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The ECR Community Shrinkage and On-shelf Availability Group is the flagship for 
collaboration on retail loss. 

Since 1999, we have delivered a constant stream of new thinking, tools and 
techniques, that prove the value of tackling loss together, especially the losses 
associated with shelf out of stocks.  

As this research has revealed, about 60% of the inventory records are likely to be 
wrong at any point in time, and when they are corrected, this study has shown a 

sales growth of 4-8%. As one of our retailer members shared, their board pour over and inspect lots 
of new retail sales growth plans that require big investments and risk, yet here they had with Image 
Record Accuracy (IRA) a proven sales driver that may not require significant investment or risk.  

Moreover, company efforts to improving IRA will be ever more important as its relevance becomes 
even greater over time, as shoppers research the availability of inventory before they shop, with their 
loyalty severely tested in situations where they arrive at the store, and the inventory record was in 
fact wrong and there is nothing available to buy after all. 

Our hope is that this research can inspire even greater collaboration between retailers and 
manufacturers on the challenge of improving inventory record accuracy to grow sales and shopper 
loyalty. We look forward to reviewing these case studies in success at our future meetings.

Finally, I would like to thank the academics and all those companies that agreed to support this 
research – your contribution to helping the broader retailer and manufacturer community to better 
understand this important sales growth opportunity is very much appreciated.

John Fonteijn    
Chair of the ECR Community Shrinkage and On-shelf Availability Group
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There is a growing body of evidence advanced in both the academic and practitioner literature suggesting that 
retailers’ inventory records are inaccurate to a significant extent. And it is reasonable to assume that the higher 
the inventory record inaccuracy (IRI), the higher the impact on sales. But what does this mean in real terms? Up 
to the present day, we did not know. However, based on the work described in this report, we now do know 
that for a typical European grocery retailer with €10 billion in sales, fixing the IRI can lead to a €0.4 - €0.8 billion 
sales uplift. It is only reasonable to expect that other consequential financial benefits would also emerge (such 
as labour savings from reduced gap scans and lower inventory investments) although those have been outside 
the scope of this project. 

We have undertaken our research working closely with seven European retailers (in four European countries) in 
the grocery/general merchandise and fashion/apparel sectors. A structured test-control type experiment was 
used, according to which test stores are subjected to stock counts at some particular point in time, whereas 
control stores are not, allowing us to measure the effect of reconciling (or not reconciling) the stock records on 
sales. Our analysis covered approximately 1 million stock keeping units (SKUs) sold in about 100 stores; such 
data is of a different order of magnitude to anything previously attempted in the academic and practitioner 
literature, leading to important, reliable and trustworthy conclusions.

We find that about 60% of the SKUs analysed are 
affected by inventory record inaccuracies. The average 
magnitude of inventory record inaccuracies for the 
affected SKUs is found to be about +6.6 and -6.0 units 
for positive and negative discrepancies, respectively. 
Correcting such inaccuracies leads to approximately 
4% to 8% of increased sales in the participating 
retailers. Although it is natural to expect that the higher 
the IRI the higher the sales uplift (that results from 
fixing it) will be, this actually also depends on SKU 
prices. Interestingly, very ‘accurate’ retailers (with high 
profit margins / high prices) are found to also benefit 
tremendously from truing up their inventory records. 
So, no matter how accurate your inventory records are, 
this report demonstrates that there is a lot to gain if you 
pursue further accuracy.

The results further demonstrate that the biggest opportunity for improvement comes from high-volume 
expensive items, and the variations in inventory record inaccuracy shown by product category are particularly 
informative as to which categories should attract most attention. Finally, we discuss and show results on how 
inventory accuracy deteriorates over time following a stock count. This has implications for deciding how often 
and when stocktakes should take place. 

We hope these findings will be of great value to retailers and manufacturers to: i) decide how much they should 
invest against improving inventory records accuracy; ii) prioritise investments in stock counts per product 
category and class; iii) understand the behaviour of positive and negative discrepancies; those stem from 
different IRI sources and thus knowledge of whether IRI is predominantly positive or negative should facilitate 
the targeted investigation of relevant root causes; iv) discuss counting as a sales increase strategy rather 
than a cost-intensive necessity. We invite senior executives from any retail organisation to conduct the same 
experiment we have performed and see for themselves the value derived from fixing the IRI problem. We 
facilitate this by presenting the main steps involved in replicating the experiment in an Appendix at the end of 
the report. 

Executive Summary



Inventory Inaccuracy In retaIlIng: Does It Matter?

2

1.1. The problem

To manage inventory levels, companies usually employ software tools that use inventory and sales data to 
automatically forecast demand and replenish warehouses and store shelves.1 In the retail sector, companies 
spend around 1% of annual sales on acquiring and operating such systems [1].

One weakness of automatic inventory management systems is that replenishments are triggered based on 
inventory levels recorded in the system, which can differ from the inventory that is actually available in the 
retail store or warehouse. If the inventory management system displays a stock level that is higher than the 
inventory level actually available, then inventory is replenished too late, which can lead to stockouts and the 
company not being able to satisfy customer demand. If the system displays a lower than actually available 
inventory level instead, the replenishment is made too early, which leads to unnecessary high inventory levels 
[2, 3]. In both cases, inaccurate inventory records prevent the (costly to install and operate) stock management 
system to unfold its full potential and diminish profits. Inaccurate inventory records may have various sources, 
including incorrect manual adjustments of stock records, employee or customer theft, damage or spoilage, 
wrong shipments, or check-out errors [1, 2, 4, 5].2

Another problem inaccurate stock records may bring 
about is the need to perform frequent ‘gap scans’, 
i.e. to send employees to the store or warehouse 
to manually check if shelves have been depleted. 
Costs associated with such activities (that could 
obviously be saved if the inventory management 
system would correctly indicate the quantity of 
items left on the shelf) can be immense. Given that 
most retail stores spend almost 10% of their sales 
on labour expenses [6], reducing the number of gap 
scans without sacrificing inventory accuracy could 
substantially improve profits.

Inaccurate stock records constitute a tremendous problem especially in the retail sector. Earlier research 
found that the share of incorrect inventory records may range between 65% and 80% ([1, 4]), where inaccurate 
inventory records may indicate both higher or lower inventory levels than are actually available in the store. 
DeHoratius and Raman [1], for example, who analysed 37 stores of a US retailer, found that 65% of the 
inventory records they examined were inaccurate; the absolute difference between the actual inventory level 
and the one recorded in the inventory management system for a stock keeping unit (SKU) was 35% of the 
available inventory on average at this retailer. Inaccurate stock records are thus an important driver of inventory 
stockouts that lower customer service levels and reduce sales in the retail sector [7, 8, 9].

Retailers that wish to alleviate problems resulting from inaccurate inventory records could adopt the following 
measures:

1. Introduction

1 We explain in Section 1.2 in more detail how automatic inventory management systems work and how inaccurate inventory records may reduce 
sales.

2 Sources such as damage or spoilage of items obviously only lead to incorrect inventory records if the affected items are discarded without 
removing them from the records.

Stockouts refer to situations where a particular 
stock keeping unit is not available, such that 
the company cannot satisfy customer demand, 
leading to losses in sales and customer goodwill. 

One can differentiate between store-out-of-
stock situations, where the item is not available 
at the retailer’s premises at all, and shelf-out-of-
stock situations, where the item is available in-
store, but where shelves are nevertheless empty 
and customers are consequently not able to buy 
the item [3]

https://ecr-shrink-group.com/medias/research/Waste/Best%2520Practice%2520Checklist%2520-%2520Eindhoeven%2520and%2520ECR.pdf
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1. Implement preventive measures to avoid inventory records becoming inaccurate, for example by using 
RFID systems to reduce counting or check-out errors (e.g., [10]), or introducing (more) rigid quality control 
in the goods receiving area of stores;

2. Implement corrective measures to remove inaccuracies from the inventory records, for example by means 
of periodic stock counts (e.g., [11]), or ongoing gap scans;

3. Accept the inaccuracy and use an inventory management system that explicitly takes account of the error 
and replenishes shelves accordingly (e.g., [5]).

Interestingly, measure 3 is not readily available yet, i.e., to the best of the authors’ knowledge, there are no 
software packages that factor IRIs in their replenishment calculations.3 Measures 1 and 2 are associated with 
a considerable additional cost, e.g. for counting the stock or for implementing and operating the RFID system. 
Hence, retailers have to compare the extra cost of improving/better managing inventory records with the 
sales increase resulting from more accurate stock data. However, the impact that inaccurate inventory records 
have on sales has never been examined in a scientific study.4 Any previous evidence, important as it is, may 
admittedly be termed anecdotal. 

Our work considers the impact of measure 2. As much as we would have liked to also consider the effect 
of measure 1, lack of any information related to the use of RFID or any other preventive approach at the 
participating retailers means that we have only examined the impact of stock counts.5 

We present the results of a rigorous extensive study on the impact of inventory record accuracy improvements 
on sales in the retail sector. We investigate such impact via a test-control-type experiment, in which we subject 
test stores to stock counts that are not performed in the control stores. Comparing both types of stores 
enables us to gain insights into the impact of removing IRI from the inventory data. The sales uplift may then 
be contrasted to the cost of stock count(s) and informed decisions can be made with regards to the stock 
count policy and investment. 

Stock counts are viewed as a necessity in the retail 
sector; they are often performed for audit purposes 
and in situations where stores are relatively empty 
to minimize the effort associated with the count. 
We will show in this report that stock counts are 
actually more than a cost-intensive necessity; they 
may rather play an important role in increasing a 
retailer’s sales as well.

The following section explains in some more detail 
how inaccurate inventory records distort the output 
of automatic inventory management systems. 
Section 1.3 then outlines the research questions 
addressed in this work.

3 We are aware that some companies have adopted the concept of ‘scrap factor’, i.e. they accept that inventory records are inaccurate and seek to 
factor this in through, for example, discounting stock over time in their forecasting system. However, such adjustments are arbitrary, lack rigour 
and theoretical support, therefore making their implementation very problematic and their effectiveness highly questionable.

4 Notable exceptions are the works of Raman et al. [13] and DeHoratius and Raman [1] that provide ‘rough’ estimates of how more accurate 
inventory records could influence sales.

5 Interested readers are referred to the study of Adrian Beck [25] for further information on how RFID may benefit sales, reduce stock holding and 
lower markdowns in a retailing context.

Inventory record inaccuracy (IRI) is the 
discrepancy between the inventory level 
recorded in the inventory management system 
and the actual inventory level found in the store 
[3, 12]. Some retailers define a discrepancy 
zone (e.g., one unit or one percent of the units 
recorded in the system for that particular SKU) 
within which no error is assumed to exist [13]. 
This study assumes that the inventory records 
of a SKU are inaccurate if the number of units 
of that SKU available in the store differ from the 
inventory level recorded in the system (even if the 
difference is just a single unit), and consequently 
does not adopt a discrepancy zone approach.
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1.2. How automatic inventory management systems work, and how inaccurate inventory records 
distort their output

There are different ways for automating inventory replenishment decisions.6 To illustrate how inaccurate 
inventory records may distort inventory management systems leading to either stockouts or unnecessary high 
inventory levels, we explain one inventory replenishment principle that is very frequently used in retailing in 
the following.

The inventory management system tracks inventory available per SKU in each retail store over time. The 
inventory level recorded in the system is reduced each time an item is scanned at the checkout counter 
or when another removal of inventory is recorded in the system (say when damaged or spoiled items are 
removed from the shelves of the store, and when employees record these removals in the system). When a 
replenishment is received at the store, the inventory record is increased again. Many retailers specify a so-
called re-order point for triggering inventory replenishments. When the inventory record reaches this re-order 
point, the inventory management system automatically places an order (at the distribution centre or supplier) 
to replenish the store’s inventory. After a certain lead time, the order that was automatically placed is received 
into inventory at the retail store. This principle is illustrated graphically in Figures 1a and 1b (solid green lines).

If inventory records are inaccurate, the stock that is actually available in the store differs from the inventory 
recorded in the inventory management system. The discrepancies between the recorded and the available 
inventory levels can be both negative or positive. The case of negative discrepancies is illustrated in Figure 1a. 
In this case, drivers such as theft, misplacement, or unrecorded damages lead to an additional consumption of 
inventory not captured by the inventory management system. The actual inventory in the store (dashed green 
lines in Figure 1a) is consequently lower than the recorded inventory (solid green lines in Figure 1a). 

6 A comprehensive overview of stock management principles can be found in the popular textbook of Silver et al. [14], for example.

Inventory

Order is received into
inventory here

Time

Order is received into
inventory here

Order should have
been placed here

Order should have
been placed here

Order is
placed here

Order is
placed here

Reorder
point

Lead Time Lead Time Stock out

Inventory recorded in the system Inventory available in the store

Reorder
point

Figure 1a. Automatic inventory replenishments and stockouts triggered by inaccurate  
stock records (negative inventory discrepancies)
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The consequence is that orders are placed too late, which increases the risk of a stockout. This leads to losses 
in sales over time. In the example presented in Figure 1a, the inventory management system would even not 
be aware of the stockout, as the inventory level displayed in the system is positive all the time.

The case of positive inventory discrepancies is illustrated in Figure 1b. In this case, drivers such as additional 
deliveries, wrong scans at the checkout counter or lost products that are found again (but not recorded in 
the system) lead to a situation where the available inventory for a particular SKU is higher than the inventory 
recorded in the system. The consequence is that orders are placed too early, leading to unnecessary inventory 
in the system that causes extra costs.7

The two situations illustrated in Figures 1a and 1b can occur interchangeably for the same stock keeping unit, 
i.e., a SKU can suffer from negative inventory discrepancies in one period leading to stockouts, which then 
turns into a situation with positive inventory discrepancies and unnecessary inventory in another period.8 

Inventory

Order is received into
inventory here

Time

Order is received into
inventory here

Order should have
been placed here

Order is
placed here

Reorder
point

Lead Time Lead Time

unnecessary
inventory

Inventory recorded in the system Inventory available in the store

Reorder
point

Order is
placed here

Order should have
been placed here

unnecessary
inventory

7 Figure 1b shows that extra inventory can contribute to avoiding stockouts. Given that the inventory management system is not aware of this extra 
inventory, it is not included in calculations of the system that balance inventory carrying cost with the losses in sales that a ‘reasonable’ number 
of stockouts would produce. This leads to a reduction in profits.

8 Important as it is, the effect of truing up inventory records on inventory carrying costs is not examined in our study. It makes sense to assume 
that correcting negative discrepancies for a particular SKU will result in higher inventories; conversely, correcting positive discrepancies should 
result in lower inventories. But it is difficult to envisage what would happen in terms of inventory investment over time for a particular SKU and, 
even more so, across all SKUs. This would depend on the prevalence of positive or negative discrepancies, the cost of the SKUs involved and the 
inventory carrying charges relevant to different retailers (depending on the size of the stores, etc.).

Figure 1b. Automatic inventory replenishments and excess inventory triggered by inaccurate  
stock records (positive inventory discrepancies)
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1.3. Research questions addressed in this project

To gain insights into how inaccurate stock records influence sales in the retail sector, our research project 
aimed at, progressively, answering the following main research questions:

1. To what extent are inventory records inaccurate in retailing?

2. How do inventory records deteriorate over time?

3. How does an improvement in inventory record accuracy affect sales?

First we consider the magnitude of the inventory record inaccuracy problem (percentages of SKUs that 
are affected and size and direction (positive, negative) of the errors). We expand this analysis into product 
categories, but also product classes (in traditional ABC classifications).

Subsequently, we evaluate how inventory accuracies decline over time following a stock count. When a stock 
count is undertaken, physical and information system inventories are reconciled. Knowledge on how quickly 
(and by how much) the inventory record accuracy (IRA) declines over time allows a better understanding of 
how often (and when) a stocktake is needed. This has important cost implications and may help companies 
balancing the relevant investments with the sales uplift. It also means that retailers are called to revisit the very 
purpose of stock counts and the motivation behind the timing and frequency with which they are introduced. 
As previously discussed, stock counts are predominantly viewed as audit-compliance and cost intensive 
exercises10 that: i) are introduced when the warehouse or store is at its emptiest to make the task easier 
and less costly to perform11; ii) their frequency is motivated by the trade-off between cost savings versus 
correcting accuracy deterioration. Their role as an enabler of increased sales is ignored.

To that end, we look at linking accurate inventory data to sales increases (or conversely, inaccurate inventory data 
to missed sales potential). We know very little about this important relationship which should be instrumental 
when making decisions about the investment and resources committed towards addressing inventory record 
inaccuracies. 

Before we discuss our results in detail, we first provide some key information on the methodology we have 
followed to conduct our analysis. This is described in the next section.

An ABC analysis ranks a number of items in decreasing order of annual €/£/$ value (price multiplied by 
number of items sold over a year) or other criteria.9 This array is then split into three classes, referred 
to as A, B and C (see, e.g., [14]). A items are usually a relatively small number of items contributing, 
collectively, to a large share of the total turnover (e.g., 20% of items accounting for 70% of the total 
turnover), whereas C items are commonly a relatively large number of items contributing, collectively, 
to a relatively small share of the total turnover (e.g., 50% of items accounting for 5% of the total 
turnover). B items range in-between the other two classes both with respect to item number and 
turnover contribution.

9 Later in our analysis, we use an ABC analysis also to classify SKUs according to their inventory discrepancy contribution. In this context, A items 
would be a small number of items contributing to a large share of the total inventory discrepancy found in the company.

10 At many retailers, not only the time required to perform the actual stock count drives costs, but also the preparation of the stock count that often 
needs to start a few weeks prior to the count.

11 Rolling inventory counting cycles are also often introduced, so every month (say) 8% of the retailer’s stores are audited. 
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2.1. Overview of the methodology

This research was undertaken working closely together with seven retailers (in four European countries) in the 
grocery/general merchandise and fashion/apparel sectors. Figure 2 illustrates the main steps of the methodology 
used for the purposes of this project. Once the work was commissioned by ECR, we conducted extensive 
semi-structured telephone and face-to-face interviews with retailers to frame the problem area, scope the 
study and gain insights into the retailers’ perception of problems associated with inaccurate inventory records. 
The retailers’ consent to protocol the interviews was obtained, and subsequently a protocol was prepared for 
all interviews that lasted about one hour each. This provided us with rich material to i) appreciate important 
operational details pertinent to each of the retailers; ii) determine the methodological arrangements of our 
study; iii) specify the research questions we set out to answer.

Figure 2. Main steps of the methodology used 

After signing Non-Disclosure Agreements (NDAs), the retailers transferred sales and inventory data to the 
research team. The primary data transfer process involved in many occasions physical visits at the retailers’ 
premises to better understand their operations, discuss details related to the data, clarify algorithmic 
complexities and, very importantly, agree on objectives and deliverables that were of interest to the particular 
retailer. The analysis for each retailer consisted of two parts: i) a generic part, that covered the deliverables 
and research questions collectively addressed in this project, across all retailers; ii) a retailer-specific part, that 
addressed research questions of interest to that particular retailer. Data transfer itself was achieved in a variety 
of ways, in accordance to each retailer’s data safety protocols.12

A data analysis template was created in Excel (complemented by a series of sub-routines developed in Visual 
Basic for Applications, VBA) to standardise, to the extent possible, the data analysis process (or at least the 
generic part of it). This was not easy to achieve given the millions of records processed for some of the 
retailers, and indeed the data analysis part of the project was a particularly demanding one. After appropriately 
structuring the data to facilitate statistical analysis, various tests were performed on the data to answer the 
research questions. Analysis of the results was complemented by follow-up discussions with the retailers, 
and frequent feedback obtained in the ECR Shrinkage & On-Shelf Availability Group events in Barcelona (Feb. 
2017), Dusseldorf (May 2017), Paris (Feb. 2018), Brussels (Oct. 2018), and Copenhagen (June 2019) and other 
presentations given to academic and practitioner audiences. 

The project closed with interpreting the results and deriving managerial insights and recommendations. 

12  More details about the data and the experiment we considered follow in the next section of the report. 

2. Methodology

Shrinkage  
and OSa grOup

Work commissioned  
by ECR

Interviews Primary data transfer Data analysis Insights and 
recommendations
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The names of the companies participating in the project cannot be disclosed, but some key information 
related to each of them appears in Table 1. Note that for retailer a, information was shared for three product 
categories only (wine & spirits, toys, and pet care), while the data we obtained for the other retailers covers 
their entire product portfolio. Further note that out of the approximately 1 million SKUs examined, we ended 
up using around 233,000 of them. These were the ones fully matching the experimental structure (to be 
discussed in Section 2.2). In Sections 3, 4 and 5 of this report, we will present average results across all 
retailers participating in this research, differentiate between the retailer groups ‘grocery/general’ and ‘fashion/
apparel’ where applicable, and, where possible (needed), provide some retailer-specific results.

Table 1. Key attributes of the retailers participating in this project and their data13

Retailer No. 
stores No. SKUs

No. SKUs 
utilized Data type Retailer type

a 20 27,312 27,312 Sales, stock data and  
stocktake reports Grocery/general

b 12 36,349 26,856 Sales and stocktake reports Grocery/general

c 18 207,501 25,616 Sales and stocktake reports Grocery/general

d 20 334,616 96,385 Sales and stocktake reports Grocery/general

e 3 4,962 1,975 Sales and stocktake reports Fashion/apparel

f 10 2,418 2,417 Sales and stocktake reports Fashion/apparel

g 8 420,992 52,757 Sales and stocktake reports Fashion/apparel

Σ 91 1,034,150 233,318

Note: All numbers/figures are presented with comma (,) to denote thousands and dots (.) to introduce decimals.

2.2. Experiments

The data used for the purposes of this work was collected in two experiments that are explained in detail 
below.

Experiment I

Retailers participating in the project selected a number of (matched) pairs of stores. For each given pair of 
stores, one of those stores was allocated to the test group and one to the control group. The matching was 
undertaken either by the company (based on managerial knowledge) or by the research team (on the basis of 
an algorithm developed), or, in some cases, by both (as the outcome of discussions between the retailers and 
the research team). In any case, the criteria considered for matching stores related to the location type (city 
store, urban, etc.), size of the store, management and technological capabilities.

13 In some cases, the fashion/apparel retailers that participated in this research also sell beauty/cosmetic products. 
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For both test and control stores, after an initial stocktake, sales and inventory record data14  was tracked for  
12 weeks.15  Then, a stocktake was performed at all test stores of the retailers, and inventory record 
inaccuracies identified during the stocktake were corrected in the system. No stocktakes were undertaken 
in the control stores. Afterwards, sales and inventory record data was tracked for another 12 weeks, and a 
stocktake was performed again at all stores (test and control). This experiment enabled us to observe

I) the magnitude of inaccurate inventory records at the participating retailers by comparing inventory 
information indicated in the information system with the stock found in the stores during the stock 
audits (Research question 1);

II) the effects of correcting the inventory records (at the test stores) versus not fixing the inventory 
records (at the control stores) (Research question 3).

In some cases, all the above had already taken place in the past, so it was a matter of retrieving appropriate 
data to enable conducting our experiment. In some other cases though, this happened in real time – i.e. the 
retailers designed / introduced stock counts to match our experimental suggestions. The structure of the 
experiment is illustrated in Figure 3. 

There were about 233,000 SKUs used for reaching conclusions. These were the SKUs matching the experimental 
structure discussed above, i.e. they were sold both before and after the time the stock audit took place in the 
middle of the experiment (in the test stores) and were also included in the stock audit(s) themselves. There 
was an additional constraint we introduced to ensure avoiding comparing apples with oranges. An ABC-
type classification was employed to categorize items as fast, medium and slow movers, and all the SKUs 
considered in our research were in the same class both in the test and the control stores. We discuss the ABC 
classification and related results in Section 3.4. 

14  In one case, data on inventory levels was also available. 

15  For some retailers, the experimental setup had to be varied time-wise to align the experiment with the retailers’ stocktake patterns.
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Figure 3. Structure of experiment I. Note that the analysis starts and ends with a stock count  
in both test and control stores to ensure the proper framing of the experiment.
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Experiment II

At retailer a, an additional experiment was conducted. At test stores selected by the retailer, an initial stocktake 
was performed, and inventory record inaccuracies identified during the stocktake were removed from the 
system. Afterwards, five additional consecutive stocktakes were performed at the end of the following five 
weeks. Inventory record inaccuracies identified during the stocktakes were recorded, but not removed from the 
system. After a total of six stocktakes, a break of four weeks was scheduled, and then six additional stocktakes 
were completed, again without removing inaccuracies from the data. This allowed us to track inventory 
record changes over time in parallel with actual inventory changes and develop a better understanding of the 
behaviour of the system (Research question 2). There were about 27,000 SKUs used for reaching conclusions. 
The structure of the experiment is illustrated in Figure 4.

Figure 4. Structure of experiment II

2.3.  Further information

There were a number of other important issues that have been taken into account when analysing the data, 
the discussion of which goes beyond the scope of this report. However, let us briefly mention here that we 
have considered: i) the time series characteristics: the very purpose of specifying ‘reasonably’ long intervals 
(12 weeks) before and after the stocktake that took place in the test stores was to be able to control for such 
issues as trend and seasonality; ii) promotions: the experiment was conducted in such a way that sales were 
filtered for the effects of promotions (if any) that would otherwise distort the analysis.

Nevertheless, it is important to note that this work was not about establishing causality and no relevant 
information has been collected from the participating retailers. This means that we have not constructed 
regression-type models that link our response variable (IRI) to a number of independent variables that 
(potentially) have some explanatory power. As such, we are not able to ‘explain’ the results in a statistical sense 
but rather we use feedback from our discussions with the retailers and references to the work conducted by 
others to interpret our findings and ‘infer’ causality. Similarly, any question (hypothesis) that seeks to establish 
explanatory linkages like ‘what is the effect of conducting the stock counts internally or outsourcing the task 
to external organisations?’ may also not be answered (addressed) as part of this research. Causality is to be 
considered in the next phase of this work and we will return to this issue in the last section of the report where 
we outline possible extensions of our research.

Before we close this section, let us say that we have tried to keep this report as plain and non- technical as 
possible, meaning that we opt for the presentation of averages (and descriptive statistics), leaving aside any 
qualifications related to the statistical significance testing we have conducted to substantiate our findings. For 
any enquiries regarding the technical (statistical) aspects of this work, please feel free to contact any of the 
authors of this report.
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3.1. The number of SKUs affected by inventory inaccuracies

Our first objective was to gain insights into the magnitude of inaccurate inventory records. Figure 5 
shows that for 59.54%16 of the audited SKUs, the (physical) quantity on stock did not match the quantity 
displayed in the information system at the time of the stocktake. The share of inaccurate stock records is 
higher for the grocery/general merchandise retailers (63.39%) than for the fashion/apparel ones (54.08%). 
Discussions with the collaborating retailers indicated that this result may be due to the fact that grocery/
general merchandise retailers, generally, deal with a (much) larger product portfolio than the fashion/
apparel ones (which is certainly the case for the companies that have participated in the experiment), which 
exposes them to factors driving IRI more often. This does confirm earlier research on inventory record 
inaccuracies and, more generally, stockouts, which has found that the annual selling quantity is an important 
driver of IRI/stockouts ([1,15]). Another important issue is that in grocery retailing, customers often shop 
larger numbers of items at once; if you shop food, it is ‘normal’ to buy say 50 items (of different SKUs) 
at once, but you would probably not buy 50 pairs of shoes at once. Buying larger numbers of units at 
once renders mistakes more likely at the checkout counter due to time pressure and the sheer volume of 
items that need to be processed. Finally, in grocery retailing, storage space on the shelf is often an issue17 

such that it is not possible to have inventory for an entire day on the shelves – in contrast to 
fashion retailing, where this is often the case. Given also that the backrooms often do not provide 
much space for storing items, grocery retailers depend more on an efficient and well-organized 
replenishment system, but are also, as a consequence, more exposed to errors in this respect.18  

3. The magnitude of inaccurate  
inventory records

16  To provide the necessary level of precision in the graphs as well as consistency between the graphs and the text, all results are presented to two 
decimal places.

17  We appreciate that this may not always be true, but it is certainly so for the grocery retailers participating in this study.

18  It should also be noted that grocery items are in many cases inexpensive and, as such, not likely to be equipped with anti-theft technology. 
In fashion retailing, though, this is the norm. Assuming that such technology is effective, shoplifting would be more difficult/risky in a fashion 
environment than in grocery, which would then lead to higher shrinkage rates in the former and more SKUs being affected by IRI. Other plausible 
explanations of the higher IRI rates in grocery retailing are discussed in later sections of the report. 

All retailers Grocery/general Fashion/apparel
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Figure 5. Share of inaccurate inventory records by type of retailer
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Figure 6 shows the share of SKUs affected from inaccurate inventory records per retailer. As can be seen, 
between 6.20% and 73.33% of the SKUs suffer from inaccurate stock data. For three of the retailers (retailers 
a, b and f), the share of inaccurate inventory records exceeds estimates published in earlier studies (65% 
reported in [1]).

At retailer e, the share of inaccurate inventory records was surprisingly low (6.2%). We have visited 
some stores of this retailer and we can attribute this result to the relatively small size of the backrooms19 

in conjunction with the relatively low number of SKUs per store: this leads to very frequent replenishments 
from the Distribution Centre / Warehouse to stores as well as high levels of stock monitoring with a low 
probability that products are lost in the backroom or shelf area. In addition, products at retailer e are relatively 
expensive compared to the other two fashion/apparel retailers, which has prompted management to adopt 
several measures to reduce IRI, the most important one being the high security employed (central manned 
camera system in each store).20

Finally, the result can be further explained in terms of the small number of SKUs audited in that retailer; please 
see Table 1. Our experimental structure requires the same SKUs to be present before and after the test stock 
count, something that is somewhat difficult to achieve in this case due to the very short life cycles associated 
with the products under concern, resulting in a rather small number of SKUs considered. We note that the 
relatively small share of SKUs affected by IRI at retailer e does not imply that improving inventory record 
accuracy is not important for this retailer. In contrast, our results presented below will show that a further 
reduction in IRI leads to a substantial improvement in sales at this retailer as well.

Please note that the figures reported here, and elsewhere in this report, are weighted averages; 
that is, the reported figures take into account the number of SKUs considered for each retailer. If, for 
example, the IRI is 40% in retailer y (with 20,000 SKUs audited), and 50% in retailer z (with 10,000 SKUs 
audited), then the average IRI is not 45% [= (40% + 50%) / 2], but rather: [(40% x 20,000) + (50% x 
10,000)] / 30,000 = (8,000 + 5,000) / 30,000 = 13,000 / 30,000 =  (approximately) 43%.
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Figure 6. Share of inaccurate inventory records per retailer 

19  Note that items being misplaced in the backroom and poor shelf replenishment from the backroom have been identified as drivers of stockouts in 
earlier research (e.g. [15, 21]). Smaller backrooms and less frequent shelf replenishments from the backroom could thus contribute to reducing IRI. 

20  These results support the findings of DeHoratius and Raman [1], who found that high-value items are subject to a lower level of IRI than inexpensive 
items due to, as they hypothesized, more sophisticated auditing and theftprevention practices employed for these items.
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3.2. The direction of inventory inaccuracies

Figure 7 illustrates the direction of the inventory discrepancy observed during stock counts. As can be seen, 
inventory discrepancies are not predominantly negative: across all retailers, 27.46% of the SKUs analysed 
during the experiment suffered from positive inventory discrepancies. Negative inventory discrepancies play a 
more prominent role than positive ones, especially for grocery/general merchandise retailers where 38.52% of 
the SKUs were found to suffer from the former (compared to 24.87% suffering from the latter). We attribute the 
difference between grocery/general merchandise and fashion/apparel retailers to several sources of shrinkage 
that are typically more important in grocery than in fashion retailing, such as spoilage, decay and product 
damages. Earlier research of Adrian Beck [16], for example, reported that inventory shrinkage caused by self-
checkout solutions are typically higher in the grocery retail sector than in non-grocery (though we do not have 
information in this project that links stores to self-checkout infrastructure). These results are also confirmed by 
earlier research of the National Retail Federation where inventory shrinkage was reported more than twice as 
high for the grocery than for the fashion/apparel sector [17].

Figure 7. Direction of the inventory discrepancy by type of retailer 

Figure 8 shows the direction of inventory discrepancies per retailer. Interestingly, for two of the fashion/apparel 
retailers, positive discrepancies exceed negative ones. This may be attributed to product returns that are 
very frequent in the fashion sector [18]. Providing customers with the opportunity to return a product induces 
increased sales [19, 20], but the more frequent the returns are (or the higher their volume) the greater the risk 
of not always being correctly entered into the system (added to the inventory records) despite being available 
in the store again. 

Fashion/apparel retailer f shows a different behaviour with negative discrepancies exceeding positive ones. 
The retailer under concern deals with beauty products; such products are of relatively small sizes and are 
intuitively expected to be more prone to theft and damage than regular fashion items.
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3.3. The size of inventory inaccuracies

Figure 9 shows the average magnitude of the inventory discrepancy (in units) observed during stock audits per 
type of retailer.21 As can be seen, the average discrepancy for grocery/general merchandise retailers is 8.78 
(-8.24) units for positive (negative) discrepancies, while it is only 3.65 (-2.94) units for fashion/apparel retailers.22 

Interestingly, average positive inventory discrepancies were found to be larger for both groups of retailers than 
negative discrepancies. 

Combining the results shown in Figure 9 with those presented in Figure 5 above, it becomes clear that grocery/
general merchandise retailers suffer more from IRI than fashion/apparel retailers both with respect to the 
number of SKUs affected as well as with respect to the magnitude of the problem, which could be a result 
of higher turnover rates and a consequent higher exposure to drivers of IRI. As will be discussed later in this 
report, the fact that fashion/apparel retailers have lower discrepancy rates and a lower unit discrepancy on 
average does not mean that IRI is less of a problem in that sector. Given that fashion items often have a higher 
average unit value than grocery items, removing inaccuracies from inventory data has an equally important 
impact on sales in the fashion/apparel sector as in grocery/general merchandise.

21  Note that the averages displayed in Figures 9 and 10 include only SKUs that were subject to inventory discrepancies at the time of the stock audit. 
SKUs associated with inventory records matching the quantity found in the store are not included here; if we were to do so this would reduce the 
averages.

22  DeHoratius and Raman [1] reported in an earlier study that the absolute discrepancy found during stock takes is five units. This value is in-between 
the discrepancy values we found for the grocery/general merchandise and the fashion/apparel retailer groups. 

Figure 8. Direction of the inventory discrepancy per retailer
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Figure 10 displays the average magnitude, in units, of the inventory discrepancy observed during stock audits, 
per retailer. In contrast to Figure 9, we do not have a consistent result here that positive discrepancies have a 
higher magnitude than negative ones; instead, the magnitude depends on the retailer23. The results show an 
average (across all retailers) IRI of +6.58 and -5.97 units for positive and negative discrepancies, respectively.
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Figure 10. Magnitude of the inventory discrepancy per retailer

23  This obviously points to the need for further empirical studies and regression-type analyses to appreciate the underlying reasons behind some of 
the results we report here. 
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3.4. Results by product category

We now investigate how different product categories contribute to inventory inaccuracies. Figures 11 and 12 
analyse the discrepancy contribution of different SKUs in an ABC-type way for both grocery/general merchandise 
and fashion/apparel retailers.24 

For the grocery/general merchandise retailers (Figure 11), it can be seen that 19.39% of the SKUs are fast 
movers (A items) generating 70.30% of sales. These SKUs are also responsible for 49.23% of the total 
inventory discrepancies (in value). Middle movers (B items) represent 25.91% of the SKUs at the grocery/
general merchandise retailers that contribute to 19.98% of sales. These SKUs are responsible for 25.26% of 
the inventory discrepancies (in value). Slow movers (C items) represent 54.69% of the SKUs that generate 
9.73% of sales. These items account for the remaining 25.51% of the inventory inaccuracies (in value). For the 
fashion/apparel retailers, the results are similar (see Figure 12); the major difference between the two groups 
is that for fashion/apparel retailers, slow movers contribute somewhat more to the total inventory discrepancy 
than they do at the grocery/general merchandise retailers, even though they have a slightly smaller share in 
the total number of SKUs in the former case.

Figure 11. Classification of SKUs according to turnover contribution at the grocery/general  
merchandise retailers

24  The ABC classification relies upon contribution to turnover, with the thresholds being set at 70% and 90% (or the closest depending on the SKU 
count). The SKUs that collectively result in (about) 70% of sales are classified as A items; those that contribute to the additional (about) 20% (i.e., 
from 70% to 90%) are classified as B items; and, finally, those that collectively contribute to the remaining percentage of sales that brings us up 
to 100% (about 10%) are classified as C items. 
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Figure 13 shows the share of SKUs at the different retailers that contribute to 70% of the total inventory 
discrepancies (in value). As can be seen, at retailers b and e, 2.25% and 1.90% of the SKUs cause 70% 
of the total discrepancies. For these retailers, our results imply that correcting the inventory data of this 
relatively small set of SKUs would remove most of the inaccuracies from the inventory management system.25 

With respect to the other retailers, the share of high discrepancy SKUs ranges between 13.14% and 22.82%.26 

Even though these proportions are much higher than those associated with retailers b and e, the results again 
illustrate that a relatively small number of SKUs generates the major share of the total inventory discrepancy 
at most of the retailers.

Figure 12. Classification of SKUs according to turnover contribution at the fashion/apparel retailers

Figure 13. Percentage of high discrepancy SKUs per retailer  
(contributing to 70% of total discrepancy, in value)
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25  We will discuss some operationalised rules that follow from our results in Section 6.

26  Note that for two of the fashion/apparel retailers (f and g), items are more uniformly priced, leading to a relatively high number of SKUs contributing 
to 70% of the total inventory discrepancies. 
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Figures 14 and 15 analyse the contribution of main product categories to the total inventory discrepancy for 
retailers c and d (these are the retailers for which detailed analyses could be conducted at the category level). 
At retailer c, classical grocery and bakery products are subject to the highest inventory discrepancy (with a 
contribution to the total inventory discrepancy of more than 10% in both cases), while dairy is the single most 
important IRI driver at retailer d.  Health & beauty products as well as wine & spirits have a low to medium 
percentage discrepancy value at both retailers, while tobacco has only a low share in it; it is, almost invariably, 
displayed close to the checkout counter, which reduces shrinkage. The behaviour of the product categories 
generally seems to be quite retailer-specific, which confirms the need of a company-specific analysis of IRI 
in the retail sector. We also noted a weak relationship between the number of SKUs handled in a product 
category and the category’s contribution to IRI, such that a higher number of SKUs per category leads to 
higher inventory discrepancies. This was not the case for bakery products at retailer c and dairy at retailer d.

Figure 14. Absolute percentage discrepancy contribution of different product categories  
at retailer c and SKU count of the categories27 
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27  Note that the figure displays the product category’s contribution to the total inventory discrepancy. Given that we present only some product 
categories in Figure 14, the shares do not add up to 100%. 
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Figure 15. Absolute percentage discrepancy contribution of different product categories  
at retailer d and SKU count of the categories28 

 

28  Note that the figure displays the product category’s contribution to the total inventory discrepancy. Given that we present only some product 
categories in Figure 15, the shares do not add up to 100%. 
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4. The development of inaccurate  
inventory records 

4.1. How inaccuracy develops over time

Experiment II explained in Section 2.2 enables us to investigate how stock records deteriorate over time. 
Figure 16a shows how accurate SKUs as well as SKUs suffering from IRI develop over time (bars); the trend 
line approximates the development of the share of accurate SKUs. An interesting result we obtained is that 
negative inaccuracies clearly accumulate over time; positive discrepancies, however, seem to remain relatively 
stable. One reason for this result could be that positive discrepancies can be caused by misplaced items that 
are removed from inventory records during gap scans, later to be found again. Temporary losses in inventory 
resulting from misplacements can to some extent balance each other out over time, e.g. when a particular item 
is lost and another one is found again. Negative discrepancies are often caused by shrinkage that translates 
into a permanent loss of items, leading to an accumulation of discrepancies over time. In any case, this result 
clearly motivates the need for further scientific research on the drivers and behaviour of negative and positive 
discrepancies. 

In Figure 16b we show how the stock records deteriorate over time per product category. The accuracy as 
well as its deterioration over time (again approximated by a trend line for each product category) depends 
on the category. Categories with a high accuracy level (the case of toys) are found to be more sensitive to 
deterioration over time than categories with a low accuracy level (pet care).
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Figure 16a. Stock record deterioration over time
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The data provided by retailer a enabled us also to analyse the problem of SKUs with a stock level that is “frozen” 
at 0 for several subsequent periods. At the times of the stock counts, we found that approximately 15.07% 
of the SKUs at retailer a had a physical stock level of zero that reduced sales to zero in the subsequent week. 
More importantly though, we found that a total of 2,402 SKUs (8.8% of SKUs) faced this issue for the entire 
duration of the experiment at this retailer, resulting in a complete lack of point of sales (POS) signals for the 
affected SKUs. Inventory freezing is a particularly important issue and one that may substantially impact sales. 

     We don’t know how inventory records deteriorate in our company. 
Does it reach 74% a week after the stocktake, or does it degrade over 
the next months? We just don’t know. But before we can fix the issue, 
we need to understand it.

Inventory freezing describes a situation where stock records are positive displaying a stock level 
above the retailer’s reorder point even though the physical quantity on hand is zero. In such a situation, 
the inventory management system will not trigger replenishments, leading to a physical stock that is 
zero for many periods. SKUs with a frozen inventory level may obviously not be sold. The inventory 
management system, if not properly linked to point-of-sales data, could not detect this problem, as the 
positive stock level would indicate regular operations.29

29  The problem of inventory freezing is also explained in [4, 18]. Inventory displayed in the system that is not physically available in the store is often 
referred to as ‘phantom inventory’ or ‘ghost inventory’ by practitioners. 

Figure 16b. Stock record deterioration over time per category 
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4.2. How inaccuracy develops as a function of manual adjustments

Retailer a also provided us with information on how often, and at what magnitude, stock records were manually 
adjusted by the store employees. This enabled us to relate the magnitude of manual interventions in the 
inventory management system with the inventory discrepancies observed during stock audits. 

In this analysis, the details of which go beyond the scope of the discussion here, we have considered two 
different approaches to calculate the IRI, termed as #1 and #2. The results are presented in Figure 17.30 

 

 
 

30  We used two different approaches in order to test the reliability of our findings. The two different approaches returned supporting results, which 
serves to confirm such reliability. More details on our experimentation can be made available from any of the authors of this report. 

The results show that there seems to be a clear relationship between the magnitude of manual adjustments 
in the inventory management system and the inventory discrepancies. Manually removing stock from the 
inventory records seems to lead to positive inventory discrepancies over time, while manually adding stock 
to the records seems to have the exact opposite effect. The more ‘intense’ the manual interventions are (i.e. 
adding more or removing more units over time), the higher the distortion of the stock records’ quality is. Our 
findings thus reflect some of the (relevant) concerns expressed by the collaborating retailers.

     There is a concern that if you make gap scans too frequently, you 
drive inventory inaccuracy. So where is the optimal point of touching 
the stock records?

      If the stock record accuracy deteriorates too much between two full 
stocktakes despite gap scans, would it make sense to remove the gaps 
scans altogether in order not to have to invest in those hours?

Figure 17. Relationship between the magnitude of manual adjustments with the  
inventory management system and the inventory discrepancies
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5.1. How stocktakes affect sales

In experiment I outlined in Section 2.2, a stocktake was performed in the test stores in the middle of the 
experiment to remove inventory discrepancies from the information system, while no stocktake was conducted 
at the control stores. The better resulting inventory record accuracy for the test stores reduces the effects of 
(some of) the stockout drivers (referred to in Section 1.2), which leads to (as we will show) higher sales.

Figure 18 shows that the test stores display an increase in average sales after the stocktake as compared 
to the control stores. The benefit resulting from the stocktake is positive for all retailers participating in the 
experiment, and it ranges between 3.83% and 8.38% with an average of 5.98% across all retailers.32 The sales 
impact of better stock accuracy we discovered is much higher than what DeHoratius and Raman [1] reported in 
their 2008 study, where the loss in revenue resulting from IRI was estimated to be slightly larger than just 1%.33

5. The impact of inaccurate inventory  
records on sales

We calculate the sales increase resulting from the stock audit as follows: (total sales in the test store in 
the entire observation period after the stocktake – total sales in the control store in the entire observation 
period after the stocktake) / total sales in the control store in the entire observation period after the 
stocktake.31 Note that in matching test and control stores, we made sure that they are comparable with 
respect to the main store characteristics (e.g., size, location, product portfolio, sales prior to the stock 
count etc.) to ensure that our results are meaningful. For the same reason, we included in the analysis 
only SKUs that were classified in the same way both in the test and the control stores (e.g., A items in 
the test stores need to be A items in the control stores to be included in the analysis).

31 The sales increase resulting from the stock take does not refer only to the SKUs suffering from IRI, but to the entire product portfolio of the store.

32 Please note that this is a simple average across all retailers; i.e., this does not reflect the different number of products traded and different 
turnovers.

33 Note that DeHoratius and Raman [1] did not estimate the impact of better inventory information on sales using empirical data. Since the required 
information was not contained in their dataset, they simulated an inventory system assuming that only items suffering from inventory freezing lead 
to stockouts and consequently losses in sales. Our study also captures ‘frozen items’, but also ‘non-frozen items’ that still lead to sales losses.

Figure 18. Sales increase resulting from better stock accuracy per retailer
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Figure 19 shows the average percentage sales increase after the stock count for different item classes. As can 
be seen, especially fast movers (A items) benefit from more accurate inventory data. Given that fast movers 
are usually only a relatively small number of SKUs, correcting inaccurate stock data for such items seems to 
be a practical and important lever for increasing sales. This does also facilitate prioritising the allocation of 
(scarce) resources, that should be directed to counting the A items first. 

Figure 20 shows that the SKUs suffering from high inventory discrepancies benefit the most from an 
improvement in stock accuracy; for high discrepancy products, the sales lift was found to be more than 14% 
in the period after the stocktake. For medium discrepancy products, the sales increase was still slightly larger 
than 7%, while it was 2.11% for low discrepancy products.

Figure 19. Average percentage sales increase by product class
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Figure 20. Average percentage sales increase by discrepancy class
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Figure 21 shows that correcting inventory information leads to sales increases both for negative and positive 
inventory discrepancies. While it is intuitively appealing to expect that correcting negative discrepancies will 
lead to a sales uplift (in light of the stockout risks described in Section 1.2), we did not expect that correcting 
positive inventory discrepancies would also have an impact on sales uplift. In our discussions with the retailers 
(and from our analysis of the data we were provided with), we found, however, that surplus stock not captured 
by the inventory management system often occurred in the backroom of the retail stores where customers 
were unable to access it. In such cases, employees look the item up on their hand held, see that it shows no 
inventory, assume it is not in the store and then re-order rather than going searching for inventory the system 
says does not exist. At the same time, shelves are not being replenished triggering stockouts and lost sales 
despite the surplus inventory that is kept in the store, in either the backroom or other multiple display locations 
in the store for promotional, impulse sales or adjacency reasons.

Figure 21. Average percentage sales increase by direction of inventory discrepancy34

      If we knew what a one pound-investment into improving inventory 
accuracy brings in terms of sales, we could use this information in our 
discussions with the board to argue for better inventory accuracy.

   The industry struggles with having an on-going benefit from 
stocktaking.

34 Note that the sales increase for the accurate SKUs is almost zero, as expected; also note that the analysis factors in SKUs that have zero physical 
stock but show inventory in the system (they appear as negative discrepancies).
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5.2. Results by product category

Figures 22 and 23 show how the different product categories discussed already in Section 3.4 contribute to 
an increase in sales at retailers c and d.35 At both retailers, correcting IRI via a stocktake led to an increase 
in sales of more than 10% for some of the product categories. For some SKUs though, we found that 
correcting IRI actually led to a reduction in sales. The SKUs that displayed such behaviour were primarily those 
disproportionately affected by internal and/or external theft, such that correcting IRI and increasing stock 
levels led to higher shrinkage rates that again reduced sales. One retailer informed us that it had also observed 
lower sales after stock counts for a few items in the past (e.g., for tobacco). This happened when incorrect 
shipments arrived at the retailer’s stores or a burglary occurred, inducing the retailer to count the stock at the 
store in question. In this case, the event triggering the stock count was responsible for the decrease in sales, 
and not the stock count itself. Other items that had lower sales after the stock records had been reconciled are 
items that are often heavily marked down if an inventory surplus remains at the end of the day (e.g., bakery). 
If this surplus inventory is removed from the store, there is no need to mark down products anymore, which 
in this case reduced sales. We conclude, however, that further research is required to understand why a 
reconciliation of stock records may lead to a reduction in sales in some cases.

35  Please recall that these are the only retailers for which category-level data is available.

Figure 22. Average percentage sales increase per product category for retailer c
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Figure 23. Average percentage sales increase per product category for retailer d
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Achieving retail growth in mature markets is not easy – yet we put forward important evidence that growth can 
be found simply by making inventory records more accurate. 

Our analysis uses an extremely rich and sizeable dataset that is of a different order of magnitude to anything 
previously attempted before in the academic and practitioner literature. We have found the IRI problem to be 
as big as previously reported in other studies, but we have shown it to be associated with different magnitudes 
in different sectors. In particular, IRI seems to be bigger in grocery/general merchandise than in fashion/
apparel retailing. This should be taken into account when benchmarking against average performances. The 
above results are true when it comes to the magnitude of the errors (discrepancy in number of units). Sales-
wise, this is a big problem in both sectors, and in fact higher sales increases resulting from a correction of IRI 
seem to occur in fashion/apparel. Generally, we have demonstrated that if the sales opportunity is to be taken 
into account, the IRI problem is (much) bigger than previously thought to be across the board in the retailing 
industry.

We have also found that positive discrepancies are as common as negative ones, and we think that this will 
change the way the IRI problem is perceived and actions taken to alleviate it. It is not all about shrinkage; 
backroom operations may help explain a big part of the problem too. It is interesting that the grocery/general 
merchandise and the fashion/apparel sectors suffer (mostly) from negative and positive discrepancies, 
respectively; and this should be useful for targeting the right IRI drivers. 

Further, our analysis suggests, conclusively, that 
removing IRI from the stock records benefits fast 
movers and high discrepancy items the most; for high 
discrepancy products, the sales lift was found to be 
more than 14% in the period after the stocktake. So, an 
immediate strategy would be to concentrate on high 
discrepancy fast movers; this should be a low number 
of items, but with a very high impact on sales. Counting 
these items more frequently could also help retailers to 
avoid costly stock counting routines that often target 
the entire product portfolio.

Very importantly, there is a need to change management 
perceptions on counting. Stock takes are perceived as 
a necessity, and they are indeed. However, they also 
constitute a tremendous opportunity to boost sales. 
When is it best to introduce a stock count? Just before 
the big sales season or the quietest time of the year? 
The industry goes for the latter, associating stock 
takes with a necessity and interruptions, though we 
argue for the former, given the opportunity for sales 
uplift that should be even more marked in high selling 
seasons. Stock takes and their timing needs to be 
seen as a sales increasing strategy; their cost needs 
to be contrasted to the potential sales increase before 
relevant decisions are being made.

6. Practical recommendations  
and conclusion
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Our operationalised suggestions are summarized as follows:

•	 Positive and negative discrepancies stem from different sources. Check which type of IRI (positive or 
negative) is bigger. If negative, look at shrinkage. If positive, look at your backroom!

•	 Repeat the experiment described in this report (A-Z instructions on how to do so follow at the end of the 
report) and calculate the sales increase that stocktakes can generate. Contrast that to the cost of the 
stocktakes and then you have a good idea about your return on investment.

•	 Rethink the purpose of stocktakes. These are not (only) a necessity. They are an opportunity to reach 
better strategic decisions in increasing sales; and trading such uplift off with the investment needed to 
achieve it. Involve your sales teams in the process of defining your stocktake strategy.

•	 Prioritise your efforts in sorting out IRA. The ‘law of vital few’ applies here too. There is always a high 
discrepancy category that if sorted out the effect on aggregate results is disproportionally higher than 
fixing all the rest of the items together. 

We hope the findings of this report will be useful for the retailing sector to improve operations and increase 
sales. This is the biggest analysis to-date in this area, and the number of companies involved and SKUs analysed 
gives us confidence in the results. We invite every retailer to repeat the experiment we have conducted and 
see for themselves the benefits of correcting inventory records and prove out some of the theories put forward 
in this report. To do so, we present the main steps of the experiment in an Appendix at the end of the report. 

More remains to be done to link the results we present to their root causes, and use the findings reported 
here to inform appropriate interventions. We look forward to continuing our work with ECR in pursuit of these 
developments.  

Y. Rekik, A.A. Syntetos, C. Glock
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Appendix
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Appendix: Experiment replication

1/  Select a list of test/control stores having the same/similar (broadly defined) operational capabilities (e.g. 
type of store, sales area, backroom area, IT infrastructure, replenishment policies, turnover).

2/  Select a set of SKUs that are shared between the test and control stores and for which the scheduled stock 
counts are compatible with Experiment I as illustrated in Figure 3. There are two options here:

a. Do this in real time. Plan the experiment and schedule opening and closing counts for both test and 
control stores, and a middle count for the test stores. 

b. Alternatively, do this retrospectively. Check historical information on stock counts / stores / SKUs and 
conveniently select historical data that matches the prescribed setting. 

3/  Track/measure sales of the selected SKUs in the test and control stores before and after the stock count in 
the middle of the experiment for the test stores. 

4/  Cluster the SKUs based on their contribution to sales in both the test and control stores (Fast/Middle/Slow 
sales contribution classification). The outcome of this exercise helps deducing the most important SKUs 
based on sales contribution as illustrated in Figures 11 and 12. 

5/  Cluster the SKUs in the test stores based on the inaccuracy data (High/Middle/Low inaccuracy classification) 
and based on the sign of the inaccuracy (Negative/Accurate/Positive inaccuracy classification). This leads to 
results illustrated in Figures 5 to 11. A breakdown of this clustering can be done by categories (as illustrated 
in Figure 14 and 15).

6/  Cluster the SKUs based on product categories and examine the results. Some categories respond better to 
counting, and therefore should give a higher ROI.

7/  Validate that the test/control matching is strong. For this purpose, compare the share of common sales 
classes of SKUs between the test and control stores: % of SKUs being fast/middle/slow in both test and 
control store.

8/  Compare sales after the test store middle stock count for each SKU and aggregate the results across 
all test/control stores for all SKUs (which can lead to what is illustrated in Figure 18), break down the 
comparison based on the sales classification (Figure 19), the inaccuracy classification (as illustrated in 
Figure 20), the inaccuracy sign (as illustrated in Figure 21), the SKU category (as illustrated in Figure 22), or 
any other criterion (e.g. sales department, type of store) that may be of relevance / interest to you.
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