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BiSPL: Bidirectional Self-Paced Learning for
Recognition from Web Data

Xiaoping Wu, Jianlong Chang, Yu-Kun Lai, Jufeng Yang, and Qi Tian, Fellow, IEEE

Abstract—Deep learning (DL) is inherently subject to the
requirement of a large amount of well-labeled data, which is
expensive and time-consuming to obtain manually. In order to
broaden the reach of DL, leveraging free web data becomes an
attractive strategy to alleviate the issue of data scarcity. However,
directly utilizing collected web data to train a deep model is
ineffective because of the mixed noisy data. To address such
problems, we develop a novel bidirectional self-paced learning
(BiSPL) framework which reduces the effect of noise by learning
from web data in a meaningful order. Technically, the BiSPL
framework consists of two essential steps. Relying on distances
defined between web samples and labeled source samples, first,
the web samples with short distances are sampled and combined
to form a new training set. Second, based on the new training
set, both easy and hard samples are initially employed to train
deep models for higher stability, and hard samples are gradually
dropped to reduce the noise as the training progresses. By
iteratively alternating such steps, deep models converge to a
better solution. We mainly focus on the fine-grained visual
classification (FGVC) tasks because their corresponding datasets
are generally small and therefore face a more significant data
scarcity problem. Experiments conducted on six public FGVC
tasks demonstrate that our proposed method outperforms the
state-of-the-art approaches. Especially, BiSPL suffices to achieve
the highest stable performance when the scale of the well-labeled
training set decreases dramatically.

Index Terms—Deep Learning, Image Recognition, Self-Paced
Learning, Noisy Web Data.

I. INTRODUCTION

DATA-driven deep convolutional neural networks (CNNs)
are widely used in the vision community and achieve

excellent performance on various tasks, e.g., visual classi-
fication [1] and object detection [2]. Popular models such
as ResNet-50 [1] have very deep network architectures and
contain millions of parameters. In practice, they usually ensure
sufficient model training by collecting a massive number of
images with clean labels. It is expected that more well-labeled
data results in higher performance and better robustness of
the model. However, manual data annotation is expensive
and time-consuming, especially for tasks that need expert
knowledge.

To tackle this issue, a straightforward way is to pre-train
CNNs on large-scale datasets (e.g., ImageNet [3]) and then
fine-tune them on new tasks such as visual classification of
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the dogs [4] and birds [5]. Later work by Cui et al. [6]
proposes to transfer from a sub-set of ImageNet that is similar
to the target domain-specific dataset. However, the learning
of novel knowledge is still limited to the scale of well-
labeled training data. More recently, several methods [7]–[9]
have alternatively considered utilizing web data as auxiliary
information to enhance the model performance on the source
dataset. For example, Schroff et al. [10] utilize a multi-modal
approach that combines the text, metadata, and visual features
to obtain candidate images from web pages. Then, Krause et
al. [11] additionally quantify the noise level of collected web
images and apply active learning to filter the images with
ambiguous category labels.

They propose that the web data can be freely collected
from the Internet, yet it may contain a lot of noise due to
the inherent characteristics of common search engines. Hence,
the key to web data learning lies in the selection of confident
data from noisy web data. In addition, some deep learning
works [12]–[14] show that clean hard samples have a positive
effect on model training. Their successful application proves
that hard sample mining promotes better convergence and
generalization of deep models. For example, focal loss [12]
considers samples with large losses as hard samples and
increases their contribution to the gradient by assigning larger
weights. At the same time, some work such as GHM [14]
also suggests that some very hard samples may be noisy
and have a negative impact on model training. Therefore, in
addition to selecting reliable web samples, how to distinguish
informative hard samples from the data with noisy labels is
also a challenge for the task of web data learning. As shown
in Fig. 1, most algorithms [11], [15] usually rank the web data
based on the classification scores and then choose relatively
credible samples via a threshold. However, in this way, we
may wrongly include noisy data (e.g., the images surrounded
by red boxes) if we want to add more hard but informative
samples, since the noise may exist in both the procedures of
web data sampling and model training.

Following the aforementioned observations, we propose a
novel bidirectional self-paced learning (BiSPL) strategy for
improving the effectiveness of learning using web data. First,
an initial model is trained on the source dataset with clean
labels. Second, in the procedure of web data sampling, inspired
by the self-paced learning (SPL) paradigm which learns from
the data with multiple paces, we infer the confidence of each
web sample and rank them in the meaningful order, i.e.,
from easy to hard. Contrary to the standard SPL, the cosine
similarity is utilized to represent the relation between source
data and web data in a robust feature space. The complexity
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ChihuahuaChihuahua 0.910.91 0.800.80 0.710.71 0.630.63 0.410.41
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Fig. 1. Examples from the Dog-120 dataset (the first column) and correspond-
ing web dataset (the remaining columns). The images in each row belong
to a category, where borders of different colors, i.e., green, orange, and red,
represent positive, ambiguous, and noisy data, respectively. The numbers in the
boxes denote the cosine similarity between web samples and source samples.

of each web sample is measured by its cosine distance to
each class center of the source set. The easier samples are
preferentially selected to re-train the model and the harder ones
will be learned at the next pace. Benefiting from it, web data
is gradually and safely added to the training set in the order
from easy to hard. And we can stop learning when we observe
a significant drop in model performance to avoid introducing
too much noise. Third, in the procedure of model training,
opposite to the concept of SPL, we further propose to train
the model from hard to easy to adaptively reduce the effect
of possible noise mixed in the training set. Specifically, we
learn all the data including hard samples in the early training
stage, because the CNN model is robust to noisy data when the
learning rate is large [16], [17]. As the model training iterates
and learning rate decreases, we gradually drop the samples
with large classification losses which are treated as noisy data.
Finally, we repeat the processes of web data sampling and
model training to mine useful knowledge from web data.

To sum up, the key contributions of this paper are:
1) Inspired by the human learning strategy that learns knowl-

edge in a meaningful order, we develop a new bidirectional
self-paced learning (BiSPL) framework to reduce the effect
of noise by learning from web data in a meaningful order.

2) By sorting the learning complexity of web data with the
cosine similarity, BiSPL suffices to endow deep models
with the capabilities of steadily expanding training set
capacity from easy to hard and learning from hard to easy
as the learning progresses and the learning rate decreases.

3) Extensive experiments on six popular fine-grained visual
classification (FGVC) datasets (i.e., Indoor-67, Dog-120,
Food-101, Food-101N, CUB-200, and Flower-102) demon-
strate the superiority of BiSPL.

The remaining of the paper is organized as follows: In
Section II, we briefly introduce the related research. Section III
details our proposed BiSPL strategy. Then extensive experi-
ments and analysis are conducted in Section IV and Section V
provides the conclusion of this paper.

II. RELATED WORK

In this section, we introduce the methods which are related
to our paper, including image recognition from web data,
relation learning, and self-paced learning.

A. Recognition from Web Data

Recently, deep learning has boosted the performance of
many vision tasks, such as image classification [1] and object
detection [2]. However, a large amount of well-labeled data
is required to train deep CNNs with numerous parameters.
To address this issue, recent research works have considered
learning useful knowledge from free web data.

In the past few years, learning from web data has received
widespread attention in the vision community [7], [15], [18]–
[21] and led to great success in a variety of tasks including
scene classification [19], clothing recognition [7], skin disease
diagnosis [15], and action recognition [22]–[25], etc. Several
works [10], [15], [26] gather web images from common web
search engines for given query classes. The collection of
web data minimizes human effort, but the resulting datasets
contain noisy labels and cannot directly improve model per-
formance [15], [18], [27]. Wong et al. [26] utilize rich se-
mantic information such as image parametric dimensions and
metadata to automatically annotate real-world web images.
Cao et al. [28] also leverage a knowledge graph constructed
from free DBpedia-Wikipedia and successfully employ the
distillation technology. And Schroff et al. [10] alternatively
harvest high-quality web data by combining the multi-modal
features of text, metadata, and vision. In contrast, [29], [30]
propose noise-robust methods to make the classifier robust to
data with noisy labels. For example, Goldberger et al. [31]
train a deep neural network with an additional noise adaptation
layer to bridge the gap between correct labels and noisy ones.
However, the noise-robust algorithm seems to be only suitable
for the simple case of label noise [20]. Semi-supervised
learning based methods instead propose to learn from web data
along with an auxiliary dataset with clean labels. Recently,
Yang et al. [15] initially train a CNN on a small source
dataset and then use it to progressively filter web data with
estimated pseudo-labels. Chen et al. [32] also utilize a semi-
supervised learning method to jointly discover common-sense
relationships and predict pseudo-labels at the instance level.
They demonstrate the effectiveness of utilizing web data to
boost image recognition performance on the source dataset.
However, the classifier trained on the source dataset may
easily be over-fitting and not sensitive to noisy data. Thus the
predicted pseudo-labels based on it are unreliable and may
lead to noise accumulation along with the iteration procedure.

In our work, the reliability of each web sample is measured
based on its cosine distance from source data in the feature
space. And the relation between web data and source data is
also associated during the model training phase. Specifically,
the web samples that have abnormal loss values to the average
case will also be dropped.

It is worth noting that the goal of self-supervised learn-
ing [33]–[35] is also to learn from unlabeled or even
noisy data. Specifically, self-supervised learning learns fea-
tures in various pretext tasks by automatically generating
pseudo-labels. For example, the well-known MoCo [33], Sim-
CLR [34], and BYOL [35] perform basic data augmentation
operations on unlabeled images to obtain anchors, positive
examples and negative examples, and then minimize the
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distances between positive pairs while maximizing those be-
tween negative pairs. In addition, some studies also design
various pretext tasks such as image colorization [36], jigsaw
puzzles [37], and image inpainting [38] for unlabeled image
data and vehicle tracking [39], relative speed perception [40],
background erasure [41], and sound generation [42] for un-
labeled audio and video data. Based on models trained on
pretext tasks, self-supervised learning can further transfer the
learned features to downstream tasks. In this way, as a specific
form of unsupervised learning, self-supervised learning can be
applied to learn from unlabeled web data. However, different
from self-supervised learning which assigns pseudo labels
(e.g., rotation angles) corresponding to the pretext task to all
data, the web data learning paradigm removes noisy data and
alternatively chooses to directly assign each confident web
data a label that belongs to the label system of the specific
downstream task. This maximizes the utilization of web data.
The indirect learning process of self-supervised learning can
learn a certain degree of knowledge from web data, while it
is hard to ensure sufficient learning of web data.

B. Relation Learning

Recently, many researchers [43]–[45] are interested in min-
ing the latent relationships between the data. For example,
Chang et al. [44] consider similar and dissimilar pairwise
patterns to train a deep self-evolution clusterer. In contrast,
graph-based methods [43], [46] tend to utilize a graph to reflect
more complex structure. Zhan et al. [43] approximate the
semantic relationships between a massive amount of unlabeled
face data by constructing a bottom-up relational graph. More
recently, graph convolutional networks (GCNs) [46], [47]
show considerable performance improvement on graphical
pattern modeling. For example, Kipf et al. [47] extend the
convolutional neural networks to operate directly on graph-
structured data and achieve impressive performance on the
semi-supervised classification task. The relation learning strat-
egy is also widely used in the field of one-/few-shot learn-
ing [48]–[50]. The idea of learning to compare, i.e., learning
the distance metric between samples and inferring the few
examples of new classes by comparing to the labeled query
images, enables the image classification of new classes. For
example, the architecture of Matching Networks [50] is like
an end-to-end version of nearest neighbor classifier which
encodes the features of each episode and then calculates the
category with the highest similarity score to the test sample.
Sung et al. [49] also propose a Relation Network architecture
by automatically learning a deep distance metric between
sample items and the query in each training episode. Inspired
by the above-mentioned works, we propagate pseudo labels
and measure the complexity of web data by considering its
relation to source data.

C. Self-Paced Learning

Inspired by the learning pattern of humans, curriculum
learning (CL) [7], [51], [52] gradually incorporates training
samples into several ordered curriculums from easy to hard.
The key of CL lies in the pre-definition of each curriculum and
corresponding training orders. For example, Zhang et al. [52]

start with a simple task that learns the strong idiosyncrasies
(e.g., size and spatial relations) between urban scene images
and then train a segmentation network and regularize predic-
tions at the same time. However, it is time-consuming and
difficult in the scenario of large-scale datasets. To address
this critical issue, Kumar et al. [53] propose the self-paced
learning (SPL) paradigm which assigns each sample with an
importance parameter (i.e., loss value) to measure whether it
is easy or hard and iteratively updates it. Subsequently, the
SPL dynamically trains the model with the same goal as the
CL rather than using heuristic knowledge. Meng et al. [54]
further provide some theoretical analysis for SPL.

Recently, the SPL paradigm has been successfully applied
in many tasks [55]–[57]. For example for multimedia search,
Jiang et al. [55] propose a self-paced reranking approach for
image and video search, which far exceeds the traditional
reranking methods that primarily rely on heuristic weighting.
To avoid poor local optimum and enhance the generalization of
the model, ClusterGAN [58] trains the clusterer by gradually
increasing the hardness of the included samples. Inspired by
the SPL, we progressively select web data from easy to hard
according to the similarity between the web and source data.
During the training procedure, our method also detects outliers
to efficiently avoid label noise from the selected web samples.
And its implementation procedure is task-independent and can
be easily generalized to varying scenarios.

III. BIDIRECTIONAL SELF-PACED LEARNING

In this section, we detail the BiSPL to mine useful knowl-
edge from noisy web data for the fine-grained visual clas-
sification task. For this purpose, Section III-A models the
pairwise relation learning to consider the relations in web
data. By taking advantage of the learned relationships, the
relation-based pseudo-labeling in Section III-B is employed
to assign a pseudo-label with a confidence score to each web
sample. The formulation of bidirectional self-paced learning
during the procedures of data sampling and model training is
presented in Section III-C according to the meaningful orders
of web data. Finally, the model training process is described
in Section III-D.

A. Learning Pairwise Relations

Given a standard source dataset Ds = {(xsi , ysi )}
Ns

i=1 with
Ns sample-label pairs (xsi , y

s
i ), where ysi ∈ {1, 2, · · · , C}

and C indicates the number of classes, our goal is to learn
the relation between each image pair in the feature space. To
achieve this goal, a common way is to train a CNN model
(e.g., ResNet-50 [1]) on Ds via the softmax loss:

Ls = −
1

Ns

Ns∑
i=1

log
e
WT

ys
i
xs
i+bys

i∑C
j=1 e

WT
j x

s
i+bj

, (1)

where Wj ∈ Rd and bj ∈ R denote the jth column of the
model weight W ∈ Rd×C and bias item, respectively. The
feature dimension d is set according to the dimension of the
last convolution block plus a global average pooling layer of
the backbone network, such as 2, 048 for ResNet-50.
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Fig. 2. Pipeline of our proposed framework. At each pace, 1) we train the ResNet-50 [1] as our backbone network on the source set and extract features
of the source (Ds, triangle) and web (Dw , circular) sets, respectively. 2) In the pseudo-labeling step, we assign each web sample with a pseudo label and
confidence score based on its similarity to the class center (red triangle). 3) Then we rank the web samples and add the easy ones D̂w into the training set.
The harder samples will be added in the next pace. 4) During the model training phase, as the model approaches convergence, we drop more and more hard
outliers with large Z-scores from the training set.

The softmax loss separates the features of different classes,
although it is not sufficiently effective for minimizing the
distances of the features belonging to the same class [59].
To learn a discriminative feature representation for a better
measure of the cosine similarity between samples in subse-
quent steps of the proposed method, i.e., enhancing the intra-
class cosine similarity and weakening the inter-class one, we
employ the commonly used ArcFace loss [59] which adds a
geodesic distance margin penalty to the softmax loss. With
the fixed bias bj = 0, the logit can be transformed as
WT
j x

s
i + bj = ‖Wj‖ ‖xsi‖ cos θj , where cos θj is the cosine

angle between the weight Wj and sample xsi . For simplicity,
the l2 normalization is used to fix ‖Wj‖ = ‖xsi‖ = 1, and then
the item WT

j x
s
i + bj = cos θj . The softmax loss is simplified

to:

Ls = −
1

Ns

Ns∑
i=1

log
e
cos θys

i∑C
j=1 e

cos θj
. (2)

After that, the ArcFace loss can be formulated as:

La = − 1

Ns

Ns∑
i=1

log
e
cos(θys

i
+m)

e
cos(θys

i
+m)

+
∑C
j=1,j 6=ysi

ecos θj
, (3)

where m denotes the geodesic distance margin penalty and is
set to 0.5 following [59]. We can observe that the ArcFace loss
is a modified version of softmax loss. To keep the classification
ability of our model, we independently separate these two
losses into different branches. And the feature dimension for
the ArcFace loss is set to 512 to trade-off the model complexity
and performance. Then the total loss for relation learning can
be defined as:

L = (1− λ)Ls + λLa, (4)

where λ is set to 0.1 to balance the contribution of softmax and
ArcFace losses according to their loss values observed during
the experiment.

B. Relation-Based Pseudo-Labeling

Given Nw unlabeled web samples Dw = {xwi }
Nw

i=1, the
goal is to assign each web sample with a confident class
label and filter out noisy samples. As we know, during the
collection procedure of web data, we utilize the name of
each class as the keyword to query images from the Internet.

Hence, we can simply treat them as the weak labels for
retrieved web samples. Then we can obtain the labeled web
dataset Dw = {xwi , ywi }

Nw

i=1. However, in this way, Dw cannot
be directly used to train the model because it is hard to
discriminate between the clean samples and noisy data yet.
Hence, we further assign each web sample with a confidence
score via its relation (i.e., cosine similarity) to the class center
on the source dataset in the feature space:

R(xwi , cywi ) =
f(xwi ) · cywi
‖f(xwi )‖

∥∥cywi ∥∥ , (5)

where f(xwi ) and ywi denote the feature of web sample xwi
and corresponding weak label. cywi indicates the feature center
(arithmetic mean) of the ywi -th class of the source dataset Ds.
Note that in each pace, only the data in the source dataset
participates in the calculation of the class center, and the web
data does not participate in either high-confidence or low-
confidence. The range of R belongs to [0, 1] and a larger
value indicates more similarity. And the samples with the
confidences less than a threshold can be regarded as outliers.

Note that the raw self-paced learning methods [54], [56],
[57] use classification loss to determine whether a sample is
easy or hard to learn, while we find that the cosine similarity
in the feature space is more robust than the classification loss
to measure the confidence of web data. And the experimental
evaluation in Section IV-E also proves this. In addition, the
core of the web data learning task lies in the detection of noise.
Compared with the feature relationship, the optimization of
the classifier may be more susceptible to noisy data. This will
make it easier for the model to accumulate noise information.

C. Bidirectional Self-Paced Learning

In this section, we design the bidirectional self-paced learn-
ing, which contains two strategies of sampling web data from
easy to hard and training model from hard to easy, to avoid
noise information while learning more knowledge from the
web data.
Sampling Web Data from Easy to Hard: To stably add
reliable web data to the training set, we follow the SPL [51]
paradigm and sample web data in several paces in the order
from easy to hard. In this way, the model becomes more
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Algorithm 1 Bidirectional Self-Paced Learning
Input: Source dataset Ds and web dataset Dw
Output: Model parameters W

1: Train an initial model W on the source dataset Ds;
2: Predetermine the fixed pace parameter γ and threshold σ;
3: repeat
4: Extract the features of Ds and Dw using model W and

calculate the feature center of each class on Ds;
5: Calculate the cosine distance of each web sample to its

corresponding class center via Eq. 5;
6: Select web samples from Dw to build D̂w via Eq. 7;
7: for Ne = {1, · · · , NE} do
8: Compute Z-scores and detect outliers from D̂w via

Eq. 9;
9: Build outlier set D̂∗w by randomly selecting Ne

NE
of

outliers;
10: Update model W on Ds ∪ (D̂w − D̂∗w) via Eq. 8;
11: end for
12: until Model gains no performance improvement
13: return W

and more robust and we can gradually add hard web samples
with more confidence compared to sampling data at once. The
training loss can be re-defined as:

L =

Ns∑
i=1

L(xsi , y
s
i ) +

Nw∑
j=1

vjL(x
w
j , y

w
j ), (6)

where vj ∈ {0, 1} controls the selection of web samples.
Different from most SPL related works [54], [56], [57] which
utilize the classification loss to measure the confidence of
each sample and determine whether it is easy or hard, we
consider the relationship (i.e., cosine similarity) between web
and source data in the feature space and the value of vj is
decided by:

vj =

{
1, if R(xwj , cywj ) > γ

0, otherwise
. (7)

The web sample xwi will be added into the training set if the
cosine similarity of R(xwj , cywj ) is greater than the fixed pace
parameter of γ.

Note that the raw self-paced learning [54] gradually changes
the pace parameter during the training process to select sam-
ples from easy to hard. However, following this setting, the
model will have a great risk of introducing a lot of noise into
the training set after experimental evaluation in Section IV-E.
In our algorithm, we alternatively fix the pace parameter of γ.
For each class in the feature space, before training, hard web
samples (with confidence scores less than γ) are distributed
around the class center of the source dataset. As the training
converges on the source dataset and selected web samples,
the ArcFace loss [59] maximizes the inter-class variance and
minimizes the intra-class variance. As a result, the density
of sample cluster of each class in the feature space will
gradually increase and further narrow the distance between
the hard samples and class center [59]. This is reflected in
the experiment that with the γ parameter fixed, in each pace,

there is still part of the hard samples (with confidence scores
less than γ in the previous pace) whose similarity to the class
center (i.e., the confidence scores) in the current pace is greater
than γ. In this way, we can safely and stably use web samples
from easy to hard to expand the training set capacity.
Training Model from Hard to Easy: At each pace, the data
we sample from the web set is still likely to contain noise.
Inspired by the related works [16], [17] that deep networks
are robust to noisy labels under a large learning rate, during
the model training phase, we learn from the samples from
hard to easy as the learning rate gradually declines, i.e., at the
beginning we learn from all the samples in the training set and
then we gradually ignore the samples with large loss values.
Then we re-formulate the training loss of the model as:

L =

Ns∑
i=1

L(xsi , y
s
i ) +

Nw∑
j=1

ujvjL(x
w
j , y

w
j ), (8)

where the sample xj is treated as noise if uj = 0 or otherwise
as clean data. And uj is defined as:

uj =

{
1, if Z-score(j, {L(xwi , ywi )}N

b

i=1) 6 σ
0, otherwise

, (9)

where N b denotes the batch size and Z-score (also called
standard score) [60] measures how many standard deviations
an observed value is from the mean of a group of values. In
this paper, it can be defined as a specific loss value L(xwj , y

w
j )

minus the average loss (denoted as avg(·)) and then divided
by the population standard deviation (denoted as std(·)):

Z-score(j, {L(xw
i , y

w
i )}N

b

i=1) =
L(xw

j , y
w
j ) - avg({L(xw

i , y
w
i )}N

b

i=1)

std({L(xw
i , y

w
i )}N

b

i=1)
.

(10)
Here, σ varies from 1 to ∝ and the samples with their Z-scores
larger than the threshold are treated as noisy data. Larger σ
means the model contains more hard samples for training. In
addition, to avoid losing a large amount of useful information
at one time, we drop the noisy data with a probability of Ne

NE

in each training batch, where the epoch number Ne gradually
increases from 1 to the total epoch number NE .

We utilize different metrics (i.e., cosine similarity and Z-
score) for determining whether the web data is easy or hard
in the aforementioned two proposed strategies for two reasons.
First, Z-score is not used in the web sample sampling stage be-
cause it measures how many standard deviations the observed
sample point is from the mean of all samples. Unfortunately,
the mean and standard deviation of unlabeled web data are
unreliable. Second, if the metric of cosine similarity is used
to drop web data, the similarity threshold will be difficult to
determine. Due to the fact that the web data is selected based
on its similarity with the source dataset (i.e., greater than γ). If
a threshold is set during model training to remove part of the
training data that may be noise, the direct result is equivalent
to increasing the γ parameter.

Note that the paradigm of online hard example mining [13]
(OHEM) also sorts examples from hard to easy. The core
of the OHEM algorithm is to select some hard examples
with diversity and high loss as a training set to improve
the parameter learning effect of the network. The purpose of
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hard negative mining in [61] is also to make the model give
more attention or learning weight to the hard examples. In
contrast, the training strategy of BiSPL aims to avoid noisy
web examples and progressively drop the hard examples at
each training iteration. Specifically, during the model training
procedure, we dynamically detect outlier (i.e., noisy web data)
in each batch via Z-score and keep all training examples in the
early stages. As the model tends to be robust and convergent,
we begin to consider outliers as noise. However, we may
lose important information if we simply discard the top K
hard examples like OHEM. And the ablation experiment in
Section IV-E also demonstrates this.
Dynamic Threshold Hyper-Parameters: We can observe
that the setting of the threshold hyper-parameters (i.e., γ and
σ) plays an important role in the proposed BiSPL method.
The comprehensive experiment conducted in the experiment
chapter also proves that we can adjust the values of these
two thresholds to obtain state-of-the-art model performance.
However, this manual process is time-consuming. So we
further design dynamic versions for these two parameters as
follows.

For the parameter γ, we independently set the safety thresh-
old for each class by considering its positional relationship
with the nearest neighbor class in the feature space:

γ∗ywj = 1− dinter(ywj , ŷwj )
dintra(y

w
j )

dintra(ywj ) + dintra(ŷwj )
, (11)

where ywj ∈ {1, 2, · · · , C} denotes the weak label of web
sample xwi . ŷwj is the nearest neighbor class of the class ywj and
the inter-class distance dinter(·, ·) is calculated by the cosine
distance between the centers of the two classes on the source
dataset. dintra(·) represents the intra-class distance, defined
as the maximum cosine distance between each sample and
the center of the class it belongs to on the source dataset. In
this way, we can safely select web samples for each class and
avoid confusion with similar classes.

For the parameter σ, in each training batch, we observe that
the Z-score values for most samples are around 0 (both positive
or negative), and those samples are assumed to be clean
samples. And the smaller the Z-score value of a sample is, the
more likely it is a clean sample. Outliers tend to have larger
Z-score values. Therefore, we simply use the absolute value of
the Z-score of the cleanest sample (i.e., with the smallest loss
and Z-score value) as the threshold to dynamically distinguish
the outliers:

σ∗ = |min({Z-score(j, {L(xwi , ywi )}N
b

i=1)}N
b

j=1)|

=
avg({L(xwi , ywi )}N

b

i=1) - min({L(xwi , ywi )}N
b

i=1)

std({L(xwi , ywi )}N
b

i=1)
. (12)

Therefore, samples whose Z-score values are in the interval of
[−σ∗, σ∗] are regarded as clean samples, and a small number
of remaining samples with large Z-score values are regarded
as noise.

D. Model Iteration

Following the related SPL works [55]–[57], we train an ini-
tial model on the source dataset and split the training procedure

CUB-200

Flower-102

GeococcyxGeococcyx

Great 
Masterwort

Great 
Masterwort

Fig. 3. Examples of collected web datasets for CUB-200 [5] and Flower-
102 [65]. The images surrounded by red boxes indicate noisy data which
does not help with the classification task.

into several paces. In each pace, as illustrated in Fig. 2 and
Algorithm 1, we first extract features for both the web and
source data. Second, we propagate the pseudo labels for web
data and utilize their relation to source data in the feature
space to assign each web sample with a confidence score.
The relation is measured by the cosine similarity between the
web sample and the feature center of the pseudo-label. Third,
we sample the confident web data following the order from
easy to hard. Then we re-train the model with a new training
set that combines the source and labeled web data. During
this training process, under the control of σ, hard samples
with large losses are considered to be noisy and are gradually
removed with the increase of the training epoch. Finally, we
process the next pace and repeat the model iteration.

IV. EXPERIMENTS

In this section, we introduce the datasets and implemen-
tation details. Then we conduct comprehensive experiments
for parameters, ablation studies, and performance evaluation
of BiSPL. All the code and datasets will be released to the
community.

A. Datasets

Following previous works on web data learning, we exper-
iment on six fine-grained image recognition datasets with dif-
ferent characteristics, including Dog-120 [4], Indoor-67 [62],
Food-101 [63], Food-101N [64], Flower-102 [65], and CUB-
200 [5]. These datasets cover classification tasks of a diverse
range of targets and are to some extent complementary. For ex-
ample, the object classification tasks (e.g., dog and bird) which
recognize obvious foreground targets in the image are very
different from the scene classification task. Besides, among
these objects (i.e., dog, food, bird, and flower), the recognition
of food is different from others since food generally has no
fixed shape, color, etc.

Existing Datasets. Table I shows the detailed statistics of
the source and web datasets employed in this work, including
image number, class number, and training/test split protocol.
Specifically, we utilize each original benchmark dataset as the
source set in our experiment and keep the same split setting of
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TABLE I
STATISTICS OF SOURCE AND WEB DATASETS. ‘CLASS’ AND ‘NUM.’

DENOTE THE NUMBERS OF CLASSES AND IMAGES, RESPECTIVELY. ‘*’
INDICATES THAT FOOD-101N EMPLOYS THE SAME TEST SET AS

FOOD-101 [63].

Dataset
Source Set Web Set

Class Num. Training/Test Num.

Dog-120 120 20,580 12,000/8,580 52,115
Indoor-67 67 15,620 14,280/1,340 76,907
Food-101 101 101,000 75,750/25,250 240,096
Food-101N 101 57,609 43,121/25,250* 252,400

Flower-102 102 8,189 2,040/6,149 213,404
CUB-200 200 11,788 5,994/5,794 307,348

training and test sets as previous works. For example, for the
Dog-120 [4] dataset, 12, 000 samples are utilized to train the
model and the rest are used as the test set. For the first four
source datasets in Table I, we use their corresponding web
sets collected by previous works [15], [64]. Note that the web
sets are only used for model training, which is consistent with
real-life applications. And each web sample has an unreliable
pseudo label since the images obtained from Internet resources
may be inconsistent with the objects we want.

Newly Collected Web Datasets. For the last two tasks in
Table I, we further collect their web datasets following the
procedure of previous works [15], [64]. For a given class name,
we use it as the keyword to query from the image search
engines (e.g., Google, Bing). Only top-3, 000 retrieved results
are retained for each class. Then we simply filter the images
which have the wrong format or are duplicated in the test set.
Finally, as shown in Table I, we collect a total of 213, 404
and 307, 348 web images for Flower-102 [65] and CUB-
200 [5] datasets, respectively. Fig. 3 illustrates some example
web images. We can observe that the web data contains both
informative images and noise.

Food-101N. Food-101N [64] is a web data learning dataset
with 101 food categories such as Hamburger and Cheesecake
and shares the same taxonomy as Food-101 [63] dataset.
310, 009 images are collected from Google, Bing, Yelp, and
TripAdvisor, with foodspotting.com excluded to avoid duplica-
tion with the original Food-101 [63] dataset. The correspond-
ing weak labels are annotated through query keywords and the
related work [64] estimates that its noisy class label accuracy
is 80%. The additional meta information includes 52, 868
verification labels for training and 4, 741 ones for validation
which belong to {0, 1} and denote whether each class label is
correct. Among the verified training set, 43, 121 images with
correct labels (i.e., corresponding verification label equal to 1)
are selected as source set in our BiSPL mechanism. Following
previous works [64], [102], we utilize the test set of Food-
101 [63] dataset to evaluate the proposed method.

B. Implementation Details

In our experiments, ResNet-50 [1] is employed as the
backbone network and initialized with the parameters pre-
trained on ImageNet [3]. The size of input images is set to
448 × 448 unless otherwise specified. In addition, common

data augmentation strategies like random crop, dropout, and
cutout [105] are utilized to avoid overfitting in our experi-
ments. In total, we train the model for 50 epochs in each
pace and optimize it using Stochastic Gradient Descent (SGD).
The mini-batch, momentum, and weight decay are set to 40,
0.9, and 5e-4, respectively. The learning rate of backbone
and last fully connected layer are set to 0.001 and 0.01
respectively. Our method is implemented on the platform of
PyTorch framework and an NVIDIA 1080Ti GPU with 11 GB
on-board memory.

C. Comparison with the State-of-the-Arts

In this section, we evaluate the proposed BiSPL and com-
pare with state-of-the-art methods on fine-grained classifica-
tion tasks.

Comparison Protocols. For a fair comparison, we try our
best to compare with related methods in the same experimental
scenario. First, on the Dog-120 [4], Indoor-67 [62], and Food-
101 [63] datasets, we mainly cite the results from recent works
of ADNN [27] and PF [15]. Both methods exploit the same
source and web sets in a similar mechanism to ours. On the
Food-101N [64] dataset which originally comprises of labeled
source set and noisy web set, we perform the experiment by
directly following settings of previous methods. Second, on all
the datasets especially the CUB-200 [5] and Flower-102 [65]
datasets whose corresponding web data is first collected in this
work, we find existing works based on these datasets from top
journals and conferences and compare with the state-of-the-
art methods. In Table II, we detail the experimental settings
of backbone network and image input size of each method.
Moreover, except on the Food-101N [64] dataset, specific
statistics of the comparison methods which utilize additional
data are also reported in Table III. For example, DPTL [6]
utilizes a more powerful network architecture (i.e., Inception-
ResNet-v2 SE [66]), higher image resolution and transfer
knowledge from the subset of large-scale well-labeled dataset
(i.e., iNaturalist [106]) that is similar to the target domain.
In this case, it shows excellent classification results and even
outperforms the web data learning methods (e.g., PF [15] and
ADNN [27]) on the Dog-120 [4] and Food-101 [63] datasets.
Third, we also report our model results under different settings
of input size (e.g., 224 × 224 and 448 × 448) to compare
methods in a controlled protocol.

Comparison on Existing Datasets. Specifically, on the
Dog-120 [4] dataset, as shown in Table II, our BiSPL achieves
the best classification performance of 88.66%. Compared
with web data learning methods (i.e., PF [15], ADNN [27],
Goldfinch [11], and Hybrid [19]), our BiSPL outperforms them
in accuracy by at least 1.30%. For the methods of PF [15]
and ADNN [27] using the same web set as ours, we utilize
the fair experimental settings (i.e., backbone of ResNet-50 and
input size of 224×224) and achieve the classification accuracy
of 88.11%. PF [15] has a similar procedure that step-wisely
learns from noisy web data and processes ambiguous samples
which are mixed in the added web data. Different from it,
we select confident samples from noisy web data based on
the relation (i.e., cosine similarity) on feature space which is
more robust than classification scores. Besides, the process
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TABLE II
COMPARISON WITH STATE-OF-THE-ART METHODS ON THE CLASSIFICATION TASKS OF DOG, INDOOR SCENE, FOOD, BIRD, AND FLOWER. WE COMPARE

THE PROPOSED BISPL WITH SEVERAL METHODS INCLUDING WEB DATA LEARNING ALGORITHMS AND FINE-GRAINED VISUAL CLASSIFICATION
FRAMEWORKS. ‘-’ REPRESENTS THAT THE SPECIFIC DATA IS NOT REPORTED IN CORRESPONDING PAPER. ‘*’ INDICATES THE USE OF ADDITIONAL DATA

(e.g., WEB IMAGES AND THE INATURALIST DATASET, SPECIFIC STATISTICS ARE IN TABLE III). ‘INCRESV2SE’ IS THE NETWORK OF
INCEPTION-RESNET-V2 SE [66]. † AND ‡ DENOTE THE USE OF DYNAMIC THRESHOLD HYPER-PARAMETERS AND LARGER INPUT SIZE, RESPECTIVELY.

BOLD VALUES DENOTE THE TOP 3 PERFORMANCE OF ACCURACY (ACC.).

Dog-120 [4] Indoor-67 [62] Food-101 [63]

Method Backbone Input Size Acc. Method Backbone Input Size Acc. Method Backbone Input Size Acc.

PBC [67] GoogLeNet 224×224 78.30 HybirdCNN* [68] Places-CNN - 70.80 RF [63] Random-Forest - 50.76
SCDA [69] VGG-16 224×224 78.86 SNN [70] VGG-16 - 72.20 DCNN [63] AlexNet - 56.40
VSM [71] VGG-16 - 79.50 SFV [72] CaffeNet - 72.86 Im2Cal [73] GooLeNet - 79.00
Weakly [74] VGG-16 224×224 80.43 BCNNs [75] VGG-16 multi-scale 79.00 KELM [76] ResNet-50 300×300 82.60
PC [77] DenseNet-161 - 83.75 Places* [78] VGG-16 - 79.76 Grassmann [79] VGG-16 224×224 85.70
Hybrid* [19] VGG-16 - 85.16 MPP [80] CaffeNet multi-scale 80.78 CNet [7] Inception-V2 - 87.30
Goldfinch* [11] Inception-V3 - 85.90 DFHybrid* [81] Places-CNN multi-scale 80.97 Inception [82] Inception-V3 299×299 88.28
ADNN* [27] ResNet-50 224×224 87.07 LSDH [83] VGG-11 - 83.75 ADNN* [27] ResNet-50 224×224 89.35
PF* [15] ResNet-50 224×224 87.36 ADNN* [27] ResNet-50 224×224 84.59 PF* [15] ResNet-50 224×224 89.77
DPTL* [6] IncResV2SE 448×448 88.00 PF* [15] ResNet-50 224×224 84.78 DPTL* [6] IncResV2SE 448×448 90.40

BiSPL ResNet-50 224×224 88.11 BiSPL ResNet-50 224×224 85.82 BiSPL ResNet-50 224×224 90.39
BiSPL† ResNet-50 224×224 88.52 BiSPL† ResNet-50 224×224 85.60 BiSPL† ResNet-50 224×224 89.35
BiSPL‡ ResNet-50 448×448 88.66 BiSPL‡ ResNet-50 448×448 87.01 BiSPL‡ ResNet-50 448×448 91.18

CUB-200 [5] Flower-102 [65] Food-101N [64]

Method Backbone Input Size Acc. Method Backbone Input Size Acc. Method Backbone Input Size Acc.

Part-RCNN [84] CaffeNet 227×227 76.40 TriCoS [85] SVM - 85.20 verified ResNet-50 224×224 74.19
PSA-CNN [86] VGG-19 - 82.80 LSVM [87] SVM - 87.14 clean ResNet-50 224×224 78.57
MG-CNN [88] VGG-19 - 83.00 N-Piars [89] GoogLeNet - 88.50 noisy [64] ResNet-50 - 81.44
DLA [90] DLA-102 448×448 85.10 RepMet [91] Inception-V3 - 89.00 clean* [64] ResNet-50 - 81.67
MA-CNN [92] VGG-19 448×448 86.50 MsML [87] - 224×224 89.45 Weakly [20] VGG-16 - 83.43
NTS-Net [93] ResNet-50 448×448 87.50 Magnet [94] GoogLeNet 224×224 91.40 CleanNet(hard) [64] ResNet-50 - 83.47
PA-CNN [95] VGG-19 448×448 87.80 BOA* [96] ResNet-152 - 92.50 CleanNet(soft) [64] ResNet-50 - 83.95
DCL [97] ResNet-50 448×448 87.80 VMF [98] GoogLeNet 224×224 95.60 Guidance [99] ResNet-50 224×224 84.20
iSQRT [100] ResNet-101 448×448 88.70 DAT [101] Inception-V3 - 97.70 MetaCleaner [102] ResNet-50 - 85.05
DPTL* [6] Inception-V3 448×448 89.60 EfficientNet [103] EfficientNet-b7 600×600 98.80 DeepSelf [104] ResNet-50 224×224 85.11

BiSPL ResNet-50 224×224 90.20 BiSPL ResNet-50 224×224 99.09 BiSPL ResNet-50 224×224 86.23
BiSPL† ResNet-50 224×224 90.39 BiSPL† ResNet-50 224×224 99.10 BiSPL† ResNet-50 224×224 86.60
BiSPL‡ ResNet-50 448×448 91.11 BiSPL‡ ResNet-50 448×448 99.33 BiSPL‡ ResNet-50 448×448 87.22

TABLE III
STATISTICS ON THE USE OF ADDITIONAL DATA FOR COMPARISON

METHODS.

Dataset Method Use of Additional Data

Dog-120

Hybrid [19] 100 noisy web images per category
Goldfinch [11] 342,632 noisy web images
ADNN [27] 52,115 noisy web images
PF [15] 52,115 noisy web images
DPTL [6] subset of iNaturalist [106]

Indoor-67

HybirdCNN [68] Places 205 (2,448,873 images)
Places [78] Places 205 (2,448,873 images)
DFHybrid [81] Places 205 (2,448,873 images)
ADNN [27] 76,907 noisy web images
PF [15] 76,907 noisy web images

Food-101
ADNN [27] 240,096 noisy web images
PF [15] 240,096 noisy web images
DPTL [6] subset of iNaturalist [106]

CUB-200 DPTL [6] subset of iNaturalist [106]

Flower-102 BOA [96] unknown amount of web data

of assigning each sample with multiple labels performs well

when one image contains objects from multiple categories,
but ambiguous web samples may be noisy and do not belong
to any category. We choose to directly drop them instead of
introducing extra label information for every training sample.
Even compared to the method of Goldfinch [11] which utilizes
a much larger scale of web dataset both in the levels of
category (i.e., 515 vs. 120) and image number (i.e., 342, 632
vs. 52, 115), our method still performs better by at least 2%.
Compared with the state-of-the-art methods (e.g., PC [77] and
Weakly [74]) in the fine-grained visual classification field,
our method shows great advantages in classification results.
This indicates that web data contains rich information that can
effectively improve the model performance. For these methods
(i.e., DPTL [6] and PC [77]) that usually utilize deeper
CNNs (e.g., DenseNet-161), our method still outperforms
them to a certain extent. For example, DPTL [6] which is
based on the network of Inception-ResNet-v2 SE [66], input
size of 448 × 448 and additional images from the subset of
iNaturalist [106] achieves excellent accuracy performance of
88% and even outperforms the state-of-the-art web data based
methods (e.g., PF [15]).

Our BiSPL performs similarly on the datasets of Indoor-
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67 [62] and Food-101 [63]. As shown in Table II and Ta-
ble III, under the different experimental settings, our method
outperforms both the web data learning methods and state-of-
the-art fine-grained visual classification methods. Moreover, on
the Indoor-67, the methods of HybirdCNN [68], Places [78],
and DFHybrid [81] benefit from the initial model which is
pre-trained on the Places 205 dataset [78]. This large-scale
scene recognition dataset (i.e., Places 205 [78]) comprises
of 205 scene categories and about 2.5 million well labeled
images. Having at least 5k images of each category guarantees
that rich information can be transferred from the Places
205 [78] dataset, while the better performance of our method
demonstrates that unlabeled noisy web data also contains a lot
of valuable knowledge and our method can effectively learn
from it.

Comparison on Newly Collected Web Datasets. On the
CUB-200 [5] dataset, our method outperforms the related
works by at least 0.60% in accuracy. The part-based methods
such as PA-CNN [95], DCL [97], and MA-CNN [92] attend
to generate attention maps or utilize local information, e.g.,
bounding boxes and attributes, to assist the feature represen-
tation. They achieve good performance since part regions can
guide the model to focus on the foreground area and ignore the
noisy background information. However, the data diversity is
still limited to the source data scale and the annotation of fine-
grained labels is time-consuming. Benefiting from web data,
as shown in Fig. 3, we can freely obtain extensive bird images
that differ in scale, pose, and environment. This can help to
decrease both the intra- and inter-class variation in the fine-
grained visual classification task. In our BiSPL strategy, we
use these data samples that contain rich information and effec-
tively drop noisy data. Therefore, the model gains the improve-
ment of robustness and generalization and achieves state-of-
the-art results. On the Flower-102 [65] dataset, BOA [96] also
augments training set from web data according to the similarity
between the web sample and labeled source sample. However,
it only samples the web data once and may introduce noisy
information easily. In contrast, our method gradually adds
reliable web data to the training set in the order from easy to
hard. In addition, we also detect and remove potentially noisy
samples during model training. Then, as shown in Table II, we
observe that the pure deep network (i.e., EfficientNet-b7 [103]
with the input size of 600 × 600) can also achieve excellent
performance (i.e., accuracy of 98.8%) with an average of only
20 training samples per class. This may be because the task
of flower classification is relatively simple and the diversity
of flowers (e.g., colors, shapes, etc.) in the corresponding test
set may be relatively limited.

Comparison on Food-101N. The basic ResNet-50 achieves
the accuracy of 74.19% on the 53k verified subset of Food-
101N [64]. The verification labels denote whether the label
of each image is correct. Hence we remove the noisy training
images and gain performance improvement on the 43k clean
set (utilized as source set in our method). As reported in [64],
the model trained on a total of 310k noisy training images
easily achieves the classification performance of 81.44%.
This is very close to the performance of 81.67% on the
clean Food-101 [63] dataset with 76k well-labeled training
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Fig. 4. Sensitivity of λ (denoted as different colors) on the Indoor-67 dataset.
The losses of Ls and La vary from the training epochs under the different
settings of λ.

images. This indicates that the images collected from the
Internet are relatively reliable for the task of food classification
and we can simply obtain extensive knowledge from the
web data without any human effort for annotation. For the
other compared methods on the Food-101N [64] dataset,
they can be grouped into two categories: unsupervised and
semi-supervised methods. The unsupervised web data learning
methods (i.e., DeepSelf [104] and Weakly [20]) usually utilize
weak labels (e.g., the query keywords when collecting data
from Internet) and correct them with the information such
as losses and gradients during model training. For example,
DeepSelf [104] generates multi-prototypes for each class by
feature clustering and computes the similarity score to de-
termine whether each sample label is correct. However, this
method may perform poorly in some categories where the
number of samples is very small or the corresponding web data
contains many error samples. In contrast, the semi-supervised
mechanisms (i.e., MetaCleaner [102], Guidance [99], and
CleanNet [64]) require a small well-labeled source dataset as
auxiliary or prior information and generally achieve higher
classification performance. For example, MetaCleaner [102]
assigns each noisy web sample with a confidence score by
calculating its relation to clean samples and gains the accuracy
of 85.05% on the Food-101N [64] dataset. Compared with it,
our method adds the noisy web data into training set through
several steps instead of one time. This process reduces the
risk of biasing to poor optimization to some extent and makes
the model more robust. As shown in Table II, our proposed
BiSPL outperforms the state-of-the-art methods under the fair
experimental settings (i.e., backbone of ResNet-50 and input
size of 224× 224).

D. Parameters

In this section, we evaluate the model performance with
varying parameter settings of λ, γ, and σ.

Impact of the Weight between Losses. The weight pa-
rameter λ in Eq. 4 controls the loss contributions of Ls and
La. On the Indoor-67 dataest, we train a ResNet-50 with the
input size of 224 × 224 and 50 epochs and report the loss
curves of Ls and La in Fig. 4. We can observe that both
losses converge relatively faster as the λ parameter decreases.
In addition, during the experiment, we find that the value of Ls
is usually close to 10 times that of La. Therefore, we finally
set the λ parameter to 0.1 in this paper.

Impact of the Pace Parameter. The pace parameter γ
determines whether one sample is confident to be added to
the training set in the next pace. Smaller γ may lead to the
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TABLE IV
PARAMETER SETTINGS OF γ AND σ ON DIFFERENT DATASETS.

# Dog-120 Indoor-67 Food-101 CUB-200 Flower-102 Food-101N

γ 0.6 0.6 0.7 0.7 0.7 0.7
σ 2.0 2.5 2.5 2.5 2.5 2.5

model ignoring those hard but informative web samples. In
contrast, larger γ may easily introduce more noise and make
the model accumulate more error. As illustrated in Fig. 5, with
the fixed setting of σ = 2.5, the model performs increasingly
better when γ varies from 0.4 to 0.6 on the Indoor-67 [62]
dataset. Yet the accuracy performance drops dramatically in
the interval of [0.6, 0.8]. As a result, we fix the γ to 0.6 for
the experiments on the Indoor-67 dataset in this paper.

Impact of the Threshold of Z-Score. σ is the Z-score
threshold that controls the number of outliers in a batch in the
model training procedure. Larger σ means fewer outliers will
be dropped and we set σ = 2.5, based on the observation from
Fig. 5. In summary, we can find that the model performance
changes regularly as the hyper-parameters vary on the Indoor-
67 [62] dataset. And we can easily set the parameters of γ
and σ to 0.6 and 2.5, respectively.

Sensitivity of Hyper-Parameters. Hyper-parameters have
a certain influence on model performance. Because the noise
in the web data has a direct and significant impact on the
performance of the model. Too large σ and γ will increase the
risk of introducing noise data (around 1.5% accuracy), and too
small σ and γ will make hard samples with rich information
that are beneficial to the model generalization to be filtered
out too early. While for a σ that is extremely small, a large
number of training samples will be discarded, resulting in a
more dramatic drop in performance relative to the parameter γ.
In addition, benefiting from the regular influence of parameters
on model performance, in Table IV, We can easily find the
hyper-parameters by simply adjusting the hyper-parameters
near the ones of the Indoor-67 dataset. The specific hyper-
parameter settings of the other evaluation datasets (i.e., Dog-
120, Food-101, CUB-200, Flower-102, and Food-101N) are
shown in Table IV.

E. Ablation Studies

We conduct extensive ablation experiments on the Indoor-67
dataset to demonstrate the effectiveness of BiSPL.

Effect of Web Data. Specifically, as shown in Table V,
we first evaluate the basic fine-tuning technology in the deep
learning field which transfers knowledge through pre-training

TABLE V
ABLATION EXPERIMENTS ON THE INDOOR-67 DATASET. ‘224’ AND ‘448’

INDICATE THE DIFFERENT SIZES OF INPUT IMAGE. ‘SRC’ INDICATES
SOURCE DATA IS USED FOR TRAINING, WHILE ‘WEB’ DENOTES THE USE

OF ADDITIONAL WEB DATA. ‘SPL1’ AND ‘SPL2’ REPRESENT THE
STRATEGIES OF SAMPLING DATA FROM EASY TO HARD AND TRAINING

MODEL FROM HARD TO EASY, RESPECTIVELY. ‘RL’ IS PROPOSED
RELATION LEARNING, ‘OHEM’ MEANS FIXEDLY REMOVING TOP K HARD

SAMPLES IN EACH TRAINING BATCH. ‘†’ AND ‘‡’ DENOTE THE USE OF
EUCLIDEAN DISTANCE. ‘‡’ INDICATES THE Center LOSS IS FURHTER

EMPLOYED.

Method Input Size Indoor

B
as

el
in

e

SRC 224× 224 79.63
SRC 448× 448 83.13
Web 224× 224 67.54
SRC+Web 224× 224 78.10
Web → SRC 224× 224 80.37
SRC+Web → SRC 224× 224 81.04
SRC+Web+Filter 224× 224 81.34
SRC+Web+RL 224× 224 83.66
SRC+Web+RL† 224× 224 82.12
SRC+Web+RL‡ 224× 224 83.05

A
bl

at
io

n SRC+Web+RL+SPL1 224× 224 84.03
SRC+Web+RL+SPL2 224× 224 84.25
SRC+Web+RL+OHEM 224× 224 83.51
SRC+Web+RL+SPL1+OHEM 224× 224 84.26

O
ur

s SRC+Web+RL+BiSPL 224× 224 85.82
SRC+Web+RL+BiSPL 448× 448 87.01

the model on a large dataset (e.g., ImageNet) and then fine-
tuning it on the source dataset (e.g., Indoor-67). We train a
basic CNN model (i.e., ResNet-50) on the source dataset and
achieve the accuracy of 79.63%. To evaluate the effectiveness
of web data, in the 3rd row, we directly train on the noisy
web data and the model gets worse on the Indoor-67 dataset.
Then the source and noisy web datasets are combined in the
4th row and the model improves the classification result on
the Indoor-67 dataset (i.e., the accuracy of 78.10%) while it is
still lower than the basic model trained on the source dataset.
This case indicates that the categories of indoor scenes in the
Indoor-67 dataset are abstract and this makes the collected web
data difficult to use without filtering. To alleviate the influence
of noisy data in a simple way, in the 5th-6th rows, we further
fine-tune the model in the 3rd-4th rows on the source dataset.
Compared with the classification result on the source dataset,
this simple strategy easily obtains performance improvement
and demonstrates the efficiency and importance of research to
mine knowledge from free web data. In our method, we do
not choose to fine-tune the final model on the source dataset,
because the deep networks are learned with memorization [16],
[17] and the fine-tuned model may forget valid information
learned from the web set. Moreover, the better performance
of the fine-tuned model may be due to the small domain shift
between the clean source set and the test set, which may lead
to lack of better generalization.

Effect of Noise Filtering. Afterward, we filter and add web
data into the training set via the classification results from the
basic CNN model and set different thresholds following [15].
And the model trained by the combination of source data
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Fig. 6. Performance on the limited-data setting on the Indoor-67 dataset. The
x-axis denotes the ratio of used source data for initial model training. The
orange and blue histograms denote the amount of used web data and source
data, respectively. The curves indicate the classification performance.

and filtered web data outperforms the basic model, achieving
accuracy boost of 1.71%. Note that we set the input size of
CNN to 224×224 for accelerating the experimental procedure
and all the models are pre-trained on the ImageNet dataset.

Effect of Relation Learning. Different from most of the
web data learning methods that measure the confidence of
web data via a classifier trained on the source set (i.e., the
7th row), in the 8th row of Table V, we process it in a
more robust way and introduce the relation learning (RL) into
the proposed framework, i.e., utilizing the cosine similarity
in the feature space to represent the relationship between
source and web data. We can observe that the relation-based
data sampling strategy outperforms the conventional classifier-
based one. Furthermore, we also verify the impact of different
similarity measures (e.g., Euclidean distance) on our proposed
BiSPL. Specifically, in the 9th row, we train a classification
network on the source dataset as in row 7 and further use
Euclidean distance to measure the similarity between the
source data and the web data. And the result indicates that the
similarity measure in the feature space is more robust than
using classification loss directly. This may be because web
data learning is an open-set problem. For noisy web samples
not included in the label set of the source dataset, in the
feature space, they will always be classified into a hyperplane
of a certain category by the classifier. And the classification
results normalized by softmax will always assign predicted
probabilities to each category belonging to the source dataset
and the sum is 1. This may make it more difficult to distinguish
between hard samples and noisy samples. In the 10th row, we
further employ the metric learning loss (i.e., the commonly
used Center loss) to embedding features and achieve the
performance of 83.05%. Compared with ArcFace loss, the
Center loss relies on the classifier to ensure that the features
are separable while minimizing the distance within the class.
As a result, its feature discriminability is related to classifier
performance.

Effect of BiSPL. Then we introduce the proposed bidirec-
tional self-paced learning pattern in the 11th-12th rows. First,
inspired by the learning pattern of humans, the order from easy
to hard confirms the web data is sampled through a meaningful
fashion. Compared with the simple one-stage sampling in
the 8th row, the self-paced learning strategy in the 11th row
samples data step by step and boosts the model performance by
0.37%. It is worth noting that we fix the pace parameter γ as

described in Eq. 7. When we gradually reduce this parameter
following the pattern of the original self-paced learning [54],
the model will only achieve the highest performance in the
first pace which equals to the performance in the 8th row. In
the later paces, the performance degradation may be caused by
the introduction of too much noise. Then, to avoid the effects
of noise contained in the data sampled from the web set, we
insightfully propose to train the model from hard to easy in the
12th row. Along with the training process of the model, this
mechanism dynamically drops more and more outliers with
large Z-scores which are calculated by loss values. As shown
in Table V, the model trained by reversed self-paced learning
during model training is more robust and obtains performance
improvement. In contrast, in the 13th-14th rows, the OHEM
strategy which fixedly removes the top K hard examples in
each training batch can easily lose critical information and
performs worse than our training strategy. In this paper, we
set K to {1, 5, 10, 20} respectively on each dataset and report
the best experimental performance. Finally, we combine both
above-mentioned strategies into a unified framework, called
bidirectional self-paced learning (BiSPL), in the 15th row.
We can find that the BiSPL can perform stably both on the
procedures of web data sampling and model training and
achieves the best accuracy performance. In addition, in the
last row of Table V, we resize the input image to higher
resolution 448×448 and the model gains further performance
improvement. This indicates that the larger size of the input
image can help the model capture richer information.

F. Evaluation on the Limited-Data Setting

In practice, as the difficulty of labeling different types of
data is different (e.g., the classification of medical images
versus general targets), it is hard to control the scale of well-
labeled data. In this section, we evaluate the efficiency of our
proposed method under the limited-data setting.

Specifically, as illustrated in Fig. 6, we gradually decrease
the scale of source training set from 100% to 10% by random
sampling. The sample size ratio of all categories remains
unchanged relative to the original training set. Experiments
are conducted with the backbone of ResNet-50 and the input
size of 224×224. We first report the classification performance
of ResNet-50 (denoted as ‘Baseline’) which is trained on the
limited source set. Then the proposed method is evaluated on
the combination of partial training set and web set. Note that
the rest of training set is not used under each setting of training
scale. This is to simulate real-world application scenarios that
we can only obtain web data of unknown quality through the
Internet and the degree of overlap between the web set and
training set is difficult to control. As observed from Fig. 6, on
the Indoor-67 [62] dataset, the performance of the Baseline
method decreases dramatically as the amount of supervised
data decreases. Due to the fact that the massive parameters of
deep learning technology require a large amount of data. As
the amount of data gradually decreases, the performance of
the deep model will definitely decrease. Especially when the
amount of data in the training set of the source dataset is too
sparse (i.e., less than 40% on the Indoor-67 dataset) and is not
enough to fit the test set, the performance of the ‘Baseline’
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Fig. 7. 2D t-SNE [107] visualizations of the feature embeddings on different datasets, i.e., (1) Dog-120, (2) Indoor-67, (3) Food-101, (4) Flower-102, and
(5) CUB-200. Two rows indicate the features extracted from (a) ResNet-50 [1] combined with ArcFace loss and (b) our BiSPL model, respectively.
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Fig. 8. Web images selected from easy (a) to hard (c) by the proposed BiSPL algorithm in different learning paces. Different rows indicate different categories
(i.e., Laysan Albatross, Northern Waterthrush, and Purple Finch). The numbers under the images represent corresponding cosine distances to the feature centers
of the pseudo-labels. The images which are surrounded by green boxes denote the correctly identified noisy data during the model training phase, while the
red boxes indicate the missed outliers.

method drops sharply. In contrast, it can be found that as long
as the amount of data can ensure that the model can learn the
basic general pattern of each category (i.e., more than 20% on
the Indoor-67 dataset), our work can safely learn knowledge
conducive to rich feature diversity from web data pace by
pace, thus contributing to the generalization performance of
the model and achieves relatively stable performance. As a
result, even if the reduction in the training set scale results
in a bias from the test set, our model can still have a
significant performance improvement on the test set relative
to the ‘Baseline’ method. This demonstrates that the task of
web data learning can indeed effectively alleviate the data-
hungry problem. However, when well-labeled data is less than
20%, the performance of our method also begins to decrease
significantly. This may be due to the fact that too little data
is not enough to train a deep network such as ResNet-50
and obtain a good initial feature representation. In addition,
our method tends to utilize more web data when the ratio of
used source data is less than 40%, and at the same time the
performance of the ‘Baseline’ method is greatly reduced. In
this case, the sampled web data contains relatively more noise,
and the BiSPL can still achieve a more stable classification
performance than the ‘Baseline’ method, which demonstrates
the effectiveness of our method.

G. Visualization Results
Fig. 7 shows the 2D t-SNE [107] feature embeddings.

Compared with the baseline method (i.e., ResNet-50), our

BiSPL learns discriminative feature representations on all the
datasets. Further, as illustrated in Fig. 8, our method samples
the web data via several paces and follows the meaningful
order from easy to hard. As the learning pace progresses,
more and more outlier hard samples are successfully detected
(surrounded by green boxes) and treated as noise by our
BiSPL. At the same time, we can observe that there are
still some informative hard samples that are retained, and
they can often enrich the diversity of corresponding categories
and enhance its generalization performance. For example, in
row 2, column 3 of Fig. 8, the outlier which belongs to
Louisiana Waterthrush is similar to Northern Waterthrush,
yet it has bright white at the rear of eyebrow. In the third
row, several web samples that contain multiple categories of
birds are also dropped. However, the noise sample surrounded
by an orange box in the first row fails to be detected as it
has a similar representation as Laysan Albatross (i.e., white
underpart and dark gray-brown upper wings) and its true class
is not contained in the CUB-200 [5] dataset. More specifically,
Fig. 9 presents more examples including training images, web
images selected by our algorithm, and classification results.
The web data contains diverse information compared with the
training set and helps improve the model generation. However,
several noisy samples have extremely similar characteristics
to the training set and do not belong to any category of the
dataset, so they are easy to be wrongly selected, e.g., the single
computer and monitor (surrounded by red boxes) in the fourth
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Fig. 9. Samples of the training images, selected web images, and test images on the Dog-120 (Irish Setter), Indoor-67 (Computer Room), Food-101 (Chicken
Wings), and Flower-102 (Bird of Paradise) datasets. The images surrounded by red boxes indicate noisy data or wrong predictions.

row of Fig. 9 are easily misidentified as the ‘Computer Room’
category, since they appear frequently in the training images
of this category. And the side dishes in the food (in the sixth
row of Fig. 9) are also easily confused with the main dish
category. Moreover, we occasionally fail to recognize images
that are mislabeled. For example, in the first row of Fig. 9,
multi-categories of dogs appear in the testing set of the ‘Irish
Setter’ category in the Dog-120 dataset.

H. Further Analysis

In practice, sometimes it is challenging to collect large
amounts of data for each category of some small-scale tasks
(e.g., ‘laboratory wet’ on Indoor-67 [62]) on the web. Besides,
the scale of valuable samples for each category may also be
imbalanced. These may cause the model to recognize well the
common categories with large scale training samples while
poorly the rare ones in contrast. In our proposed BiSPL, we
observe that the data imbalance is a natural phenomenon,
both when collecting web data and sampling training samples.
For example, on the Dog-120 [4] dataset, it is more difficult
to automatically collect web images for ‘Brabancon Griffon’
compared to ‘Doberman’. During the sampling stage, the
BiSPL samples a total of 30, 532 images from the noisy web
set for 120 categories before achieving the best performance of
88.66% accuracy, which contains 623 images of ‘Samoyed’,
while only 7 images of ‘Papillon’. Our algorithm can automat-
ically mine valuable information from imbalanced web data,

while imbalanced training set may bias the model to these
majority classes with a relatively large number of samples.
Therefore, in the web data learning task, how to obtain a
balanced set throughout the web data learning procedure is
crucial and we will pay attention to this point in future work.

V. CONCLUSION

This paper focuses on the data scarcity problem of deep
CNNs via learning from web data, where the web data is
free to obtain from the Internet and does not need any
extra manual annotation. For such purpose, we propose the
BiSPL framework which alternatively iterates the procedures
of web data sampling and model training. During the sampling
phase, we rank the web data by cosine distance and sample
confident ones in a meaningful order, i.e., from easy to hard.
The training phase optimizes the model from hard to easy
via gradually dropping outliers with large losses which are
regarded as noise. Extensive experiments on six fine-grained
datasets demonstrate the superiority of BiSPL against state-of-
the-art methods.

In the future work, we plan to explore more application
scenarios for the proposed algorithm, such as experimental
evaluation on more tasks (e.g., multi-label classification, object
detection, and semantic segmentation) and large-scale datasets.
In addition, how to automatically eliminate interference from
open set categories in the process of web data learning is also
a challenging issue.
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