
RESEARCH ARTICLE

Evolution of default genetic control

mechanisms

William BainsID
1,2*, Enrico Borriello3, Dirk Schulze-Makuch4,5,6

1 Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology,

Cambridge, MA, United States of America, 2 School of Physics & Astronomy, Cardiff University, 4 The

Parade, Cardiff, United Kingdom, 3 School of Complex Adaptive Systems, College of Global Futures, Arizona

State University, Tempe, AZ, United States of America, 4 Zentrum für Astronomie und Astrophysik,

Technische Universität Berlin, Berlin, Germany, 5 German Research Centre for Geosciences (GFZ), Section

Geomicrobiology, Potsdam, Germany, 6 Department of Experimental Limnology, Leibniz-Institute of

Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany

* bains@mit.edu

Abstract

We present a model of the evolution of control systems in a genome under environmental

constraints. The model conceptually follows the Jacob and Monod model of gene control.

Genes contain control elements which respond to the internal state of the cell as well as the

environment to control expression of a coding region. Control and coding regions evolve to

maximize a fitness function between expressed coding sequences and the environment.

The model was run 118 times to an average of 1.4�106 ‘generations’ each with a range of

starting parameters probed the conditions under which genomes evolved a ‘default style’ of

control. Unexpectedly, the control logic that evolved was not significantly correlated to the

complexity of the environment. Genetic logic was strongly correlated with genome complex-

ity and with the fraction of genes active in the cell at any one time. More complex genomes

correlated with the evolution of genetic controls in which genes were active (‘default on’),

and a low fraction of genes being expressed correlated with a genetic logic in which genes

were biased to being inactive unless positively activated (‘default off’ logic). We discuss how

this might relate to the evolution of the complex eukaryotic genome, which operates in a

‘default off’ mode.

1 Introduction

Obligate multicellularity is uniquely a eukaryotic trait [1–3], and with it the morphological

complexity that comes from combining many distinct cell types into one organism. Multicellu-

larity requires complex genetic controls both to provide the control to generate different

genetic activity patterns in different cell types and to provide the ‘programme’ to construct the

adult organism. In addition, the more complex internal architecture and controls in the

eukaryotic cell also require specific controls. In some single-celled eukaryotes such internal

complexity resembles that of equivalently sized multicellular organisms. Reflecting this,

genome sizes in eukaryotes can exceed those of the largest bacterial or archaeal (“prokaryotic”)

genomes by 4 orders of magnitude (Fig 1).
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There is substantial overlap in coding capacity between the larger prokaryotic genomes and

eukaryotic genomes. The coding capacity of some of the larger prokaryotic genomes such as

those of some cyanobacteria (~12,000 coding sequences (CDS) [4]), Ktedonobacter racemifer
(~11,500 CDS [5]), Sorangium cellulosum (~9000 CDS [6]), Magnetobacterium bavaricum
(~8500 CDS [7]) overlaps with coding capacity of multicellular fungi (5000–15,000 (e.g. [8,9])

and autotrophic protists (10,000–20,000 CDS [9]) and approaches that of Drosophila melano-
gaster (~16,000 CDS [10]). The size difference between prokaryotic and eukaryotic genomes is

primarily due to non-coding DNA that is related in part to gene control. Thus the E.coli
genome has little non-coding DNA, and ~285 proteins are involved in gene control [11], ~7%

of the genome. By contrast over 90% of the human genome is non-coding, and conservative

estimates are that 10 times as many non-coding bases as coding bases are evolutionarily con-

served (i.e. are presumed to have selectable function unrelated to coding) [12,13]. Even Saccha-
romyces cerevisiae has 400 proteins associated with chromatin structure and function, as well

as histones and polymerases [14], to control ~5300 genes [15] the majority of which have only

core promoters and no regulatory elements [14], compared to E.coli’s ~285 proteins to control

4300 genes [16].

What enabled this increase in genetic complexity? The key difference between prokaryotic

and eukaryotic cells have been suggested to be chemistry, intracellular structure, energetics

and genetics. In general, any small molecule structure made by a eukaryotic cell will be made

by a prokaryote as well. Many ‘eukaryotic’ cellular structures are actually found in a few pro-

karyotes as well. Linear chromosomes are found in bacteria [17–20]. Intracellular membrane

compartments for secretion and processing [21,22] and energy capture [22–27] as well as

membrane-bound DNA-containing bodies are found in Planctomycetes [25,28].

Fig 1. Sizes of completed genome sequences, showing distinct size distributions for prokaryotes (bacteria and archaea),

eukaryotes and viruses. X axis: Genome size in megabases, Y axis: Fraction of each of the four classes of organism that have

genome of that size. Data from https://www.ncbi.nlm.nih.gov/genome/browse/#!/overview/, accessed 15th June 2020; based

on 27308 bacteria, 1769 Archaea, 5300 Eukarya and 19536 viruses.

https://doi.org/10.1371/journal.pone.0251568.g001
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Achromatium oxaliferum contains complex internal membranes containing calcium carbonate

(whose function is obscure) [29], Entotheonella detoxifies arsenic and barium by sequestering

it in internal vesicles [30], and cyanobacteria have stacked internal photosynthetic membranes

[31]. The intracellular membrane system of eukaryotes is integrated into a dynamic network

of vesicle trafficking and control which is rare in prokaryotes (reviewed in [32]); however

some of the core proteins and structural elements of a cytoskeleton are also found in prokary-

otes [33–38], and the giant bacterium Epulopiscium fishelsoni has an internal tubule system so

similar to eukaryotes that it was initially mistaken for a protozoan [39,40]. These examples all

suggest that complex structure per se follows from large size, rather than large size following

from internal structure.

It is widely accepted that the modern eukaryotic cell evolved by a series of endosymbiotic

events [41,42]. Recent insights gained from molecular biology show examples of endosymbi-

otic bacteria that live inside other bacteria [43–46], and bacteria that live inside modern mito-

chondria [47] (as well as a wealth of endosymbiotic bacteria in eukaryotic cells) which suggests

that prokaryotic endosymbiotic events, while unusual, are not extremely rare. Lane and Martin

[48–50] suggest that the endosymbiotic event, and consequent development of internal mem-

brane-bound energy-generating organelles, enabled the ability to generate energy from intra-

cellular membranes acquired through endosymbiosis is key, as more genes imply more

proteins and proteins require energy to make. We find this theory lacking for three reasons.

Firstly, the majority of genes in the larger eukaryotic genomes do not code protein–complexity

comes from non-coding RNA genes and regulatory elements as discussed above. Secondly,

most of the coding genes in any one cell are not transcribed; indeed the whole reason to main-

tain a complex genetic apparatus is so that different subsets of genes can be expressed at differ-

ent times. Genomes containing more coding sequences do not make more proteins at any one
time. Lastly, protein synthesis is only the major use of cellular energy in autotrophic bacteria

grown under conditions of unlimited nutrition. Under more normal conditions of growth,

protein synthesis rarely is observed to consume more than 20% of the cell’s energy, and of

course in non-growing cells (which is most cells in the biosphere most of the time) protein

synthesis is only needed for maintenance and turnover, a minor part of the overall ‘mainte-

nance energy’ [51–53]. (See S1 File for a more detailed analysis protein synthesis’ energy

requirements).

We have recently suggested that the default logic of gene control is a significant factor

enabling eukaryogenesis [54]. Here ‘default logic’ means whether a stretch of DNA down-

stream of a polymerase binding site is likely to expressed unless it is repressed (“Default on”),

or whether it is not expressed unless it is activated (“default off”). It is observed that it is easier

for a gene to be expressed in a prokaryote than a eukaryote, as evidenced by the fate of pseudo-

genes, the construction of expression vectors, and the fate of differentiated gene expression in

cell fusion (reviewed in [55]) as well as arguments from the mechanisms of gene control (See

below). While there are exceptions, it is broadly true that the eukaryotic genome is by default

‘off’ and needs metabolic energy to turn ‘on’, whereas in a prokaryotic genome genes are by

default ‘on’ unless turned ‘off’.

This default control mode is reflected in the thermodynamics of gene control. In eukary-

otes, complexes of proteins are required to remodel chromatin around promoters before genes

can be transcribed, involving the ATPase molecular motors Snf2 and Sth1 [56,57], and subse-

quent ATP-dependent binding of transcription factors to chromatin [58] before RNA poly-

merase can bind to a promoter. The remodelling involves (inter alia) ATP-dependent removal

of H2A/B dimers from nucleosomes [59–62] (Archaeal nucleosomes lack H2A/B dimers, and

consist of homologues of H3/4 dimers only [63,64]). By contrast the molecular rearrangements

that control initiation of bacterial transcription are powered by the binding energy of the
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various proteins [11,65,66]. Archaea have similar transcription initiation logic to bacteria,

despite having RNA polymerase complexes similar to those in eukaryotes [67,68]. RNA elon-

gation in bacteria requires roughly 1.5 ATP per base added, again being controlled by protein

binding factors [11]. In Eukaryotes ATP-dependent chromatin remodelling is required for

RNA elongation, as well as energy-consuming histone acetylation and methylation chemistry

[69].

Default logic relates to the internal logic of control, and does not specify whether the genes

in a genome are active at any one time. In prokaryotic spores almost all of the genes are unex-

pressed, (See e.g. [70–72]), despite them having ‘default on’ genetic control, and around 80%

of the coding genes are expressed in mammalian testis [73], despite having ‘default off’ genetic

control. ‘Default off’ genetic control makes it more metabolically costly to express a gene than

‘default on’, but does not specify whether a gene is expressed; specific expression patterns are

determined by the function of the gene in the cell or organism.

However it is plausible to suggest that this ‘Default off’ logic is more efficient if the majority

of the genome is silent, as would be the case if the genome encoded many expression pro-

grammes only one of which is active at once. It would also allow the facile accumulation of

silenced duplicate genes to act as the substrate for genome complexification, which itself is

associated with rapid diversification and adaptation [74] (although see [75]). We propose that

a ‘default off’ logic will favour the evolution of complex genomes which code for multiple

expression patterns, a ‘default on’ logic will favour the evolution of compact, efficient genomes

with relatively few distinct phenotypes.

This hypothesis should be testable by simulation and by experiment. As a first step in this

we present a simplified model of gene control and evolution that can evolve either ‘Default

On’ or ‘Default Off’ logic. In this paper we present the model, and initial results from its

execution.

2 Methods

2.1 Modelling approach

We attempt to model the evolution of control logic of genes under selective pressure. As a bal-

ance between the need for computability on one hand and the need for biological ‘realism’ on

the other, we chose the ‘classical’ operon as a model on which to build the model structure. A

series of sequences upstream of the coding sequence can bind proteins which allow, promote

or catalyse transcription (positive elements) or which can bind proteins that retard or prevent

transcription (negative elements). A similar process applies to eukaryotic genes in that positive

and negative regulatory elements influence the transcription of the gene, although in eukary-

otes those regulatory elements may be distant from the gene. Whether those regulatory ele-

ments are active will depend on the proteins in the cell, so that there is feedback between the

phenotype and the transcription of the genotype that it encodes. The fitness of an organism

depends on the ‘fit’ between its phenotype and its environment, but that environment can

change, so the expression of genes must also be influenced by the environment. The model

must also be able to be queried for some surrogate of ‘default off’ or ‘default on’ genetics inde-
pendent of how many genes in an organism are actually transcribed at any one time (which

will depend on the demands of the environment).

The properties of the model are summarised in Fig 2A.

2.2 Specifics of the model

To capture the requirements above, the model was constructed as follows. For simplicity,

everything in the model is strings of one type. Thus the phenotype is a set of strings of the same
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sort of as the genotype. The strings are made up of different characters; there can be any num-

ber of types of characters (if the strings were to mimic DNA or RNA, the number of character

types would be 4; the model was run with the number of character types ranging from 2 to 16).

There is no equivalent of protein translation in the system. The model consisted of a number

of organisms–in this initial implementation there were only 5 organisms for computational

reasons. The organisms exist in an environment. Each organism contains a number of genes
which together comprise its genotype; in the runs reported here, organisms contained 25, 50 or

100 genes. Each gene is composed of up to ten positive regulatory elements, up to ten negative
regulatory elements, and a coding sequence. The sum of the coding regions of genes that are

active at any one time comprise the organism’s phenotype. The organism’s fitness is the match

between its phenotype and its environment as follows. The environment comprises positive ele-

ments, negative elements, and signalling elements. Fitness is the sum of the number of positive
environmental elements that match the current phenotype minus the number of negative envi-
ronmental elements that match the current phenotype. (This is to reflect that sometimes having

Fig 2. Summary of model structure. A: Overall design philosophy, showing feedbacks between genotype, its encoded

phenotype, and the environment that it must fit. B: Summary of model components. +ve environmental factors are

one that must match the expressed phenotype, -ve environmental factors ones which must not match the expressed

phenotype. See text for details.

https://doi.org/10.1371/journal.pone.0251568.g002
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a function in a cell can be detrimental to the cell; were this not true, in our model all cells

would express all genes all the time for maximum fitness.)

Gene expression is controlled as follows. A regulatory element is active when either it

matches an environmental signalling element or it matches the phenotype. This represents the

transduction of an environmental signal into gene activity, and the transduction of internal

gene activity into gene activity. If the sum of the number of active positive regulatory elements
exceed the number of active negative regulatory elements then the gene it transcribed and its

coding sequence is added to the phenotype.
The model is seeded with random strings. At each cycle a new phenotype is computed, and

new fitness computed for each organism, and the most fit organism randomly replaces one of

the other organisms (which can include self-replacement). The organisms are then mutated by

making small, random changes (character changes, insertions or deletions, with a bias of 6:4

deletion over insertion) to a fraction (typically between 10−5 and 5 x 10−5) of the strings in the

genotype, or completely deleting one of them (typically with a probability between 10−6 and

5�10−6).

The model components are summarised in Fig 2B

2.3 Implementation and availability

The first implementation of the model was done in Excel 2010, and is provided as S2 File to

the paper.

3 Results

3.1 Modelling selection and adaptation

We begin by showing that the model produces results that are consistent with adaptation, i.e.

with changing from an initial random state to a state where the average fitness of the organ-

isms is greater than it was at the start. We emphasise that changes made to the components of

the model are entirely random; there is no directionality in the model except a slight bias

towards gene shrinkage noted below. Both the initial genome and the environmental factors

that the genome has to adapt to are randomly generated as well. Adaptation is therefore the

result of selection for better ‘fitness’.

The environment to which the organisms can adapt can be varied in two ways. The envi-

ronment to which the population adapts can be static, or dynamic, and it can have differing

levels of complexity. Both have parallels in biology, although they are not meant to represent

specific scenarios. Increasing the complexity of the environment represents more constraints

on the organism, as might be represented by a complex ecosystem such as a rainforest com-

pared to a farm monoculture. Dynamic environments swap between one or more environ-

ments, with the organism having to detect which environment it is being presented with and

express a gene set appropriate to that environment. The differing environments can also be of

greater or lesser complexity. Dynamically changing the environment to which the organisms

have to adapt might be represented by changing seasons or the changing environment in the

intertidal zone of the seashore. Both types of environmental change were included to explore if

selection of genetic control style were different for dynamic vs static environmental

complexity.

We can measure the ‘degree of perfection’ P of an organism in terms of the evolved fitness

F as a fraction of the possible maximum fitness, as the maximum fitness is the number of envi-

ronmental factors Ef. Some example fitness curves are shown in Fig 3. Fig 3A shows a typical

curve that reaches a plateau of fitness and then does not achieve any greater fitness in the run.

Fig 3B shows a curve that is similar to ~500,000 generations, but then a new increase in fitness
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is observed. Fig 3C shows an example where the organism was adapting to three environments

which varied with time. Fig 3C shows the decomposition of the fitnesses to each of three envi-

ronments in a model, together with the average across all environments. In this run, the organ-

ism is tested against one of three, unrelated environments; the environment that the organism

has to match changes every two generations. Note that fitness to each environment does not

increase in parallel–sometimes selection has resulted in better fitness for one environment,

sometimes for another. Fitness for an environment can actually decline if overall fitness does

not decrease substantially. Fig 3D shows the separate fitness trajectories of five organisms as

Fig 3. Examples of fitness plots for different runs of the model. For all curves: Y axis = fitness, X axis = time in units of

generations. A: Average fitness of the population converges smoothly on a maximum. B. Average fitness shows a jump in

adaptation at 500,000 generations. C. convergence of average fitness across three environments, showing divergent adaptation to

each of the environments. D. Fitness of each of the five organisms making up the population plotted separately in a run that

converges on a solution. E. Plot of fitness in a run that fails to converge on an optimum fitness.

https://doi.org/10.1371/journal.pone.0251568.g003
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they evolve in a single environment. Again, individual organism can lose fitness, but the popu-

lation trend is usually to increasing fitness. Lastly, Fig 3E shows a model that has not evolved

significantly. Most of the change in fitness in Fig 3E appear to be noise, and fitness wanders

around a low average (P~0.04 in this case, as Ef = 100).

3.2 Failure to adapt

Models did not converge onto a fit state ~1/5 of the time (depending on what ‘fit’ means, and the

selection of parameters). This was found to be a function of the degree to which the genome

complexity can match the environmental complexity (Fig 4). Highly complex environments are

not efficiently matched by low complexity genomes, as would be expected. This to a degree is a

consequence of limited run-time: some model runs had low fitness for a time and then experi-

enced a ‘jump’ in fitness as a low-probability solution was ‘discovered’ (e.g. Fig 3B).

We define whether a population is converging on a solution with a Curve Parameter Cp as

follows: we define a time P as the time at which the population reaches a plateau of adaptation,

i.e. does not appear by inspection to be able to increase its adaptation. Cp distinguishes be-

tween populations that smoothly approach such a fitness plateau, such as shown in Fig 3A, and

populations whose fitness fluctuates, such as in Fig 3E. Thus, if the fitness at times 0.25�P,

Fig 4. Selection is inefficient for runs with a combination of high environmental complexity and low genome

complexity. X axis: Genome complexity (number of genes in each organism time the number of types of bases of

which those genes are made up, times the average length of the genes at the end of the selection process. Y axis:

Environmental complexity; number of environmental factors that must match the genotype, multiplied by the number

of different environments to be fitted, the number of base types in each sequence, and the length of the environmental

strings to be matched. The ‘perfection index’–fitness at selection plateau divided by maximum possible fitness–is both

proportional to the circle areas and, for enhanced readability, to the colour scale (vertical bar).

https://doi.org/10.1371/journal.pone.0251568.g004
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0.5�P, 0.75�P and P are A, B, C, D respectively, and S(x) is the sign of x, (such that x>0) s(x) = 1;

X<0) s(x) = -1; x = 0) s(x) = 0) then Cp = s(B-A)+s(C-A)+s(D-A)+s(C-B)+s(D-B)+s(D-C).

If A<B<C<D (i.e. fitness is increasing throughout the run), then Cp = 6

For this analysis, runs of the model were only used if the curve parameter Cp is greater than

zero. 101 out of 118 runs of the model met this criterion. Omitting curves for which Cp�0

resulted in substantially less scatter in the adaptation curves averaged across all models (Fig 5).

Would all models converge on an optimal solution eventually? We hypothesise they would,

but it might take years to achieve this using the relatively inefficient coding, which for practical

reasons was run for only an average of 1.4�106 generations. (For comparison, the long-term

evolution experiments performed by the Lenski lab. have been running for more than 20,000

generations, and show a range of adaptations in gene control structure without changing the

underlying mechanisms or logic of the gene control architecture [76–78]). Models were there-

fore stopped when they seemed to have reached a steady state of control structure (as defined

below) and fitness within this time window. Future work will seek a more objective measure of

termination state through spectral analysis of the fitness functions in an exhaustive scan of our

parameter space. Disentangling the typical timescale of purely stochastic fluctuations from the

timescale of selection-induced changes will provide a useful estimate of the average, expected

time until convergence, as well as estimates of the range on that time.

3.3 Coding region evolution

There is a slight bias the mutation mechanism towards gene shrinkage, included because a)

this is seen in real mutation rates and b) it protects the model against indefinite expansion of

Fig 5. Average fitness of the model runs. Curves are normalized to maximum fitness = 1. The X axis shows the fraction of

time until the fitness reaches a stable plateau. The average fitness across all 118 model runs was calculated for time = 0,

time = between 0.25 and 0.5, time = 0.5–0.75, time = 0.75–1 and time>1 (i.e. on the plateau of fitness). By definition,

fitness = 1 when time>1. Error bars are standard deviation. Blue curve: All 118 model runs. Orange curve: 101 model runs

for which Curve Parameter Cp>0.

https://doi.org/10.1371/journal.pone.0251568.g005

PLOS ONE Evolution of complex genomes

PLOS ONE | https://doi.org/10.1371/journal.pone.0251568 May 13, 2021 9 / 21

https://doi.org/10.1371/journal.pone.0251568.g005
https://doi.org/10.1371/journal.pone.0251568


genes through ‘drift’. Despite this, the average length of coding regions tends to increase with

model progression (Fig 6). This is explicable as follows. Gene activation depends on matching

part of an expressed coding sequence to a regulatory sequence. Thus larger genes mean a

greater chance of productive interaction with a regulatory element. The only selective pressure

against long genes is the chance that they interact with one of the ‘negative’ environmental ele-

ments when they are expressed. As for all runs there are more regulatory elements (20 per

gene) than environmental factors (a maximum of 200), this provides a selection pressure

towards longer genes.

3.4 Default genetic control measures

The computational effort to exhaustively analyse the entire control network of up to 100 genes

each interacting with up to 20 control elements in each gene in each of 5 organisms in 100

runs or up to 50,000 timesteps each is unrealistic, and so we summarise the overall style of con-

trol as follows. We use two types of measure of control style; ‘new gene’ and ‘existing genome’

measures.

‘New gene’ measures measure statistically whether a new, random gene inserted into the

genome is likely to be expressed or not. This can be estimated by statistics on the length of reg-

ulatory elements. A short regulatory element is more likely to match a new (random) sequence

in the phenotype than a long regulatory element, because a short string is more likely to match

a random target by chance than is a long string. (Consider the chance that the strings “A” and

“ALPHABET” will match the text in this paper) Thus if negative regulatory elements are on

Fig 6. Length of the coding sequences averaged across all genes in a run (Y axis) as a function of the starting length

of those sequences (X axis). Circle sizes and color scale show the number of genes in the run, and show no distinct

pattern.

https://doi.org/10.1371/journal.pone.0251568.g006
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average shorter than positive regulatory elements in a gene, it is likely that the gene is not

active. Thus the ratio

Ra ¼

P
negative element length

P
negative element count

P
positive element length

P
positive element count

Is a measure of the relative probability that negative elements matched a random sequence

vs positive elements, and thus of ‘default’ regulatory style such that a lower Ra implies a bias

towards a ‘default off’ regulatory style. (Zero-length elements, i.e. ones which have been

deleted, are not counted in the average).

The same argument means that the shortest regulatory element in a gene is the one most

likely to be ‘active’ in a gene. If the shortest regulatory element is positive, then there is a

greater chance that the gene will be active; if negative, then the gene is more likely to be inac-

tive. We therefore also adopted a measure looking for the shortest regulatory element in a

gene. For each gene, the shortest non-zero control sequence is recorded for positive and nega-

tive control elements. The average of the length of the shortest regulatory element for all genes

in the genotype is reported. Thus the ratio

Rm ¼

P
min:negative element length=gene

P
genes

P
:min:positive element length=gene

P
genes

Is a measure of the bias in regulatory style, such that a lower value implies a ‘default off’ reg-

ulatory style. (Again, zero-length elements, i.e. ones which have been deleted, are not counted

in the average)

‘Existing genome’ measures examined the potential regulatory circuitry in the adapted

genome, and is an analogy for the existence of specific pairs of regulator+sequence in the con-

trol systems of a cell. Again, two measures were used. The first is the ratio of positive to nega-

tive regulatory elements that match a coding sequence in the genome (i.e. elements that could

be active).

Ea ¼

P
ðpositive regulatory elements with matches in coding regionsÞ

P
ðnegative regultory elements with macthes in coding regionsÞ

A gene only has to have more active positive than negative regulatory elements to be active.

Ea could therefore give a false view if a small number of genes had a large preponderance of

potentially active regulatory elements and a larger number of genes had a small preponderance

of potentially active negative elements. A second ‘existing genome’ measure therefore looked

at potentially active elements on a per-gene basis, by averaging the fraction of potentially active

regulatory elements (i.e. ones that matched a coding region in the genome) as a fraction of all

potentially active regulatory elements

Eg ¼ 2 � average
ðpositive reg:elem:mtching a coding region per geneÞ
ðany reg:elem:mtching a coding region per geneÞ

� �

Eg is multiplied by, so that for all measures a value of less than 1 suggests a ‘default off’

mode, a value of greater than 1 suggests a ‘default on’ mode.

The reader may be puzzled that the ‘new gene’ measures divide negative element lengths by

positive element lengths, which the ‘existing gene’ measures divide positive element numbers
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by negative element numbers. This is because the ‘new gene’ measures are based on values that

reflect the chance that a regulatory element matches a random, unknown sequence. The prob-

ability p that a random sequence of N characters (where there are C choices of characters)

matches another random sequence of N characters is given by

p ¼
1

CN

In other words, the negative element ‘new gene’ measures are inversely related to the proba-

bility that the negative element is active, and conversely the positive gene measures are

inversely related to the probability that the positive element is active. Thus Ra and Rm are larger

if there is a greater chance that a positive element is active. The ‘existing gene’ measures, how-

ever directly relate to which element is active, it directly probes which elements can be active

in the genome, regardless of their size. So, again, for Ea and Eg are larger if there are more posi-

tive elements potentially active.

Correlations of these two measures to both the inputs and the outputs of model runs are

provided in Table 1. We emphasise that this is an initial modelling study, and much more

extensive modelling with more efficiently coded models and better hardware will be needed to

Table 1. Correlations with control logic style.

Model parameters Measures of genetic control logic (<1 = ‘default off’)

‘New gene’ measures ‘Existing genome’ measures

Rm Ra Ea Eg

Starting parameters

Number of environments -0.02 0.032 -0.096 -0.091

Env, Factors (N = 1) (a) 0.102 0.08 0.001 -0.014

Env. Factors (N>1) (a) 0.419�� 0.24 0.358� 0.302�

Length of initial gene 0.445 �� -0.044 0.24� 0.315�

Number of genes -0.144 -0.144 -0.236� -0.223�

Genome complexity at start (b) 0.297 �� 0.096 0.184 0.202

Parameters at fitness plateau

Adaptation at plateau 0.326 �� 0.167 0.267� 0.288��

Fraction of perfection 0.117 -0.015 0.197 0.183

Average gene length 0.683 ���� 0.198 0.508��� 0.529����

Genome complexity at end (b) 0.373 �� 0.18 0.258� 0.254�

regulatory complexity at end (c) 0.13 0.184 0.134 0.135

Number of genes expressed 0.262 � 0.102 0.125 0.149

Fraction of genes expressed 0.713 ���� 0.454 �� 0.577���� 0.616����

Correlations between two measures of genetic ‘style’ and some inputs and outputs from models. (a) Number of environmental factors that the model must adapt to,

separated into runs where fitness if determined for only one environment (N = 1) or more than one environment (N>1). (b) Genome complexity = [number of

characters]�[number of genes]�[average length of coding regions]. (c) Regulatory complexity = [number of characters]�[number of genes]�[average length of regulatory

elements]. _ “Min–ve” = average length of the shortest negative regulatory element in each gene, averaged over all genes. “min +ve”= average length of the shortest

positive regulatory element in each gene, averaged over all genes. “Avg–ve” = average length of all non-zero-length negative regulatory elements in the genome.”Avg

+ve” = average length of all non-zero-length positive regulatory elements in the genome. Significance of the correlations (i.e. chance that the observed correlation is seen

in 101 model runs if the measures of control logic are not correlated with the input parameters)

� = p<0.05

�� = p<0.01

��� = p<0.001

���� = p<0.0001.

https://doi.org/10.1371/journal.pone.0251568.t001
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confirm, expand and dissect these findings. However three patterns are clear from the results

here.

Correlations are notably weaker for Ra (the ratio of negative average regulatory element to

positive regulatory element length). This may be related to a slight bias in the evolution of Ra,

observed in Section 3.6 below, which introduces additional noise into the model. However we

include this result here for completeness.

Firstly, for static environments the complexity of the environment has no effect on whether

default on or default off genetics evolves. This was a surprising result, as we expected more

complex environments to drive selection for more complex genetic controls, with conse-

quences (positive or negative) for a ‘default off’ control style. For fluctuating environments,

more complex environments were weakly correlated with some measures of default on genet-

ics. However the effects are weak (these significance levels are not Bonferroni corrected). The

lack of obvious environmental effect may relate to the duration of the modelling, as noted in

section 3.2 above; simple genomes could not adapt to complex environments in the time avail-

able. The weakness of environmental effects may also be an artefact of the small sizes of the

populations (leading to noise which obscures patterns), the small number of combinations of

parameters explored (61 out of 720 possible combinations of the parameters used in these

runs), or the small genomes (maximum 100 genes).

Secondly, genome complexity both at the start and at the end of the models is correlated

with ‘default on’ control style (i.e. positive correlation with all the measures of genetic logic,

for which higher values mean a more ‘default positive’ control logic). Again, this was a sur-

prise. Our hypothesis is that ‘default off’ genetics allows complex genome evolution. However,

our initial hypothesis, that ‘default off’ genetics allows ready gene duplication, is not captured

in this model, where the number of genes is fixed.

Lastly, ‘default on’ genetics is most strongly correlated with the number of expressed genes.

We further dissect this in Fig 7. There is a striking correlation between two measures of

‘default control logic’ and the number of expressed genes. If relatively few genes are expressed

in a genome, then ‘default off’ is preferred. If many genes are expressed, ‘default on’ is pre-

ferred. Note that the correlation with the number of expressed genes is much weaker

(Table 1)–it is the fraction of the genome which is expressed that correlates more strongly with

genetic logic than any other parameter. We note again that ‘default off’ does not dictate how

many genes are expressed,

3.5 Reproducibility

No stochastic model will give the same results in different runs, so it is important to show that the

variability in output is not so extreme as to render results uninterpretable. The purpose of this

modelling was to test the model concept and provide an initial exploration of parameter space: as

a result, only a few sets of runs of the model were replicate runs with the same parameters. We

chose three runs that gave different control logic outputs in an initial run and re-ran the same

parameters with different starting genomes and environments. The results are summarised in Fig

8. This shows that, while results are variable, the genetic control outputs, and specifically the Rm
parameter, are consistent within replicates: Replicates of a model run that gave Rm = 1 consis-

tently gave Rm~1 (“Replicate 1), Replicates of a run which gave Rm>1 (“Replicate 2”) consistently

gave Rm>1, and Replicates of a run that gave Rm<1 consistently gave Rm<1 (“Replicate 3”).

3.6 Adaptation is the result of selection

As this model is complex and produces large amounts of complex data, it is important to show

that results are due to selection and not to inherent biases in the model. We therefore re-ran
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the ‘Set 2’ runs above but with organisms selected at random rather than on the basis of fitness.

(This required a single cell change in the model.) Replicate 2 converged within 106 steps, and

so the model was run to 1.5�106 steps to ensure compatibility. 8 runs were completed. The

results are summarised in Table 2. None showed any significant net adaptation or fitness. One

measure of default genetic control (Ra, the ratio of average positive regulatory length to nega-

tive regulatory element length) showed a slight bias towards a value<0; the source of this bias

has not been determined, but is probably related to the residual biases in Excel’s random num-

ber function; this could be tested in the future by replacing this function with a truly non-

repeating source of numbers, such as the digits of Pi. Ra was the measure with the weakest cor-

relations to any outcome in Table 1. There is also a clear difference between runs with selection

and runs without for all measures that Rm. The range across all the model runs greatly exceeds

the range seen with no selection, showing that despite small biases in ‘mutation’ selective

effects dominate changes in the output of the model

4 Discussion and conclusions

We have presented a model of the evolution of genome control logic, and an initial analysis of

its performance on a small number of test cases. The model performs in a comprehensible

way, and evolves fitter organisms. Preliminary statistics suggest that the model performance is

stable, i.e. a given set of starting conditions will give a set of outputs more closely related to

each other than random, despite the model being a stochastic one.

Fig 7. Relationship between the ratio of minimum negative elements to minimum positive elements (X axis:<1 =

‘default off’) to the fraction of genes in a genome expressed at fitness plateau (Y axis). Both circle area and color

scale are proportional to genome size (25, 50 or 100 genes). “Min–ve” = average length of the shortest negative

regulatory element in each gene, averaged over all genes. “min +ve”= average length of the shortest positive regulatory

element in each gene, averaged over all genes.

https://doi.org/10.1371/journal.pone.0251568.g007
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We emphasise that this is a preliminary exploration of this model only, and much more

needs to be done. However with that caveat, the results show three things of potential interest

to the hypothesis that stimulated its creation

Fig 8. Reproducibility across runs. A: Example outcomes from all runs with diverse starting conditions, and B: From

replicate sets of runs started from the same set of parameters. X axis: ‘Perfection index’ (fitness at the fitness plateau as

a fraction of the maximum possible fitness with those parameters). Y axis: Ratio of the length of the average minimum

negative regulatory element length to the average minimum positive regulatory element length. Both circle area and

color scale are proportional to the number of steps taken to reach a fitness plateau.

https://doi.org/10.1371/journal.pone.0251568.g008
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i. The genetic logic a population of organisms evolves is only weakly related to the complexity

of the environment it finds itself in. This was unexpected.

ii. The evolved genetic logic is strongly related to the starting and the final, evolved genome

complexity. More complex genomes have ‘default on’ logic. This is not predicted by the

model, but as the model’s predictions on evolution of genetic logic refers primarily to the

acquisition of new genes in the genome, an aspect of evolution not captured here, this does

not test the hypothesis.

iii. The strongest correlations with genetic logic are with the fraction of the genome that is

expressed.

Point (iii) above fits with (although is a weak test of) our original hypothesis. It also fills in a

significant gap in the hypothesis about why a ‘default off’ logic should be selected. Clearly, an

organism cannot evolve ‘default off’ in anticipation of acquiring new genes. However if a spe-

cific combination of environmental and genetic features encouraged the development of

‘default off’ genetics, then such an organism would be pre-adapted for genome complexifica-

tion by gene duplication and divergence. As noted in the introduction, the majority of genes

in eukaryotic genomes are not expressed at any one time. Most of them are ‘off’. Our model

appears to be evolving a similar expression pattern in some cases, and in those cases the

‘default off’ logic is selected.

If our results represent the more complex world of real genetics, then we might speculate

that organisms living in an environment that occasionally called on a diverse set of genes but

most of the time did not require them would feel short-term selective pressure to evolve a

‘default off’ logic. Such an environment could be one in which a heterotroph lived in a com-

munity made up of a changing composition of autotrophs, each of which provided a small

number of substrates to the heterotroph. If such a scenario were valid, then we would expect

more comprehensive modelling to reveal influences of environmental change on both

expressed gene numbers and default logic. Such work is being actively pursued.
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Table 2. Results from non-selected model runs.

Number of model runs Fitness Ra Rm Ea Eg

Replicate series 2 6 12.578 (1.322) 1.0064 (0.0098) 0.8685 (0.0103) 0.8385 (0.0286) 0.9091 (0.0238)

Non-selected control runs 8 0.344 (0.0857) 0.9696 (0.0071) 0.9888 (0.0145) 0.9966 (0.0666) 1.0097 (0.0288)

Range in all selected runs - 0.7452–114.14 0.6294–1.2573 0.6889–2.0972 0.7634–2.8182 0.8401–1.5848

Comparison of results of replicate set 2 (from Fig 8) with the models run with the same parameters but with replication of organisms uncoupled from fitness. Values in

brackets are standard error of the mean.

https://doi.org/10.1371/journal.pone.0251568.t002
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