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Abstract. This work re-implements the OpenAI Gym multi-goal robotic
manipulation environment, originally based on the commercial Mujoco
engine, onto the open-source Pybullet engine. By comparing the perfor-
mances of the Hindsight Experience Replay-aided Deep Deterministic
Policy Gradient agent on both environments, we demonstrate our suc-
cessful re-implementation of the original environment. Besides, we pro-
vide users with new APIs to access a joint control mode, image observa-
tions and goals with customisable camera and a built-in on-hand cam-
era. We further design a set of multi-step, multi-goal, long-horizon and
sparse reward robotic manipulation tasks, aiming to inspire new goal-
conditioned reinforcement learning algorithms for such challenges. We
use a simple, human-prior-based curriculum learning method to bench-
mark the multi-step manipulation tasks. Discussions about future re-
search opportunities regarding this kind of tasks are also provided.

Keywords: Deep Reinforcement Learning · Simulation environment ·

Pybullet · Robotic Manipulation · Multi-goal learning · Continuous con-
trol.

1 Introduction

Due to the difficulties of reinforcement learning in real-world environments [5],
developing simulation environments for robotic manipulation tasks becomes in-
creasingly important. In addition to the requirement of being realistic, such sim-
ulation is also required to be efficient in generating synthetic data for training
deep reinforcement learning (DRL) agents. Currently, the most popular physics
engines in DRL research are Mujoco [13,16,17] and Pybullet [3,4,15]. Mujoco is
known to be more efficient than Pybullet [6], but it is not open-sourced.
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(a) From left to right: KukaReach, KukaPickAndPlace, KukaPush and KukaSlide.

(b) From left to right: BlockRearrange, ChestPush, ChestPickAndPlace, BlockStack

Fig. 1. The robotic arm manipulation tasks. (a) Single-step tasks, reproduced from the
original OpenAI Gym multi-goal manipulation tasks [1,8] (described in section 2.1).
(b) Multi-step tasks (described in section 2.2).

The cost of a Mujoco institutional license is at least $3000 per year [9],
which is often unaffordable for many small research teams, especially when a
long-term project depends on it. To promote wider accessibility to such resource
and support DRL research in robot arm manipulations, we introduce an open-
source simulation software, PMG, Pybullet-based, Multi-goal, Gym-style [2].
It is written in Python, the most popular language in recent machine learning
research3.

The manipulation tasks proposed by [1,13] focus on goal-condition reinforce-
ment learning (GRL) in sparse reward scenarios. GRL aims to train a policy
that behaves differently when given different goals, for example, picking up dif-
ferent objects. While in sparse reward cases, the agent only receives a reward
signal when a goal is achieved. This is motivated by the fact that providing
task completion information is often easier and less biased than hand-designing
a behaviour-specific reward function for most real-world robotic tasks [5].

We implement the four basic tasks (Fig. 1a) proposed in [1] using Pybul-
let and reproduce the performances achieved by the Deep Deterministic Policy
Gradient (DDPG) algorithm with Hindsight Experience Replay (HER) [1,8].

In addition, we further propose a set of new tasks that focus on multi-step
manipulations in longer horizon with sparse rewards (Fig. 1b). To improve read-
ability, the original set of tasks is named ‘single-step tasks’ and the new set of
tasks is named ‘multi-step tasks’. The multi-step tasks are developed with the
aim to inspire new learning algorithms that can handle tasks where the reward
signals only appear near the end of the task horizon [5,18]. Beside the delayed

3 The source codes are available at https://github.com/IanYangChina/pybullet
multigoal gym.

https://github.com/IanYangChina/pybullet_multigoal_gym
https://github.com/IanYangChina/pybullet_multigoal_gym
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rewards, these tasks also require multiple steps to complete, and some of the
steps are strongly dependent. For example, a block cannot be placed into a chest
unless the chest is opened. This characteristic requires a learning algorithm to
reason about the relationships between steps.

To facilitate comparison in future research, we benchmarked the perfor-
mances on the four multi-step tasks by training the aforementioned DDPG-HER
agent [1] with a simple human prior-based curriculum. Potential research di-
rections in this regard are also discussed. To sum up, our contributions in this
article are:

• Reproducing the multi-goal robotic arm manipulation tasks [13] using Py-
bullet, making it freely accessible.

• Reproducing the Hindsight Experience Replay performances [1] on the Pybullet-
based environments.

• Proposing a set of new environments for multi-goal multi-step long-horizon
sparse reward robotic arm manipulations.

• Benchmarking the multi-step tasks and proposing future research opportuni-
ties.

The rest of this paper includes the details of the proposed environments and
programming APIs (section 2); the reproduction results of the DDPG-HER agent
on the single-step tasks, the benchmark results of the multi-step tasks and dis-
cussions of challenges and future research (section 3); and finally the conclusion
(section 4).

2 Environment

2.1 Single-step tasks

As shown in Fig. 1a, the single-step tasks are:

• KukaReach, where the robot needs to move the gripper tip to a goal location.
• KukaPickAndPlace, where the robot needs to pick up the block and move it

to a goal location4.
• KukaPush, where the robot needs to push the block to a goal location on the

table surface.
• KukaSlide, where the robot needs to push the cylinder bulk with a force such

that the bulk slides to a goal location that is unreachable by the robot.

Different from the original environments, which use a Fetch robot, we use
a Kuka IIWA 14 LBR robot arm equipped with a simple parallel jaw gripper.
This does not affect training as only Cartesian space control (gripper movement
and finger width) are used in the original tasks. We plan to support more robot
arms in the future.

4 In training, the PickAndPlace goals are generated either on the table surface or in
the air, with even probability, as suggested by [1]
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In addition to the gripper frame control mode, our environments also sup-
port joint space control, which results in a 7 dimensional action space for the
KukaReach and KukaPush tasks and an 8 dimensional one for the other two
tasks (with one extra dimension for controlling the gripper finger width). Such a
control mode has been largely ignored in most DRL-based manipulation works,
possibly due to its high dimensionality. However, this control mode is impor-
tant in scenarios that involve collision avoidance. A manipulation policy should
not only consider end-effector control, but also learn to control each joint more
explicitly when the surroundings are crowded by objects or other agents, e.g.,
humans. We leave the design of tasks for this specific direction to future work.

The tasks provide two reward functions. The dense reward function uses
the negative Euclidean distance between the achieved and desired goals. The
sparse reward function gives a reward of 0 when a goal is achieved and -1 ev-
erywhere else. We further provide RGB-D images as an optional observation
representation. Users can easily define different camera view-points for render-
ing observations and goals.

Note that, we did not change the design of these four tasks, but reproduce
them using a different physics engine. For more details of the task, such as
the state and the action spaces, we refer the readers to the original paper [13].
The APIs and programming style are slightly different and are described in
section 2.3.

2.2 Multi-step tasks

Fig. 1b visualises the four challenging multi-step tasks developed by the authors,
aiming at sparse reward long-horizon manipulations. Briefly, they are:

• BlockRearrange, where the robot needs to push the blocks to random posi-
tions. Gripper fingers are blocked in this task.

• ChestPush, where the robot needs to first open the sliding door (in black
colour) of the chest and then push the blocks into the chest. Gripper fingers
are blocked in this task.

• ChestPickAndPlace, where the robot needs to first open the sliding door (in
black colour) of the chest and then pick and drop the blocks into the chest.

• BlockStack, where the robot needs to stack the blocks into a tower in a given
order that is randomly chosen.

These tasks require the robot to learn different combinations of behaviours
and provide different numbers of step dependencies. For example, the BlockStack
task has more dependent steps with the increase of the number of blocks to be
stacked. The complexity of these tasks increases with more dependent steps
and blocks, as shown in Table. 1. Moreover, the number of blocks involved in
a task affects its task horizon, and thus its exploration difficulty. Detailed task
information is provided in supplementary material section 1.

With the challenge of sparse reward in mind, the extreme case of these tasks
is that the environment only gives a task completion signal (e.g., a reward of 0)

https://github.com/IanYangChina/taros2021codes/blob/master/taros20210308_supplementary.pdf
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Table 1. Multi-step tasks summary

Task Needed behaviours Step dependency Num. of blocks

BlockReaarange pushing 0 2 to 5
ChestPush pushing 1 1 to 5
ChestPickAndPlace pushing, picking, dropping 1 1 to 5
BlockStack pushing, picking, placing ≥ 2 2 to 5

when the ultimate goal (e.g., all the blocks are stacked) is achieved, and provides
a reward of -1 everywhere else. In this case, the task is extremely difficult for any
naive reinforcement learning algorithm, even the one with hindsight experience
replay (see section 3.2). This is because the reinforcement learning agent has an
extremely low probability of seeing a meaningful reward value. Compared to the
single-step tasks, which only feature the sparse reward problem in a short task
horizon, these multi-step tasks can be used to investigate more difficult problems,
such as

• How to explore efficiently for multi-step tasks with sparse and delayed re-
wards?

• How to represent and learn the dependencies among task steps?
• How can ideas such as curriculum learning, option discovery and hierarchical

learning help in these tasks?

One possible research direction for these problems is to create a curriculum
that provides the learning algorithm with goals starting from easy to difficult
[11,12]. In this paper, we design a human-prior based curriculum for the multi-
step tasks. It simply generates goals that require increasing time horizons to
achieve, e.g., from stacking two blocks to five. However, the results show that
such a simple curriculum is not efficient enough for longer horizon tasks (see sec-
tion 3.2). To tackle these problems, more efficient methods need to be developed.
Section 3.3 provides more discussion on future research opportunities.

2.3 APIs and Programming style

In OpenAI Gym, users create environment instances by specifying a unique task
ID pre-registered in the package [2,13]. In contrary, we provide users with an API
to make environments more intuitively. As shown in Code 1, the make env(...)

function provides arguments to setup a specific environment instance. Supple-
mentary material section 2 provides a detailed explanation of these arguments.
Currently, only eight tasks are prepared, including four single-step tasks and four
multi-step tasks.

We provide an argument to activate image observations and goals, while
the original Gym environment requires users to rewrite some of the code to
achieve this. In addition, users can easily customise cameras for observation
or goal images by defining a list of Python dictionaries and passing it to the
camera setup argument. An example is given in supplementary material Code 2.

https://github.com/IanYangChina/taros2021codes/blob/master/taros20210308_supplementary.pdf
https://github.com/IanYangChina/taros2021codes/blob/master/taros20210308_supplementary.pdf
https://github.com/IanYangChina/taros2021codes/blob/master/taros20210308_supplementary.pdf
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Code 1 Create an environment instance

# Original OpenAI Gym style
import gym
env = gym.make(“FetchReach-v0”)
# Our style
import pybullet multigoal gym as pmg
env = pmg.make env(

# task args
task=‘block rearrange’, joint control=False, num block=2, render=False,
binary reward=True, max episode steps=50, distance threshold=0.05
# image observation args
image observation=False, depth image=False, goal image=False,
visualize target=True,
camera setup=camera setup, observation cam id=0, goal cam id=1,
# curriculum args
use curriculum=True, num goals to generate=1e6)

# Interaction loop
obs = env.reset()
while True:

action = env.action space.sample()
obs, reward, done, info = env.step(action)
if done:

obs = env.reset()

Intuitively, the setup example defines two cameras, and in Code 1 they are used
for capturing observation and goal images respectively, by setting the cam id

arguments to 0 and 1. Alternatively, users can pass −1 to the cam id arguments,
activating an on-hand camera looking at the gripper tip position. Fig. 2 shows
a scene and three images rendered with the above-mentioned cameras.

Except for the codes that create an environment instance, other user APIs
are kept the same as the original multi-goal Gym environment package. In our
experiments, the code of training the DDPG-HER agent needs no change from
Mujoco to Pybullet, and we successfully reproduce the performances as shown
in section 3.1.

(a) Scene (b) Camera 1 (c) Camera 2 (d) On-hand camera

Fig. 2. Images rendered using the two cameras defined in supplementary material Code
2 and the built-in on-hand camera.

https://github.com/IanYangChina/taros2021codes/blob/master/taros20210308_supplementary.pdf
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3 Benchmark and Discussion

In section 3.1, we reproduced the Hindsight Experience Replay (HER) [1] on the
single-step tasks to demonstrate the success of the transfer from the Mujoco-based
environments to ours. More specifically, we trained a DDPG agent using the
‘future’ goal-relabelling strategies, with the same hyperparameters and design
proposed in [1], except that we did not use distributed training. In addition, we
also trained the same agent on the single-step tasks with joint control.

Section 3.2 shows the results of training the DDPG-HER agent on the multi-
step tasks. The results serve as a benchmark for future studies. Section 3.3 pro-
vides challenges and future research opportunities.

The Pytorch implementation of the algorithm is available here. The exper-
iment scripts are available here. All experiments of this article were run on
Ubuntu 16.04 on a workstation with an Intel i7-8700 CPU and an Nvidia RTX-
2080Ti GPU. All performance statistics are averaged from 4 runs with different
random seeds.

3.1 Reproducing Hindsight Experience Replay on Single-step tasks
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Fig. 3. DDPG-HER perfor-
mances on Joint space con-
trol tasks.

For comparison, we ran the same DDPG-HER algo-
rithm [1] with the same set of hyperparameters on
the Mujoco- and our Pybullet-based environments.
As shown in Fig. 4, the algorithm achieved almost
the same performances on the both software envi-
ronments 5. These results demonstrate our success-
ful transplantation of the single-step tasks onto the
Pybullet engine.

Beside the original tasks, we also ran the exper-
iments with joint space control using the same al-
gorithm. These joint space control tasks differ from
the original gripper frame control tasks in that the
robot’s actions are now joint commands, and the
state representation further includes the current joint states. Results show that,
in comparison to gripper frame control mode, single-step tasks under joint space
control mode are harder to learn (Fig. 3). Its performance on the easiest Reach
task also shows higher variance.

This is expected as the action space has higher dimensionality. On the other
hand, the gripper is constrained to be pointing top-down under the gripper frame
control mode, but this constraint is released under the joint space control mode.
This makes the tasks harder to learn by increasing the size of its solution space.

For future research, it is valuable to develop reinforcement learning algo-
rithms that can handle such control tasks with higher action dimensionality and

5 Note that the Slide task is sensitive to the random seeds in both environments. The
agent was unable to learn anything in some cases. It also exhibited higher variance
than other tasks.

https://github.com/IanYangChina/DRL_Implementation/blob/master/drl_implementation/agent/continuous_action/ddpg_goal_conditioned.py
https://github.com/IanYangChina/taros2021codes
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Mujoco-DDPG Mujoco-DDPG-HER Bullet-DDPG Bullet-DDPG-HER
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Fig. 4. Test success rates of the single-step tasks on Mujoco or Pybullet engine.

larger solution space, potentially from (depth-) image observations. Investigat-
ing harder tasks including collision avoidance and comparing with classic motion
planning methods are interesting directions as well.

3.2 Benchmarking Multi-step tasks

This section discusses the performances of the DDPG-HER agent [1] on the
multi-step tasks, with and without the use of the proposed simplistic curriculum
(supplementary material section 3). We benchmarked the tasks without a chest
using 2, 3, 4 blocks, and the tasks with a chest using 1, 2, 3 blocks.

We made one modification to the agent for these tasks. The action values
predicted by the critic network are clipped within [−50, 0] in the single-step tasks
as suggested by [1], because the lowest value is −50 under sparse reward setting,
given that the maximum episode timestep is 50 [13]. For the multi-step tasks, we
changed the lower bound of the clipped value range to the negative maximum
episode timestep for each task.
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Fig. 5. Test success rates of the multi-step tasks. ‘crcl’ means ‘curriculum’.

As shown in Fig. 5, the DDPG-HER agent learned nothing without the help
of the curriculum (blue line in each subplot). When aided by the curriculum,
it could achieve the easiest steps (open the chest door) in the ChestPush and
ChestPickAndPlace tasks, but failed at later harder steps (success rates quickly
drop to near 0 as learning proceeds, shown by the orange, green and red lines).
For the BlockRearrange and BlockStack tasks, the agent struggled to learn the
easiest steps even with the help of the curriculum. This is because exploring to
open the chest door is easier than moving a block around. These results indicate
that these sparse rewards multi-step tasks are still unsolvable given the current
state-of-the-art reinforcement learning algorithms.

https://github.com/IanYangChina/taros2021codes/blob/master/taros20210308_supplementary.pdf
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3.3 Challenges and opportunities

This section discusses the challenges and future research opportunities related to
the sparse reward multi-step robotic manipulation tasks from two perspectives,
including exploration efficiency and representation learning. From each of them,
there are several research directions that can be focused on.

Exploration: In sparse reward environments, improving exploration effi-
ciency has long been a research challenge in the field of DRL [14]. However,
current research has been restricted within toy problems (e.g., grid world) or
the Atari games (e.g., Montezuma’s Revenge). These are all 2D tasks with dis-
crete action spaces. Robotic manipulations are tasks in a 3D world, with larger
and richer observations and continuous action spaces. It would be valuable to
evaluate techniques that work in the 2D tasks on our 3D and continuous action
tasks, with the hope to improve them further and transfer to the real-world.

In the multi-goal setting, we have demonstrated the insufficiency of the HER
aided by a simplistic goal generation curriculum. It is then potentially fruitful
to develop a better curriculum for such tasks. Another interesting direction is
to leverage task decomposition for multi-step tasks and make use of hierarchical
learning systems [18]. The use of sub-goals is a promising way to tackle the hard
exploration problem in such tasks.

Representation learning: Representation for RL agents, especially in sparse
reward tasks, has been increasingly active recently. Different from supervised
learning tasks, RL agents rely on the reward signals to learn a representation
of the environment and the task altogether. This makes it hard to generate and
maintain a good representation in sparse reward tasks, in which the represen-
tation learnt can easily collapse. Again, current state-of-the-art in this direction
has been largely restricted within 2D tasks or tasks with short horizon [7,10],
and our environment is a promising testbed for evaluating and improving them
in a 3D world with longer task horizons.

4 Conclusion

We propose an open-source robotic manipulation simulation software implemen-
tation for multi-goal multi-step deep reinforcement learning. The implementa-
tion of the OpenAI multi-goalstyled environment (based on the Mujoco engine)
has been achieved using Pybullet. Performance of the popular DDPG-HER al-
gorithm has been reproduced in our work (section 3.1). Except for the original
manipulation tasks, named single-step tasks, we designed a set of multi-step tasks
with sparse rewards in longer task horizons. We benchmarked the performances
of the DDPG-HER agent with and without the use of a simplistic goal generation
curriculum (section 3.2), demonstrating the inability of the state-of-the-art al-
gorithms to learn in such long horizon and sparse reward environments. Finally,
we provided brief discussions of the challenges and future research opportunities,
including exploration and representation learning in sparse reward rein-
forcement learning. Our future research will focus on developing sub-goal-based
solutions to tackle such multi-step sparse reward robotic manipulation tasks.
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