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Abstract

At every iteration or timestep of the online phase of some reduced-order modelling schemes for non-linear or time-dependent
ystems, large linear systems must be assembled and then projected onto a reduced order basis of small dimension. The projected
mall linear systems are cheap to solve, but assembly and projection become the dominant computational cost. In this paper
e introduce a new hyper-reduction strategy called reduced assembly (RA) that drastically cuts these costs. RA consists of a

riangulation adaptation algorithm that uses a local error indicator to construct a reduced assembly triangulation specially suited
o the reduced order basis. Crucially, this reduced assembly triangulation has fewer cells than the original one, resulting in lower
ssembly and projection costs. We demonstrate the efficacy of RA on a Galerkin-POD type reduced order model (RAPOD).
e show performance increases up to five times over the baseline Galerkin-POD method on a non-linear reaction–diffusion

roblem solved with a semi-implicit time-stepping scheme and up to seven times for a 3D hyperelasticity problem solved with
continuation Newton–Raphson algorithm. The examples are implemented in the DOLFIN finite element solver using PETSc

nd SLEPc for linear algebra. Full code and data files to produce the results in this paper are provided as supplementary
aterial.

c 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
http://creativecommons.org/licenses/by-nc-nd/4.0/).

eywords: Hyper-reduction; Model order reduction; Non-linear PDEs

1. Introduction

The response of many physical systems across the sciences and engineering can be predicted by finding the
olution of a non-linear and possibly time and parameter-dependent partial differential equation (PDE). This PDE
annot usually be solved using analytical approaches and we must resort to numerical methods. The original non-
inear infinite-dimensional problem can be transformed via a suitable discretisation into a sequence of discrete linear
lgebra problems of finite dimension.

The construction and solution of this sequence of linear algebra problems is often computationally demanding.
n each step we can split the computational cost between two phases:
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i. The assembly of a large and sparse linear system;
ii. The solution of that linear system.

The assembly and solution procedure repeats itself until some convergence criteria are met, or the final time is
reached. It is generally true that for any sufficiently large problem, the cost of the solution of the linear system
dominates the cost of assembly. An obvious way to reduce computational cost is to reduce the size of the linear
problems that must be solved. In the context of the finite element method this can be achieved by, for example,
using a posteriori error estimation techniques to drive triangulation (mesh) adaptivity, see e.g. [1]. The triangulation
adapts locally to the solution. The adapted triangulation has fewer cells leading to reduced computational cost.
Another approach to reduce computational cost is reduced-order modelling (ROM). ROM is used in many notable
applications, e.g. real-time simulation [2], accelerating parametric studies and stochastic simulation [3].

Many, although by no means all, reduced-order modelling approaches consist of an offline and an online phase. A
reat deal of computational work is performed in the offline phase to produce an online phase where we can compute
housands of new solutions at points in parameter space that were not previously computed offline. Typically this
ffline phase includes pre-computation of a set of solution snapshots at different points in the parameter space.
his pre-computation is performed using a standard numerical method such as the finite element method. Once

hese snapshots have been computed, the information within them is in some way compressed into a more efficient
epresentation. In the reduced basis (RB) approach, e.g. [4–7], a linear combination of the snapshots selected by
greedy procedure is used as the global basis. In the Galerkin proper orthogonal decomposition (Galerkin-POD)

pproach e.g. [8–14] an orthonormal reduced basis is constructed that is optimal in the sense that the sum of
he squared errors between the snapshots and their approximation in the POD basis is minimised. In the proper
eneralised decomposition approach (PGD) e.g. [2,15] the solution is expressed in a separated basis representation
hich can be solved independently. In this paper we exclusively work with basis functions computed with the POD

pproach, but other approaches for constructing reduced order models such as RB could be considered.
We now turn to the online phase. In this phase we would like to quickly compute many thousands of new

olutions at points in the parameter space that were not previously computed offline in the set of snapshots. We
o this by using the POD modes to span or interpolate the solution space. Note that we are still dealing with a
on-linear and/or time-dependent problem, so there is still a sequence of linear algebra problems to solve as in the
nite element method. The construction of this sequence of linear algebra problems in the Galerkin-POD setting
onsists of the following steps:

i. The assembly of a large and sparse linear system arising from the finite element discretisation.
ii. That linear system is projected through the POD basis functions, resulting in a small and dense linear system.

iii. The solution of the small and dense linear system to find the Newton–Raphson update or the next solution
in time.

iv. Projection of the reduced solution back to the finite element space.

he assembly, projection, solution and reconstruction procedure repeats itself until some convergence criteria are
et, or the final time is reached. The issue is that the solution of the small linear system is now so much cheaper

hat the assembly step dominates the overall cost of the online phase. In short, because of the effectiveness of the
OD approach, the main computational burden shifts from solution back to assembly and projection.

A large class of techniques commonly referred to as hyper-reduction techniques have been created to reduce the
urden of assembly and projection. Hyper-reduction methods usually work by locating a set of points and weights
n the domain which are important for capturing non-linearity. Empirical interpolation (EIM) [16,17] or discrete
mpirical interpolation (DEIM) [18,19], can be used to approximate parametric or non-linear functions by separable
nterpolation functions. Other approaches include missing point estimation [20], Empirical Cubature Method [21],
etrov–Galerkin reduced integration [22], Gappy-POD [23], Gauss–Newton Approximated Tensors (GNAT) [24],
mpirical Quadrature (EQ) [25,26] and Solution-based Nonlinear Subspace (SNS) [27]. In recent work, [28,29]
pplied adaptive coarse mesh reduction to construct hyper-reduced flow models. Simply put, these methods work
y identifying a subset of terms in the non-linear equations that are important. In the case of DEIM [30] this subset
onsists of a set of so-called magic points in space. Implicit here is the idea that the key non-linearities are somehow
ocally supported in space. The quasicontinuum (QC) method [31–37] uses this idea to select representative points

n space to create continuum representations of underlying discrete models.
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The method proposed in this paper is a novel hyper-reduction method. We call this method the Reduced Assembly
RA) method. RA is conceptually simple, can be implemented in many off-the-shelf finite element codes with little
r no modification, and provides significant computational gain over standard reduced-order approaches in the case
f non-linear or time-dependent problems. We apply the reduced assembly approach to a standard Galerkin-POD
ormulation, resulting in what we call the Reduced Assembly Proper Orthogonal Decomposition (RAPOD) method.

A high-level overview of RAPOD is as follows; we use a standard Galerkin-POD procedure to generate a set
f globally supported basis functions from a set of solution snapshots in parameter space. The key idea behind
A is that the POD functions act as indicators of the region of the domain that are important (or not). The RA
ethod uses a simple error indicator and standard local piecewise basis functions to drive the adaptation of a new

roblem triangulation that is specially tailored to the reduced-order basis functions. The location and weights of
he integration points in the triangulation comes naturally and automatically as in the finite element method. This
dapted triangulation typically has far fewer cells than the original triangulation. The POD basis functions are then
nterpolated to this new adapted triangulation.

The online phase is exactly the same as the standard POD procedure, except that the discrete finite element
perators are assembled on this adapted triangulation and projected through the interpolated POD basis functions.

Note that the RA approach is general and could be adapted to other cases where numerical integration and
ssembly is particularly costly, e.g. high-order non-polynomial approximations such as meshfree methods or
sogeometric analysis.

A distinct feature of RA compared with most other hyper-reduction methods is that by using triangulation
daptation, a new finite element model is constructed on the adapted triangulation based on the important features
etected in the solution snapshots via the POD procedure. We call this standard finite element model on an adapted
riangulation RAFEM and is a useable numerical discretisation itself. In contrast, most hyper-reduction methods
ork by sampling a subset of the degrees of freedom (e.g. DEIM’s magic points [19]) from the original full-order
odel. Our approach has the advantage that the new full-order model directly inherits the underlying numerical

roperties (e.g. ellipticity/coercivity, full-rank) of the original full-order model used to generate the snapshot set,
s long as the adapted triangulation is of sufficiently good quality (e.g. no heavily distorted cells). The integration
oint locations and weights come naturally from the definition of the triangulation as in the finite element method.
ecause of this, the online stage of the RAPOD procedure can use entirely standard finite element assembly routines

o construct the full-order model, making it relatively straightforward to implement. In contrast, for example, an
fficient implementation of DEIM requires a custom assembler to be written that loop over only the degrees of
reedom associated with the magic points. A disadvantage of our approach is that triangulation adaptivity brings its
wn complications, particularly with respect to domains with complex or concave curved boundaries or POD basis
unctions with highly anisotropic behaviour. As already mentioned, the adapted mesh must also be of good quality
ccording to the usual metrics, and this is not always possible. These issues are the subject of ongoing research.

An outline of this paper is as follows; in Section 2 we give an overview of the generic problem formulation,
efore giving a reminder of the standard POD procedure in Section 3. A detailed description of the new RAPOD
ethod is given in Section 4. Finally, illustrative numerical results are shown in Section 5, before concluding in
ection 6.

. Problem formulation

Our starting point is the following weak residual form of a system of parameterised non-linear and/or time-
ependent partial differential equations. Throughout we use lower case italics e.g. u to refer to continuous functions

and spaces, and bold-faced italics e.g. u to refer to discrete operators like matrices and vectors. Consider a spatial
domain Ω ⊂ Rd with x ∈ Ω . For a fixed parameter m̄ in some admissible set M , and for each t ∈ (0, T ] find a
u(x, t) ∈ V such that

∀ ũ ∈ V̂ . F(u, t,m = m̄; ũ) = 0, (1)

where F : V × (0, T ] × M × V̂ → R is a semi-linear form, that is, linear in the arguments (here, the test function
ũ) following the semicolon. As the parameter m is fixed at m̄ here, we drop the explicit dependence on m in what
follows.

The proposed RAPOD method is applicable to the following two broad classes of discrete solution methods that

can be used to solve problems of the type (1).
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2.1. Non-linear stationary problems solved with Newton–Raphson method

In the non-linear stationary case, we can exclude the dependency on time and simply write the problem as: Find
(x) ∈ V such that

∀ ũ ∈ V̂ , F(u; ũ) = 0, (2)

It is well known that problems of this type can be solved with the Newton–Raphson method. We apply the Newton–
Raphson method at the continuous level1 before discretising in space using the finite element method. Given an
initial approximation u0

∈ V to (2) we seek an improved approximation uK+1
∈ V through a sequence of K steps

uk+1
= uk

+ δuk, k = 0, . . . , K . (3)

The increments δuk can be found by solving the following update equation for each k

∀ũ ∈ V̂ J (uk
; δuk, ũ) = −F(uk

; ũ), (4)

where J (uk
; δuk, ũ) is the Jacobian, which can be obtained by taking the Gateaux derivative of the residual at a

point u ∈ V in a direction δu ∈ V

J (u; δu, ũ) := Du[F(u; ũ)][δu]. (5)

Typically K is chosen after a certain stopping criterion is reached, e.g. ∥F(uK+1
; ũ)∥ < ϵ.

We then discretise the solution u in space using e.g. a Galerkin H 1-conforming finite element method. We
ntroduce a triangulation2 T 0

h of the domain Ω consisting of N 0
c simplicial cells (e.g. triangles or tetrahedrons) and

hen build discrete trial and test spaces Vh ⊂ V and V̂h ≡ Vh spanned with piecewise linear polynomial finite
lement basis functions {φi }

N
i=1 with N = dim(Vh)

uh(x) =

N∑
i=1

φi (x)ui , (6)

u = {u1, u2, . . . , uN }
T

∈ RN . (7)

here the ui are unknown coefficients that can be found using the standard Galerkin procedure, and u are the
coefficients ui arranged in a vector.

Following standard arguments, by substituting the basis (6) into (3) and (4) we obtain the following fully discrete
Newton–Raphson method: Given an initial approximation u0

∈ RN , find δuK+1
∈ RN through a sequence of K

steps

uk+1
= uk

+ δuk, (8a)

J(uk)δuk
= − f (uk), (8b)

where J(uk) ∈ RN×N is the matrix arising from the finite element discretisation of the Jacobian J (uk
; δuk, ũ),

nd f (uk) ∈ RN is the vector arising from the finite element discretisation of the residual F(uk
; ũ). We explicitly

emark on the dependence of J(uk) and f (uk) on the current solution uk , i.e. they must typically be re-assembled
t every Newton step.

.2. Non-linear time-dependent problems solved with semi-implicit time integration

In the time-dependent case, after first discretising in time un
≈ u(tn) at L + 1 times t0 < t1 < · · · < t L

∈ [0, T ]
using a semi-implicit time-stepping scheme, and then in space using finite elements u(tn) ≈ uh(tn) ∈ Vh , we end

p with a sequence of discrete linear problems to solve: for n = 0, . . . , L − 1 and initial condition u0
∈ RN , find

un
∈ RN such that

K un+1
= b(un), (9)

1 Performing differentiation at the continuous level before discretising is consistent with the approach taken in the FEniCS Project [38],
which we use to generate the numerical results in this paper.

2 It should be possible to apply the proposed method to other discretisations of the domain that support adaptivity, e.g. quadtree/octree
meshes [39,40].
4
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where K and b(un) are matrices and vectors arising from the finite element discretisation of the semi-discrete
solution in time. Again, we explicitly remark on the dependence of b on the current (known) solution un , i.e. it

ust typically be re-assembled at every timestep.
In both cases, we end up with a sequence of linear problems that must be solved. Critically, some of the matrix

nd/or vector operators in the linear problems are dependent on the current and/or previous solutions and must be
ssembled at every step of the Newton–Raphson or timestepping algorithm. As discussed in the introduction, it
s this assembly cost that becomes dominant in the context of many reduced-order modelling schemes applied to
ime-dependent or non-linear problems.

. Proper orthogonal decomposition

Let us briefly recall the main steps to construct a proper orthogonal decomposition (POD) basis via the method
f snapshots. More details can be found in [10,12]. We pay no special attention to the quality of the POD procedure
n this paper, instead the totally standard POD procedure outlined below forms a benchmark by which the proposed
APOD procedure can be assessed. Further improvements to the POD procedure (e.g. snapshot selection) would

esult in improvements to the results of the RAPOD method.
We generate snapshots by repeatedly solving (1) at S discrete points in time and parameter space s =

(t1,m1), (t2,m2), . . . , (t S,mS)
}
. Each pair of points in s is then associated with a solution snapshot ui for

= 1, . . . , S generated by solving (1) with fixed m and t . With the set of coefficients of the discrete solution
napshots U = {u1, u2, . . . , uS} ∈ RN×S computed, we seek a O-dimensional subspace VR ⊂ Vh that optimally

represents the data contained in the snapshots U with the smallest possible O , i.e. we seek a projection operator3

ΠO : Vh → VR that minimises the following least-squares distance

O∑
i=1

∥ui − ΠOui∥
2
Vh
. (10)

t is well known that the optimal basis in the above least-squares sense Φ =
{
ϕ1, . . . ,ϕO

}
∈ RN×O spanning VR

an be found by solving the following eigenvalue problem

Cψ i = λiψ i , ϕ i =
1

√
λi

Uψ i , ∥ψ i∥Vh = 1, i = 1, . . . , S, (11)

here C = U T U ∈ RS×S is the empirical correlation matrix of the snapshots U . In practice, only the leading
O ≪ S eigenvalues and eigenvectors containing the dominant energy of the spectrum are retained. We can then
pproximate the following ansatz for the solution in the space VR

u ≈ u R =

O∑
i=1

ϕi (x)u Ri , (12)

uR = {u R1, u R2, . . . , u RO} ∈ RO . (13)

n additional practicality is that we do not work with the ansatz (12) directly. Instead, we use the POD-Galerkin
rocedure, directly projecting the finite element linear algebra objects assembled on the full space Vh onto VR in
he online phase, e.g. for the Newton scheme (8)

J̃ = ΦT JΦ ∈ RO×O , f̃ = ΦT f ∈ RO , (14)

r in a timestepping scheme (9)

K̃ = ΦT KΦ ∈ RO×O , b̃ = ΦT b ∈ RO . (15)

3 Given a set of basis functions
{
ϕ1, . . . ,ϕO

}
that spans the sub-space VR , the projection operator ΠO , defined as (ΠO ( f ),ϕ i )Vh =

f,ϕ ) , ∀ f ∈ V , i ∈ [1, O] is given as Π ( f ) =
∑O ( f,ϕ ) ϕ .
i Vh h O i=1 i Vh i

5
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4. The reduced assembly POD method

In this subsection we present the algorithm to adaptively construct the reduced assembly triangulation necessary
o reduce the expense of computing the (14) and (15) in the reduced-order space.

Summarising the approach detailed below, we adaptively generate a sequence of refined triangulations that are
pecifically tailored to integrate the POD basis functions, which in turn are specifically tailored to the selected
napshots generated in the offline phase. In effect, we drive an offline triangulation adaptivity process for the global
OD basis functions that results in a triangulation specially suited to the reduced order problem. Clearly, this idea

s related to the common idea of driving an adaptation of the triangulation based on the solution u, except that in
our case we perform all of our adaptation offline based on the information contained in the POD basis. For a given
tolerance our algorithm only needs to be applied once in the offline stage, as long as the snapshot space and POD
basis remains unchanged.

The algorithm relies on a combination of tools readily found in most finite element toolboxes, namely; adaptive
refinement, projection and interpolation between functions on non-matching triangulations, assembly of bilinear
and linear forms and a few basic linear algebra operations. We have chosen to implement our method using
DOLFIN [41], part of the FEniCS Project [38], but most finite element toolboxes could be used with little effort.
Linear algebra operations are all performed using PETSc [42] and SLEPc [43].

We start with the original problem triangulation T 0
h consisting of N 0

c simplicial quasi-uniform cells {T 0
1 , . . . , T 0

N 0
c
}

that form an approximation to the problem domain Ω

Ω ≈ T 0
h = ∪

N 0
c

i=1T 0
i . (16)

sing this triangulation and the standard methodology outlined in Section 3 we generated the solution snapshots U
rom which we can calculate O POD basis functions {ϕ1, . . . ,ϕO}. We then create the coarsest possible triangulation

1
h with N 1

c ≪ N 0
c simplicial cells {T 1

1 , . . . , T 1
N 1

c
} that also covers the problem domain

Ω ≈ T 1
h = ∪

N 1
c

i=1T 1
i . (17)

hen, starting with POD basis function ϕ1, we begin the adaptation/refinement of triangulation T 1
h . The POD basis

unction ϕ1 has global support and is interpolated on the finite element function space Vh(T 0
h ) that was used to

enerate the snapshots of the non-linear problem (1). Furthermore, it is the basis function associated with the
eading eigenvalue of (11) and has the least oscillatory behaviour.

For every cell T 1
i of the coarse triangulation T 1

h we calculate the following cell local error indicator that represents
he local error in the integral of |ϕ1| over the support of T 1

i

ηi =

∫
T 1

i (Qn )
|ϕ1(x)| dx −

∫
T 1

i (Qn+1)
|ϕ1(x)| dx, (18)

where T 1
i (Qn) denotes that the corresponding integral is calculated using a quadrature rule of order n on the simplex

T 1
i . The notation | · | means to take the absolute value of the argument. Note that in the numerical integration

procedure the value of the function ϕ1 at any point x ∈ Ω is evaluated using the basis functions in the finite
element function space Vh defined on the original triangulation T 0

h . From a heuristic perspective, assuming that
basis function ϕ1 is sufficiently smooth, the cell error indicator ηi

h tells us of whether further refinement of the cell
Ti could lead to an improved approximation to the integral of the basis function ϕ1. The basis functions are used
as indicators of areas of the domain in which important features in the solution are occurring. The use of Gauss
quadrature rules of increased order to estimate integration error is well-established, e.g. hierarchical Gauss–Kronrod
rules, as discussed in [44]. The use of the absolute function | · | is to ease the situation in which the integral of the
oscillatory basis function (across the domain or even across the cell) is close to zero.

We calculate two further global quantities. The first, Ie, is the integral of the absolute value of the basis function ϕ1

on the original triangulation T 0
h using a sufficiently high quadrature rule of order m (with respect to the polynomial

order of the basis functions in Vh)

Ie =

N 0
c∑ ∫

0
|ϕ1| dx . (19)
i=1 Ti (Qm )

6
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This can be considered the ‘exact’ integral of |ϕ1|. The second quantity is the approximate integral Ia of the absolute
value of the basis function calculated on the coarse triangulation T 1

h

Ia =

N 1
c∑

i=1

∫
T 1

i (Qn )
|ϕ1| dx . (20)

We then calculate the following global relative error

E = |Ie − Ia|/Ie. (21)

If E is greater than some specified tolerance, e.g. 1%, we use the cell-based error indicators ηi
h to mark some cells

in triangulation T 0
h for refinement following the strategy proposed by Dörfler [45]. In short, the cells are ordered

in reverse numerical order of their local error and then a fixed proportion is refined. We then repeat the above
algorithm for basis function ϕ1 as many times as necessary to drop the error E below the specified tolerance.

Once E is sufficiently small, we have the specially adapted triangulation T 1
h for basis function ϕ1. We then repeat

the above process using the triangulation T 1
h as input for the adaptive refinement algorithm on basis function ϕ2 to

find T 2
h , and so on, until we have performed the triangulation adaptation for all O basis functions. The output of

the algorithm is a triangulation T O
h .

A more formal version of the procedure is detailed in Algorithm 1. We would encourage the reader to refer to
Fig. 2 for a visual representation of the evolution of the RAPOD algorithm, and Fig. 4 for the final output.

Algorithm 1 Reduced assembly triangulation refinement algorithm.

Original triangulation T 0
h with N0 simplicial cells.

Set of global basis functions, {ϕ1, . . . , ϕO} defined on a function space Vh on the original triangulation T 0
h .

Initial coarse triangulation T 1
h with N 1

c simplicial cells with N 1
c ≪ N 0

c .
A tolerance on the integration error, tol.
for i = 1 : O (loop over POD basis functions) do

Calculate ‘exact’ integral Ie =
∑N0

c
j=1

∫
T 0

j (Qm ) |ϕi | dx .

Let N i
c be the number of cells in current triangulation T i

h .

Calculate ‘approximate’ integral Ia =
∑N i

c
k=1

∫
T i

k (Qn ) |ϕi | dx .
Calculate E = |Ie − Ia|/Ie.
while E > tol do

for l = 1 : N i
c (loop over cells in triangulation) do

Calculate local error estimator
ηl =

∫
T i

l (Qn ) |ϕi (x)| dx −
∫

T i
l (Qn+1) |ϕi (x)| dx .

end for
Based on ηl , refine triangulation T i

h with Dörfler algorithm.
Let N i

c be the number of cells in the refined triangulation T i
h .

Calculate improved ‘approximate’ integral on refined triangulation Ia =
∑N i

c
k=1

∫
T i

k (Qn ) |ϕi | dx .
Calculate E = |Ie − Ia|/Ie.

end while
Let T i+1

h be T i
h .

end for
return T O

h .

We now reconstruct the Galerkin-POD problem on the triangulation T O
h associated with the Oth basis function.

We construct a finite element function space V R
h on the triangulation T O

h with dim(V R
h ) = NR . We then generate

an interpolation operator P : Vh → V R
h and project every POD basis function

ϕ | = Pϕ i = 1, . . . , O , (22)
i R i

7
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into V R
h , resulting in a new RAPOD approximation of the solution u|R ∈ VR|R ⊂ Vh spanned by the RAPOD basis

ΦR = {ϕi |R}
O
i=1 and ϕi |R ∈ V R

h given by

u|R =

O∑
i=1

ϕi |R(x) × ui |R, (23)

Φ|R =
{
ϕ1|R,ϕ2|R, . . . ,ϕO |R

}
∈ RNR×O . (24)

ote that in the above and in what follows ·|R is used to denote an interpolation, rather than a restriction operation
s is more common.

With this procedure complete, the online phase follows the standard Galerkin-POD procedure as in §5.1.3 but
sing the new POD basis functions Φ|R interpolated in the finite element space V R

h . Furthermore, the finite element
operators e.g. J |R and f |R for the Newton–Raphson scheme are now assembled on the finite element space V R

h
with NR = dim(V R

h ) ≪ dim(Vh)

Ĵ = Φ|
T
R J |RΦ|R, f̂ = Φ|

T
R f |R . (25)

We emphasise again that the RAPOD procedure introduces a new full-order model on the finite element space
V R

h constructed according to the information contained in the POD basis functions. This is in contrast to other
hyper-reduction approaches, e.g. DEIM, that use a modified version of the same full-order model that was used to
generate the snapshots.

5. Numerical examples

5.1. Reduction of a two-dimensional non-linear time-dependent problem

In this subsection, using the RAPOD method described in Section 4, we solve the time-dependent dimensionless
form non-linear Fisher, Kolmogorov, Petrovsky and Piscounov (FKPP) problem on a square domain Ω with
homogeneous Dirichlet boundary conditions on ∂Ω . The full specification of the problem in strong form is

Find u(x, t) ∈ H 1
0 (Ω ) such that

∂t u − ∆u = cu(1 − u) in Ω = [0, 3]2
× (0, T ],

u = 0 on ∂Ω × (0, T ],
u(x, 0) = u0(x) in Ω ,

(26)

where ∆ is the Laplace operator, ∂t is the partial derivative operator with respect to time t , c ∈ R is a constant
scalar parameter in space and time and u0(x) is a sufficiently smooth initial condition given by

u0(x) = exp
(

−
(x − x0)2

σ 2

)
, (27)

with σ = 0.2, c = 50, and x0 ∈ R2. We let the position x0 ∈ R2 and time t ∈ (0, T ] form our parameters, and
choose the discrete training set for the snapshot generation process as

s =
{ 1

2 ,
6
10 , . . . , 1

}2
×

{ T
10 ,

2T
10 , . . . ,

9T
10 , T

}
, |s| = 360. (28)

Following the standard Galerkin procedure of forming the L2 inner product with test functions v ∈ V̂ and
performing integration by parts, the semi-linear weak residual formulation of (26) can be written as

Find for each t ∈ (0, T ] u(x, t) ∈ V such that

∀v ∈ V̂ , F(u, c; v) := (∂t u, v) + (∇u,∇v) − (cu, v) + (cu2, v) = 0.
(29)

.1.1. Finite difference discretisation in time
We first discretise (29) in time using a semi-implicit first-order finite difference scheme. We replace the solution

(x, t) with an approximation un
≈ u(tn) at L +1 times t0 < t1 < · · · < t L , and for simplicity we take the timestep

∈ R as a constant giving tn
= nk and final time T = Lk. We approximate the time derivative ∂t u with the

ollowing semi-implicit scheme

(∂t u, v) ≈
(
k−1 (

un+1
− un) , v)

n+1 n 1 n 1 n+1 (30)

= A(u , v) + B(u ; v) + 2 C(u , v) + 2 C(u , v)

8
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with the following linear and semi-linear forms

A(u, v) = −(∇u,∇v), (31a)

B(u; v) = −(cu2, v), (31b)

C(u, v) = (cu, v). (31c)

n the numerical results presented we take the final time T = 0.1 and k−1
= 1000.

Rearranging (30) and substituting (31) gives the following sequence of problems to solve; for n = 0, . . . , L and
0

= u0, find un+1
∈ V such that

∀v ∈ V̂
({

k−1
−

c
2

}
un+1, v

)
+ (∇un+1,∇v) =

({
k−1

+
c
2 − cun} un, v

)
. (32)

Note that the only term that is a function of un is on the right-hand side of (32).

5.1.2. Finite element discretisation in space
We then discretise the problem in space using a Galerkin H 1-conforming finite element method by introducing

discrete trial and test spaces Vh ⊂ V := H 1
0 (Ω ) and V̂h ≡ Vh spanned with piecewise linear polynomial finite

element basis functions
{
φ j

}N
j=1 with N = dim(Vh) giving

uh(x) =

N∑
i=1

φi (x)ui . (33)

ollowing standard arguments, the discrete governing equations of problem (26) can then be written using the finite
lement basis functions as the following sequence of linear systems; for n = 0, . . . , L find u n+1

∈ RN({
k−1

−
c
2

}
M + K

)
u n+1

=
(
k−1

+
c
2

)
Mu n

− b(u n), (34)

here M is the usual finite element mass matrix, K is the stiffness matrix associated with the Laplace operator ∆
nd the vector b(u) represents the non-linear term, with entries

∀i, j = {1, 2, . . . , N } , Mi j = (φ j , φi ), Ki j = (∇φ j ,∇φi ), b(uh)i = (cu2
h, φi ). (35)

.1.3. Galerkin-POD discretisation
We now turn to the construction of reduced-order model of (26) using the Galerkin-POD approach. In the same

anner we can write the reduced-order approximation of the solution u R ∈ VR ⊂ V spanned using a POD basis
ϕ i }

O
i=1 with ϕi ∈ Vh and O = dim(VR)

u R(x) =

O∑
i=1

ϕi (x)u Ri , (36)

Φ = [ϕ1, . . . ,ϕO ] ∈ RN×O . (37)

e can then write a new set of discrete governing equations of (26), but instead of employing the finite element
pace Vh as in (34), we instead use the POD space VR ; for n = 0, . . . , L find un+1

R ∈ RO such that

((k−1
−

c
2 )M̃ + K̃ )u n+1

R = (k−1
+

c
2 )M̃u n

R − b̃(un), (38)

here M̃, K̃ ∈ RO×O are respectively the finite element mass M ∈ RN×N and the stiffness matrices K ∈ RN×N

rojected into the POD space

M̃ = ΦT MΦ, K̃ = ΦT KΦ, (39)

nd b̃(u) ∈ RO represents the projection of b(u) ∈ RN into the POD space

b̃(u) = ΦT b(u). (40)

ote that the terms in (38) involving M̃ and K̃ are not a function of the solution u and can therefore be assembled
nce at the beginning of the online phase (38). The overall assembly cost is amortised across the online phase. In
ontrast, the non-linear term b̃(u) ∈ RO is a function of the current solution u n , and its computation involves the
ssembly of the term b(u) on the finite element space and its projection into the POD space. As we do not know a
riori how the solution will evolve, clearly we must perform this operation at every timestep of the semi-implicit
cheme.
9
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s

5.1.4. Reduced assembly Galerkin-POD discretisation
It is the non-linear term b̃(u) to which it is most important to apply the proposed reduced assembly method.

With this procedure complete, we will simply follow the standard Galerkin-POD as in Section 5.1.3 but using the
new POD basis functions ϕi |R interpolated in the finite element space V R

h : for n = 0, . . . , L find u n+1
|R ∈ RO

uch that

((k−1
−

c
2 )M̂ + K̂ )u n+1

|R = (k−1
+

c
2 )M̂u n

|R − b̂(u n
|R), (41)

where M̂, K̂ ∈ RO×O are respectively the finite element mass M|R ∈ RNR×NR and stiffness matrices K |R ∈ RNR×NR

assembled on V R
h and projected into the reduced assembly POD space

M̂ = ΦT
|R M|RΦ|R, K̂ = ΦT

|R K |Rϕ|R, (42)

and b̂ ∈ RO is the projection of the vector b|R ∈ RNR assembled on V R
h and projected onto the reduced assembly

POD space

b̂ = ΦT
|R b|R . (43)

5.1.5. Numerical results
In this section we solve the FKPP problem (26) with the POD (38) and the proposed RAPOD (41) methods and

compare the results to the standard FEM.
We set the position parameter controlling the centre of the source term as x0 = (0.55, 0.55) m. We note that this

parameter is not in the set s.
All timing results were generated on a workstation with a 4-core Intel Core i7-6700 CPU with 32 GB RAM

running Ubuntu Linux 16.04.2 LTS. FEniCS is run inside a Docker container running a slightly customised version
of the quay.io/fenicsproject/stable:2017.1.0.r1 image. Running FEniCS inside a container leads to
negligible computational overhead compared with running directly on the host system [46].

The particulars of the standard FEM solver are given as follows. The 360 snapshots in the set s and the reference
solution for x0 are computed on a uniformly refined triangular cross-pattern triangulation with 256 × 256 divisions
resulting in 262 144 cells. This leads to a finite element space with dim(Vh) = 131 585. The resulting linear systems
at 100 timesteps (34) are solved using an algebraic multigrid preconditioned conjugate gradient method in PETSc.
The preconditioner is re-used between timesteps, as the matrix operator on the left-hand side of (34) does not
change. The complete set of snapshots takes around 5 min to compute using 4 MPI processes and consumes 3.1
GB space in an HDF5 file. The FEM reference solution is shown at three timesteps in Fig. 5a.

Once the snapshots at s have been computed, the POD eigenvalue problem (11) is solved using the iterative
Krylov Schur eigenvalue decomposition algorithm in SLEPc. The computational time of the eigenvalue decom-
position is negligible compared with reading in the snapshots from the HDF5 file and constructing the empirical
covariance matrix C. We compute this matrix and its eigenvalue decomposition in the l2 inner-product space before
re-orthonormalising the eigenvectors using the classical Gram–Schmidt algorithm in the discrete L2 inner-product
space induced by the finite element basis, i.e. the M inner-product.

The first part of the spectrum of the POD eigenvalue problem (11) is shown in Fig. 1. We retain O = 17 basis
functions using the 99.9% total energy cutoff criteria. Of course, we do not claim that our choice of snapshots or
cutoff criteria are optimal. However, by fixing the POD problem (and the resulting error with respect to the standard
FEM simulation), we set a baseline to which the proposed RAPOD technique can be compared.

With the POD spectrum length fixed at O = 17, we can now apply the RAPOD algorithm to construct the reduced
triangulation T 17

h . Beginning with an initial triangulation T 0
h covering the original domain Ω with a triangular right-

aligned triangulation with 2 × 2 divisions resulting in 8 cells. As an example, in Fig. 3, for tol = 10−2 we show
the first four original unscaled POD basis functions and the corresponding triangulations T i

h created by the RAPOD
algorithm. Note how the algorithm refines the regions in the domain where the basis functions are most oscillatory,
leaving the regions outside of the bottom-left quadrant of the triangulation relatively unrefined. The evolution of
the number of cells in triangulations

{
T 1

h , . . . , T 17
h

}
is shown in Fig. 2. The final triangulation used for the RAPOD

results T 17
h is shown in Fig. 4.

In Fig. 6 we show the tradeoff between error and wall time for the RAPOD method for different tolerances with
respect to the POD solution. The red dashed line shows the error in the standard POD simulation with respect to
the FEM simulation (4.36%). As the RAPOD tolerance is decreased, the error committed by the RAPOD method
10
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Fig. 1. First part of spectrum of POD eigenvalue problem for the FKPP equation. We use the engineering criteria of retaining the portion
of the spectrum which contains approximately 99.9% of the energy of the total spectrum. For the FKPP equation these criteria correspond
to retaining 17 basis functions.

Fig. 2. Evolution of the number of cells in the reduced assembly triangulations for the FKPP problem
{
T 1

h , . . . ,T
17

h

}
. Note that sometimes

no refinement is necessary to achieve the integration tolerance on the subsequent basis function, e.g. T 15
h = T 16

h .

converges to that of the standard POD method (tol = 10−5 gives ∥e∥H1 = 4.38%). Note that with RAPOD we
onverge to the error committed by the underlying POD model. This implies that we cannot achieve a lower error
sing RAPOD than with POD alone. This feature of RAPOD is shared with DEIM [14,18]. The blue dashed line
hows the wall time for the standard POD simulation (5.32 s). As the RAPOD tolerance is decreased, the wall
ime increases due to the greater work associated with assembling the larger finite element right-hand side at each
imestep. With RAPOD tol = 10−3 we get around a factor of five speed-up versus the standard POD method,
ith only a small increase in error ∥e∥H1 = 4.76%. The RAPOD method gives a speed-up over the standard POD

method for all tolerances. The trade-off in terms of error is small.
In Fig. 7 we show a comparison in the error committed using different cost function norms L1 and L2 to produce

the RA triangulations used in the RAPOD solution stage. The L2 cost indicators and integrals η2
i , I 2

a and I 2
e are the

ame as those in Eqs. (18)–(20), but replacing |ϕi | with ϕ2
i . As the RA tolerance is decreased, the error committed by

RAPOD with cost function in L1 norm is close to the one in the L2 norm. Of course, it is also important to compare
the number of cells in the triangulations. In Fig. 8 we compare the number of cells obtained with RAPOD algorithm
using the L1 and L2 cost functions to produce the RA triangulations. The L2 norm is slightly more economical
than the L1 norm. However, we note that the error committed in the resulting RAPOD online simulations using
meshes generated with the L1 cost function is consistently lower than the L2 cost function, but at the expense of
more cells (and hence a higher online cost). We use the L1-norm in the results henceforth in this section.
11
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R

Fig. 3. Left column: original unscaled POD basis function

√
σi ϕi represented on the finite element function space Vh for i = {1, 2, 3, 4}.

ight column: interpolated unscaled POD basis function
√
σi ϕi |R and corresponding reduced assembly triangulations T i

h obtained using the
RAPOD algorithm with tol = 10−2 for i = {1, 2, 3, 4}. Note that while these intermediate triangulations form stages of the triangulation
refinement algorithm, we only use triangulation T 17

h in the online stage for all operations, see Fig. 4.

Figs. 9 (linear scale) and 10 (log scale) show a breakdown of wall time in key stages for each method. Projections
are the operations taking operators on the finite element spaces to the POD (or RAPOD) space, or from the POD (or
RAPOD) space back to the finite element space. Assemble RHS are the standard finite element assembly operations
on the finite element space, here primarily the right-hand side vector b. Linear algebra are linear system solves,
e.g. Cholesky (POD and RAPOD) or preconditioned conjugate gradient (FEM). Total time is the wall (clock) time.

The runtime of the FEM is dominated by assembly of the right-hand side operator b and linear algebra solves.

12
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Fig. 4. Top: original unscaled POD basis function
√
σ17 ϕ17 Bottom: interpolated unscaled POD basis function

√
σ 17 ϕ17|R and corresponding

reduced assembly triangulation T 17
h obtained using the RAPOD algorithm with tol = 10−2. The RAPOD procedure interpolates all 17 basis

unctions onto the associated function space V 17
h and uses it for all further assembly and projection operations. It is this triangulation that

s used to generate the RAPOD results with tol = 10−2 in Figs. 5, 6, 9 and 10.

oving to POD, linear algebra solves become an almost negligible cost, and consequently assembly becomes
he dominant cost. RAPOD dramatically cuts the cost of assembly due to the reduced number of cells in the
riangulation.

In Fig. 11 we show the potential of parallelising the assembly operations in accelerating the RAPOD (or POD)

ethod even further. We use 4 MPI processes and partition the triangulation equally between each process. We

13
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Fig. 5. Solutions and pointwise l1 errors of FKPP problem using the three methods.

perform finite element assembly and the Galerkin projection onto the POD basis in parallel. The small dense
Cholesky solve is performed on every MPI process simultaneously. We are currently achieving a parallel speed
up of around 3.1 times over running with one MPI process. Detailed timings are shown in Fig. 12. In this context
this speed-up could be useful for problems requiring near real-time performance, e.g. online optimal control or
interactive simulations. Producing a truly scalable reduced-order solver that can run on high-performance computers
is a topic of current work.

In summary, in this section we have shown that the proposed RAPOD approach can greatly reduce the runtime
of the online phase of a Galerkin-POD type reduced order model applied to a non-linear time-dependent diffusion–
reaction equation. Speed-ups of around 5 times are possible, with only a small increase in error (5%) with respect
14
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Fig. 6. Wall time and relative error in H1-norm with respect to FEM simulation against RAPOD integration tolerance tols =

10−1, 10−2, . . . , 10−5}. For an integration tolerance of 10−3 a speedup of around five times is possible with RAPOD with respect to
OD, with only a small increase in error. As the integration tolerance of the RAPOD algorithm is decreased (leading to triangulation
efinement) we can see that the RAPOD error converges to the POD error. (For interpretation of the references to colour in this figure
egend, the reader is referred to the web version of this article.)

Fig. 7. Relative error of RAPOD simulation in H1-norm with respect to FEM simulation using L1 and L2 norms for RA cost function,
integration tolerance tols =

{
10−1, 10−2, . . . , 10−5}. As the integration tolerance of the RAPOD algorithm is decreased (leading to

riangulation refinement) we can see that the RAPOD error converges to the same error when using either the L1 and L2 norms for
the RA cost function.

Fig. 8. Evolution in the number of cells in the triangulation for integration tolerances tols =
{
10−1, 10−2, . . . , 10−5} using the L1 and L2

norms for the RA cost function. The L2 norm is slightly more economical for this problem, but also produces simulations with higher errors
c.f. Fig. 7).
15
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Fig. 9. Breakdown of computational time spent in key stages of the total wall time for the FKPP problem: projections (POD and RAPOD),
assembly of right-hand sides, linear algebra solves (preconditioned conjugate-gradient for FEM, dense Cholesky solves for POD/RAPOD).
The same data is shown on a log scale in Fig. 10. Note that on this linear scale the time taken by the linear algebra solves for the RAPOD
and POD methods are not visible as they are dominated by assembly time.

Fig. 10. The same timing data is shown on a linear scale in Fig. 9. With this scaling we can more clearly see the dominance of assembly
ver solution time for the RAPOD and POD methods.

o the standard Galerkin-POD method. Furthermore we have shown numerically that the RAPOD method recovers
he standard Galerkin-POD method in the limit of triangulation refinement.

.2. Reduction of a three-dimensional nonlinear quasi-static problem

We use the reduction method described above to reduce the solution of a PDE describing a geometrically
on-linear hyperelastic material on a three-dimensional domain.

The following total Lagrangian formulation of a Neo-Hookean hyperelastic material is standard, and a full
escription can be found in [47]. We repeat the essential details here. Consider a three-dimensional body B that

can be modelled as a continuum. Let χ0 : B → R3 be the known reference configuration and χ : B → R3 be
the unknown deformed configuration after some external loads have been applied. The domain occupied by the
undeformed configuration is then denoted Ω0 := χ0(B) = [0, 1]3 and in the deformed configuration Ω := χ (B).
Then, for every point in the continuum body B, are related to points X ∈ Ω in the underformed configuration
0

16
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Fig. 11. Initial results from parallel implementation of using MPI running on 4 MPI processes, cf. Fig. 6 for 1 MPI process. Assembly
and projections are performed in parallel across all processes while the small dense Cholesky solve is performed serially on every process
simultaneously. For the larger sized problems (POD and RAPOD tols =

{
10−3, . . . , 10−5}) we can achieve a speed-up of around 3.1 times.

Fig. 12. Breakdown of computational time spent in key stages of the total wall time for the FKPP problem running on 4 MPI processes,
cf. Fig. 10. For the loose RAPOD tolerances e.g. 10−2, we have significant overhead unrelated to the main computational operations.

and x ∈ Ω in the deformed configuration through the maps χ0 and χ respectively, we can construct a sufficiently
smooth deformation map ψ : Ω0 ∋ X ↦→ x ∈ Ω

ψ = χ ◦ χ−1
0 , (44)

rom which we can define the deformation gradient tensor as

F(X) :=
∂ψ

∂X
, (45)

ith strictly positive determinant det(F) > 0 everywhere in Rn .
Following standard arguments, we define the right Cauchy–Green strain tensor and Green strain tensor as

C := FT F, E =
1
2

(C − I), (46)

rom which we can define the following standard Neo-Hookean type strain energy density function

W (F) :=
µ

2
(IC − 3) − µ ln J +

λ

2
(ln J )2, (47)

here IC := tr(C) and I I IC = det(C) = J 2
= [det(F)]2 are the first and third invariants of the right Cauchy–Green

train tensor C, and µ and λ are material constants related to the shearing and volumetric behaviour of the material.
17
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We set the Young’s modulus E = 10 Pa and Poisson’s ratio ν = 0.3 which can be related to µ and λ through

µ =
E

2(1 + ν)
, (48a)

λ =
Eν

(1 + ν)(1 − 2ν)
. (48b)

The displacement field u∗
= ψ − X ∈ V can be found as the solution to the following minimisation problem

u∗
= arg min

u∈V

{∫
Ω0

W dx0 −

∫
∂NΩ0

t · u ds0

}
(49)

= arg min
u∈V

E(u), (50)

here V is a sufficiently regular Hilbert space that satisfies the Dirichlet boundary condition u = {0, 0, 0}
T on the

ottom surface of the cube

∂DΩ0 := {(x, y, 0) × (x, y, 0)} . (51)

t ∈ [L2(∂NΩ0)]3 are surface tractions (Neumann boundary conditions) applied on the top surface of the cube
NΩ0 := {(x, y, 1) × (x, y, 1)} and dx0 and ds0 are measures on the undeformed domain Ω0 and its boundary ∂Ω0,
espectively. The traction vector t on ∂NΩ0 is set to be

t(X) :=

{
0, 0,−6p exp

(
−

(X − X0)2

σ 2

)}T

, (52)

with σ = 0.15 and X0 ∈ ∂NΩ0. We let the load position X0 and magnitude p Pa form our parameters space M , and
choose the discrete training set s for the snapshot generation in the POD process as

sX0 = {0.3, 0.4, 0.5, 0.6}
2
× {1.0, 1.0, . . . , 1.0} , (53a)

sp = {0.1, 0.2, . . . , 0.9, 1.0} , (53b)

s = sX0 × sp, |s| = 160. (53c)

Assuming that a unique minimum exists, the first optimality condition can be written

∀ũ ∈ V̂ , Du[E(u)][ũ]|u=u∗ = F(u∗
; ũ) = 0, (54)

where Du[E(u)][ũ]|u=u∗ denotes the usual Gateaux derivative of the functional E in a direction ũ evaluated at the
minimum u∗. The above equation can be interpreted as the equilibrium equation. We use the notation ũ to signify
that these are test functions in a Galerkin sense.

The first order optimality condition can be written in full as: Find u∗
∈ V such that

∀ũ ∈ V̂ ,
∫
Ω0

S(u∗) : Du[E(u)][ũ]|u=u∗ dx0 −

∫
∂NΩ0

t · ũ ds0 = 0, (55)

Du[E(u)][ũ] :=
1
2

[
(∇ũ)T F(u) + (F(u))T

∇ũ
]
, (56)

where the second Piola–Kirchoff stress tensor S := 2 ∂W
∂C is work conjugate with the incremental Green strain tensor.

Clearly the residual F is non-linear in the displacement unknown u. The standard method for solving this problem
is the Newton–Raphson method as described in Section 2. We derive the Jacobian for the Newton–Raphson method
symbolically using the automatic differentiation capabilities of the Unified Form Language [48] of the FEniCS
Project.

5.2.1. Finite element discretisation in space
We discretise the hyperelasticity problem in space using a Galerkin H 1-conforming finite element method by

ntroducing discrete trial and test spaces Vh ⊂ V := [H 1(Ω )]3 and V̂h ≡ Vh spanned with vector piecewise linear
olynomial finite element basis functions

{
φ j

}N
j=1 with N = dim(Vh)/3 giving

uh(x) =

N∑
φi (x)ui , (57)
i=1
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u = {u1, u2, . . . , uN }
T

∈ R3N×1, (58)

esulting in a discrete Newton–Raphson step

J(uk)δuk
= − f (uk), (59)

uk+1
= uk

+ δuk . (60)

e use continuation in the loading parameter p within the set s to ensure the convergence of the Newton–Raphson
lgorithm. The FKPP system we reduced in Section 5.1 led to a discrete time dependent system where the linear
orm on the right hand side was dependent on the solution uk at the previous time step. In contrast, the hyperelastic
roblem in this section leads to a Newton–Raphson system containing both a matrix operator (the Jacobian) J
nd vector operator (the residual) f that are dependent on the solution at the previous Newton–Raphson step uk .
herefore, we must apply the RAPOD procedure to both of these terms to ensure good performance in the online
tage.

.2.2. Galerkin-POD discretisation
The Galerkin-POD procedure is performed using the same procedure described in Section 3 resulting in POD

asis functions Φ ∈ R3N×O . This results in the following expressions for the finite element Jacobian and residual
rojected into the POD space

J̃ = ΦT JΦ, f̃ = ΦT f . (61)

gain, we must perform the assembly of the matrix J and vector f in the finite element space Vh at each
ewton–Raphson step.

.2.3. Reduced assembly Galerkin-POD discretisation
We take the pointwise magnitude of every POD basis function

{
ϕi

}O
i=1

∥ϕi (x)∥ = (ϕx
i (x)2

+ ϕ
y
i (x)2

+ ϕz
i (x)2)1/2, (62)

efore applying the RAPOD algorithm 1 to ∥ϕi (x)∥ to obtain triangulation T O
h . Note that in this case the ∥ϕi (x)∥

s positive everywhere and thus the abs-norm in the RAPOD procedure does nothing.
As before, we reconstruct the Galerkin-POD problem on the finite element function space V R

h ⊂ V , associated
ith the triangulation T O

h derived from the RAPOD algorithm applied to the Oth POD basis function. We construct
discrete interpolation operator P : Vh → V R

h and interpolate every POD basis function

ϕi |R = Pϕi i = 1, . . . , O, (63)

nto V R
h .

With this procedure complete, we simply follow the standard Galerkin-POD as in Section 5.1.3 but using the
ew POD basis functions ϕ|R interpolated in the finite element space V R

h and new Jacobian operators J |R and f |R

ssembled in the finite element space V R
h

Ĵ = ΦT
|R J |RΦ|R, f̂ = ΦT

|R f |R . (64)

.2.4. Numerical results
In this section we solve the hyperelasticity problem with the POD and the proposed RAPOD method and compare

he results to the standard FEM method. In addition, we solve the hyperelasticity problem using the standard FEM
ethod constructed on the meshes created using the RA algorithm. We call this method RAFEM henceforth.
We set the position parameter controlling the centre of the source term as x0 = (0.55, 0.55). This parameter is

ot in the set s, so we are testing the predictive capabilities of the POD and RAPOD models.
The particulars of the standard FEM solver are given as follows. The 160 snapshots computed at the points in the

et s and the reference solution for x0 are computed on a uniformly refined tetrahedral right-aligned triangulation
ith 32 × 32 × 32 divisions resulting in 196 608 cells. This leads to a finite element space dim(Vh) = 107 811. The
esulting linear systems at each Newton iteration (34) are solved using a algebraic multigrid preconditioned GMRES

19



J.S. Hale, E. Schenone, D. Baroli et al. Computer Methods in Applied Mechanics and Engineering 380 (2021) 113723
Fig. 13. First part of spectrum of POD eigenvalue problem for the hyperelasticity equation. We use the engineering criteria of retaining the
portion of the spectrum which contains approximately 99.99% of the energy of the total spectrum. For the hyperelasticity problem these
criteria correspond to retaining 14 basis functions.

Fig. 14. Evolution of the number of cells in the reduced assembly triangulations for the hyperelasticity problem.
{
T 1

h , . . . ,T
14

h

}
. Note that

sometimes no refinement is necessary to achieve the integration tolerance on the subsequent basis function, e.g. T 13
h = T 14

h .

method in PETSc. The same solution strategy is used in the RAFEM method. The complete set of snapshots takes
around 3 h to compute using 4 MPI processes and consumes 2.3 GB space in an HDF5 file.

Once the snapshot set has been computed we solve the POD eigenvalue problem as for the FKPP problem
Section 5.1.

The first part of the spectrum of the POD eigenvalue problem (11) is shown in Fig. 13. We retain O = 14 basis
functions using a 99.99% total energy cutoff criteria.

We can now apply the RAPOD algorithm to construct the reduced triangulation T 14
h . Beginning with an initial

triangulation T 0
h covering the original domain Ω with a tetrahedral right-aligned triangulation with 2 × 2 × 2

divisions resulting in 48 cells. Fig. 14 shows the evolution of the number of cells in triangulations
{
T 1

h , . . . , T 14
h

}
.

Fig. 15 shows a cut through of the triangulation T 14
h created with the RAPOD algorithm with a tolerance tol = 10−2.

Figs. 16–18 show the solution of the hyperelasticity problem using FEM, POD and RAPOD methods, respec-
tively. The solution using POD retains the key features of the full FEM solution, including the global deformation
of the block and the shape of the indentation caused by the external traction. The RAPOD method, in turn, keeps
all the main features of the solution obtained with the POD method.
20
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c

a

Fig. 15. RAPOD triangulation T 14
h on domain Ω0 created with tol = 10−2. Used in result shown in Fig. 18. Grey transparent box is initial

onfiguration Ω0.

Fig. 16. Results of Hyperelasticity problem with FEM method. Cut through of deformed domain Ω coloured with magnitude of the
displacements ∥u∗

∥2. Grey transparent box is initial configuration Ω0.

The RAPOD method can achieve this at significantly reduced computational cost with respect to the standard
POD method. In Fig. 19 the red dashed line shows the error of the standard POD simulation with respect to the FEM
simulation (4.36%). As the RAPOD tolerance is decreased, the error committed by the RAPOD method converges
to that of the standard POD method (tol = 0.002 gives ∥e∥L2 = 3.0%). The blue dashed line shows the wall time
for the standard POD simulation (26 s). As the RAPOD tolerance is decreased, the wall time increases due to
the greater work associated with assembling the larger finite element matrices at each Newton–Raphson iteration.
With RAPOD tol = 10−2 we obtain a speed-up of approximately 7 versus the standard POD method, with only
small increase in error ∥e∥L2 = 5%. The RAPOD method gives a speed-up over the standard POD method for
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Fig. 17. Results of Hyperelasticity problem with POD method with O = 14.

Fig. 18. Results of Hyperelasticity problem with RAPOD method with O = 14 and tol = 10−2.

ll tolerances. We can see that the RAFEM method provides a slightly lower error than the RAPOD method for
he same tolerance, but at the expense of a significantly longer runtime due to the increased cost of linear system
olutions on the large sparse Newton–Raphson systems.

A breakdown of the amount of time spent in key computational areas for the FEM, POD, RAFEM and RAPOD
ethods (for different tolerances) is shown in Figs. 20 (linear scale) and 21 (log scale). The FEM solution time is

ominated by mainly linear system solves, with a significant proportion of time also spent assembling Jacobians and
esiduals. In contrast, for the standard POD method, linear solves become almost free and the total computational
ime is dominated by assembly on the finite element space. The proposed RAPOD method significantly reduces these
ssembly costs. The RAFEM method gains all of the advantages of decreased assembly costs from the proposed
22
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Fig. 19. Wall time and relative error for RAPOD, RAFEM and POD in L2-norm with respect to FEM simulation against RA integration
tolerance for the hyperelasticity problem using a 32 × 32 × 32 mesh. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Fig. 20. Breakdown of computational time spent in key stages of the total wall time for the hyperelasticity problem: projections (POD
and RAPOD), assembly of Jacobians and residuals, linear algebra solves (preconditioned GMRES for FEM, dense Cholesky solves for
POD/RAPOD). The same data is shown on a log scale in Fig. 10. Note that on this linear scale the time taken by the linear algebra solves
for the RAPOD and POD methods are not visible as they are dominated by assembly time.

RA method, but none of the advantages of the reduced solution time in POD or RAPOD. Linear system solves
dominate the computational cost of the RAFEM method for RA triangulations with more cells. The lower time
for assembly of the POD method vs. FEM is due to the slightly lower number of Newton steps required in the
POD method. We are currently unsure as to why the dense Cholesky solves for the RAPOD method require less
time at the higher tolerances. In total however, the solve time for POD and RAPOD is negligible compared with
the assembly costs. In summary, RAPOD alleviates the assembly bottleneck of POD, creating new reduced-order
models with significantly lower runtimes.

In Fig. 22 we show the total number of Newton–Raphson iterations required to solve the hyperelasticity problem
sing the RAFEM and RAPOD methods for varying RA algorithm tolerances. For all RA tolerances, RAPOD
equires the same number of Newton iterations as the standard POD method, indicating that the Jacobian and
esidual of the Newton–Raphson iterations are sufficiently well approximated.

In Fig. 23, we give an indication of the actual scaling behaviour of our implementation of the RAPOD method.
e see a slightly sublinear trend in the total time taken for increasing reduced assembly finite element space size

im(V̂h). This is what we would expect given that assembly time dominates the overall cost of the RAPOD method
nd that assembly time should scale linearly in an optimal FEM code.

Finally, we show the ability of RAPOD to achieve errors lower than 1%. Using exactly the same problem setup

s outlined above, except using a finer mesh with 64 × 64 × 64 divisions to generate the snapshots and POD basis.
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t

n
R

Fig. 21. The same timing data is shown on a linear scale in Fig. 20. With this scaling we can more clearly see the dominance of assembly
over solution time for the RAPOD and POD methods.

Fig. 22. Total number of Newton–Raphson iterations to solve hyperelasticity problem using RAFEM and RAPOD methods for varying RA
olerances. POD required 30 Newton iterations, and the FEM model required 34 Newton iterations.

Fig. 23. Scaling plot showing runtime of RAPOD method normalised against the POD runtime vs. the RAPOD finite element space dimension
ormalised against the POD/FEM function space dimension. A linear trend is shown for reference. We obtain close to linear scaling in the
APOD problem size.
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Fig. 24. Wall time and relative error for RAPOD, RAFEM and POD in L2-norm with respect to FEM simulation against RA integration
tolerance for the hyperelasticity problem using a 64 × 64 × 64 mesh.

This results in a POD model with ∥e∥L2 of around 0.002%. In Fig. 24 we show the error and wall times of the
POD model and RAPOD models constructed with varying tolerances. When using a tight enough tolerance, the
RAPOD method can achieve an error on the same order as the POD method. For all tolerances RAPOD method
has a lower wall time than the POD method, with a resulting tradeoff in terms of accuracy.

6. Conclusion

In this paper we have presented a new hyper-reduction method called Reduced Assembly (RA) to cut assembly
costs in the online phase of non-linear reduced order models. We have applied RA to basis functions created using
the Galerkin-POD procedure, resulting in a method we called RAPOD. We have demonstrated that the RAPOD
method can provide speed-ups of up to 5 times over standard POD, with minimal error committed over the baseline
POD method.

We make a few closing remarks about the applicability and limitations of the proposed method. If the POD basis
functions are highly oscillatory throughout the entire domain, then our RA method will provide no advantages. In
this case, the POD basis functions are suggesting that all areas of the domain are of equal importance. This limitation
applies uniformly to hyper-reduction methods that rely on choosing a limited subset of degrees of freedom or regions
of space for integration. However, if the POD basis functions are highly oscillatory but have local support in the
domain, then our RA method is still applicable.

In this contribution we have not tackled the issue of how to compute each snapshot on a different triangulation
and then how to compute a single POD basis. This is necessary for an efficient offline stage. The authors of [49]
tackle this important problem. The output of that method could be used as input for our RAPOD procedure, to
produce a hyper-reduced online model.

We are currently investigating improvements to the cell error indicator performance and anisotropic triangulation
refinement strategies to produce triangulations with even fewer cells. Another interesting line of research would be
to come up with multiple full-order models using the RAPOD procedure and then pick the best one in the online
stage depending on the requested point in parameter space.

Supplementary Material
Full code to produce all of the examples and figures in this paper is available at [50].
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