant states for a photonic

crystal with a square wave perturbation. (b) Relative error of the RSE for

different basis sizes for a square wave perturbation for ε = 6, β = 1, a = 1,

b = 0.5 and d = 2π/5.
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3.9 Conclusion

In this chapter, we applied the general form of the PC-RSE equation derived in

Ch.2 to a specific system. This was initially a homogeneous dielectric slab with

a cosine perturbation to it’s permittivity.

The basis states are found by solving a simple secular equation. Due to the

photonic crystal system coupling all Bragg harmonics, the basis resonant states

must be found for all corresponding in-plane wavevectors given by g = 2πm/d

where m = 0,±1,±2.... The number of Bragg harmonics considers is truncated

due to finite computer space. Initially, this was truncated to a number which

was chosen to match the number used in the scattering matrix method which

was used as an established method with which to compare the results of the

RSE. After the accuracy was demonstrated and the PC-RSE verified versus the

SMM, we then used the more natural truncation of defining a circle in frequency

space within which all modes and Bragg harmonics are included thus controlling

the number of Bragg harmonics and resonant states in the basis with a single

parameter.

We showed that the RSE converges to the correct solution as the number of

basis modes, N , increases and that the error scaled as 1/N3 demonstrating a

quick convergence. The overall level of error is also remarkably low at < 10−3

even for small basis sizes or when the cuts are not included. This is revealed to

be due to the choice of perturbation which does not have a first-order effect on

the system making the overall perturbation mathematically small despite the

large physical change. We show the photonic crystal eigenfrequencies calculated

by the RSE which include the peculiar bound states in the continuum. These

are states which have somehow become separated from the photonic contin-

uum outside the system despite being coupled to modes which radiate into this

continuum.
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We then show the same system but for non-normal incidence. The equations

for the RSE were derived for any angle of incidence and so this is a fairly

straight forward step. Non-normal incidence breaks the degeneracy of the Bragg

harmonics and causes all symmetry-protected bound states in the continuum to

disappear as well as transforming some Fabry-Perot modes from the m = 0

channel into waveguide modes which remain waveguide modes even within the

photonic crystal.

For completeness, we show some other values of the perturbation width and

period, once again demonstrating the convergence of the RSE with increasing

basis size.

Finally, we show the RSE for a more complex perturbation to the permittiv-

ity, replacing the cosine wave with a square wave which is a simple change for

the RSE, the only difference is that the perturbation matrix is less sparse than

with a cosine perturbation. We show that the convergence remains unchanged

compared to the other examples.
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Chapter 4

Origin and evolution of the

RSs in a PC slab

In the previous chapter, we showed that the RSE is a reliable and accurate

method for calculating the RSs of a PC slab. In this chapter, we use the RSE

to reveal more information about the PC RSs such as their origin in the basis

system and their evolution through parameter changes. This information is

difficult to acquire through other methods due to excessive computation time

they require and because they do not treat the system as a perturbation, i.e

they do not allow us to trace the evolution of mode with parameter changes.

4.1 Evolution of modes

We use the high efficiency and accuracy of the PC-RSE to find the complete

set of the RSs of a PC structure and study the origin, formation and further

evolution of the RSs in a PC slab with change of the system parameters. Here we

change the most important parameter: the amplitude of the periodic modulation
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β. We have already shown in Sec. 3.7 results for varying the thickness of the

modulation layer 2b and its period d.

Figure 4.1 shows the evolution of the RSs eigenfrequencies with increase of

the amplitude β of the periodic modulation, which we call the perturbation

strength. In the p = 0 case treated here, all unperturbed RSs (and cut modes)

except m = 0 channel are doubly degenerate, as discussed in Ch. 3.2. The

periodic modulation lifts this degeneracy, which is well seen in the figure. Fur-

thermore, leaky and FP modes shift upward, increasing their Q-factors, while

the majority of the RSs originating from WG modes are moving down, away

from the real axis, in this way having their Q-factors reduced with β. Over-

all, this picture demonstrates a complicated mixing of basis modes with both

infinite and finite Q-factors.

Of particular interest are RSs found close to the real axis of ω. As mentioned

in Ch 3.5 above, perturbing the WG modes results in two types of RSs: BICs

and QGMs. A closer look provided in Fig. 4.1(b-d) shows however that BICs

are formed only within the region −2π/d < Reω < 2π/d, bound by the cuts

of the m = ±1 Bragg channels. Figure 4.1(b) demonstrates that each pair

of WG modes within this region produces one BIC and one QGM, the latter

loosing its quality very quickly with the perturbation strength. Outside this

region we see instead that the RSs originating from the WG modes of the

homogeneous slab have either Q-factors also quickly decreasing with β or very

high Q-factors weakly depending on the strength of periodic modulation. The

latter can be called quasi-BICs, the term which has recently become widely used

in the literature for such modes [62,63]. It is also interesting to see a formation

of some of the RSs as a result of a rather strong coupling between WG modes

which are close in frequency but belong to different Bragg channels, see e.g in

Fig. 4.1(b) (Fig. 4.1(d)) the mode repulsion due to the coupling between WG
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modes of m = 2 and m = 1 (m = 3 and m = 2) channels.

As already discussed in Ch. 3, the perturbation does not contribute in first-

order (for α = 0), and thus the RSs eigenfrequencies change ∝ β2 for small

β, in accordance with Eq. (38) of [12], see Fig. 4.2. However, in the case of

the above mentioned strong coupling between the channels, this linear in β2

regime takes place only at very low values of β, see e.g modes 5-8 in Fig. 4.2.

Another interesting feature well seen in Fig. 4.2 is that the degenerate pair of

basis WG modes producing a BIC-QGM pair (modes 1 and 2) shows a linear

in β2 splitting, while any other pair of states, not containing BICs, remains

degenerate in this order. This makes BICs even more peculiar.
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4.2 Contribution of basis modes

To understand this and some other properties of BICs, we look at the basis

mode contribution to different RSs. We show in Fig. 4.3 the mode contribution

to the BIC-QGM pair selected close to the cut of the first Bragg channel. Other

types of modes – FP, leaky and cut modes – are considered in Appendix E.

The size of each circle represents how much that mode contributes, with the

circle area proportional to
√
|cgn|, chosen (instead of the natural |cgn|2) in order

to demonstrate more clearly the role of different basis modes. We see that all

the basis RSs and cut modes of the given parity contribute to these states,

even though the relevant WG mode has the dominant and indeed very large

contribution to both states. It becomes also clear that the main difference

between the BIC and the QGM in the studied pair is that the leaky modes of

the 0th Bragg channel do not contribute to the BIC. This confirms that the

BICs found in this system are symmetry-protected [43,48,64,65].

In fact, owing to the symmetry of the system, the BIC shown in Fig. 4.3(a)

has a wave function which is odd in the x direction and thus does not couple

to the m = 0 channel containing only even states. In other words, the m = 0

channel is not present in the subgroup of odd states, and therefore this BIC is

not even falling into the continuum: for this subgroup, the continuum starts at

the cut positions of the m = ±1 channels. Furthermore, all doubly degenerate

basis states contribute to the QGM (BIC) with the same (opposite) amplitude,

cgn = ±c−gn , also reflecting selection by symmetry.

Note that the other mirror symmetry of the system, which is in the z-

direction, also results in the formation of the basis and perturbed RSs of even

and odd parity. It is clear, for example, that every other FP mode does not

contribute to the states in Fig. 4.3. Indeed, modes of the opposite parity in z

do not couple to each other, and both the QGM and BIC shown in Fig. 4.3 are
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of even parity. This implies in particular that the basis size can be halved for

this kind of perturbation.

It is also clear from Fig. 4.3 that the cut modes contribute very little to the

perturbed BIC and QGM but are nonetheless required for accuracy. We have

seen, in particular, that including even one cut mode, representing the full cut,

is far better than not including any cut modes, despite the cut being very badly

approximated.

Finally, the observed splitting ∝ β2 within the BIC-QGM pair can be under-

stood as a result of the leaky modes of the m = 0 Bragg channel affecting (not

affecting) the QGM (BIC). If this channel contributes, the effect of the leaky

modes appears already in the 2nd order in the perturbation β, and thus causes

the splitting of the BIC and QGM in this order.

The studied systems can also support non-symmetry protected BICs which

are studied further in Ch. 5. These kinds of BICs can form in these systems by

tuning their spatial and material parameters, such as the period and strength of

the periodic modulation, and the thickness of the substrate layer (see e.g. [49]).

4.3 Conclusion

In this chapter we focused on the physical significance and qualitative under-

standing of the results of the previous chapter. We took advantage of the

low computational cost of the RSE method to find the path that modes move

through in frequency space as the permittivity contrast is increased. This re-

vealed, in particular, the nature of the bound states in the continuum which

are entirely real in frequency space. Fig. 4.1 illustrated the difference in evolu-

tion with the permittivity strength β between symmetry-protected BICs whose

eigenfrequencies remained real for all values of β and the accidental BICs which

are only real for one particular value of β.
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Figure 4.2 showed that there was no first order contribution of the perturba-

tion since the mode eigenfrequencies shift linearly with β2 for small β. This was

a consequence of the chosen perturbation which did not include a homogeneous

part i.e α = 0. This figure also demonstrated the degeneracy of all pairs of

modes in β2 order except for the BIC-QGM pair due to the QGM coupling to

a leaky channel and the BIC remaining separated from the leaky channels.

We then showed how each mode in the basis contributes to a particular PC

mode. This was possible due to the fact that the RSE treats the PC system

as perturbation to the basis system. We focussed on a BIC and QGM which

originate from the same degenerate pair of WG modes. We showed that the most

significant difference between the two modes is that the BIC has no contribution

from the m = 0 channel unlike the QGM. This was due to the fact that the

m = 0 channel contains only even-in-x modes which completely decouple from

the odd-in-x BIC, therefore the observed BICs are symmetry-protected.
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Chapter 5

Bound states in the

continuum in photonic

crystals

Much like in the last chapter, we use the advantages of the RSE to study the

origin of modes and their evolution with paramter changes, such as the thickness

of the periodic layer and its permittivity contrast. However, in this chapter we

focus on bound states in the continuum and what separates them from the other

modes in the spectrum. This allows us to reveal the role of different basis states

of the homogenous dielectric slab in the formation of the eigenmodes of the

PC slab and to demonstrate the importance of the basis guided modes in the

formation of BICs.

We will also separate the cases of symmetry-protected and accidental bound

states in the continuum which is something that is not very well defined in the

literature.
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5.1 Symmetry protected and accidental BICs

There are two main mechanisms by which BICs are disconnected from the ra-

diation continuum: by virtue of symmetry and by the tuning of parameters

such that the radiation from all radiating channels is suppressed. These are

known as symmetry-protected (S-BICs) and accidental BICS (A-BICs), respec-

tively [43,64,83]. In a system that exhibits one or more symmetries, the modes

of different symmetry classes completely decouple. This causes the two sym-

metry classes to have different radiative threshold frequencies so that a mode

from one symmetry class remains as a guided mode while lying within the con-

tinuum of the other symmetry class and in this way forms an S-BIC. Although

these are called BICs in the literature, they are akin to the guided modes in a

homogeneous system, since they are separated in frequency from the radiation

continuum onset.

A-BICS, however, are not dependent on the symmetry of the system but are

instead sensitive to its spatial and geometric parameters. Unlike S-BICS, these

modes are decoupled from the continuum by destructive interference occurring

at the edges of the system which cancel any outgoing, travelling solutions. In PC

systems, in particular, it is only necessary for the influence of radiating Bragg

channels to be cancelled in this way for an A-BIC to form. This cancellation

of electric fields at the edges of the system is similar to that observed for BICs

in an open Sinai billiard [85], a non-periodic system which nevertheless shares

some physical properties with a PC slab, see a more detailed discussion at the

end of Sec. 5.3 below.

To distinguish between A-BICs and S-BICs in practice, a standard approach

in the literature is by breaking the symmetry of the system which ensures that

all S-BICs disappear from the spectrum of the RSs. In PC systems this is done

by simply allowing a non-vanishing in-plane component of the wave number,
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equivalent to a non-normal incidence of light [43, 83]. In this chapter, based

on the resonant-state expansion (RSE), we will not only distinguish between

A-BICs and S-BICs without breaking the symmetry, but also formulate math-

ematical criteria for the different types of BICs.

Interestingly, the role of different basis states of a homogeneous slab in the

formation of BICs in PC structures has been very recently studied within a

simple coupled-wave model [65], reducing the basis to only a few propagating

waveguide modes, coupled via diffraction grating, and neglecting any evanes-

cent channels. Compared to this model, the RSE takes into account all possible

channels and basis modes within each channel, striving towards the exact solu-

tion. Another most recent paper [82] studying BICs in PC slabs uses instead the

modes of an infinite PC as basis for treating a finite PC slab. The semi-analytic

model developed in that paper also neglect any evanescent solutions and in prac-

tice presents a reduced approximate version of the rigourous scattering-matrix

method [6, 7].

5.2 RS fields of a PC slab calculated by the RSE

The electric field of the basis system is given by Eq. (3.8) and in the full space

by Eq. (C.8). Since the RSE treats the RSs of the perturbed system as a sum

of the RSs of the basis, we can also construct the perturbed electric field the

same way. The electric field of a perturbed RS (or a perturbed cut mode) is

then given by E(x, z, t) = eyE(x, z)ei(px−ωt), where

E(x, z) =
∑
gn̄

cgn̄E
g
n̄(z)eigx for |z| 6 a (5.1)

is the corresponding scalar wave function within the basis system. We see that

the perturbed wave function E(x, z) is expressed in Eq. (5.1) as a superposition
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of the basis modes Egn̄(z) combined with plane waves eigx of the Bragg channels,

with the expansion coefficients cgn̄ and the eigenfrequency ω being a solution of

Eq. (2.30).

Although the basis RSs are defined by Eq. (C.8) both within and outside

the basis slab, the expansion Eq. (5.1) for a perturbed mode is valid only within

the bounds of the basis system, i.e. for |z| 6 a. To find the electric field of the

perturbed mode outside the basis system, we can use the homogeneity of the

outside medium, which allows us to find an explicit analytic solution in terms of

plane waves. This solution is exactly matching the field Eq. (5.1) on the surface

of the basis system, i.e. at z = ±a. We therefore find the field outside the basis

system also in terms of the expansion coefficients cgn̄:

E(x, z) =
∑
g

eigxeiκg(|z|−a)
∑
n

cgn̄E
g
n̄(±a) for |z| > a , (5.2)

where the sign + (−) refers to the region z > a (z 6 −a), and

κg =
√
ω2 − (p+ g)2 . (5.3)

Equation (5.3) for the normal component κg of the light wave vector in vacuum

for the g-th Bragg channels again introduces a square-root ambiguity. However,

the positions of the cuts for the perturbed system are known and are actually

the same as for the basis system. This unambiguously determines the following

choice of the root in Eq. (5.3):

Imκg 6 0 if |Reω| > |p+ g| ,

Imκg > 0 if |Reω| < |p+ g| ,
(5.4)

which can be obtained by analytic continuation, using the corresponding values

of κg on the real frequency axis. For a better understanding of the meaning
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of Eq. (5.4), let us assume for definiteness that Reω > 0. This assumption

does not impose any limitations as the modes with Reω < 0 are solutions

which are the complex conjugate of their mirror images with respect to the

imaginary axis in the complex ω-plane — this is a general property of the RSs

of an optical system, related to its time-inversion symmetry [13]. Then the

first case in Eq. (5.4) corresponds to a so-called open Bragg channel, for which

eiκgz represents a wave propagating away from the system in the positive z-

direction. Such a wave has a constant amplitude if the mode eigenfrequency

ω is purely real (in this case this amplitude is zero in reality, see a discussion

in Sec. 5.3 below), or an exponentially growing amplitude, due to Imκg < 0, if

the mode eigenfrequency is complex, i.e. Imω < 0. Note that this exponential

growth is a typical spatial behaviour of the RSs [7, 23, 86]. The second case in

Eq. (5.4) corresponds to a closed Bragg channels, for which the field due to eiκgz

is exponentially decaying with the distance from the system, due to Imκg > 0,

no matter whether the eigenfrequency ω is real or complex. Note that the case

of Reω = p+ g, not included in Eq. (5.4), corresponds to cut modes.

We can see from the expansions Eqs. (5.1) and (5.2) that the coefficients cgn̄

act as amplitudes controlling how much each basis mode contributes to a given

perturbed state. This makes it possible, in particular, to determine which basis

mode the perturbed state “originates” from, that is, which basis mode it would

evolve from if the position of the mode were traced out as the contrast of the

periodic modulation is increased.
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5.3 Bound states in the continuum and their

formation mechanisms

As well as allowing us to be able to construct the perturbed electric field, the

eigenvectors cgn̄ of the RSE allow us to easily identify BICs in the system and to

be able to distinguish between S-BICs and A-BICs. As BICs have localized (i.e.

bound) wave functions, their eigenfrequencies ω have to be purely real, otherwise

an excitation of the system into such an optical mode would decay in time,

which would in turn require an exponential growth of the wave functions. And

vice versa, all real-eigenfrequency modes have to have localized wave functions,

which means they can only be bound states. A purely harmonic behaviour in

vacuum (with a finite constant amplitude) is not possible for an isolated optical

mode at real frequency as this would also mean a flow of energy to the outside

of the system. Mathematically, this implies, in accordance with Eq. (5.4) and

the discussion following it in Sec. 5.2, that

∑
n

cgn̄E
g
n̄(±a) = 0 (5.5)

for every Bragg channel g satisfying the inequality

|p+ g| < |ω| , (5.6)

where ω is the real frequency of the mode. This is a general condition for any

BIC. Note that in addition to BICs, also guided modes with real frequencies

|ω| < |p| can form in the energy spectrum of a PC slab in vacuum (the last

inequality is modified for a PC slab with a substrate or two different substrates

replacing vacuum on either side of the slab [7]).
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For S-BICs, however, a stronger condition replaces Eq. (5.5):

cgn̄ = 0 . (5.7)

This should be fulfilled for all basis states n for the Bragg channels g selected by

the inequality Eq. (5.6). In fact, as already mentioned in the start of this chapter,

S-BICs are formed due to the decoupling of modes of different symmetry, so

while all modes of one symmetry class couple to the radiation continuum outside

the system and become leaky, some modes of the other symmetry class do

not and remain bound to the system. All the matrix elements V gg
′

n̄n̄′ between

different symmetry classes vanish by symmetry, and the RSE equation (2.30)

yields immediately Eq. (5.7). For example, in the case of a PC slab for p = 0 and

mirror symmetry in the z-direction, these two symmetry classes are, respectively,

even and odd solutions in the periodic x-direction. The corresponding even

and odd-parity basis modes do not couple to each other, leading to Eq. (5.7)

for the even-mode contribution to the odd-parity states. From this follows, in

particular, that Eq. (5.7) results in S-BICs existing only below the first Bragg

channel threshold, i.e. for |ω| < 2π/d, as it has been demonstrated numerically

in [32]. One could even argue that S-BICs are simply guided modes of the

odd-symmetry class.

Equation (5.7) is a defining characteristic for S-BICs that is not seen in

A-BICs which would be otherwise difficult to differentiate. The RSE method

reveals how this decoupling occurs mathematically. A-BICs, on the other hand,

can form at any frequency given that the parameters of the system are properly

tuned. Unlike S-BICs the values of cgn̄ are not necessarily zero for leaky modes.

Instead, according to Eq. (5.5), it is the summation of the basis electric fields

at the edges of the system that becomes zero, representing destructive interfer-

ence. For an A-BIC to form, this destructive interference only needs to occur
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in channels that contain leaky modes, i.e. for all g satisfying Eq. (5.6).

The condition for A-BICs Eq. (5.5) with generally non-vanishing amplitudes

cgn̄ can be also seen as orthogonality of vectors with component cgn̄ and Egn̄(±a),

labeled by n̄, for each relevant g. If only one value of g contributes (for example

g = 0, for sufficiently small |ω|), and the PC slab possesses a mirror symmetry

in the z-direction, the same as for the basis system, then the two equations given

by Eq. (5.5), with +a and −a in the argument of the basis functions, produce

only one (for each parity in the z-direction) “vector orthogonality” condition

for an A-BIC to occur, which is easy to satisfy by tuning a single parameter of

the system, as demonstrated in Sec. 5.4 below. However, for a PC slab without

mirror symmetry, and for larger frequencies, Eq. (5.5) contains two or more

conditions of orthogonality of vectors, which are harder to meet and which may

require a simultaneous tuning of, respectively, two or more parameters of the

system.

As already mentioned at the start of this chapter, the condition for A-BICs

Eq. (5.5), provided by the RSE, which physically reflects the phenomenon of

destructive interference and cancellation of the field at the edges of the system,

has some similarity with a BIC condition developed in the theory of an open

Sinai billiard [85]. The latter presents an interesting example of an open optical

system treated in a rigorous way without introducing the RSs explicitly, but

rather mapping Maxwell’s wave equation onto a non-Hermitian matrix eigen-

value problem, using as basis the eigenstates of a closed system supplemented

with guided and evanescent modes of leaky channels. While the open Sinai bil-

liard is not a periodic system, it has a remarkable similarity with a PC slab, in

terms of the existence of open (i.e. leaky) and closed (i.e. evanescent) channels

which are analogous, respectively, to the discussed above open and closed Bragg

channels of a PC slab. It has been shown in [84,85] that, neglecting the contri-
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bution of evanescent channels, the condition determining BICs in such a system

can be formulated in term of a vanishing coupling matrix element between a

relevant mode of the closed resonator and the leaky channel. While for some

BICs this approximation works very well, in some other cases the contribution

of evanescent mode can more significant, as has been also demonstrated in [85].

In PC systems instead, the A-BIC condition Eq. (5.5) is exact.

5.4 Evolution of modes: Comparing Symmetry-

protected and accidental BICs

One of the advantages of the RSE method is the speed at which it can calculate

the RSs of an optical system within a wide spectral range. This becomes crucial

if one needs to change one or several parameters of the optical system in order to

optimise its optical properties or to achieve a desired effect. In fact, if the basis

system remains the same while varying parameters of the target system, the

perturbation matrix can be pre-calculated as it is using the same basis functions,

or at least its calculation can be optimised. Then the only computationally

expensive element of the RSE is matrix diagonalisation. For example, for the

perturbations treated in this work with the relative error in the RS frequency

of about 10−5 or lower, one needs for determining the full spectrum of the RSs

in a wide spectral range to diagonalize a 4500 × 4500 matrix which requires

only 680 seconds on a standard computer. This allows the RSE to be run

several thousand times within a manageable time frame, in order to explore

the parameter space of the PC system and to trace the evolution of its optical

modes while its structural and/or material parameters are changing. This is

particularly important for studying A-BICs, as discussed in the previous section.

In this section, we again use the cosine perturbation described in Eq. (3.12)
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and vary the parameters of this perturbation (namely, the perturbation strength

and width), in order to study symmetry protected and accidental BICs in such

a system.

The evolution of a large number of the RSs with change of the permittivity

contrast β has been already considered for this system in Ch 4. In this section,

we focus only on a pair of the RSs originating from the fundamental guided

modes of the homogeneous slab - that is, the modes that they can be traced

from when varying β - corresponding to the first-order Bragg channels, i.e. with

g = g±1. As already mentioned, we consider the RSs of the PC slab with the

in-plane wave number p = 0 so the Bragg channels with opposite signs of g in

the basis are degenerate by symmetry. This degeneracy also manifests itself in

the orthogonality of even and odd states along the x-axis. As a consequence

of this orthogonality, the matrix elements of the perturbation between even

and odd basis states vanish by symmetry, thus allowing formation of S-BICs as

discussed in Ch 5.3. Clearly, these S-BICs exist only for zero in-plane vector

p that guarantees the mirror symmetry of the electro-magnetic field in the x-

direction. With any deviation from p = 0 condition, breaking the symmetry,

these S-BICs transform into modes with finite Q-factors.

Figure 5.1 demonstrates the evolution of the fundamental pair of RSs for

p = 0 as the periodic modulation contrast β increases. As discussed in Ch. 4,

being doubly degenerate by symmetry at β = 0 (no periodic modulation), the

fundamental guided mode splits for a nonzero β into an S-BIC and a quasi-

guided mode (QGM), the latter having a rather high but still finite Q-factor.

These two modes are further separated as β increases. However, as clear from

Fig. 5.1, for a certain value of β (at around β ≈ 4.34), the QGM transforms into

an A-BIC with an infinite Q-factor (corresponding to zero imaginary part of its

eigenfrequency).
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Figure 5.1: Evolution of the RS eigenfrequencies (centers of the colored circles)
and the zeroth Bragg channel contribution |C0|, defined by Eq. (5.8) (circle
area), for the amplitude of the periodic modulation β (circle color) changing
between β = 0 and β = 6. As β grows, a doubly degenerate fundamental
guided mode of the first Bragg channel (a) splits into a symmetry protected
BIC with an infinite Q-factor and a QGM with a finite Q-factor (b,d) which
becomes an accidental BIC (c) at β ≈ 4.34. The schematic of the system can be
seen in Fig. 3.1. The basis system is a dielectric slab in vacuum, having width
2a and permittivity ε = 6. The perturbation has period d = 2π/5 and width
b = 0.5a
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Figure 5.2: Basis mode contributions (red circles, centered at the basis mode
frequencies) for (a) symmetry protected and (b) accidental BIC at β = 4.34,
both originating from the same doubly degenerate fundamental guided mode of
the homogeneous slab with m = ±1. The circle area is proportional to

√
|cgn̄|

of the basis mode amplitude cgn̄, and a key showing the relationship between
the circle area and |cgn̄|2 is given by back circles and the numbers next to them.
Blue star gives the position of the BIC eigenfrequency and black dots of the
basis RSs.
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The symmetry-protected and accidental BICs, originating from the same

fundamental guided mode of the homogeneous slab, are compared in Fig. 5.2,

where the contribution of a large number of basis modes to both states is shown

by red circles centered at the basis mode frequencies and having the area of the

circle proportional to the modulus of the square root of the expansion coefficient,√
|cgn̄|. Among several thousand of modes used in the basis, only a limited

number of basis states give an appreciable contribution to the perturbed RSs,

with a clearly dominating role of the fundamental guided mode, see the largest

circle close to the black star, which in turn shows the perturbed mode position

on the real axis.

A remarkable difference between the two BICs is a vanishing (non-vanishing)

contribution to S-BIC (A-BIC) of the individual basis modes of the zeroth Bragg

channel. These basis modes all have the same imaginary part and equidistant

separation in the complex frequency plane, see Fig. 5.2. In accordance with a

discussion in Sec. 5.3 above, all c0n̄ = 0 for the S-BIC, while c0n̄ 6= 0 for the

A-BIC, for all modes n̄ of the same (even) parity along z-axis. However, the

vector with components c0n̄ is orthogonal to the vector E0
n̄(a) for the A-BIC, as

also discussed in Sec. 5.3. The absolute value of the dot product of these two

vectors,

C0 =
∑
n̄

c0n̄E
0
n̄(a), (5.8)

is shown by the circle area in Fig. 5.1, while the center of the circle gives the

position of the perturbed RS frequency. Clearly, C0 is vanishing at the A-

BIC and is strictly zero for the S-BIC at all values of the periodic modulation

amplitude β.

The transformation of the QGM, passing through the A-BIC as β increases,

is accompanied by a morphological change of the wave function, which is demon-

strated in Fig. 5.3. It shows both the amplitude (intensity) and the phase (color)
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Figure 5.3: The amplitude (brightness) and phase (color) of the electric field
of the fundamental optical mode in Fig. 5.1 at the positions labelled a-d, cor-
responding to the following mode type and permittivity contrast β: (a) funda-
mental basis guided mode of the first Bragg channel at β = 0; (b) QGM before
the BIC, at β = 3; (c) A-BIC at β ≈ 4.34; (d) QGM after the BIC, at β = 5.
The thick (thin) dashed lines indicate the edges of the slab at z = ±a (periodic
perturbation at z = ±b). ε = 6, b = 0.5a, d = 2π/5
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Figure 5.4: As Fig. 5.3 but for the S-BIC shown in Fig. 5.1. The values of the
permittivity contrast β and all other parameters are the same as in Fig. 5.3.
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of the wave function of the QGM at four different values of β, starting from

β = 0 in Fig. 5.3(a) at which the RS coincides with the fundamental guided

mode of the homogeneous basis slab. The other three panels (b)–(d) in Fig. 5.3

show the wave function of the mode before, at, and after the A-BIC. These four

positions are also labeled (with the same letters a-d) in the complex-frequency

plot, Fig. 5.1. As the QGM originates from the fundamental guided mode of the

homogeneous slab, corresponding to the first Bragg channel, the amplitude of

the electric field of this fundamental QGM before it transforms into the A-BIC

has only one maximum in the z-direction and two maxima per period d in the

x-direction, the same as for the basis mode. After the A-BIC, however, the

field amplitude shows three maxima in the z-direction representing a growing

contribution from a higher-order basis mode, specifically the third guided mode

in the first Bragg channel. Note that the second guided mode does not con-

tribute since it is of the opposite parity to the fundamental mode from which

the QGM originates. In the x-direction, the morphology of QGM does not

change much: There are always two maxima per period indicating that there is

no major change in the contribution from higher-order Bragg channels within

this β range.

It can also be seen that the field quickly decays outside of the system, in a

similar way for both the basis mode and the A-BIC, compare Fig. 5.3(a) and (c).

In fact, since both modes are bound, there are no travelling or exponentially

growing solutions outside the system; instead, there are only evanescent waves,

unlike the other two cases which are shown in Fig. 5.3(b) and (d). For them,

a non-vanishing growing field, though very small, is seen in the region outside

the system. One can see from the color of the plots that the fields in Fig. 5.3(b)

and (d) are almost real, which is consistent with the fact that the Q-factor

of the QGM shown is very high, see Fig. 5.1. Interestingly, the phase of the
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Figure 5.5: Contributions of basis modes to the imaginary part of the normalised
electric field of the fundamental QGM as functions of the permittivity contrast
β. Only the top 6 contributions are shown, corresponding to the basis mode
frequencies ω0

0 = −0.177i, ω0
2 = 1.283−0.177i, ω0

4 = 2.565−0.177i, ω1
2 = 2.108,

ω1
4 = 2.605, and ω2

2 = 4.123. The total electric field of the QGM is given by a
black thick line. The vertical dashed line shows the value of β = 4.34 where the
QGM becomes the accidental BIC. b = 0.5a, d = 2π/5, ε = 6
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wave function is either close to 0, or to π, with the amplitude of the wave

function almost vanishing on lines separating these two phase regions. The

wave functions of the basis guided mode and the A-BIC shown, respectively, in

Fig. 5.3(a) and (c) are purely real, as expected for any bound states, having also

purely real eigenfrequencies. These real wave functions just change their sign

along the lines separating the above mentioned 0- and π-phase areas.

For the same values of β as in Fig. 5.3, we show in Fig. 5.4 also the evolution

of the S-BIC which originates from the same doubly degenerate pair of guided

modes as the QGM mode/A-BIC in Fig. 5.3. Clearly, the modes shown in

Figs. 5.3 and 5.4 are, respectively, of the even and odd parity in the x-direction.

The fact that the S-BIC does not gain any leakage for any value of β is consistent

with the dark areas outside the slab in all four panels of Fig. 5.4. As β increases,

the S-BIC does not change much within the slab either. In fact, there is only a

slight morphological change in the x-direction, but no change in the z-direction

is observed. This suggests that this S-BIC is not communicating much with

higher order modes. The overall lack of evolution of the S-BIC is also consistent

with the fact that this mode is not moving much in the complex frequency plane

as compared to its even counterpart, as it is clear from Fig. 5.1. The S-BIC is

also quite isolated in frequency from other basis states which effectively reduces

their impact. In fact, as we know, the S-BIC is not communicating at all with

the nearby g = 0 modes due to symmetry, compare Figs. 5.2 (a) and 5.2 (b).

We now want to see how the summation of complex basis electric fields

shown in Eq. (5.1) create an entirely real field at the A-BIC. To do this, we plot

in Fig. 5.5 the imaginary part of the weighted basis fields cgn̄E
g
n̄ against β, the

sum of which will clearly be zero at the A-BIC. In order to produce a readable

plot we can limit ourselves to just the top few contributors. In this case, only

the top six modes with the highest contributions to the A-BIC, well seen in
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Fig. 5.2(b), are used.

It can be seen in Fig. 5.5 that the imaginary part of the weighted basis fields

from the guided modes all come to zero at the A-BIC. This is expected behaviour

since the guided-mode fields and the A-BIC field are purely real, so naturally

the corresponding eigenvector components cgn̄ are also real. There are, however,

leaky modes from the g = 0 Bragg channel which are all complex (except the

central mode) and so do not necessarily produce real fields at the A-BIC, thus

these fields are required to cancel in some way. Fig. 5.5 shows that the weighted

basis fields do not have a simple cancellation at the A-BIC. Instead, there are a

series of partial cancellations leading to a complete cancellation overall showing

that indeed the A-BICs are a result of “accidental” destructive interference of

leaky modes.

5.5 Varying other parameters

We now extend the parameter space while looking for A-BICs to include both the

perturbation strength β and the perturbation width b. By varying both param-

eters, we need to run the RSE thousands of times, where both the high efficiency

and the high accuracy of the RSE become crucial. Focusing on the same fun-

damental QGM, we plot in Fig. 5.6 its Q-factor defined as Q = |Reω/(2Imω)|,

color-coded on the β–b plane. Both parameters have natural limits, b < a and

β < εs, which were used in the plot. The latter condition is a requirement that

the system stays dielectric, having a positive permittivity, while the former is

a fundamental limitation of the RSE that the perturbation must stays within

the volume of the basis system. Note, however, that the present version of RSE

applied to planar PC structures suffers from the lack of convergence as b → a

as discussed in Ch. 3.7, so that Fig. 5.6 shows a plot up to b = 0.75a only (but

the data is reliably calculated up to b = 0.95a). The Q-factor of the studied
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Figure 5.6: The quality factor Q of the fundamental QGM of the PC slab as a
function of the permittivity contrast β and the half-width of the perturbation
layer, b. ε = 6, d = 2π/5

mode reaches a numerical value of Q = 106 as it is clear from Fig. 5.6, which

also demonstrates a high accuracy of the RSE calculation of the mode, with the

relative error of about 10−6.

We see from Fig. 5.6 that an A-BIC is formed at any value of β, provided that

the other parameter is properly tuned, presenting a line in the two-dimensional

parameter space. However, no A-BIC is formed for b > 0.7a which can be un-

derstood as the system does not have thick enough substrate layer (not affected

by the periodic modulation) where the destructive interference of leaky modes

necessary for A-BIC formation could occur. Clearly, the properties of the A-BIC

are also affected by both parameters as can be seen from the strongly inhomoge-

neous profile of the Q-factor. In fact the range of high Q-values becomes wider

as β decreases, eventually approaching the limit of the infinite Q for the original

guided mode of the homogeneous dielectric slab at β = 0, where b is no longer
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a variable of the system.

5.6 Conclusion

We have applied the resonant-state expansion (RSE) to planar photonic-crystal

structures, in order to find in these systems symmetry protected and accidental

bound-states in the continuum (BICs) and to study their properties. We have

shown that the eigenvector analysis naturally following from the RSE formalism

is a useful tool for identifying BICs, and have provided a rigorous mathematical

criterion for differentiating between symmetry-protected and accidental BICs.

We have demonstrated how the electro-magnetic field of a resonant state of

a photonic-crystal slab can be broken down into homogeneous-slab basis field

components and how those contributions change as the periodic perturbation

is modified. In particular, the basis electric fields sum together to create an

entirely real field of an accidental BIC, which true to its name is an accidental

cancellation of an infinite number of partial leaky waves with no one field fully

compensating another. We have furthermore demonstrated that the RSE is an

efficient tool for finding the BICs in planar photonic crystal systems due to

the unprecedented speed at which it can calculate the modes, thus allowing a

multidimensional parameter space to be explored with a high resolution.
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Chapter 6

Conclusions

We have presented a unique approach in the theory of planar photonic-crystal

structures, which allows us to reveal the nature of resonances in the optical

spectra and to quantify them precisely. This concept is based on using the

analytical resonant states of a homogeneous slab, along with its cut modes

responsible for Rayleigh-Wood anomalies, as the most natural and simple basis

for expanding the resonant states of a photonic-crystal slab. We have developed

the photonic-crystal resonant-state expansion (PC-RSE), capable of doing this

accurately and efficiently, and illustrated it on examples of TE-polarized modes

in a photonic crystal slab with a 1D periodic harmonic modulation. These

examples provided a proof of concept and also a verification of the PC-RSE by

comparing it with the accurate scattering-matrix method.

We have presented a general formalism of the PC-RSE and its application

to dielectric photonic-crystal structures. We investigated the dyadic Green’s

function of the slab and introduced the concept of cut modes in ω-space which

allows the resonant-state expansion to work as efficiently as in k-space, where

there are no cuts. We demonstrate that the PC-RSE is an asymptotically exact
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approach, which (i) depends on a single parameter – truncation frequency ωmax,

determining the basis size; (ii) guarantees completeness, i.e. has no missing or

spurious modes, so that any observable can be represented as a superposition

of the modes found; (iii) technically reduces solving Maxwell’s wave equation

to a matrix diagonalisation, thus making the application of the PC-RSE a fully

automated and straightforward procedure, not requiring any supervision. The

PC-RSE provides an accurate and efficient tool for calculating all physically

relevant eigenstates of the photonic crystal system within the selected spectral

range. In particular, it can be effectively used repeatedly many times or in

parallel, in order to investigate an arbitrarily large space of the physical param-

eters characterising the system, for revealing and optimising its fundamental

properties. One of the important future applications of the PC-RSE is optimi-

sation of photonic-crystal cavities, with a correct account of the radiative losses

of high-quality modes.

We have also demonstrated how the PC-RSE can be used to study the

origin and physical properties of the optical modes. For illustration, we have

traced the evolution of the optical modes in a photonic crystal slab increasing

the amplitude of the periodic modulation of the permittivity, starting from a

homogeneous slab with no modulation. This allowed us, in particular, to reveal

the dominant role of the waveguide modes in the formation of bound states in

the continuum and quasi-guided modes. Furthermore, the PC-RSE allows us

to quantify precisely the contribution of each basis state to the optical mode of

interest, which we have also demonstrated in the present work.

We used the PC-RSE to study the properties of accidental and symmetry-

protected bound states in the continuum in photonic crystal slabs. We showed

that the eigenvectors found using the PC-RSE formalism naturally creates a

useful tool for identifying BICs and provided mathematical criteria for S-BICs
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and A-BICs respectively. The PC-RSE allowed us to find the electric fields of

the photonic crystal modes by describing them as a superposition of electric

fields from the basis. The efficiency of the PC-RSE allowed us to study the

electric field at many different values of the permittivity modulation strength,

showing morphological changes to the field as the modes evolves into a bound

states in the continuum.
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Appendix A

Dyadic Green’s function for

a non-periodic slab

Let us consider arbitrary dependencies of the permittivity ε(z) and permeability

µ(z) within a non-periodic slab occupying the region |z| 6 a and surrounded by

vacuum, so that outside the slab ε = µ = 1. Denoting the components of the

dyadic GF as (Ĝp)ij = Gij(z, z
′), Eq. (2.16) becomes


ωε −∂z ip

∂z ωµ 0

−ip 0 ωµ




G11 G12 G13

G21 G22 G23

G31 G32 G33

 = 1̂δ(z − z′) . (A.1)

Owing to the reciprocity of the optical system, the GF has the following prop-

erty:

Gij(z, z
′) = G†ji(z

′, z) , (A.2)

where the adjoint † means replacing p→ −p.
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From Eq. (A.1) we obtain for the first column of Ĝp:

Û(µ;ω)G11(z, z′;ω) = ωµ(z)δ(z − z′) , (A.3)

G21(z, z′) = − 1

ωµ(z)
∂zG11(z, z′) , (A.4)

G31(z, z′) =
ip

ωµ(z)
G11(z, z′) , (A.5)

where the operator Û is defined as

Û(ζ;ω) = ζ(z)∂z
1

ζ(z)
∂z + ω2ε(z)µ(z)− p2 (A.6)

with ζ(z) being a weight function. For the second column of Ĝp, it follows from

Eq. (A.1) that

G12(z, z′) =
1

ωχ(z)
∂zG22(z, z′) , (A.7)

Û(χ;ω)G22(z, z′) = ωχ(z)δ(z − z′) , (A.8)

G32(z, z′) =
ip

ωµ(z)
G12(z, z′) , (A.9)

where

χ(z) = ε(z)− p2

ω2µ(z)
. (A.10)

Note that Eq. (A.8) is essentially the same as Eq. (A.3), provided that µ(z) is

replaced with χ(z). Finally, for the third column of Ĝp we obtain

Û(µ;ω)G13(z, z′) = −ipδ(z − z′) , (A.11)

G23(z, z′) = − 1

ωµ(z)
∂zG13(z, z′) , (A.12)

G33(z, z′) =
ip

ωµ(z)
G13(z, z′) +

δ(z − z′)
ωµ(z)

,

(A.13)
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demonstrating in particular that the longitudinal component G33(z, z′) is diver-

gent at z = z′, due to the δ function in the last term. Also, Eq. (A.11) contains

exactly the same operator as in Eq. (A.3), and therefore

G13(z, z′) = − ip

ωµ(z′)
G11(z, z′) . (A.14)

Using the reciprocity Eq. (A.2) and Eqs. (A.4), (A.12), and (A.14), we further

obtain

G12(z, z′) = G21(z′, z) = − 1

ωµ(z′)
∂z′G11(z, z′) , (A.15)

G32(z, z′) = G†23(z′, z) = − ip

ω2µ(z)µ(z′)
∂z′G11(z, z′) ,

(A.16)

and therefore

G22(z, z′) = − 1

ωµ(z)
∂zG12(z, z′) +

δ(z − z′)
ωµ(z)

=
1

ω2µ(z)µ(z′)
∂z∂z′G11(z, z′) +

δ(z − z′)
ωµ(z)

.

(A.17)

Finally,

G13(z, z′) = G†31(z′, z) = − ip

ωµ(z′)
G11(z, z′) , (A.18)

in agreement with Eq. (A.14). Collecting all this information about the GF

components, we find a compact expression for the full dyadic GF:

Ĝp(z, z′) = Ôp(z;ω)⊗ Ô−p(z′;ω)G11(z, z′)

+
1̂2 + 1̂3

ωµ(z)
δ(z − z′) , (A.19)

where 1̂j are 3 × 3 matrices with elements (1̂j)ii′ = δii′δij and Ôp is a vector
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operator defined as

Ôp(z;ω) =


1

− 1
ωµ(z)∂z

ip
ωµ(z)

 . (A.20)

Solving Eq. (A.3) with outgoing boundary conditions and studying the pole

structure and the cuts of the GF in the complex ω-plane, as done in Appendix B

for a general planar system, allows us to find the ML expansion for G11:

G11(z, z) =
∑
n

∫
En(z)En(z′)

ω − ωn
, (A.21)

and also for

g(z, z′) =
G11(z, z)

ω
=
∑
n

∫
En(z)En(z′)

ωn(ω − ωn)
, (A.22)

where En(z) is the only non-vanishing component (along y) of the electric field

of the RS n, satisfying an equation

Û(µ;ωn)En(z) = 0 , (A.23)

or En(z) is the wave function of the cut pole, see Appendix B for details. Ob-

viously, En(z) depends on p2, as so does the operator Û , and thus En(z) is not

sensitive to a change of sign of p, so that E†n(z) = En(z).

Comparing Eqs. (A.21) and (A.22) and substituting (A.22) into Eq. (A.3),

we obtain a closure relation

ε(z)
∑
n

∫
En(z)En(z′) = δ(z − z′) (A.24)

and a sum rule ∑
n

∫
En(z)En(z′)

ωn
= 0 . (A.25)
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Using Eqs. (A.21) and (A.25), we obtain from Eq. (A.19) the ML expansion

Eq. (2.18) of the full dyadic GF, in which

Fn(z; p) = Ôp(z;ωn)En(z) . (A.26)

Note that in general, one also needs to include in Eq. (2.18) for completeness

longitudinal static modes, in order to take into account the effect of the ω = 0

pole of the GF.
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Appendix B

Mittag-Leffler expansion of

the GF for a homogeneous

system

Let us now consider the scalar GF g(z, z′) of a general planar system homoge-

neous in the x-direction and described by arbitrary functions ε(z) and µ(z), and

derive its ML expansion given by Eq. (A.22). The GF satisfies an equation

Ûk2(z)g(z, z′) = µ(z)δ(z − z′) , (B.1)

where the operator Ûk2(z) is given by

Ûk2(z) = µ(z)∂z
1

µ(z)
∂z + k2ε(z)µ(z) + p2[ε(z)µ(z)− 1] , (B.2)

in accordance with it definition Eq. (A.6), now written in terms of k2 = ω2−p2.

To simplify the derivation, we assume that ε(z) = µ(z) = 1 outside the
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system (|z| > a). In this case Eq. (B.1) outside the system takes the form

(∂2
z + k2)g(z, z′) = δ(z − z′) (B.3)

with k being the normal component of the wave number in vacuum. Applying

the outgoing wave boundary conditions, we find that

g(z, z′) = g(±a, z′)e±ikz for |z| > a and |z′| < a , (B.4)

where + (−) refers to z > a (z < −a). The outgoing wave boundary conditions

for solving Eq. (B.1) can therefore be written in the following way

(∂z ∓ ik) g(z, z′)|z=±a = 0 , (B.5)

explicitly showing that g(z, z′) is an analytic function of k. Having a count-

able number of simple poles in the complex k-plane, which are at the RS wave

numbers, kn =
√
ω2
n − p2, and are vanishing at k →∞, the GF g(z, z′) can be

written as

g(z, z′) =
∑
n

Rn(z, z′)

k − kn
, (B.6)

using the Mittag-Leffler theorem Eq. (1.26). To find an explicit form of the

residue Rn(z, z′) we use Maxwell’s wave equation without sources

Ûk2
n
(z)En(z) = 0 , (B.7)

determining the RS wave functions En(z), as well as the one with a source

term [12,55],

Ûk2(z)E(z; k) = µ(z)(k − kn)σn(z) , (B.8)

determining its analytic continuation E(z; k) in the complex k-plane about the
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point kn, such that E(z; kn) = En(z). The source σn(z) can be any function

vanishing outside the system and normalised in such a way that

∫ a

−a
En(z)σn(z)dz = kn . (B.9)

In optical systems with degenerate RSs (e.g due to symmetry), such that kn =

km for m 6= n, σn(z) is chosen in such a way that
∫ a
−aEm(z)σn(z)dz = δnm.

Solving Eq. (B.8) with the help of the GF g(z, z′) and using its ML expansion

Eq. (B.6), we find

E(z; k) =
∑
n′

k − kn
k − kn′

∫ a

−a
Rn′(z, z

′)σn(z′)dz′ . (B.10)

Then taking the limit k → kn, Eq. (B.10) becomes

En(z) =

∫ a

−a
Rn(z, z′)σn(z′)dz′ , (B.11)

which can be written, after combining it with Eq. (B.9), as

∫ a

−a

[
En(z)En(z′)

kn
−Rn(z, z′)

]
σn(z′)dz′ = 0 . (B.12)

The last equation must be satisfied for any normalised σn(z), suited for gener-

ating the analytic continuation. Clearly, such a function is not unique, therefore

the integrand in the last equation should be vanishing, which gives Rn(z, z′) =

En(z)En(z′)/kn and results in the following series for the GF:

g(z, z′) =
∑
n

En(z)En(z′)

kn(k − kn)
. (B.13)

We now find the normalisation of En(z) which is determined by the ML form

Eq. (B.13), which in turn follows from the normalisation of the source Eq. (B.9).
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We therefore use it again, substituting σn(z) from Eq. (B.8) into Eq. (B.9) and

subtracting a similar integral vanishing due to Eq. (B.7):

(k − kn)kn =

∫ a

−a

1

µ
EnÛk2Edz −

∫ a

−a

1

µ
EÛk2

n
Endz

=

[
En
µ
∂zE −

E

µ
∂zEn

]a
−a

+ (k2 − k2
n)

∫ a

−a
EnEεdz ,

where the first term in the second line is obtained integrating by parts. Finally,

using the outgoing wave boundary conditions for E and En,

(
1

µ(z)
∂z ∓ ik

)
E(z; k)|z=±a = 0 , (B.14)(

1

µ(z)
∂z ∓ ikn

)
En(z)|z=±a = 0 , (B.15)

similar to Eq. (B.5), we arrive, after taking again the limit k → kn, at the

normalisation condition for the RS wave function:

2

∫ a

−a
E2
n(z)ε(z)dz − E2

n(a) + E2
n(−a)

ikn
= 1 , (B.16)

which is the same as the one provided in [14] without proof.

Note that Eq. (B.16) is equivalent to the general normalisation Eq. (2.20)

used for the TE polarisation. In fact, using Eq. (2.20) for z1 = −a and z2 = a

and the fields replaced by their analytic continuations for the purpose of taking

the frequency derivatives, we find (denoting here for brevity iH with just H)

1 =

∫ a

−a

[
εE2 + µ(H2

x −H2
z )
]
dz − [E∂ωHx −Hx∂ωE]

a
−a , (B.17)

(see Eqs. (2.5), (A.20), and (A.26)). Then using

Hx = − 1

ωµ
∂zE , Hz =

ip

ωµ
E , (B.18)
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and (
µ∂z

1

µ
∂z + ω2εµ− p2

)
E = 0 , (B.19)

valid for k = kn, we find, integrating by parts:

∫ a

−a
µ(H2

x −H2
z )dz

=
1

ω2

∫ a

−a

1

µ
[(∂zE)2 + p2E2]dz

=
[E∂zE]a−a

ω2
+

1

ω2

∫ a

−a

1

µ

[
−Eµ∂z

1

µ
∂zE + p2E2

]
dz

=
[E∂zE]a−a

ω2
+

∫ a

−a
εE2dz . (B.20)

We then use the analytic form of the fields outside the system:

E(z; k) = A±e
±ikz , Hx(z; k) = ∓ ik

ω
E(z; k) , (B.21)

where, again, + (−) corresponds to z > a (z 6 −a), and the amplitudes A±

are also functions of ω or k. However, their frequency dependence does not

contribute to the normalisation, since

E∂ωHx −Hx∂ωE = ∓E2∂ω
ik

ω
= ∓ p2

ikω2
E2 . (B.22)

Collecting all the “surface” terms and differentiating the field outside the system,

using the explicit form of E given by Eq. (B.21), we obtain

− [E∂ωHx −Hx∂ωE]
a
−a +

[E∂zE]a−a
ω2

=

(
ip2

kω2
+
ik

ω2

)[
E2(a) + E2(−a)

]
= −E

2(a) + E2(−a)

ik
, (B.23)
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Figure B.1: Poles (blue dots) and cuts (red lines) of the GF in the complex ω
plane, as well the contour of integration leading to the ML expansion Eq. (B.26),
which includes the cut contributions displayed.

which proves that Eq. (2.20) results in the normalisation given by Eq. (B.16).

Equation (B.13) is the ML series of the GF in k-representation. However, the

RSE formulated in Ch.2 requires a ML form of the GF in the ω-representation.

Being treated as a function of frequency ω, the GF has simple poles due to the

RSs at ω = ωn (where ω2
n = k2

n + p2), which are distributed in the complex

ω plane symmetrically with respect to the imaginary axis, see Fig. B.1. The

residues of the GF at these poles are given by

lim
ω→ωn

g(z, z′)(ω − ωn) =
∂ω

∂k

∣∣∣∣
kn

lim
k→kn

g(z, z′)(k − kn)

=
kn
ωn
Rn(z, z′) , (B.24)

where Rn(z, z′) is found earlier (see Eq. (B.13)).

Apart from these poles, the GF g(z, z′) is analytic in the complex k-plane, as
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shown above. However, in the complex ω plane g(z, z′) has branch cuts, owing

to the link between k and ω,

k =
√
ω2 − p2 , (B.25)

with the branch points at ω = ±p. Therefore, applying the ML theorem in the

frequency plane results instead in

g(z, z′) =
∑
n

En(z)En(z′)

ωn(ω − ωn)
+ I1(z, z′;ω) + I2(z, z′;ω) , (B.26)

where the sum includes only the RSs on the selected Riemann sheet, which

in our case include all the WG and FP modes but does not contain anti-WG

modes, unlike the series in Eq. (B.13). Integrals

I1,2(z, z′;ω) = − 1

2πi

∫ ±p−i∞
±p

∆g(z, z′;ω′)

ω − ω′
dω′ , (B.27)

describe the contribution of the cuts, which are chosen as vertical straight lines in

the complex ω-plane going from the branch points±p down to−i∞, see Fig. B.1.

According to [16], this choice of the cuts almost minimizes their contribution to

the GF. The jump of the GF value across the cut is given by the function

∆g(z, z′;ω) = gk(z, z′)− g−k(z, z′) , (B.28)

where we have added index k for convenience, in order to emphasize the fact that

k is changing to −k when going through the cut with an infinitesimal change of

ω.

The jump of the GF Eq. (B.28) can be evaluated in the general case by using
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the explicit form of the GF,

g(z, z′) =
EL(z<)ER(z>)

ELĖR − ĖLER
, (B.29)

in terms of the “left” and “right” functions, EL(z) and ER(z), respectively.

These are solution of the homogeneous wave equation (B.19) and the left or

right outgoing boundary condition. More explicitly, they are given by

EL(z) =

 e−ikz, z < −a,=

B+f+(z) +B−f−(z), |z| < a
(B.30)

and

ER(z) =

 C+f+(z) + C−f−(z), |z| < a

eikz, z > a
(B.31)

in terms of f+(z;ω) and f−(z;ω), two arbitrary linearly independent solutions

of Eq. (B.19) within the slab. While these functions (depending on ω) do not

change when changing the sign of k, the coefficients B± and C± do modify,

leading to non-vanishing contributions to the jump ∆g of the GF across the cuts.

Here in Eq. (B.29), z< = min(z, z′) and z> = max(z, z′), and the derivative

Ė(z) ≡ 1

µ(z)
∂zE(z) (B.32)

is introduced for convenience.
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Now, choosing the functions f±(z) in such a way that

f+(a)f−(a) + f+(−a)f−(−a) = 0 , (B.33)

ḟ+(a)ḟ−(a) + ḟ+(−a)ḟ−(−a) = 0 , (B.34)

f+(−a)ḟ+(a) + f+(a)ḟ+(−a) = 0 , (B.35)

f−(−a)ḟ−(a) + f−(a)ḟ−(−a) = 0 , (B.36)

which can always be fulfilled, for any profiles of ε(r) and µ(r). We obtain, after

simple algebra, a convenient form of the cut integrand

− 1

2πi
∆g(z, z′;ω) =

∑
s=±

σsfs(z)fs(z
′) , (B.37)

where

σs(ω) =
1

π

k

ḟ2
s (a) + ḟ2

s (−a) + k2[f2
s (a) + f2

s (−a)]
. (B.38)

This form allows us to include the contribution of the cuts on equal footing with

the RSs, treating the cuts as continua of poles of the GF:

g(z, z′) =
∑
n

En(z)En(z′)

ωn(ω − ωn)

+
∑
s=±

∑
s′=±

∫ s′p−i∞

s′p

Es(z;ω
′)Es(z

′;ω′)

ω′(ω − ω′)
dω′

≡
∑
n

∫
En(z)En(z′)

ωn(ω − ωn)
, (B.39)

where

Es(z;ω) =
√
ωσs(ω)fs(z;ω) . (B.40)

Note that in Eqs. (B.38), (B.39), and (B.40), we have added ω to the arguments

of Es, σs, and fs, earlier omitted for brevity of notations, in order to emphasize

their frequency dependence.
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Appendix C

GF for a homogeneous slab

Consider a dielectric slab in vacuum, having thickness 2a and constant permit-

tivity and permeability. Their profiles in space are described by

ε(z) = 1 + (ε− 1)Θ(a− |z|) , (C.1)

µ(z) = 1 + (µ− 1)Θ(a− |z|) . (C.2)

Within the slab (|z|, |z′| 6 a) the GF has the form

g(z, z′) = − µ

2iq

ϕ(z<)ϕ(−z>)

1− ξ2
, (C.3)

see Eq. (B.29) in which, due to the mirror symmetry, the left and right solutions

are given by the same function, EL(z) = ER(−z) = ϕ(z), with

ϕ(z) = eiqz + ξe−iqz , (C.4)

ξ =
1 + η

1− η
e−2iqa , η =

µk

q
, (C.5)

q2 = εµω2 − p2 , k2 = ω2 − p2 . (C.6)

111



Clearly, the GF has poles at ξ = ±1, determining secular equation for the RS

frequencies ωn:

(qn + µkn)e−iqna = (−1)n(qn − µkn)eiqna . (C.7)

The RS wave functions, which are the solutions of Eq. (B.7), are given by

En(z) =


Ane

iknz z > a

Bn(eiqnz + (−1)ne−iqnz) |z| 6 a

(−1)nAne
−iknz z < −a

(C.8)

with the continuity condition An = Bn(eiqna + (−1)ne−iqna)e−ikna. The eigen-

values kn and qn are related to the eigenfrequency ωn via Eq. (C.6), and the

normalisation constants Bn found from Eq. (B.16) have the following explicit

form:

B−2
n = 8(−1)n

[
εa+

ip2(εµ− 1)

kn(q2
n − µ2k2

n)

]
. (C.9)

For the cuts of the GF in the complex ω plane, the functions satisfying

Eqs. (B.33)–(B.36) are given by

f±(z) = eiqz ± e−iqz (C.10)

within the slab |z| 6 a. They possess a definitive parity (s = ±1) due to the

mirror symmetry of the system, and the same form as the RS wave functions

Eq. (C.8). According to Eq. (B.38), the cut density functions are given by

σ±(ω) =
1

4π

µ2k

(µ2k2 − q2) cos(2qa)± (µ2k2 + q2)
. (C.11)
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C.1 GF in k-representation

Using the Newton-Raphson method, we have solved the secular equation Eq. (C.7)

and found all the RS wave numbers in a selected frequency range (within a circle

of radius ωmax in the complex frequency plane). The RSs include four categories

of modes: WG modes, anti-WG modes, FP modes, and a leaky mode (LM). The

WG and anti-WG modes are present only if p 6= 0. We then use the ML expan-

sion Eq. (B.13) in the k-representation which includes all types of modes in the

summation and compare it with the analytic GF given by Eq. (C.3)

Results for a slab with ε = 6 and µ = 1 are shown in Fig. C.1 for z = −z′ =

a/2. We see that all partial contributions to the GF due to each type of modes

is non-vanishing, including that of the LM which has Reωn = 0 and which is

discussed in detail in [14,15]. Summing up all the contributions to the ML series

Eq. (B.13) results in values of the GF approaching its analytic form Eq. (C.3).

By increasing ωmax, we increase the number of RSs N included in the series

Eq. (B.13), in this way making the ML representation more and more accurate

(see Fig. C.1(b)). The inset demonstrate the convergence of the ML series to

the exact solution, with the error scaling as 1/N2.

C.2 GF in ω-representation

The GF can also be represented as a function of frequency. However, the square

root in Eq. (B.25) causes branch cuts at ω = ±p, which separates the frequency

plane into two Riemann sheets with modes split across both sheets. Only the

modes found on one of the sheets are taken into account. This is chosen to be

the “physical” sheet, on which the WG and FP modes are found, while anti-

WG modes and the leaky mode turn out to be on the other, unphysical sheet

and are thus excluded from the ML expansion Eq. (B.39). Figure C.2 shows
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Figure C.1: (a) Green’s function g(z, z′) of a homogeneous dielectric slab in
vacuum, with ε = 6, calculated for pa = 5, z = a/2, and z′ = −a/2 as a
function k, the normal component of the wave number in vacuum. Partial
contributions of WG, anti-WG (AWG), FP modes and a leaky mode (LM) are
shown along with the sum of all the contributions and the analytic values of
the GF. (b) Relative error of the GF calculated via Eq. (B.13) as compared to
its analytic values Eq. (C.3), for different number of modes N included in the
ML series. The inset shows the relative error for ka = 10 (marked by vertical
dashed lines in Figs. C.1(b) and C.2(b)) as a function of the basis size N .
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modes and the LM do not contribute to the ML expansion Eq. (B.39), but
there is instead an additional component due to the cuts. (b) Relative error of
the GF calculated via Eq. (B.39) as compared to its analytic values Eq. (C.3),
for different number of modes N included in the ML series, with and without
contribution of the cuts.
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a comparison, for the same parameters as in Fig. C.1, of the ML expansion

Eq. (B.39) with the analytic solution Eq. (C.3), again showing different contri-

butions, including WG, FP modes, and the cuts. We see that the ML series

in the ω-representation again converges to the exact solution, provided that

the cut integrals are included. Note also that the convergence is very similar

to that in the k-representation, as it is clear from the inset in Fig. C.1(b). In

fact, in both cases the error alternates between two different boundaries but

nevertheless decreases with the basis size as N−2.

116



Appendix D

RSE applied to a

homogeneous dielectric slab

Here, we demonstrate how the RSE in the k and ω representations is applied to

a homogeneous perturbation. This is a special case of the PC-RSE which allows

an exact analytic solution, but obviously lacking any periodic modulations. We

use α = ∆ε and β = 0 in Eq. (3.12). The perturbation of the permittivity thus

has the form

∆ε(z) = ∆εΘ(b− |z|) . (D.1)

The perturbed system presents a core-shell slab consisting of three homogeneous

regions. The secular equation for this system has the following analytic form:

(γ+λ− − γ−λ+) eiq1b ± (γ+λ+ − γ−λ−) e−iq1b = 0 , (D.2)

where γ± = (q±k)e∓iq(a−b), λ± = q±q1, and q1 =
√
ε1ω2 − p2 with ε1 = ε+∆ε.

The secular equation (C.7) for the homogeneous slab can be restored by setting

b = a and q = q1, or simply b = 0.
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D.1 RSE in k-representation

In the k-representation, the RSE equation for treating planar homogeneous

systems is given by Eq. (22) of [14], which we write here as

k
∑
n′

(δnn′ + Vnn′) cn′ =
∑
n′

(
knδnn′ −

p2

kn
Vnn′

)
cn′ , (D.3)

with the matrix elements Vnn′ = V 00
nn′ given by Eq. (3.13) for g = g′ = 0.

Its application to the perturbation given by Eq. (D.1) is shown in Fig. D.1, in

comparison with the exact solution Eq. (D.2) and the basis RSs of the homoge-

nous slab. The quasiperiodic pattern of the wave numbers of the perturbed RSs

seen in Fig. D.1 is caused by the perturbation covering only the middle half of

the slab, so that the original homogeneous slab of thickness 2a is now split into

three subsystems of thickness a/2, a, and a/2, each acting as a resonance cavity.

The distance in frequency between the modes is given by a fundamental period

of π/(2a
√
ε) as in the basis cavity, but the cavities between −a and −b and

between b and a have caused additional quasiperiodicities, one of them having

the period of π/[(a − b)
√
ε], which for b = a/2 is four times larger than the

fundamental period. Other cavities present in the system also contribute to the

rich spectrum of RSs seen in Fig. D.1.

Looking at the relative error shown in Figs. D.1(b) and (c), we see that the

RSE in the k-representation quickly converges to the exact solution. The relative

error scales as 1/N3, which is typical for effective 1D systems, see [10–14].

D.2 RSE in ω-representation

The RSE equation in this case is given by the general formula Eq. (2.23) of the

PC-RSE, but since this is a homogeneous perturbation, there is no mixing of

channels, so we use again g = g′ = 0. Also, Eq. (2.23) includes the contribution
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Figure D.1: (a) Wave numbers kn of the FP modes calculated for pa = 5 using
the RSE in the k-representation (red crosses) for the core-shell dielectric slab
with ε = 6, ∆ε = 1, and b = a/2, along with the exact solution (blue squares)
and the basis RSs (black circles with dots). (b) Relative error for the wave
numbers of the FP modes compared to the exact solution, for different basis
sizes as given. (c) Relative errors for WG and anti-WG modes, for the same
basis sizes as in (b). (d) As (a) but for all WG and anti-WG modes, and the
first few FP modes. 119



of the cuts which need to be discretized, giving rise to cut modes to be used in

the RSE on equal footing with the RSs. This procedure is described in Ch 2.3.

Like with k-representation, we can use a different form of the RSE equation

due to the homogeneous perturbation which discards the index g from Eq. (2.30)

and uses the diagonal matrix Vn̄n̄′ = V 00
n̄n̄′ (where we use n̄ to include the cut

modes):

ω
∑
n̄′

(δn̄n̄′ + Vn̄n̄′) cn̄′ = ωn̄cn̄ . (D.4)

Figure D.2(a) shows the RS frequencies calculated using the RSE equation

(D.4), with and without cut modes in the basis. The unperturbed RSs and

even- and odd-parity cut modes of the basis are also shown. The distribution of

perturbed RSs repeats the oscillatory pattern seen in Fig. D.1(a) and discussed

above. The RSE frequencies match well the analytic values given by Eq. (D.2)

even if the cut modes are not taken into account. In fact, in this case the relative

error is still rather low, as can be seen in Fig. D.2(b). Obviously, it is higher for

the modes which are close to cut and does not improve for these modes with

increasing N , the number of the RSs in the basis. Including the cut modes in

the RSE results in a relative error scales as 1/N3, almost uniformly for all the

RSs, which is essentially the same as in the RSE used in the k-representation.

The total number of modes in the basis is given by Ntot = N + 4Nc =

(1 + F )N , where we have introduced the factor F , the ratio of the number

of cut modes to the number of RSs included. In Fig. D.2(c) we show how the

error depends on F for a fixed Ntot. Higher values of F imply more cut modes

included in the basis at the expense of RSs. It is clear that larger values of F

give generally lower errors for the RSs close to the cut. However, modes with

larger frequencies away from the cut are less accurately determined in this case,

as the number of basis RSs N reduces with F . We found that the value F = 1

is close to the optimal one, as all RSs in a wide spectral range have a similar
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level of errors. We have made a similar study of the relative error in the case of

the PC-RSE and found the same optimal value of F . Therefore, unless stated

differently, the value of F = 1 is used in all calculations throughout this thesis.
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Appendix E

Other Mode Contributions

In addition to Fig. 4.3 of the main text, showing the expansion coefficients for a

BIC-QGM pair, Figs. E.1 and E.2 show basis mode contributions for three other

types of modes: FP, leaky, and cut modes. Similar to the BIC-QGM pair in

Fig. 4.3, two perturbed FP RSs in Fig. E.1 originate from a pair of degenerate

unperturbed FP modes, and only one of them has a nonzero contribution of

m = 0 leaky modes. This makes the Q-factor for that mode slightly lower

than for the other one, not affected by any m = 0 modes due to symmetry.

Interestingly, both perturbed modes are almost equally strongly influenced by

a pair of FP and a pair of WG basis modes matching the perturbed mode

frequency.

Like in Fig. 4.3, the leaky and cut modes shown in Fig. E.2 have a dominant

contribution of only one basis mode (or one pair of modes), while the contribu-

tion of any other mode in the basis does not exceed a few per thousand.
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Figure E.1: As Fig. 4.3 but for two RSs originating from a degenerate pair of
FP modes.
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Appendix F

Scattering Matrix Method

In this thesis the scattering matrix method is used as an established method

[6, 87, 88] with which we compare the RSE results. Below we describe this

method, providing details of how it was applied to the studies system.

We want to find the RSs for a dielectric system in TE polarisation which

has a photonic crystal core which has a periodic permittivity along the slab, in

the x-direction. These RSs are poles of the scattering matrix (S-matrix). We

therefore calculate the S-matrix.

Since the permittivity is periodic in the x direction within the slab, it can

be represented by a Fourier series:

ε(x) =
∑
g

εge
igx, εg =

1

d

∫ x0+d

x0

ε(x)e−igxdx, (F.1)

where g are vectors: 2πn/d where d is the period of the permittivity and n =

0,±1,±2... The electric field within the slab can in turn be represented by a
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Bloch wave:

E(x, z) = eiqzeipxup(x), up(x) =
∑
g

ug,pe
igx, (F.2)

where p is the x-direction wavevector which will remain fixed, q is the z-direction

wavevector within the slab and up(x) is a periodic function that has the same

period as the permittivity.

Using these equations together, MWE becomes the central equation:

((p+ g)2 − q2)ug,p +
∑
g′

ω2εg−g′ug′,p = 0, (F.3)

which shows that the periodic permittivity has caused all of the g vectors to be

mixed through the εg−g′ term. This mixing is what prevents easily obtainable

solutions for the RSs, necessitating the use of the scattering matrix method.

Due to this mixing, the z-direction wavevector, q does not have a simple form

as in the homogeneous case but Eq. (F.3) can be represented as an eigenvalue

equation for q:

∑
g′

M̂gg′ug = q2
gug, M̂gg′ = ω2εg−g′ − δgg′(p+ g)2. (F.4)

where ug are the eigenvectors. For homogeneous systems, the index g disappears

and the eigenvalue simplifies to the familiar q =
√
εω2 − p2.

To derive the scattering matrix, we first define the transfer matrices which

translate incoming and outgoing wave amplitudes on one side of a interface (e.g

a vacuum) to the other side (e.g within the slab). There are five layers in this

system: vacuum→ homogeneous slab→ photonic crystal→ homogeneous slab→

vacuum.

A transfer matrix, T̂ is defined such that:
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Figure F.1: Visualisation of the wave amplitudes entering and leaving a system.

Br
Bl

 = T̂1→2

Ar
Al,

 (F.5)

where Ar and Al are the right and left wave amplitudes respectively in region 1

and Br and Bl are the right and left wave amplitudes respectively in region 2.

The amplitudes A− r, Al, Br and Bl are shown in Fig. F.1 to demonstrate the

layout. Due to the scattering from the periodic permittivity, there are infinitely

many wave amplitudes, but our calculations will clearly need to be confined

to some finite number of channels so that g ranges from −2πM/d to 2πM/d

resulting in 2M + 1 wave amplitudes (represented by letters with arrows) and

a 4M + 2 transfer matrix (represented by calligraphic letters)

 ~Br

~Bl

 = T1→2

 ~Ar

~Al

 (F.6)

The transfer matrices for each interface are given by:

T1→2 =

 Î Î

Î k̂ −Î k̂


−1 Û Û

Û q̂ −Û q̂

 , (F.7)
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T2→3 =

 Û Û

Û q̂ −Û q̂


−1 Û1 Û1

Û1q̂1 −Û1q̂1

 , (F.8)

T3→4 =

 Û1 −Û1

Û1q̂1 Û1q̂1


−1 Û Û

Û q̂ −Û q̂

 , (F.9)

and

T4→5 =

 Û Û

Û q̂ −Û q̂


−1 Î Î

Î k̂ −Î k̂

 , (F.10)

where Îij = δij is an identity matrix, Ûgj = (ug)j , k̂gg′ = δgg′kg are the z-

direction wavevectors in the vacuum where kg =
√
ω2 − (p+ g)2, q̂gg′ = δgg′qg

are the z-direction wavevectors in the homogeneous region and q̂1gg′ = δgg′q1g

are the z-direction wavevectors in the photonic crystal region.

The initial formulation of the transfer matrix in Eq. (F.5) described a 2× 2

matrix. Due to the scattering of the photonic crystal slab, each of the matrix

elements are themselves 2M + 1 square matrices so that Tij refers to the i × j

block.

The transfer matrix maps wave amplitudes from one side of the system to

the other (Al, Ar → Bl, Br). By contrast, the scattering matrix maps incoming

waves to outgoing waves (Ar, Bl → Al, Br), see Fig. F.1.

We translate outgoing to incoming waves: [7]:

Âr
B̂l

 = S1→2

Âl
B̂r

 (F.11)

The scattering matrix can be built layer by layer through propagation and

interface transformations.
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Suppose that we have a ray of light travelling through a material which

is homogeneous in the direction of travel. The scattering matrix is initially

labelled S0 = I where Iij = δij . The next stage of the iteration can be one of

two cases, either the light propagates through a layer with some permittivity or

it encounters a new layer with a different permittivity. For the former case the

S-matrix is iterated as:

Sn+1 =

Q̂ Ô

Ô Î

Sn
 Î Ô

Ô Q̂

 , (F.12)

where Q̂ij = δij exp (iqja), Îij = δij , Ôij = 0.

For the latter case, the S-matrix is iterated as:

Sn+1 =

 ĴS11 ĴK̂

S21 + S22T22ĴS11 S22T21ĴK̂ + S22T22

 , (F.13)

where Ĵ = (T11−S12T21)−1, K̂ = S12T22−T12 and Sij is a 2M+1 matrix and is

the i× j block element of Sn. This process can be repeated to add any number

of layers and interfaces.

The RSs are defined with outgoing boundary conditions only i.e there are

no inputs:

S−1Aout = 0, (F.14)

where Aout = ( ~Al, ~Br) is a 4M + 2 vector containing outgoing wave amplitudes.

By ignoring the trivial solution of Aout = 0, the conditions for resonant states

is given by detS(ω)−1 = 0, i.e the poles of the scattering matrix. This can be

found by simply calculating the determinant for each frequency and using the

Newton-Raphson method for finding roots, however, the S-matrix is very large

for large M which means that the determinant can become unstable simply due
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to the size of the matrix. To prevent this, the matrix can be decomposed into its

singular values as described in the supplementary material of [26]. This method

begins by approximating the matrix as such:

S(ω) = SBG(ω) + L(ωI − Ωp)
−1R, (F.15)

where SBG(ω) is the background scattering matrix terms which is assumed to

change slowly with ω, Ωp is a diagonal matrix containing the poles ωn and I is

the unit matrix. The matrices L and R are such that LR forms the residue of

the scattering matrix at ω = ωn.

Taking the derivative of (F.15) produces:

S ′(ω) ≈ −L(ωI − Ωp)
−2R, (F.16)

where the background term has vanished due to the slow dependency on ω. By

taking the inverse,

[S ′(ω)]
−1

= −R−1(ωI − Ωp)
2L−1, (F.17)

and multiplying with (F.15), we obtain:

[S ′(ω)]
−1 S(ω) ≈ R−1(ωI − Ωp)R. (F.18)

Where ω has been taken to be close to the poles so that the background term

becomes negligible. This has produced an eignvalue equation for (ωI − Ωp)

with R−1 as the eigenvector. However, the scattering matrix is arbitrary in size

since it is a square matrix of size (2M + 1)(2M + 1) for any positive integer

M . For large M , the eigenvalues can become unstable since the determinant

of the matrix is approaching infinity. To avoid this, the matrix can instead
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be decomposed into singular values: S ′ = UΣV† where U and V are unitary

matrices and Σ is a diagonal matrix of the singular values of S ′. Inserting this

into (F.18) results in:

Σ−1U†SVv = (ωI − Ωp)v. (F.19)

We now have an eigenvalue equation which is more stable for larger matrices

where the eigenvalues are a diagonal matrix made up of ω−ωn which gives the

distance from the input frequency, ω, to all the poles in the system contained

in Ωp. However, we cannot use this to simply find Ωp since we have made the

assumption in Eq. (F.15) that the scattering matrix is made up of it’s poles on

top of a slow moving background term which may not be the case over long

distances. We also made the assumption in Eq. (F.18) that the frequency ω is

close to a pole which allowed us to neglect the background term. Instead, we

use Eq. (F.19) as an iterative method starting with some guess value for a pole,

ω0. The eigenvalues will then be the distances to all nearby poles. We choose

the smallest value of |(ω0−ωn)| i.e the distance to the nearest pole and use that

as the next guess value, ω1 and repeat the process until one of the values in Ωp

is sufficiently close to zero.
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Joannopoulos, M. Soljačić, and O. Shapira, “Enabling enhanced emission

and low-threshold lasing of organic molecules using special Fano resonances

of macroscopic photonic crystals,” PNAS, 110, 13711 (2013).

[39] A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi,

A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein

monolayers with naked eye through plasmonic Fano resonances,” PNAS,

108, 11784 (2011).

[40] J. M. Foley, S. M. Young, and J. D. Phillips, “Symmetry-protected mode

coupling near normal incidence for narrow-band transmission filtering in a

dielectric grating,” Phys. Rev. B, 89, 165111 (2014).

[41] E. N. Bulgakov, D. N. Maksimov, P. N. Semina, and S. A. Skorobogatov,

“Propagating bound states in the continuum in dielectric gratings,” J. Opt.

Soc. Am. B, 35, 1218 (2018).

[42] E. N. Bulgakov and A. F. Sadreev, “Bound states in the continuum with

high orbital angular momentum in a dielectric rod with periodically modu-

lated permittivity,” Phys. Rev. A, 96, 013841 (2017).

137



[43] E. N. Bulgakov and A. F. Sadreev, “Bloch bound states in the radiation

continuum in a periodic array of dielectric rods,” Phys. Rev. A 90, 053801

(2014).

[44] E. N. Bulgakov and A. F. Sadreev, “Bound states in the continuum in

photonic waveguides inspired by defects,” Phys. Rev. B, 78, 075105 (2008).

[45] D. C. Marinica and A. G. Borisov, “Bound States in the Continuum in

Photonics,” Phys. Rev. Lett., 100, 183902 (2008).

[46] O. Panella and P. Roy, “Bound state in continuum-like solutions in one-

dimensional heterostructures,” Phys. Lett. A, 376, 2580 (2012).

[47] Y. Yang, C. Peng, Y. Liang, Z. Li, and S. Noda, “Analytical Perspective

for Bound States in the Continuum in Photonic Crystal Slabs,” Phys. Rev.

Lett., 113, 037401 (2014)

[48] B. Zhen, C. W. Hsu, L. Lu, and A. D. Stone, “Topological Nature of Optical

Bound States in the Continuum,” Phys. Rev. B, 113, 257401 (2014).

[49] Z. F. Sadrieva, I. S. Sinev, K. L. Koshelev, A. Samusev, I. V. Iorsh,

O. Takayama, R. Malureanu, A. A. Bogdanov, and A. V. Lavrinenko,

“Transition from Optical Bound States in the Continuum to Leaky Res-

onances: Role of Substrate and Roughness,” ACS Photonics, 4, 723 (2017).

[50] D. A. Bykov, E. A. Bezus, and L. L. Doskolovich, “Coupled-wave formalism

for bound states in the continuum in guided-mode resonant gratings,” Phys.

Rev. A, 99, 063805 (2019).

[51] C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, “Theory of

the spontaneous optical emission of nanosize photonic and plasmon res-

onators,” Phys. Rev. Lett., 110, 237401 (2013).

138



[52] D. Floess, M. Hentschel, T. Weiss, H.-U. Habermeier, J. Jiao, S. G.

Tikhodeev, and H. Giessen, “Plasmonic analog of electromagnetically in-

duced absorption leads to giant thin film faraday rotation of 14◦,” Phys.

Rev. X, 7, 021048 (2017).

[53] K. Yee “Numerical solution of initial boundary value problems involving

maxwell’s equations in isotropic media,” IEEE, 14, 302–307 (1966).

[54] L. C. Andreani “Photonic bands and radiation losses in photonic crystal

waveguides,” Physica Status Solidi B, 234, 139–146 (2002)

[55] E. A. Muljarov and T. Weiss, “Resonant-state expansion for open optical

systems: generalization to magnetic, chiral, and bi-anisotropic materials,”

Opt. Lett., 43, 1978 (2018).

[56] E. A. Muljarov and W. Langbein “Resonant-state expansion of dispersive

open optical systems: Creating gold from sand”, Phys. Rev. B, 93, 075417

(2016)

[57] G. B. Arfken and H. J. Weber, Mathematical methods for physics, 6th

Edition Academic Press (2005).

[58] M. R. Spiegel, S. Lipschutz, J. J. Schiller, and D. Spellman, Complex vari-

ables with an introduction to conformal mapping and its applications, 2nd

edition, McGraw Hill (2009).
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