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^ Data used in the preparation of this article were obtained 

from the Alzheimer's Disease Neuroimaging Initiative (ADNI) 

database (www.loni.ucla.edu/ADNI). As such, the investigators 

within the ADNI contributed to the design and implementation 

of ADNI and/or provided data but did not participate in analysis 

or writing of this report. ADNI investigators include (complete 

listing available at 

http://adni.loni.ucla.edu/wpcontent/uploads/how_to_apply/A
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ABSTRACT 

BACKGROUND 

The rate of cognitive decline in Alzheimer’s disease (AD) has 

been found to vary widely between individuals, with numerous 

factors driving this heterogeneity. This study aimed to compute 

a measure of cognitive decline in patients with AD based on 

clinical information, and to utilize this measure to explore the 

genetic architecture of cognitive decline in AD.  

METHODS 

An in-house cohort of 616 individuals, hereby termed the 

Cardiff Genetic Resource for AD, as well as a subset of 577 

individuals from the publicly available ADNI dataset, that have 

been assessed at multiple timepoints, were used in this study. 

Measures of cognitive decline were computed using various 

mixed effect linear models of Mini Mental State Examination 

(MMSE). After an optimal model was selected, a metric of 

cognitive decline for each individual was estimated as the 

random slope derived from this model. This metric was 
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subsequently used for testing the association of cognitive 

decline with apolipoprotein E (APOE) genotype.  

RESULTS 

No association was found between the number of APOE ε2 or 

ε4 alleles and the rate of cognitive decline in either of the 

datasets examined.  

CONCLUSIONS 

Further exploration is required to uncover possible genetic 

variants that affect the rate of decline in patients with AD.  
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INTRODUCTION 

Alzheimer’s disease (AD) is the most prevalent 

neurodegenerative disease and the most common cause of 

dementia.  Worldwide, it is estimated to affect more than 45 

million people, and due to the global ageing of the population, 

this number is expected to rise fourfold by 2050 [1] . In the UK, 
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there is an estimated 850,000 people with AD [2], resulting in a 

total estimated societal cost of £26.3 billion per annum, despite 

the fact that a large part of the care for people with AD is 

provided by informal unpaid caregivers [3]. Notably, AD is the 

leading cause of death in England and Wales, accounting for 

12.7% of all deaths registered [4]. As the world’s population 

continues to age, the resources required to adequately address 

AD will greatly increase, and effective interventions to delay the 

onset and the progression of the disease will be necessary to 

reduce the impact it has both on the people directly affected 

and on society as a whole. 

The severity of the symptoms and the rate of disease 

progression are important factors to consider regarding AD, as 

people with a severe phenotype or a rapid decline are 

considerably more likely to require additional care resources, 

including early institutionalisation and increased total societal 

costs even with informal caregiving [5,6]. Therefore, 

attenuating the rate of cognitive decline in people with AD can 

be effective in decreasing the societal burden of dementia in 

addition to reducing the risk for developing AD.  

Both population-based and clinical studies have shown that 

only about 30% of AD patients manifest a slow progression, 

with the majority of individuals declining rapidly after diagnosis 

[7–9].  Various factors have been implicated in the rate of 
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progression in AD, including educational attainment, medical 

comorbidities, nursing home placement, age and baseline 

cognition level [10–13]. However, the results remain 

inconclusive and there are currently no reliable methods to 

predict disease progression in AD.  

There are numerous methods of assessing disease severity and 

progression in individuals with AD, most of them being 

questionnaire-based assessment scales. The most commonly 

used scale, both in research and in clinical settings, is the Mini-

Mental State Examination (MMSE) [14]. MMSE has the 

advantage of being quick and easy to administer, which is 

particularly important when it comes to dementia patients, 

however it only examines cognition and does not take into 

account other areas of functioning that AD tends to affect. 

Other assessment scales, like Clinical Dementia Rating [15] and 

Activities of Daily Living [16] focus on additional domains of 

every day functioning, making them a preferred method of 

assessing different areas of deterioration, apart from cognition. 

Moreover, there are also a number of biological predictors 

commonly used in monitoring progression in AD, including 

blood and cerebrospinal fluid biomarkers [17], as well as 

neuroimaging methods [18].  

The evidence for a genetic predisposition to faster decline in 

patients with AD is inconclusive. Apolipoprotein E (APOE) ε4 
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allele is the strongest genetic risk factor for sporadic AD [19]. 

Numerous studies have examined the association of the APOE 

genotype with disease progression and cognitive decline in 

patients with AD. However, the results are conflicting, with 

some studies finding that the APOE ε4 allele is associated with 

faster progression [20–22], and other showing opposing results 

[23–25].  

It is evident that being able to predict the rate of decline in AD 

patients using readily available clinical information would be of 

great use both to patients and their caregivers, as well as 

medical professionals. Moreover, identifying individuals that 

are at risk of a rapid decline would be of great use in the design 

and implementation of clinical trials for therapeutic 

interventions, as they are the patients that are most likely to 

manifest results within a short timeframe. Various methods of 

predicting cognitive decline have been suggested. Machine 

learning algorithms have been previously employed to assess 

progression in dementia, using a wide variety of predictors, 

including neuroimaging data [26,27], amyloid positron emission 

tomography (PET) [26] and various cognitive assessment scales 

[28,29]. Latent class models and mixed effects models have also 

previously been investigated [13,30]. However, there is no 

universally accepted method of modelling cognitive decline in 

AD patients. 
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This study aims to derive, assess and compare measures of 

cognitive decline, while accounting for different number of 

participants’ assessments and potential confounders in 

patients with AD, and to test the association of the APOE 

genotype for the progression measure derived. A replication of 

the results was attempted using Alzheimer's Disease 

Neuroimaging Initiative (ADNI) [31] data. 

 

METHODS 

SAMPLE 

This study included individuals from two datasets, a cohort 616 

individuals known as the Cardiff Genetic Resource for AD  

genotyped as part of the GERAD dataset [32,33] and a subset of 

the publicly available ADNI database, including participants that 

enrolled in ADNI with AD or were diagnosed with AD at later 

assessments. Out of the Cardiff Genetic Resource for AD, 540 

individuals had late-onset AD (LOAD), with onset of symptoms 

at 65 years of age and above, and 76 had early onset AD (EOAD). 

The number of assessments varied between individuals, with a 

range between 2 and 8, with an interval spanning between 7 

months and 16 years. The ADNI design is described in detail 

elsewhere [31]. Out of the available ADNI participants, 577 had 

two or more assessments with a diagnosis of AD and were 
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included in this analysis, 518 having LOAD and 59 having EOAD. 

MMSE was used as a measure of cognitive function in this study. 

 

 

GENERATION OF MEASURES OF DECLINE 

In order to account for all available assessments, a number of 

linear mixed effects models were constructed and subsequently 

compared. Mixed effect models are an advantageous method 

of analysing longitudinal data as they allow for random disease 

progression effects that vary between individuals, as well as the 

varying number of assessment per individual and the variable 

length of time between assessments, which are commonly seen 

in longitudinal studies [34]. For all the models we tested, MMSE 

score at several assessment points was the dependent variable, 

and to account for the fact that the same individual was 

assessed at multiple time points, the individual ID was included 

as a random effect. Since the rate of progression may depend 

on disease duration [7], we first assessed the model where 

duration at the time of each assessment was included as a 

random effect. Disease duration, defined as time elapsed 

between onset of AD symptoms and each cognitive assessment, 

was selected as the variable of interest, based on existing 

literature highlighting the fact that time elapsed since symptom 

onset affects cognitive decline more than age in AD patients [7]. 
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Age at disease onset is not known for the participants of ADNI. 

Therefore, for individuals that entered the study as AD patients, 

disease duration was calculated as time elapsed from study 

enrolment [22]. For individuals that developed dementia while 

the study was ongoing, duration was defined as time elapsed 

since the first assessment in which they were classified as AD 

patients. Next, the inclusion of a number of additional 

independent variables was assessed. Age at each assessment 

was added as a fixed effect, then a random effect, and 

subsequently age was added as both a fixed and a random 

effect. Duration and gender were also added as fixed effects 

sequentially, as they have been shown to influence the rate of 

decline [22,35]. The models are further described in 

Supplementary Table 1. The random slopes for disease duration 

generated by the models were extracted for each individual and 

utilized as measures of cognitive decline in subsequent 

analyses. 

The derived rate of decline measure was compared between 

individuals with EOAD and LOAD, using linear regression, 

adjusting for age and sex.  

All statistical analyses were performed using the statistical 

software R [36] and the linear mixed models were generated 

using the package lme4() [37].  

 



 11 

APOE GENOTYPE ANALYSIS 

The samples were genotyped in two stages. For the first stage, 

the genotyping was performed  on the Illumina 610 microarray 

and is described in detail elsewhere [32,33]. For the second 

stage, genotyping was performed on Illumina GSA array, and 

completed in three waves in Lille, Cardiff and Edinburgh. The 

number of APOE ε4 and ε2 alleles was derived for each 

individual using the rs429358 and rs7412 variants. For ADNI, 

APOE genotype was available through whole genome 

sequencing, as and described in detail elsewhere [31]. The 

association of the number of ε4 and ε2 alleles with decline was 

assessed using linear regression. The statistical analyses were 

conducted using R [36].  

 

 

RESULTS 

SAMPLE CHARACTERISTICS 

The demographic characteristics of the Cardiff Genetic 

Resource for AD are illustrated in Table 1. For the individuals 

with LOAD, the mean age at recruitment was 81.89, mean age 

at last assessment was 84.33 and the mean number of 

assessments was 3.13. Mean MMSE score at first assessment 

was 16.82, mean MMSE score at last assessment was 11.34 and 

69.82% of the individuals were female. For the individuals with 
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EOAD, the mean age at recruitment was 66.80, mean age at last 

assessment was 69.85 and the mean number of assessments 

was 3.15. Mean MMSE score at first assessment was 18.49, 

mean MMSE score at last assessment was 12.96 and both sexes 

were equally represented in the dataset. Note, that even at the 

first assessment the MMSE score for 40 individuals were 0. We 

have included these individuals in the analyses, as it has been 

shown that cognitive fluctuation is common in AD [38], and for 

a number of these individuals MMSE score in later assessments 

was not 0.   

 

GENERATION OF MEASURES OF DECLINE 

The model selected as the optimal model for assessing rate of 

decline in this dataset included age at assessment and disease 

duration as random and fixed effects and sex as fixed effect. The 

random effects of age at assessment and disease duration were 

included to model individual-specific variation in cognitive 

decline. The fixed effect of sex, age at assessment and disease 

duration were significant predictors of cognitive performance 

(β = 2.779, p= 4.34x10-19, β = -0.165, p= 4.28x10-17, and β = -

1.217, p= 1.32x10-18, respectively), therefore they were also 

included in the model. The direction of the effect indicates that 

cognitive performance decreases with age (by 0.165 MMSE 

points per year of age) and disease duration of AD (by 1.217 
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MMSE points per year of disease). Furthermore, females have 

higher cognitive performance than males of the same age and 

disease duration (by 2.779 MMSE points). The distribution of 

random slopes for disease duration derived from this model is 

shown in Figure 1.  

 

 

The difference in rate of decline between individuals with LOAD 

and EOAD was compared. Interestingly, individuals with EOAD 

seem to decline slower than individuals with LOAD, although 

the difference is not statistically significant (β= -0.158, p-value 

= 0.307). These results are illustrated in Supplementary Figure 

3.  

 

ASSOCIATION OF COGNITIVE DECLINE WITH APOE 

The purpose of this analysis was to determine whether APOE is 

a significant predictor of the rate of cognitive decline. As above, 

the measure of decline used here was derived from the optimal 

mixed effect linear model. The number of APOE ε4 and ε2 

alleles was not associated with progression in this analysis (p-

values 0.938 and 0.423 respectively). This result is also 

illustrated in Supplementary Figures 5 and 6.  
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REPLICATION 

 

The publicly available ADNI dataset was used to replicate the 

analyses described above. The demographic characteristics of 

the dataset are illustrated in Table 2.  

 

 

The distribution of measures of decline is illustrated in Figure 2.  

 

In this dataset, cognitive decline was more rapid in individuals 

with EOAD than individuals with LOAD, contrary to what was 

previously indicated using the Cardiff Genetic Resource for AD 

(β = 0.154, p-value = 0.025). These results are illustrated in 

Supplementary Figure 9.  

 

The association of the number of APOE alleles was tested using 

linear regression. The number of APOE ε4 and ε2 alleles was not 

significantly associated with the measure of decline (p-values 

0.689 and 0.052 respectively). The results are illustrated in 

Supplementary Figures 10 and 11. Table 3 summarises the 

effect of APOE genotype on cognitive decline for both datasets 

examined.  
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DISCUSSION 

 

The aims of the project were a) to identify potential 

confounders to cognitive decline and establish an adequate 

measure of assessing cognitive decline in patients with AD; and 

b) to examine the association of the rate of decline with APOE, 

the strongest genetic risk factor for developing AD. Linear 

mixed effects models were selected as a method of assessing 

decline in our dataset as they can substantially tolerate the 

variance in datapoints commonly seen in population cohorts. 

MMSE score was utilized as a measure of cognitive function in 

this study as it was the assessment most widely documented in 

our cohort. Multiple models using MMSE as the dependent 

variable were assessed and the most parsimonious model with 

the best fit for this dataset was selected. The model selected 

included age at assessment, gender and disease duration as 

fixed effects, and age at assessment and disease duration as 

random effects. Random slopes of disease duration were 

extracted from this model and used in further analyses as a 

measure of cognitive decline. Mixed effects linear models are 

used in a number of studies assessing the rate of decline in AD 

[13,22], as they are considered a robust method for handling 

longitudinal data [34]. Others have utilized different methods, 
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including multi-task exclusive relationship models [27] and 

machine learning algorithms [29]. However, the measures of 

cognition and methods of modeling vary widely between 

studies, and there is no established method of assessing the 

rate of cognitive decline in AD.  

To examine how the age at disease onset influences cognitive 

decline in AD, the rate of decline in individuals with EOAD and 

LOAD was compared. Interestingly, individuals with LOAD seem 

to decline slightly faster than individuals with EOAD in the 

Cardiff Genetic Resource for AD dataset, however this result 

was not significant (p=0.307). Based on existing literature, there 

is a suggestion that patients with EOAD tend to deteriorate 

faster [39–42], although there are studies showing no 

association of rate of decline with age at disease onset [43], and 

others showing that patients with an earlier onset decline 

slower [44], as found in this dataset. A factor that could 

influence in this result is that average disease duration at 

recruitment was 6.32 for LOAD individuals, compared to for 

8.74 EOAD. Therefore, if cognitive decline is not a linear 

process, it is possible that the two groups are on different 

phases of disease, which affect cognition differently, or even 

that the individuals in the EOAD group have already declined 

significantly at the point of recruitment, therefore they do not 

show much further decline as the study continues. Moreover, 
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another important factor influencing this result is that age at 

symptom onset is often based on the patient’s or caregiver’s 

account and not on examination by a clinical professional. 

Therefore, the reliability of this variable is questionable. This 

can be problematic as the duration of the disease, defined as 

time from first manifestation of symptoms, is an important 

predictor of disease severity and progression in AD. Moreover, 

the sample size for the EOAD group was rather small (N=76), 

therefore any results drawn from it should be interpreted with 

caution.  

A replication of this result was attempted using the publicly 

available ADNI dataset, where a measure of cognitive decline 

was computed using the same methods as in the Cardiff Genetic 

Resource for AD cohort. In this dataset individuals with EOAD 

showed a borderline significant accelerated decline compared 

to individuals with LOAD (β = 0.154, p-value = 0.025). However, 

as ADNI does not include information on age at disease onset, 

disease duration was calculated differently for this cohort than 

for the Cardiff Genetic Resource for AD cohort, which may 

account for some of the differences in results. 

 

The association of APOE genotype with cognitive decline was 

assessed. APOE is the strongest genetic predictor of AD, 

however its effect on cognitive decline is still debatable, with 
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some studies showing that APOE ε4 alleles can lead to faster 

decline in AD patients [20,21], others showing that APOE 

genotype has no effect on cognitive and functional impairment 

[23,25], and studies even finding that APOE ε4 alleles can lead 

to slower disease course in AD [24]. In this study, APOE 

genotype was not found to affect the rate of decline in either of 

the two datasets (Table 3 and Supplementary Figures 5, 6, 10 

and 11). Del-Aguila et al. found an association between the rate 

of cognitive decline and the number of APOE ε4 alleles [22], 

however their study design was different, including individuals 

with mild cognitive impairment (MCI) as well as AD, and the 

method of assessing cognition used was CDR, not MMSE. 

Moreover, studies looking at neuroimaging progression 

biomarkers using ADNI have shown an association between the 

number of APOE ε4 alleles and the markers examined [45], 

however the presence of neuroimaging findings is not 

necessarily correlated with the presence of a more severe 

clinical phenotype in individuals with AD. Therefore, combining 

cognitive assessments with imaging biomarkers might be 

beneficial for an accurate estimation of the disease progression. 

Finally, a link between the rate of cognitive decline in 

individuals with MCI and the APOE genotype has been 

previously examined [46,47], and an association between the 

APOE ε4 allele and the risk of progression from MCI to the early 
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stages of AD has been established [48,49]. However, as the 

Cardiff Genetic Resource for AD did not recruit individuals with 

MCI, this was not investigated in this study.  

 

This study attempted to derive a measure of cognitive decline 

in AD using longitudinal data of cognition in AD patients. 

However, in addition to cognitive decline, AD progression leads 

to impairment in many functional activities. Therefore, 

integration of assessment scales that assess activities of daily 

living, like IADL and CDR, in the statistical modeling might 

improve the accuracy of the measures generated. The measure 

of decline computed in this project was tested for association 

with APOE genotype, a well-established genetic marker of AD 

that was available in our cohort. There are numerous other 

factors that have been shown to influence rate of cognitive 

decline in AD patients, like educational attainment, variables 

associated with diet and lifestyle and deprivation indices. 

Addition of such variables could enhance the model fit and 

produce more accurate measures of decline however they 

would substantially decrease the sample size due to high 

missingness in our data, therefore we did not include them in 

this study.  

 

CONCLUSIONS 
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To conclude, this study investigated a method of computing a 

measure of the rate of cognitive decline in patients with AD in 

the Cardiff Genetic Resource for AD and tested it for association 

with the strongest genetic predictor for sporadic AD, APOE. No 

association was found between the rate of cognitive decline in 

AD patients and APOE genotype in this dataset or in the 

replication dataset. This result raises some important questions 

regarding the relationship between neuropathological findings 

and clinical progression in AD. Replication of these results in a 

larger dataset might help uncover latent associations between 

APOE genotype and rate of decline, however research into 

alternative genetic drivers of cognitive decline is also crucial.  
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Table 1 Cohort characteristics 

 Mean SD Range 

LOAD    

Age at Recruitment 81.89 6.10 67-94 

Age at Last 

Assessment 

84.33 6.09 68-102 

Number of 

Assessments 

3.13 1.14 2-8 

First MMSE 16.82 8.52 0-30 

Last MMSE 11.34 9.09 0-30 

Sex Female (%)  Male (%) 

 377 (69.82)  163 

(30.18) 

EOAD    

Age at Recruitment 66.80 7.01 41-83 

Age at Last 

Assessment 

69.85 7.18 44-84 

Number of 

Assessments 

3.15 1.12 2-7 

First MMSE 18.49 8.69 0-29  
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Last MMSE 12.96 10.30 0-30 

Sex Female (%)  Male (%) 

 38 (50)  38 (50) 

 

 

 

 

 

 

Table 2 Cohort characteristics of ADNI dataset 

 Mean SD Range 

LOAD    

Age at Recruitment 77.43 5.99 65.08-

94.45 

Age at Last 

Assessment 

78.94 5.89 66-94.60 

Number of 

Assessments 

3.47 1.11 2-9 

First MMSE 23.08 3.14 2-30 

Last MMSE 19.50 5.70 0-30 

Sex Female (%)  Male (%) 

 209 (40.34)  309 

(59.65) 
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EOAD    

Age at Recruitment 61.04 2.86 55.10-

64.90 

Age at Last 

Assessment 

62.37 3.05 55.60-

67.99 

Number of 

Assessments 

3.12 0.88 2-5 

First MMSE 23.07 3.06 11-28 

Last MMSE 18.63 6.03 2-27 

Sex Female (%)  Male (%) 

 34 (57.63)  25 (42.37) 

 

 

Table 3 Association of APOE genotype with cognitive decline for both cohorts 

Cohort APOE ε2 APOE ε4 

 β p-value β p-value 

CARDIFF 0.116 0.971  -0.003 0.470 

ADNI 0.633 0.052 -0.044 0.687 
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Fig 1 Density plot of random slopes derived from the model for the Cardiff Genetic 

Resource for AD 
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Fig 2 Density plot of random slopes derived from the model for ADNI 

 

SUPPLEMENTARY MATERIAL 

The mixed effect linear models described previously are 

illustrated in Supplementary Table 1. After each 

amendment, the improvement of the model fit was 

tested using ANOVA. The p-value of each ANOVA is 

shown in Supplementary Table 1.  

 

   

 Model p-value 

Model 

1 

MMSE ~ (1+ Duration | ID)  
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Model 

2 

MMSE ~ Age + (1 + Duration | ID)  < 

2.2x10-

16 

Model 

3 

MMSE ~ Age + Duration + (1 + Duration | ID)   < 

2.2x10-

16 

Model 

4 

MMSE ~ Age + (1 + Duration | ID) + (1+ Age | ID) 1.21x10-

5 

Model 

5 

MMSE ~ Age + Gender + Duration + (1 + Duration 

| ID) + (1+ Age | ID) 

1.26x10-

5 

Supplementary Table 1 Comparison of model fit for 

linear mixed effects models constructed. The p-value 

column indicates the improve of the model fit, when an 

additional predictor is added. 

 

Some additional models were tested before deciding on 

the optimal one to be utilized for deriving measures of 

cognitive decline. To assess whether cognitive decline 

differs between individuals with EOAD, LOAD and 

healthy controls, and account for the difference, a factor 

variable indicating the individual’s disease status was 

added. Controls were coded as 0, EOAD individuals as 1 

and LOAD individuals as 2 (Table 1, Model 6). The effect 

of the addition of an interaction effect between the 
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status factor variable and the disease duration and was 

also examined (Table 1, Model 7). To examine whether 

age had a non-linear effect on the progression score, a 

quadratic term for age was then added to the model 

(Table 1, Model 8). Finally, to test whether the derived 

slopes are associated with the number of APOE ε4 

alleles, the latter was included as a predictor in the 

mixed model analyses and its significance assessed 

while accounting for age, gender and disease duration 

(Table 1, Model 9). The models explained in 

Supplementary Table 2.  

 

Supplementary Table 2 List of linear mixed effects 

models examined 

Model 

1 

MMSE ~ (1+ Duration | ID) 

Model 

2 

MMSE ~ Age + (1 + Duration | ID)  

Model 

3 

MMSE ~ (1+ Age | ID) + (1 + Duration 

| ID)   

Model 

4 

MMSE ~ Age + (1 + Duration | ID) + 

(1+ Age | ID) 
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Model 

5 

MMSE ~ Age + Gender + Duration + (1 

+ Duration | ID) + (1+ Age | ID) 

Model 

6 

MMSE ~ Age + Gender + Duration + 

StatusFactor + (1 + Duration | ID) + 

(1+ Age | ID) 

Model 

7 

MMSE ~ Age + Gender + Duration + 

StatusFactor *Duration + (1 + 

Duration | ID) + (1+ Age | ID) 

Model 

8 

MMSE ~ Age + Age2 + Gender + 

Duration + StatusFactor *Duration + 

(1 + Duration | ID) + (1+ Age | ID) 

Model 

9 

MMSE ~ Age + Age2 + Gender + 

Duration + ApoEε4 + (1 + Duration | 

ID) + (1+ Age | ID) 

 

 

To explore the use of the individual slopes as a measure 

of rate of decline, they were compared between 

individuals with AD and healthy age-matched controls 

(Supplementary Figures 1-3). AD patients deteriorated 

significantly faster than controls, as was expected (β= -

2.93, p-value = 2.57x10-53). For all subsequent analyses, 

healthy controls were removed from the dataset and 

only individuals with AD were considered.  
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Supplementary Figure 1 Density plot of the cognitive 

decline measure for cases and controls 
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Supplementary Figure 2 Cognitive decline measure for 

cases and controls 
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Supplementary Figure 3 Cognitive decline measure for 

EOAD and LOAD 

 

Supplementary Figure 4 illustrates the rate of cognitive 

decline seen in this dataset. The dashed lines represent 

the random slopes and intercepts extracted for each 

individual from the mixed effect linear model, whereas 

the bold continuous lines represent the overall slope 

and intercept per group. Controls show only minimal 

cognitive decline associated with normal aging, whereas 

LOAD and EOAD individuals have a much steeper 

decline. The decline is more rapid for individuals with 

LOAD than with EOAD in this dataset, though this 

difference is not statistically significant.  
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Supplementary Figure 4 Graphical representation of 

individual rate of decline. The dashed lines indicate the 

intercept and slope for each individual, and the bold 

continuous lines indicate the overall intercept and slope 

for each group (LOAD, EOAD and controls) 

 

 

Subsequently, the healthy controls were removed from 

the sample, as the random slopes were highly 

significantly different between cases and controls. The 

model was computed again using AD cases only, and 
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new measures were derived and used in all subsequent 

analyses. 

 

The association of the measures of cognitive decline 

with the number of APOE ε2 and ε4 alleles was 

examined. The results are illustrated in Supplementary 

Figures 5 and 6.  

 

 

Supplementary Figure 5 Cognitive decline measure for 

individuals with AD by number of APOE ε4 alleles 
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Supplementary Figure 6 Cognitive decline measure for 

individuals with AD by number of APOE ε2 alleles.  

The association of the rate of decline with APOE was 

also tested in individuals with EOAD and LOAD 

separately. The results are illustrated in Supplementary 

Table 3. As the results did not differ between the two 

groups, they were combined to increase the power of 

the analysis.  
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Group APOE ε2 APOE ε4 

 β p-

value 

β p-

value 

EOAD 0.084 0.825 0.289 0.103 

LOAD 0.127 0.467 -

0.052 

0.526 

Supplementary Table 3 Association of APOE genotype 

with cognitive decline for both onset groups.  

 

 

The rate of decline was compared between cases and 

controls in ADNI. As above, cognitive decline was 

significantly faster in individuals with AD than in healthy 

controls (β = -4.30, p-value = 8.74x10-41). The controls 

where then removed, the model was computed again 

and the rate of decline was compared between 

individuals with LOAD and EOAD. The results are 

illustrated in Supplementary Figures 7-9.  
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Supplementary Figure 7 Density plot of the cognitive 

decline measure for cases and controls for ADNI 
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Supplementary Figure 8 Cognitive decline measure for 

cases and controls for ADNI 

 

Supplementary Figure 9 Cognitive decline measure for 

EOAD and LOAD for ADNI 

 

 

 

The association of the measures of cognitive decline 

with the number of APOE ε2 and ε4 alleles was 

examined in the ADNI dataset. The results are illustrated 

in Supplementary Figures 10 and 11.  

 



 47 

 

 

Supplementary Figure 10 Cognitive decline measure for 

individuals with AD by number of APOE ε4 alleles for 

ADNI 
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Supplementary Figure 11 Cognitive decline measure for 

individuals with AD by number of APOE ε2 alleles for 

ADNI 

 

 


