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Abstract 1 

Background:  Pediatric non-malignant lymphoproliferative disorders (PLPD) are 2 

clinically and genetically heterogeneous. Long-standing immune dysregulation 3 

and lymphoproliferation in children may be life-threatening, and a paucity of data 4 

exists to guide evaluation and treatment of children with PLPD. 5 

Objective:  The primary objective of this study was to ascertain the spectrum of 6 

genomic immunologic defects in PLPD. Secondary objectives included character-7 

ization of clinical outcomes and associations between genetic diagnoses and 8 

those outcomes. 9 

Methods:  PLPD was defined by persistent lymphadenopathy, lymph organ in-10 

volvement, or lymphocytic infiltration for more than 3 months, with or without 11 

chronic or significant EBV infection. Fifty-one subjects from 47 different families 12 

with PLPD were analyzed using whole exome sequencing (WES). 13 

Results:  WES identified likely genetic errors of immunity in 51% to 62% of fami-14 

lies (53% to 65% of affected children). Presence of a genetic etiology was asso-15 

ciated with younger age and hemophagocytic lymphohistiocytosis. Ten-year sur-16 

vival for the cohort was 72.4%, and patients with viable genetic diagnoses had a 17 

higher survival rate (82%) compared to children without a genetic explanation 18 

(48%, p = 0.03). Survival outcomes for individuals with EBV-associated disease 19 

and no genetic explanation were particularly worse than outcomes for subjects 20 

with EBV-associated disease and a genetic explanation (17% vs. 90%; p = 21 
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0.002). Ascertainment of a molecular diagnosis provided targetable treatment op-22 

tions for up to 18 individuals and led to active management changes for 12 pa-23 

tients. 24 

Conclusion:  PLPD therefore defines children with high risk for mortality, and 25 

WES informs clinical risks and therapeutic opportunities for this diagnosis. 26 

 27 

Clinical Implications 28 

Genetic evaluation is necessary in PLPD because it not only helps to determine 29 

the underlying mechanistic etiology of disease and carries prognostic implica-30 

tions, but it also directs key management decisions. 31 

 32 

Capsule Summary 33 

Genetic errors of immunity are prevalent in children who meet criteria for PLPD 34 

yet correlate with improved survival.  EBV-PLPD without a genetic explanation is 35 

associated with increased risk for mortality.  Genetic testing alters management 36 

strategies. 37 

 38 

Key Words: lymphoproliferation, pediatric, whole exome sequencing, genomic, 39 

Epstein-Barr virus 40 

 41 

Abbreviations 42 

ALPS - autoimmune lymphoproliferative syndrome 43 

CAEBV - chronic active EBV 44 
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CMG - Center for Mendelian Genomics 45 

EBV - Epstein-Barr virus 46 

EBV-PLPD - EBV-associated PLPD 47 

HGSC - Human Genome Sequencing Center 48 

HLH - hemophagocytic lymphohistiocytosis 49 

HSCT - hematopoietic stem cell transplantation 50 

IUIS - International Union of Immunological Societies 51 

NK - natural killer 52 

PIDD - primary immunodeficiency disease 53 

PIRD - primary immune regulatory disorder 54 

PLPD - pediatric non-malignant pediatric lymphoproliferative disorders 55 

WES - whole exome sequencing  56 

Jo
urn

al 
Pre-

pro
of



 

 7 

Introduction 57 

Lymphadenopathy is common during normal childhood and noted on physical 58 

examination of approximately half of all children visiting a medical provider for 59 

either “well” or “sick” visits.1 While transient lymphadenopathy in children is rarely 60 

dangerous, long-standing lymphoproliferation may reflect underlying immune 61 

dysregulation, increase the risk for developing malignant disease or hemophago-62 

cytic lymphohistiocytosis (HLH), and/or drive life-threatening lymphoproliferative 63 

disease.1-3 64 

 65 

Non-malignant pediatric lymphoproliferative disorders (PLPD) constitute a clini-66 

cally and genetically heterogeneous group of conditions associated with a wide 67 

range of clinical consequences.  PLPD are characterized by proliferating (and/or 68 

persistent) clonal or polyclonal lymphoid cells that may arise as aberrant re-69 

sponses to immune stimuli or represent intrinsic immune dysregulation.4 Clinical 70 

presentations include chronic or recurrent lymphadenopathy, splenomegaly, or 71 

symptoms secondary to organ infiltration by abnormal lymphoid cells. In some 72 

cases, patients may develop pathologic inflammation consistent with HLH or 73 

macrophage activation syndrome. PLPD are also associated with an increased 74 

predisposition toward developing hematopoietic malignancies, specifically lym-75 

phoma.5-7 When a lymph node biopsy is negative for malignancy, the diagnostic 76 

and therapeutic paths forward for children with evidence of lymphoproliferation 77 

remain poorly defined. 78 

 79 
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Although several inherited diseases of immune dysregulation have been associ-80 

ated with PLPD, the frequency and distribution of primary immunodeficiency dis-81 

eases (PIDD) and primary immune regulatory disorders (PIRD) in children with 82 

PLPD are unknown. PIRDs encompass immune mediated disease leading to au-83 

toimmune disease and autoinflammatory conditions8, 9.  Errors in more than 400 84 

genes are now ascribed to PIDD and PIRD2, 8, and a significant number of these 85 

conditions present with clinical features consistent with PLPD. 86 

 87 

PLPD associated with Epstein-Barr virus (EBV) can represent de novo infection, 88 

reactivation, and/or malignant transformation7, 10. PIDD patients who have im-89 

paired natural killer (NK) cell cytotoxic function may have increased susceptibility 90 

to primary infection or reactivation of viruses, including EBV11. Patients with 91 

chronic active EBV (CAEBV), a rare form of EBV disease characterized by per-92 

sistent and/or proliferative EBV-infected lymphocytes during primary or reactivat-93 

ed EBV infection12, have poor outcomes, especially individuals with EBV specifi-94 

cally detected in NK and T cells12, 13. 95 

 96 

Optimal management of PLPD patients requires understanding of underlying 97 

pathogenic drivers.  Given the rare occurrence of PLPD and its overlapping fea-98 

tures with ordinary reactive lymphadenopathy in children, diagnosis is often quite 99 

challenging.  We therefore sought to determine the utility of whole exome se-100 

quencing (WES) in children with PLPD with a focus on impact on treatment and 101 

prognosis.  102 
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Methods 103 

Subject Enrollment 104 

Patients and family members at Texas Children’s Hospital or collaborating refer-105 

ral centers who met criteria for PLPD between 1994 to 2018 were offered partici-106 

pation in this study. Studies were performed under research protocols approved 107 

by the Baylor College of Medicine Institutional Review Board. All procedures in-108 

volving human participants were performed in accordance with institutional and 109 

international ethical standards. 110 

 111 

Clinical Data and Study Criteria 112 

"PLPD" was defined as persistent lymphadenopathy, lymph organ involvement, 113 

or organ lymphocytic infiltration with duration greater than 3 months, with or with-114 

out chronic or significant EBV infection in children and young adults (≤21 years). 115 

Chronic or significant EBV infection was defined by recurrent or persistent EBV 116 

viremia greater than 3 months, invasive EBV disease, or EBV DNA copy number 117 

>100,000 in either whole blood or plasma13, 14. Exclusion criteria consisted of his-118 

tory of hematopoietic cell transplantation, solid organ transplantation, established 119 

diagnosis of autoimmune lymphoproliferative syndrome (ALPS), or malignancy 120 

prior to PLPD. Biopsy details are included in Supplemental File: Master Data 121 

Table. Data regarding co-morbidities and clinical outcomes were extracted from 122 

the medical record.  123 

 124 

Whole Exome Sequencing and Data Analysis 125 

Jo
urn

al 
Pre-

pro
of



 

 10 

Clinical whole exome sequencing was conducted by Baylor Genetics Laborato-126 

ries (Houston, TX, USA). Research-based WES was performed at the Human 127 

Genome Sequencing Center (HGSC) at Baylor College of Medicine through the 128 

Baylor-Hopkins Center for Mendelian Genomics (CMG) initiative.  Using 1 g of 129 

DNA, an Illumina paired-end pre-capture library was constructed according to the 130 

manufacturer’s protocol (Illumina Multiplexing_SamplePrep_Guide_1005361_D) 131 

with modifications as described in the BCM-HGSC Illumina Barcoded Paired-End 132 

Capture Library Preparation protocol.  Pre-capture libraries were pooled into 4-133 

plex library pools and then hybridized in solution to the HGSC-designed Core 134 

capture reagent15 (52 Mb, NimbleGen), or 6-plex library pools used the custom 135 

VCRome 2.1 capture reagent15 (42 Mb, NimbleGen) according to the manufac-136 

turer’s protocol (NimbleGen SeqCap EZ Exome Library SR User’s Guide) with 137 

minor revisions. The sequencing run was performed in paired-end mode using 138 

the Illumina HiSeq 2000 platform, with sequencing-by-synthesis reactions ex-139 

tended for 101 cycles from each end and an additional 7 cycles for the index 140 

read.  With a sequencing yield of 9.1 Gb, the sample achieved 91% of the target-141 

ed exome bases covered to a depth of 20X or greater.  Illumina sequence analy-142 

sis was performed using the HGSC Mercury analysis pipeline 143 

(https://www.hgsc.bcm.edu/software/mercury)16, 17, which moves data through 144 

various analysis tools from the initial sequence generation on the instrument to 145 

annotated variant calls (SNPs and intra-read in/dels).  Data were analyzed 146 

through the Baylor-Hopkins CMG initiative from 2015 to 2019, as previously de-147 

scribed.18, 19 Variants were prioritized according to established guidelines20, 21 148 
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with additional attention to variants in genes established by the International Un-149 

ion of Immunological Societies (IUIS)2, 8 to be defective in human immunologic 150 

disorders or closely associated with these genes in known protein interactions or 151 

immunologic pathways (Table S1). Genetic variants were ultimately assigned to 152 

the following categories describing potential contributions to immune pathogene-153 

sis: 1) defective control of lymphocyte activity; 2) impaired activation/cytotoxicity, 154 

cytoskeletal organization and apoptosis; and 3) dysregulated inflammation. 155 

 156 

Statistical Analysis 157 

Demographic and clinical information were abstracted from medical records.  The 158 

chi-squared test was used if counts exceeded n = 5; otherwise Fisher’s Exact 159 

test was implemented.  Kaplan-Meier survival curves were generated to estimate 160 

survival from time of disease presentation to end of follow-up, and a log-rank test 161 

estimated differences across strata of interest.  All statistical analyses were con-162 

ducted in STATA 13.v1.  163 
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Results 164 

Characteristics of PLPD Cohort 165 

Clinical Features 166 

Overall, 51 subjects from 47 families met criteria for PLPD at Texas Children’s 167 

Hospital and referring centers (Table 1).  The median age at disease presenta-168 

tion was 3.3 years (range 4 weeks – 21 years) with nearly equal proportions of 169 

males (n = 26) and females (n = 25). Almost half (49%) of subjects were Hispan-170 

ic, and 29% were non-Hispanic white.  All patients met at least one PLPD criteri-171 

on: 38 patients (74%) had lymphadenopathy for longer than 3 months, 32 pa-172 

tients (63%) had splenomegaly, and 12 patients (23%) had non-malignant lym-173 

phoproliferation on tissue biopsy. Therapeutic strategies ranged from observation 174 

to hematopoietic stem cell transplantation (HSCT). Maximum interventions in as-175 

cending order included observation (21.6%), steroids only (15.7%), biologics 176 

(19.6%), chemotherapy (21.6%), and HSCT (15.7%). 177 

 178 

Hemophagocytic lymphohistiocytosis and EBV 179 

Among the 51 subjects, 15 patients (29%) fulfilled at least five of eight HLH-180 

200422 diagnostic criteria for HLH: 9 (60%) survived, and 8 (53%) had EBV-181 

associated disease (Table 1, Table S2). Among the entire cohort, 21 (41%) had 182 

EBV-PLPD and 14 (67%) of these patients survived (Table 1, Table S3). Five of 183 

8 (63%) patients with both EBV-PLPD and HLH survived, and 9 of 12 (75%) pa-184 

tients with EBV-PLPD without HLH survived. 185 

 186 
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Autoimmune and Autoinflammatory Conditions  187 

Fifteen subjects (29%) were diagnosed with autoimmune and/or autoinflammato-188 

ry conditions either prior to or concurrent with their PLPD diagnosis (Table 1, 189 

Table S4), and this subset of patients had an overall survival rate of 73%. Of the 190 

22 subjects who had testing for double negative alpha-beta T cells, 11 had ele-191 

vated levels (≥ 1.5% of total lymphocytes).  ALPS was considered at some point 192 

in the medical record in 40 patients (78%), but upon evaluation none in this co-193 

hort met diagnostic criteria23, 24 prior to enrollment, and no functional defects in 194 

apoptosis were identified. However, ALPS-associated gene defects were subse-195 

quently identified in 2 patients in whom ALPS was not initially suspected or eval-196 

uated.  For reference, 14 patients were diagnosed with ALPS at our institution 197 

during the study period (and were therefore excluded from this cohort). 198 

 199 

Malignancy  200 

Subjects with lymphoproliferative disease secondary to malignancy were exclud-201 

ed from this study (Table 1, Table S5).  Four patients (8%) developed malignan-202 

cy after meeting enrollment criteria for non-malignant PLPD.  Median time inter-203 

val between PLPD presentation and malignancy diagnosis was 7.75 years (Ta-204 

ble S5).  All of these patients (100%) initially had EBV-associated PLPD with 205 

subsequent diagnosis of either mature T-cell lymphoma (n = 1), diffuse large B 206 

cell lymphoma (n = 2), or papillary thyroid carcinoma (n = 1). Notably, only the 207 

patient with papillary thyroid carcinoma, which is not typically associated with 208 
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lymphoproliferative disease, EBV infection, or immune deficiency, survived 209 

(25%). 210 

 211 

Genetic Findings 212 

Genetic Errors of Immunity are Prevalent in PLPD 213 

All 51 participants from the 47 families underwent WES. Clinical WES was com-214 

pleted in 19 of the families (19 probands), resulting in genetic diagnoses for only 215 

4 children (21%). For the other 15 cases and families who underwent clinical 216 

WES which did not yield a diagnosis, 12 consented to research-level analyses of 217 

the clinical exome data, resulting in identification of an additional 8 candidate mo-218 

lecular diagnoses. For one of these families, research WES of 2 additional af-219 

fected siblings enabled identification of the defect in PIK3CD in all 3 children. 220 

Research-based WES analyses were also performed without clinical WES for 28 221 

families (30 cases), leading to likely molecular diagnoses in 13 (46%) [14 cases, 222 

47%] and further potential genetic explanations in 4 (14%) [5 cases, 17%]. Thus, 223 

29 of 47 PLPD families (62%), or 33 of 51 affected children (65%), were found to 224 

have likely or plausible disease-associated genetic errors of immunity (Table 225 

S1).  Note that "genetic errors" serves as a more appropriate term than "inborn 226 

errors" because of the identified likely somatic changes to KRAS and NRAS.  Of 227 

these 29 families (33 cases) with viable genetic explanations, 21 (23 cases) had 228 

disease candidate variants in 15 IUIS-established PIDD and PIRD genes2, 3, 8. 229 

One family (LPD019 and LPD034) was discovered to have a novel disease can-230 

didate for which the variants (in NCKAP1L) were functionally validated25.  In the 231 
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remaining 7 families (8 cases) with genetic disease candidates, one was hypoth-232 

esized to have phenotypic expansion of a known disease-associated gene 233 

(CDC4226, 27), and 6 (7 cases) had potentially novel genetic causes of human 234 

disease.  At minimum, 24 of 47 families (51%), or 27 of 51 affected children 235 

(53%), had pathogenic or likely pathogenic genetic etiologies for LPD.  A smaller 236 

proportion of patients (21%) who received only clinical WES resulted in like-237 

ly/potential diagnoses versus 61% who underwent research WES only (p = 0.01). 238 

Further, when considering children who underwent clinical WES followed by re-239 

search-based analysis, 63% obtained likely/potential diagnoses, compared to on-240 

ly 21% who had clinical WES only (p = 0.003). Rather than suggesting inferiority 241 

of clinical testing, these observations reflect the improvement in WES methodol-242 

ogy over the course of the study period.  All of the LPD-associated genes were 243 

observed to fall broadly into one of 3 categories2, 3 based on immunologic mech-244 

anism: 1) defective control of lymphocyte activity; 2) impaired lymphocyte activa-245 

tion/cytotoxicity, cytoskeletal organization, and apoptosis; and 3) dysregulated 246 

inflammation (Figure 1). 247 

 248 

Genotype/Phenotype Correlations 249 

The proportion of subjects with a potential molecular explanation inversely corre-250 

lated with age at presentation (Figure 2A). Patients with suggested genetic ab-251 

normalities were significantly younger at presentation compared to subjects who 252 

lacked genetic findings (p = 0.02, Figure S1). In fact, all children (n = 7, 100%) 253 

who presented with PLPD younger than one year old were found to have a viable 254 
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genetic explanation for the disease. Of the 28 patients between 1 and 8 years of 255 

age, 72% had a potential genetic etiology identified.  In contrast, a molecular di-256 

agnosis for PLPD was less likely to be identified in the 16 patients who devel-257 

oped symptoms after 8 years of age (38%). 258 

 259 

The proportion of patients with possible genetic explanations did not differ signifi-260 

cantly between EBV-PLPD and PLPD without EBV. Of the 21 patients with EBV-261 

PLPD, 67% had potential genetic explanations, and of the 27 patients with PLPD 262 

without EBV, 70% had implicated genetic findings (p = 0.91). Likewise, among 263 

the three immune-mediated genetic categories, the proportion of EBV-affected 264 

individuals was evenly distributed (Figure 1). 265 

 266 

Genetic findings were more common in patients with HLH compared to patients 267 

who eventually developed malignancy, although the proportional differences did 268 

not reach a level of statistical significance (p = 0.08). Among the 15 patients who 269 

met HLH diagnostic criteria13, 22, a probable genetic explanation was present in 270 

11 (73%), 9 of whom were under the age of 8 (Table S2). Fewer patients who 271 

developed malignancy subsequent to their PLPD diagnosis (25%) had a genetic 272 

disorder (Table S5). 273 

 274 

Lack of Genetic Diagnosis is Associated with Increased Risk for Mortality 275 

Estimated ten-year survival for the entire cohort was 72.4% with a median follow-276 

up of 5.6 years (range 0.10 - 26.6 years, Figure 2B).  Analyzing the cohort as a 277 
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whole (Figure 2C, Figure S2), patients without an identified possible genetic eti-278 

ology had significantly lower ten-year survival compared to patients with a poten-279 

tial genetic explanation (48% versus 82%, respectively, p = 0.03).  The ten-year 280 

survival estimate for children with EBV-PLPD trended lower compared to children 281 

without EBV (56% vs 80%; p = 0.13).  Children with EBV-PLPD frequently had 282 

complicated courses: 5 had HLH, 4 developed malignancy, and 1 developed both 283 

malignancy and HLH. Presence of EBV-PLPD did not predict an underlying ge-284 

netic defect. Most notably, however, subjects with EBV-PLPD without a viable 285 

genetic explanation had significantly lower estimated survival than children with a 286 

suggested genetic explanation (17% vs. 90%, p = 0.002; Figure 2D). In fact, the 287 

group of patients who had EBV-PLPD without a genetic explanation was the cat-288 

egory associated with the highest risk of death. 289 

 290 

Genetic Testing Impacts Therapeutic Decisions 291 

Identification of an underlying genetic diagnosis in PLPD patients informs thera-292 

peutic opportunities (Figure 4, Table S6). Currently, targeted therapies are 293 

available or show promise for treatment of at least 11 of the genetic conditions 294 

diagnosed in this cohort (potentially benefitting up to 18 patients from 16 fami-295 

lies)28. Furthermore, successful outcomes have been reported after HSCT in 10 296 

of the 15 IUIS-recognized genetic errors of immunity reported here (which could 297 

treat up to 20 patients from 18 families). Prior to the availability of genetic testing 298 

results, only two patients had received empiric treatment that would have been 299 

supported by their ultimate genetic diagnoses. After genetic testing results were 300 
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available, 12 patients had diagnoses that led to active changes in the treatment 301 

plan through either targeted therapies or planning for HSCT. Five patients who 302 

had actionable findings after genetic testing did not have changes in their treat-303 

ment plans, as they were either clinically well or lost to follow-up. Unfortunately, 304 

three patients died prior to receiving their genetic diagnoses (NRAS, KRAS, and 305 

CASP1). Importantly, 6 novel disease candidate genes were discovered, which 306 

may lead to unique opportunities for precision therapy. It becomes important to 307 

note that estimated ten-year survival was greatest (100%, n = 10) among sub-308 

jects in whom control of disease was achieved using targeted biologic therapies 309 

(Figure S3).  310 
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Discussion 311 

Clinical and Genomic Landscape of PLPD 312 

Pediatric non-malignant LPD represents a heterogeneous group of conditions 313 

with high risk for mortality characterized by lymphadenopathy and/or lymph organ 314 

involvement with or without chronic, severe, or recurrent EBV infection.  HLH has 315 

been associated with a range of lymphoproliferative disorders29, 30 and was en-316 

riched in this cohort, with 15 (29%) of 51 children meeting HLH-2004 diagnostic 317 

criteria. Children with immune disorders also carry increased risk of malignan-318 

cy31. Despite exclusion of malignancy at presentation, 8% of this PLPD cohort 319 

subsequently developed this complication. 320 

 321 

In order to improve knowledge of underlying immune pathogenesis mechanisms 322 

in PLPD to better inform treatment, we performed WES of 51 subjects from the 323 

47 families in this cohort.  This unbiased approach led to a genetic diagnosis in 324 

51% to 62% of families [53% to 65% of affected children] (Figure 1), encapsulat-325 

ing a heterogenous collection of genetic errors of immunity. As a comparison, 326 

Stray-Pedersen et al reported a 40% overall genetic diagnostic rate, including 327 

potentially novel diseases, in patients with PIDD.18 Findings from this study sup-328 

port the clinical utility of comprehensive genetic analysis in PLPD, with high like-329 

lihood of identifying genetic alterations that inform therapeutic opportunities and 330 

clinical risk. 331 

 332 

PLPD Risk Stratification 333 
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Overall survival was 72% with a trend towards worse outcomes associated with 334 

EBV infection, HLH, and subsequent malignancy. Earlier age at presentation with 335 

LPD positively correlated with likelihood of identifying a potential genetic diagno-336 

sis, especially in children with impaired lymphocyte activation/cytotoxicity, cyto-337 

skeletal organization, and apoptosis (Table S7). In fact, a molecular explanation 338 

was found in all 7 patients who presented at less than 1 year of age. These data 339 

particularly support the clinical utility of WES for infants and younger children with 340 

PLPD. At older ages, acquired factors, such as autoimmune disease and infec-341 

tion, may also contribute to development of PLPD.  Even so, for 9 patients above 342 

12 years of age, 3 had a plausible underlying genetic explanation, suggesting 343 

that genetic testing can play a critical role in diagnosis and management of PLPD 344 

in adolescents and young adults as well. 345 

 346 

Increased Mortality in Patients with EBV-PLPD and No Genetic Explanation 347 

EBV is the most common pathogen associated with non-malignant LPD32. In this 348 

cohort, patients with EBV-PLPD had pathogenic or likely pathogenic variants in 349 

several genes associated with atypical EBV disease: CTLA4, LRBA, PIK3CD, 350 

CD27, RAB27A, ZBTB24, and STAT133. Additionally, somatic PLCG2 mutations 351 

have correlated with EBV-positive Burkitt lymphoma34. Potentially disease-352 

associated variants in CASP1 and CASP5 were also discovered in EBV-PLPD 353 

patients 24, 35-46. CASP1 has provocatively been implicated in IRF8-dependent 354 

EBV lytic reactivation47. EBV status alone, however, did not impact the likelihood 355 

of having a potential underlying genetic explanation for LPD (67% of EBV-356 
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associated LPD vs. 70% of non-EBV-associated LPD).  Furthermore, susceptibil-357 

ity to EBV infection was not significantly skewed toward any of the three immuno-358 

logic mechanism categories (Figure 1).  However, children with EBV-associated 359 

PLPD without an identifiable genetic diagnosis had a much higher risk of mortali-360 

ty (17% estimated ten-year survival) when compared to children with EBV-361 

associated PLPD and a plausible genetic etiology (90% estimated ten-year sur-362 

vival; Figure 2D). EBV-LPD may evolve from 1) persistence of EBV-infected 363 

lymphocytes as a reflection of immune dysfunction and/or 2) proliferation of EBV-364 

infected lymphocytes that endure despite intact immune function. In this series, 365 

the latter was associated with more aggressive disease, including a higher likeli-366 

hood of HLH, malignancy, and need for HSCT. Early genetic testing may there-367 

fore be particularly important for children with EBV-PLPD. Importantly, CAEBV 368 

disease is characterized by persistence of EBV without a known immunodefi-369 

ciency or immune regulation disorder12. This distinction underscores the im-370 

portance of genetic testing in the CAEBV evaluation in order to detect genetic 371 

susceptibility to atypical EBV disease/lymphoproliferation and leave CAEBV as a 372 

diagnosis of exclusion. 373 

 374 

Genetic Diagnoses Yield Treatment Opportunities 375 

Early detection of genetic diagnoses in PLPD informs mechanisms of pathogen-376 

esis, facilitates assessments of clinical risks, and identifies potential therapeutic 377 

targets. In this PLPD cohort, genetic diagnoses offered improved therapeutic op-378 

portunities. Empirically, subjects received treatment with corticosteroids, biologic 379 
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therapies, chemotherapy, and/or HSCT upon diagnosis. Results from genetic 380 

testing directly led to active changes in the management plan for 12 of the 51 381 

(24%) patients. Unfortunately, 3 subjects died before the potential molecular di-382 

agnosis was identified. Specific therapeutic strategies associated with genetic 383 

findings are outlined in Table S6. Two children (one with activated PI-3-kinase 384 

delta syndrome type 1 and one with CTLA4 haploinsufficiency) received HSCT 385 

prior to molecular diagnosis based on clinical features. Overall, our data are con-386 

sistent with results from a study in which 40% of PIDD patients studied by WES 387 

were diagnosed with a genetic cause for disease, leading to changes in the diag-388 

nosis and therapeutic management for approximately 25% of patients. 389 

 390 

WES also facilitated detection of potential disease-modifying genetic variants. 391 

For instance, in addition to a variant of uncertain significance in CASP1, siblings 392 

LPD010 and LPD023 both carried biallelic variants in TP53I13 that were compu-393 

tationally predicted to be damaging (Table S1). Although this gene is not current-394 

ly associated with human disease, its gene product is known to have tumor sup-395 

pressive properties48. As a result, we cannot exclude disease contribution from 396 

these variants. In a second example, LPD035 was found to have de novo and 397 

paternally inherited variants in CDC42 and NLRP12, respectively. For this child, 398 

anakinra resulted in resolution of fevers, rash, and arthritis but did not alleviate 399 

the lymphoproliferative disease, unlike the experience reported by others27. This 400 

observation is not surprising, since anakinra does not correct the cytoskeletal 401 

and cytotoxic abnormalities caused by defects at p.R186 of CDC4226. Some of 402 
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the improvement observed with anakinra therapy may have occurred due to miti-403 

gation of the effect of the NLRP12 variant. These examples highlight the potential 404 

for characterization of molecular defects by WES to inform personalized therapy 405 

that may be more effective and safer than empiric immune suppression strate-406 

gies or HSCT. 407 

 408 

Hematopoietic Stem Cell Transplantation in PLPD 409 

The children who underwent HSCT had the lowest ten-year survival (38%) com-410 

pared to subjects who were given less intense therapies (Figure S3), likely re-411 

flecting severity of their disease as well as risks of HSCT in patients with uncon-412 

trolled lymphoproliferation. Of the 8 children who underwent HSCT, 3 who lacked 413 

a genetic explanation proceeded to HSCT due to failure of conventional interven-414 

tion with empiric steroids, biologics, or cytotoxic chemotherapy. For subjects who 415 

survived transplant, 2 of the 3 survivors had genetic diagnoses (ZBTB24 and 416 

CTLA4 deficiencies).  Genetic testing can therefore help to guide the need for 417 

this intervention. 418 

 419 

Conclusions 420 

Although lymphadenopathy remains a common presentation in children, pro-421 

longed and severe symptoms defined by our PLPD criteria characterized a co-422 

hort at high risk for mortality for whom no precise diagnostic or therapeutic ap-423 

proach had been established.  An unbiased genetic testing approach to delineate 424 

the molecular etiologies within our PLPD cohort strongly supports the use of ge-425 
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netic testing to identify potentially actionable disease-causing molecular defects 426 

(Figure 4)8.  In particular, significant findings from this study show that genetic 427 

testing identified a molecular etiology in 100% of patients with PLPD under one 428 

year of age. Further, presence of a genetic error of immunity was associated with 429 

improved survival in patients, particularly subjects with EBV associated disease.  430 

Lastly, early identification of genetic diagnoses allowed for precision therapy 431 

and/or definitive HSCT, potentially avoiding the morbidity and mortality associat-432 

ed with uncontrolled disease and broad immunosuppression.  As a result, the 433 

findings of the study support early WES and genetic characterization of patients 434 

who meet criteria for PLPD both clinically and in prospective cohort studies.  435 
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Demographics: 
Age at Presentation in Years, median 
(range) 

3.3 (0.08-21) 

Sex, n (%)  
 Male 26 (51.0) 
 Female 25 (49.0) 
Race/Ethnicity, n (%)  
     Non-Hispanic white  15 (29.4) 
     Hispanic 25 (49.0) 
     Non-Hispanic black 2 (3.9) 
     Non-Hispanic Asian 6 (11.8) 
     Non-Hispanic other 2 (3.9) 
     Unknown 1 (2.0) 

LPD Characteristics:  

Lymphadenopathy > 3 Months, n (%)   
     Yes 38 (74.5) 
     No 13 (25.5) 
Lymphocyte Infiltration on Tissue Biop-
sy 

 

     Yes 12 (23.5) 
     No 24 (47.0) 
     Unknown 15 (29.4) 
EBV-associated Lymphoproliferation  
     Yes 21 (41.2) 
     No 27 (52.9) 
     Unknown 3 (5.9) 

Associated Clinical Features:  

HLH (5 of 8 criteria), n (%)  
     Yes 15 (29.4) 
     No 35 (68.6) 
     Unknown 1 (2.0) 
Autoimmune Disease Diagnosis, n (%) 15 (29.4) 
Malignancy (following LPD), n (%)  4 (7.8) 
Splenomegaly, n (%)  32 (62.8) 

Therapeutic Strategy:  

Maximum Therapeutic Strategy, n (%)  
 Observation Only 11 (21.6) 
 Steroid Only 8 (15.7) 
 Biologics  10 (19.6) 
 Chemotherapy 11 (21.6) 
 HSCT 8 (15.7) 
 Unknown 3 (5.9) 
Treated with Rituximab  
 Yes 10 (19.6) 
 No 38 (74.5) 
 Unknown 3 (5.9) 

Outcome:   

Median Follow-up Time in Years, 
(range) 

5.6 (0.10-26.6) 

Alive at End of Follow-up, n (%) 39 (76.5) 

Table 1. Subject Information 
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Figure Legends: 

Figure 1. Genetic testing reveals underlying immune defects in children 

with LPD.  Genetic profiles for 47 families who met criteria for PLPD and re-

ceived whole exome sequencing.  The graph displays the distribution of families 

among the 4 broad genetic categories.  The table provides the list of implicated 

genes (and number of affected families in parentheses, if greater than 1) associ-

ated with each defective immune mechanism. 

 

Figure 2.  Features of clinical presentation and outcomes.  (A) PLPD genetic 

profile by age at presentation. Subjects were separated into 4 groups by age in 

years at presentation (x-axis).  A two-sample test of proportions with a 95% con-

fidence level for each comparison was used to analyze proportional differences 

in genetic profile by age (n = 51).  Asterisks indicate a significant (p < 0.05) dif-

ference from the <1 year old group with the same genetic profile.  (B) Ten-year 

survival estimate from PLPD presentation to date of death or last contact in years 

(n = 51). (C) Ten-year survival estimate from PLPD presentation to date of death 

or last contact in years by presence of a genetic explanation (n = 51). (D) Ten-

year survival estimate from PLPD presentation to date of death or last contact in 

years by EBV-associated disease and genetic explanation (n = 51). 

 

Figure 3.  Treatment altered by genetic diagnoses.  Top part of figure shows 

the number of subjects eligible for targeted biological therapy alone, hematopoi-

etic stem cell transplantation alone, or either therapy based upon the discovered 
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genetic diagnosis.  Bottom part of figure depicts numbers of patients who were 

treated according to these strategies before and after genetic testing results be-

came available. 

 

Figure 4.  PLPD evaluation and treatment.  This schema demonstrates a 

framework for evaluation and treatment of children with prolonged lymphoprolif-

eration.  If symptoms persist or worsen despite standard evaluations and empiric 

therapies, more extensive laboratory testing characterizing EBV infection status, 

immune function, and HLH status may be informative.  If tissue biopsy demon-

strates non-malignant lymphoproliferation, results from this study indicate that 

genetic evaluations have high likelihood of identifying a genetic cause of disease 

that may inform optimal therapy ranging from observation to targeted therapy to 

hematopoietic stem cell transplantation. 
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38%

17%

21%

2%

13%

9%

No genetic explanation (n = 18, EBV+ = 7)

Defective control of lymphocyte activity: pathogenic/likely
pathogenic (n = 8, EBV+ = 3)

Impaired lymphocyte activation, cytoskeletal organization, and
apoptosis: pathogenic/likely pathogenic (n = 10, EBV+ = 5)

Impaired lymphocyte activation, cytoskeletal organization, and
apoptosis: VUS (n = 1, EBV+ = 0)

Dysregulated inflammation: pathogenic/likely pathogenic (n = 6,
EBV+ = 2)

Dysregulated inflammation: VUS (n = 4, EBV+ = 2)

Defective control of lymphocyte activity: pathogenic/likely 
pathogenic 

BCL6B, CTLA4 (x 2), LRBA, PIK3CD (x 3), 
PIK3R1 

Impaired lymphocyte activation, cytoskeletal organization, 
and apoptosis: pathogenic/likely pathogenic 

CD27 (x 2), CDC42, DOCK4, FAS, KRAS, 
NCKAP1L, NRAS, RAB27A, ZBTB24 

Impaired lymphocyte activation, cytoskeletal organization, 
and apoptosis: VUS 

IKZF1 

Dysregulated inflammation: pathogenic/likely pathogenic CASP1, STAT1, STAT3 (x 2), XIAP (x 2) 

Dysregulated inflammation: VUS BIRC6, CASP1, CASP5, PLCG2 
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Subjects with Clinically Actionable Treatment Options 

Targeted 
Biological 
Therapy 

Hematopoietic 
Stem Cell 

Transplantation 

2 16 4 

2 12 5 3 

Prior to genetic 
testing results 

available 

After genetic testing results available 

Actively changed Not changed Deceased 
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GENETIC EVALUATIONS 

Figure 3 

PLPD Evaluation and Treatment 
 

Specific lab testing: 
1. EBV (Blood and tissue) 
2. Immune function 
3. ALPS & HLH evaluations 
4. Tissue biopsy 

Non-malignant Informed therapy 

Observe/Support 

Targeted Therapy 

HSCT 

Lymphadenopathy 
evaluations and  

empiric treatment 
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