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a b s t r a c t 

We are concerned with the interaction and integration between demand forecasting and inventory con- 

trol, in the context of supply chain operations. The majority of the literature is fragmented. Forecasting 

research more often than not assumes forecasting to be an end in itself, disregarding any subsequent 

stages of computation that are needed to transform forecasts into replenishment decisions. Conversely, 

most contributions in inventory theory assume that demand (and its parameters) are known, in effect 

disregarding any preceding stages of computation. Explicit recognition of these shortcomings is an im- 

portant step towards more realistic theoretical developments, but still not particularly helpful unless they 

are somehow addressed. Even then, forecasts often constitute exogenous variables that serially feed into a 

stock control model. Finally, there is a small but growing stream of research that is explicitly built around 

jointly tackling the inventory forecasting question. 

We introduce a framework to define four levels of integration: from disregarding, to acknowledg- 

ing, to partly addressing, to fully understanding the interactions. Focusing on the last two, we conduct a 

structured review of relevant (integrated) academic contributions in the area of forecasting and inventory 

control and argue for their classification with regard to integration. We show that the development from 

one level to another is in many cases chronological in order, but also associated with specific schools 

of thought. We also argue that although movement from one level to another adds realism, it also adds 

complexity in terms of actual implementations, and thus a trade-off exists. The article makes a contri- 

bution into an area that has always been fragmented despite the importance of bringing the forecasting 

and inventory communities together to solve problems of common interest. We close with an indicative 

agenda for further research and a call for more theoretical contributions, but also more work that would 

help to expand the empirical knowledge base in this area. 

© 2021 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Motivation and background 

Inventory control is concerned with supporting operational de- 

isions on when and how much to replenish for each of multiple 

tock keeping units (SKUs), as well as the parts and materials used 

o make them. These inventories are in place to satisfy customer 

emand, at a required service level and/or a budget. In situations 

here demand is dependent (such as for parts and components in 

igher than 0 levels in the bill of materials), controlling the inven- 

ories boils down to a scheduling exercise through materials re- 
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uirement planning (MRP) procedures. If demand is independent, 

ut somehow is known in advance, models that in their most ba- 

ic version minimize the sum of (expected) ordering and inventory 

arrying costs (such as Harris’, 1913 , EOQ model or Wagner and 

hitin’s, 1958 , model), and that also take account of constraints 

hat have to be satisfied in a given situation (e.g., a minimum ser- 

ice level), are used. However, customer demand is typically inde- 

endent and unknown at the time stocking and production deci- 

ions need to be made, and therefore we need to forecast it. 

In this context, we refer to a forecast as the (best possible) gen- 

ine expectation of how much demand is going to be for a par- 

icular SKU (often with sales as a proxy) 1 . Most often this refers 
1 The terms ‘demand’ and ‘sales’ are frequently used interchangeably in the fore- 

asting and inventory control literature. However, while demand describes exactly 
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o point, mean demand forecasts, although forecasts of variance or 

igher moments, other quantiles or indeed the entire lead time de- 

and distribution may be required. For the purposes of this article, 

e distinguish such forecasts of demand, to be used for SKU inven- 

ory management, from forecasts for other functions (e.g., market- 

ng). We use the term “inventory forecasting” then to describe the 

ntersection of these two areas, i.e. integrated literature of forecast- 

ng and inventory control. These works are manipulating charac- 

eristics of demand (or indeed of forecasts), in pursuit of inventory 

nd ultimately supply chain efficiencies. 

.1. Background 

The first articles on inventory control date back to the early 

0th century. The to this day relevant, and aptly named article 

How many parts to make at once” by Harris (1913) introduced the 

OQ model. Basic EOQ formulations are built on the assumption 

hat demand and its (true) parameters are known and constant (in 

 sense, a “perfect forecast” is available), with some exceptions (see 

lock et al. , 2014 ; Andriolo et al. , 2014 ; for reviews of the EOQ lit-

rature). This thinking, that completely bypasses any need to fore- 

ast, is reflected also in several seminal inventory textbooks, and 

s not constrained to EOQ formulations. For example, forecasting is 

bsent in Hadley and Whitin (1963) and Arrow et al. (1958) , but 

lso in more recent textbooks (Zipkin, 20 0 0; Muckstadt and Sapra, 

010 ). Silver et al. (1998 , 2017 ) and Axsäter (2015) take a step for-

ard in explicitly recognising the need to forecast and dedicate a 

hapter to it. 

Similarly, classical forecasting textbooks are not contextualised, 

reating forecasting as an end in itself (e.g., Makridakis et al. , 1998 ;

rd et al. , 2017 ; Hyndman and Athanasopoulos, 2018 ), with fore- 

asting for inventory control being repeatedly reported a neglected 

rea (e.g., Fildes and Beard, 1992 ; Prak et al. , 2017 ). That is to say,

hey do not take into account what the purpose of the forecasts is 

i.e. the forecast utility, be it in budgeting, energy, scheduling, or in 

ur case, inventory control). Broadly speaking, in terms of forecast- 

ng performance, the forecasting literature so far has been mostly 

oncerned with achieving gains against some point forecast error 

etrics - when, most often, forecasting the mean. 

The implicit assumption here is that “achievable improvements 

n accuracy lead directly to worthwhile savings” ( Fildes and Beard, 

992 , pp. 24). An alarming number of works have, however, chal- 

enged this otherwise intuitive and common-sense conjecture (e.g., 

lores et al. , 1993 ; Eaves and Kingsman, 2004 ; Syntetos et al. , 2010 ;

ratar, 2010 ; Babai et al. , 2019 ; Kourentzes et al. , 2020 ). Forecasting

ccuracy metrics can take a variety of forms, but especially when 

onstrained to assessing the accuracy of point forecasts can fail to 

valuate their impact (utility) to inventory control. As Davydenko 

nd Fildes (2013 , pp. 511) put it, “the key issue when evaluating a

orecasting process is the improvements achieved in supply chain 

erformance”, viz., the implications of any attained accuracy. 

Inventory control performance, on the other hand, has been 

ostly concerned with attaining inventory efficiencies, often re- 

orted through (the trade-off between) inventory-related costs and 

ome service achievement. However, in the majority of cases, this 

s done while either disregarding forecasting or assuming some 

dealistic forecast is available (conforming to strict, often unreal- 

stic specifications). 
hat a customer would want to buy, sales represent what the customers did buy 

and therefore lead to censored demand information; Conrad, 1976 ). In a wholesal- 

ng, B2B (business to business) or online sales environment, the real demand can 

e traced and documented (even when not met). In retail situations however, there 

s often no way to know what the real demand is as companies would tend to only 

ocument sales, which are then used as a proxy for demand, sometimes with some 

nterpolation (see, e.g., Lau and Lau, 1996 , and Tan and Karabati, 2004 , for a review 

n the estimation of demand distribution based on censored sales data). 
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Historically, these two parts of the same “inventory forecast- 

ng” function have been treated as separate entities. Of course, 

his is by no means a critique to these works and authors. 

here is little doubt that they are important contributions to the 

tate-of-knowledge at the time that they were written, and that 

he research they contain is important and relevant. Conceptu- 

lly, these works provide the foundations for integration, defin- 

ng the constituent blocks of inventory forecasting. Understanding 

he parts (forecasting and inventory control) is required before at- 

empting to look at the whole (integrated inventory control and 

orecasting). 

This isolationist approach is also reflective of the respective 

ommunities and conferences. The International Symposium on In- 

entories (ISIR) introduced an inventory forecasting stream only in 

008. Supply chain (and therein inventory) related streams were 

ot popular in the International Symposium on Forecasting (ISF) 

ntil recently. Simple analysis of the International Journal of Pro- 

uction Economics (IJPE), a journal focused on production and op- 

rations management (and publishing research from the ISIR), and 

he International Journal of Forecasting (IJF) published on behalf 

f the International Institute of Forecasters (organisers of ISF) is 

elling (see Figure 1 ). 

.2. The need for integration 

It has been shown that taking this isolationist approach is 

ot always the best course in terms of performance. For ex- 

mple, and quite tellingly, the best demand forecasting method 

or minimising inventory costs is not necessarily always the one 

ith the best forecast accuracy ( Tratar, 2010 ; Kourentzes et al. , 

020 ). In some instances, potential costly undershoots, caused 

y problematic inventory control assumptions with regards to 

he distribution of the forecast errors, are recoupled by posi- 

ive bias in the forecasts (e.g., Babai et al. , 2014 ). These are ir-

efutably valid observations, however the inference that forecast 

ias may improve the system’s performance is problematic, and 

ndicative of frail assumptions ( Taylor, 2007 ; Syntetos and Boylan, 

008 ). 

Further, even when the forecast accuracy and inventory perfor- 

ance improvements are in the same direction, they may be of 

ifferent magnitude; Syntetos et al. (2010) found a 1% reduction 

n forecast accuracy to translate into a 10–15% reduction in inven- 

ory costs for comparable service levels, casting further doubt as 

o what extent accuracy measures may help explain inventory per- 

ormance. The assumption then that forecast accuracy gains will 

ranslate into inventory gains does not appear to universally hold 

nd seems contingent to the validity of further assumptions in sub- 

equent inventory control calculations. 

Simulations, and in particular ones with empirical data, 

ave been extremely helpful in revealing the shortcomings 

f common-place inventory-related theoretical assumptions (e.g., 

retschneider, 1986 ; Eppen and Martin, 1988 ). This is also sup- 

orted a fortiori by the fact that there is no consensus (yet) on 

ays to select a forecast, a persistent issue within the forecasting 

ommunity ( Gardner, 1985 , 2006 ; De Gooijer and Hyndman, 2006 ; 

olassa, 2016 ). 

What the above highlight is our limited understanding of the 

nterrelations between forecasting and inventory control, in partic- 

lar when operating far away from theoretical assumptions. Criti- 

ally, it also highlights a frequent elusion to accommodate the fact 

hat demand is actually forecasted rather than known ( Prak et al. , 

017 ). Even when the theoretical assumptions might be reasonable, 

he frequency at which judgemental interventions occur in practice 

 Fildes et al. , 2009 ) either on forecasts ( Trapero et al. , 2011 ) or di-

ectly on inventory quantities of interest (e.g., re-order levels and 
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Fig. 1. In IJPE, left (IJF, right), just 197 (31) articles contain the words ‘inventor ∗ ’ and ‘forecast ∗ ’, out of 1952 (1735) containing just the word ‘inventor ∗ ’ (‘forecast ∗ ’), about 

10% (2%). Notice the scale difference between the primary (left, area) and secondary (right, bar chart) axes in both figures. Source: Scopus, search in titles, abstracts, and 

keywords, up to 2020. 
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rder quantities; Syntetos et al. , 2016 ) might cast doubt on their 

obustness 2 . 

This is not a critique; it is rather a reminder of how open this 

rea is to contributions. However, this is central to the argument 

or integration: there are intricate inventory forecasting problems 

hat require to be approached as a system, taking into account 

hat inventory decisions should be/are 3 informed by forecasts. Con- 

rol theory lends a nice structure of analysis (see Mason-Jones and 

owill, 1998 ): In inventory management, we attempt to control de- 

and uncertainty to efficiently meet customer demand. To do so, 

e introduce ‘control mechanisms’ in terms of forecasting proce- 

ures (feedforward control) and inventory policies (feedback con- 

rol) ( Towill, 1982 ). When the interactions of these ‘control mech- 

nisms’ are not carefully explored, often unwarranted ‘control un- 

ertainty’ is introduced (see, e.g., Goltsos et al. , 2019a ). 

One example is the bullwhip effect in a supply chain context, 

here (as we move further away from the customer in a supply 

hain) inventory oscillations become increasing multiples of end 

emand oscillations, inflating inventory costs (see, e.g., Li et al. , 

014 ). Another example is the ‘issue point bias’ in an intermittent 

emand 

4 context, where a non-frequent demand occurrence drops 

he inventory level as it also inflates inappropriate forecasts of de- 

and, triggering inflated orders that lead to overstocking ( Croston, 

972 ). 

We are of course not the first to point out the need to jointly 

pproach the interrelated functions of forecasting and inventory 

ontrol. For forecasting integration means that at a minimum, de- 

and parameters used for inventory control need to be appropri- 

tely estimated and updated ( Eppen and Martin, 1988 ), and that 

orecasting performance needs to be judged through inventory per- 

ormance ( Gardner, 1990 ). It is to use demand information to cal- 

ulate (forecast) inventory quantities of interest, to take a holistic 

iew to inventory forecasting solutions for a joint end goal. Watson 

1987 , pp. 82) observed that the use of an “elaborate reordering 

ormula is rather pointless when demand-forecast fluctuations may 
2 Robustness here and later refers to the ‘sufficiently good’ performance of the 

olicy under varying demand and product characteristics ( Boylan and Syntetos, 

021 ; e.g., Arrow et al., 1958 ; Bijvank et al., 2014 ; for the backorder and lost sales 

ases of an order-up-to policy, respectively). 
3 The be/is differentiation is important. Demand needs to be forecasted, and yet 

hen demand is forecasted, the implications of whatever forecasting method is em- 

loyed still need to be carefully considered (with relation to assumptions of the 

nventory model, see, e.g. Hsieh et al., 2020 ). 
4 Infrequent positive demand interspersed with periods of zero demand. For the 

urposes of this work we also interchangeably discuss these demand patterns as 

slow’. A thorough overview of intermittent demand forecasting and inventory con- 

rol can be found in Boylan and Syntetos (2021) . 
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e large”, meaning that the elaboration should be expended on the 

emand forecast side. Gardner (pp. 498, 1990) noted that the fore- 

asting aim should be “to improve customer service and reduce 

nventory investment”, meaning that forecasts should be judged by 

ottom-line inventory performance. A keynote speech in the prac- 

itioner stream of the International Symposium on Forecasting (ISF) 

n 2016 ( Syntetos, 2016 ) was one vocal example of an increasing 

umber of recent calls for more integrated approaches. 

.3. Summary and outline 

This paper is in response to these calls for integration, an effort 

o understand and support integrated inventory forecasting. We at- 

empt to consolidate relevant arguments, to serve as a single point 

f reference for researchers to address issues of mutual interest in 

he two communities. In order to do that we need to qualify the 

eaning of integration before we attempt to explore it. We explore 

hat does and what does not constitute integration between the 

elds of forecasting and inventory control. At the same time, it is 

ot our aim to criticise, nor do we imply any relationship between 

n article’s integration ‘level’ and the quality of research within. 

The following notation is used. The letters I and F denote the 

ocus of the paper, being inventory control and/or forecasting, re- 

pectively. The numbers zero to three indicate the level of inte- 

ration. For papers whose focus is on inventory control, integra- 

ion relates to the extent the work considers the fact that demand 

eeds to be/is forecasted. For papers whose focus is on forecast- 

ng, integration relates to the extent the work actually considers 

hat the ultimate goal is to achieve some inventory-related bot- 

om line performance improvement (most commonly some service 

evel/cost balance). Letters IF indicate integrated inventory fore- 

asting literature. Figure 2 summarizes the framework: 

• Level 0: Inventory application with no mention of forecasting 

(I0) or the inverse (F0) 
• Level 1: Inventory application with discussion of forecasting 

(I1) or the inverse (F1) 
• Level 2: (Serial) application of forecasting and inventory con- 

trol (I2 or F2 according to focus) 
• Level 3: Integrated development of inventory forecasting re- 

search (IF3) 

We strive to adopt an objective position and avoid personal 

ethodological preferences. We take a wide-lens snapshot of the 

iterature in an attempt to qualify and quantify the degrees of in- 

egration between forecasting and inventory control. To do so, we 

erform a wide structured literature survey. To identify the key- 

ord sets and establish our final sample, we construct and analyse 
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Fig. 2. Integration levels. 

a

r

d

t

o

i

t

p

i  

c

p

S

o

t

f

g

fl

a

i

f

a

w

2

t

n

t

t

w

c

e

i

p

d

2

t

l

i

b

o

s

g

s

a

n

s

t

f

i

n

a

f

c

s

r

w

c

f

n

O

r

f

c

i

j

c

w

t

A

i

1

g

d

r

c

u

c

l

m

J

t

m

c

p

s

i

m

f

c

i

f

i

 pre-sample of papers as well as contact various experts in the 

espective fields for suggestions. 

There exists a very high degree of isolation between the two 

isciplines. When compared to the great body of research papers 

hat constitute the forecasting and inventory control literatures, 

nly a small fraction of papers are integrated (levels 2 and 3). This 

s illustrated in Section 2 using our keyword sets, but we note that 

his acts as a motivation rather than a hypothesis we set out to 

rove. We find that the first integrated approaches started appear- 

ng in the 1970s and have grown to about ten papers per year re-

ently. We identify tracks of literature where integration is more 

revalent, and report on various modelling decisions in this area. 

The remainder of our paper is organised as follows: 

ection 2 describes the keyword selection process and reports 

n the survey protocol that was followed. This should facilitate 

he reproduction of our findings and constitute a starting point 

or further investigations in this area. Section 2 details the inte- 

ration classification framework and the sample’s classification 

owchart. The classification framework is applied on our sample, 

nd summary results are presented in Section 3 . Main areas of 

nterest for integration identified in Section 3 are isolated and 

urther explored and discussed in Section 4 . Section 5 summarises 

nd attempts to recast the argument for integration, and discusses 

hen it is warranted alongside promising pathways to pursue it. 

. Classification and review protocol 

In this section we overview the classification process, the selec- 

ion of our keyword sets and the compilation of our sample. It is 

ot the aim of this paper to discuss the forecasting and inventory 

heory literature in its entirety. We are interested in the interac- 

ion and integration of forecasting and stock control. To this end, 

e have constructed our keywords sets to accordingly try and ex- 

lude inventory control articles that do not include forecasting el- 

ments and vice versa. An intentional and direct outcome of this 

s that non-integrated articles are underrepresented in our sam- 

le. All searches were conducted in Scopus, due to the breadth of 

atabases it has access to. 

.1. Integration framework and classification 

We introduce a classification framework, categorising papers by 

heir level of integration and focus. It consists of four integration 

evels, alongside a designation for its focus (inventory or forecast- 

ng literature). The framework matured over a long period and has 

een presented and discussed numerous times in conferences and 

ther events 5 . Feedback from the community and internal discus- 

ions led to numerous improvements and reclassifications. We are 

rateful to both the forecasting and inventory control communities 
5 This work has been carried over five years and has over this time been pre- 

ented to an International Institute of Forecasters workshop in Lancaster (2016), 

 research seminar at the Technical University of Darmstadt (2016), at the Inter- 

ational Symposium on Inventories Research in Budapest (2018), and as a keynote 

peech (practitioner stream) for the International Symposium on Forecasting in San- 

ander (2016). 

‘

t
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w
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or their valuable feedback that has led to this final version of our 

ntegration framework. 

On one end (level 0), we find inventory applications discon- 

ected from forecasting or the inverse. Inventory research here 

dopts convenient demand assumptions (cancelling the need to 

orecast, e.g., Zipkin, 20 0 0; Muckstadt and Sapra, 2010 ) and fore- 

asting research is positioned with forecasting being an end in it- 

elf (e.g., Makridakis et al. , 1998 ). At level 1 lies literature that 

ecognises the existence of the other field but does not engage 

ith it. For example, inventory research will note the need to fore- 

ast demand parameters (but do not), see, e.g., Waters (2008) ; 

orecasting research will touch on inventory implications but will 

ot explore forecasts’ utility, see, e.g., Ord and Fildes (2012) and 

rd et al. (2017) . This body of literature departs from level 0 by 

ecognising either the need to forecast demand parameters, or the 

act that the forecasts are ultimately going to be used for inventory 

ontrol. 

Level 2 describes literature that takes the first steps towards 

ntegration. For forecasting, integration begins when forecasts are 

udged on bottom line inventory considerations and metrics (i.e., 

onsidered a means to an end). For inventory control, it begins 

hen one uses forecasts of demand (either, e.g., type of distribu- 

ion and its moments) as opposed to assuming demand is known. 

t level 2, we consider the ‘serial’ application of forecasting and 

nventory control (e.g., Fildes and Beard, 1992 ; Willemain et al. , 

994 ; Eaves and Kingsman, 2004 ; Syntetos and Boylan, 2006 ). Re- 

ardless of where the particular focus lies, they tend to estimate 

emand parameters and then employ inventory control policies, 

ecognising the need for integration. 

At level 3 we consider integrated deliberation of inventory fore- 

asting problems. Here, demand characteristics are forecasted and 

sed to in-parallel understand and/or educate the inventory fore- 

asting model or our understanding of it. Authors grapple under- 

ying attributes affecting the system, such as correlation in de- 

and (e.g., Lagodimos et al. , 1995 ; Graves, 1999 ) or forecasts (e.g., 

ohnston and Harrison, 1986 ; Prak et al. , 2017 ) and/or evaluate 

heir model based on an overarching metric of inventory perfor- 

ance. That is to say, any selection or decisions on both the fore- 

asting method and the inventory policy are based on the total 

erformance of the system rather than the performance of its con- 

tituents. (This does not subtract from the importance of measur- 

ng forecast accuracy, as it will always be relevant for tracking and 

onitoring the performance of a system.) 

Beyond the integration levels (and to also help us decide on it), 

urther information has been extracted from each paper: The fore- 

asting methods and inventory policies employed, forecasting and 

nventory performance metrics, methodological and contextual in- 

ormation. The process of individual paper evaluation is graphically 

llustrated in a flowchart ( Figure 3 , this being also the flowchart 

explosion’ of the process “paper classification” in the review pro- 

ocol depicted in Figure 5 of the next Section 2.2 ): 

.2. Keyword selection and search 

Our keyword sets were informed in three ways: i) initial key- 

ord selection and search, ii) (key)word analysis on the result- 
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Fig. 3. Paper classification flow chart. 

i

p

s

a

d

w

w

a

e

a

m

2

i

r

b

d

s

t

e

a

s

m

t

e

w

g

a

m

n

s

ng paper (pre-)sample, and iii) expert consultation. Details of this 

rocess can be found in Appendix A . The final keywords used are 

hown in Figure 4 . 

This keyword string provides our initial sample of 880 papers, 

s returned by Scopus. Scopus employs automatic indexing and 

oes not provide a way to ignore the computer-generated key- 

ords it associates with each paper 6 . There is a risk associated 

ith automatic indexing, in potential automatic misclassification of 

rticles (also see Section 2.3 ). After manually excluding papers that 

nded up in the initial sample by merit of the automatic indexing 

lone, 502 papers remained, which were all read and classified (or 

anually excluded; see Figure 5 for the review protocol). 

.3. A note on keyword string database searches 

Before we move on to discuss the integration framework, some 

mportant notes are warranted with regards to keyword-based 
6 We need to differentiate here between keywords the authors have elected to 

epresent their work (‘author keywords’), and keywords attributed to each paper 

y, in this case, SCOPUS algorithms (‘index keywords’). 

e

d

c

401 
atabase searches. Considerable effort has been expended to con- 

truct a search string of keywords, to focus the sample on the mat- 

er investigated, while trying to not omit relevant parts of the lit- 

rature. However, no string is perfect, nor everything always works 

s intended with database searches. Both of these factors have con- 

equences in the constancy of the returned sample. 

Irrelevant (erroneous) article inclusions need to be kept to a 

inimum, to reduce the size of the sample and manual interven- 

ion (that will be expended to manually exclude them later). Rel- 

vant article exclusions (false exclusions) should be minimized as 

ell, to not miss parts of the literature. These are often competing 

oals when compiling the search string, an iterative process of trial 

nd error. Attempting to exclude all irrelevant articles will result in 

issing parts of the relevant literature. Conversely, attempting to 

ot miss a single relevant paper will result in too big a returning 

ample, with many irrelevant articles. The goal of minimising both 

rroneous inclusions and exclusions is at times competing, and a 

elicate balance needs to be reached through compromise. 

By merit of looking for papers that concurrently deal with fore- 

asting and inventory control, works that discuss themselves in 
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Fig. 4. The search string. We review articles that have forecasting, inventory or stock control, and at least one from each of the context-specific keyword sets, in their titles, 

abstracts or author-selected keywords. 

Fig. 5. Review protocol. The paper classification process (blue) was discussed in Figure 3 . Scopus returned 880 papers. After ignoring the database’s automatic indexing, 502 

articles were read and 270 were found relevant. Of the 270 articles, 212 were of levels 2 and 3. Most of the following analysis is conducted on this final sample of integrated 

literature. 
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Fig. 6. Integration level breakdown of the sample of 270 articles. Levels 0 and 1 are 

highly underrepresented due to integration-inclined keyword search. We focus on 

the 212 articles of integrated research (articles of integration levels 2 and 3). 
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erms other than forecasting and inventory/stock control might be 

rroneous exclusions. This includes top-level, methodological (of- 

en older) approaches from fields such as statistics. We attempt to 

ight this in Section 4 , where we partly depart from the confines of

he sample to also include other relevant papers that might have 

een missed. It is important to note here that we do not attempt 

o compile (or claim to present) an exhaustive list of all the inte- 

rated articles ever written. We attempt to capture an objective, 

eproducible snapshot of the literature (so it could be repeated 

n the future and see whether things have changed), and explore 

hich streams have shown promising venues toward integration. 

. Sample analysis 

Following the doctrine described in Section 2 , we read every ar- 

icle and decided on whether it should be included, its integration 

evel and further information. Here we present the results of this 

rocess. We close the section with an attempt at synthesis of the 

esults, which we use as a springboard for further discussion in the 

ubsequent sections. 

.1. Integration levels classification 

Out of 270 articles reviewed, five articles were found to be level 

 and 53 articles were found to be level 1. Since we are interested

n the integrated literature, these articles are removed from the fi- 

al sample as wrongful inclusions. The subsequent analysis is con- 

trained to the integrated literature (212 articles) of levels 2 (118 

rticles) and 3 (94 articles) (see Figure 6 ). 

.1.1. Integration over time 

The first papers in this area started appearing in the beginning 

f the 1970s. In Figure 7 , we plot all integrated articles against 
402 
ime, biannually. We can see there has been a sustained increase in 

he total number of papers published annually since then. We note 

 step-change in the late 1980s and early 20 0 0s. The area really 

tarted growing in the late 1980s but has plateaued at about 10 

rticles per year since its peak at 2010 (which was mainly driven 

y a special issue in the area – see next section). One interpreta- 

ion could be that since that special issue, some authors preferred 

o focus on one of the two sides. 

In Figure 8 , we overlay areas of the relative growth for each of 

evels 2 and 3 (left) and their percentage split (right), between in- 

egration level 2 and 3 papers over the last 20 years (again biannu- 

lly). We can see that the “mixture” of papers is changing towards 

ore integrated approaches over time. Altogether, we see a slight 

elative increase in the number of level 3 papers. 



T.E. Goltsos, A .A . Syntetos, C.H. Glock et al. European Journal of Operational Research 299 (2022) 397–419 

Fig. 7. Publications on integrated literature (levels 2 and 3), biannually. We see a total increase in the literature, reaching almost 10 articles per year in the last fifteen years. 

Fig. 8. Publications per year on integration levels 2 and 3 (stacked graph of absolute numbers, left; relative split, right). There is a slight relative percentage increase of 

papers of level 3 since 1999. 
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Integration level 2 identifies the focus of the paper lying ei- 

her in forecasting (F2, 49) or inventory control (I2, 69). This slight 

revalence of focus in inventory hints that most of the integrated 

iterature focus lies in inventory. 

.1.2. Journal titles 

Where is this research published? In Figure 9 , we plot the level 

f integration against the journal of publication. Understandably, 

ifferent journals publish different numbers of issues each year, 

nd therefore there are journals that publish many more articles 

han others. This of course affects these results. For example, the 

nternational Journal of Production Economics (IJPE) published 230 

rticles per year, almost four times more than the International 

ournal of Forecasting (IJF) at 63 articles per year, but almost half 

han the European Journal of Operational Research (EJOR) at 414 

rticles per year, on average 7 . Taking this into account and with 

ome exceptions, integrated literature is quite spread out. 

In Figure 10 , we focus on the three most represented journals of 

ur sample. In IJPE, we can see that after the first articles appeared 

n 1992–1995, there is an increase in the number of published in- 

entory forecasting literature - in particular, after 2008 (introduc- 

ion of the inventory forecasting stream in ISIR). A peak appears 

n 2010 with the publication of a special issue entitled “Supply 

hain Forecasting Systems”, which seems to have supported a fur- 

her growth since. In contrast, integrated research in the IJF seems 

onstant over time, while EJOR exhibits a modest growth which is 

erhaps corrected downwards over the last 10 years. 

.2. Forecasting 

.2.1. Forecasting methods 

In Figure 11 , left, we can see the forecasting methods and ap- 

roaches of the integration literature, across levels 2 and 3. Ex- 
7 Per year averages across time of circulation per journal. Totals were taken from 

earches in Scopus and are pertinent to their respective coverage years. IJPE: 6,873 

ince 1991; IJF: 2,211 since 1985; EJOR: 17,802 since 1977. Search up to 2020. 
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onential smoothing is the most popular approach to forecasting 

n our sample, with simple moving averages, Croston-like meth- 

ds (also exponential smoothing-based) and ARIMA following. The 

se of exponential smoothing and simple moving average methods’ 

see Hyndman and Athanasopoulos, 2018 ) wide adoption can be 

artially explained by the fact that they are often used as bench- 

arks (sometimes concurrently, e.g., Eaves and Kingsman, 2004 ). 

n the right, we see the relative frequency for a method to be 

pplied in level 2 and level 3 literature where a method is more 

robable to appear. 

Entire distribution-based methods (e.g., Kolassa, 2016 ) seem to 

e well suited for integrated approaches. The same applies for di- 

ect quantile estimation. Taylor (2007) proposes an exponentially 

eighted quantile regression as a treatment to highly volatile and 

kewed daily time series. Amrani and Khmelnitsky (2017) esti- 

ate quantiles by attributing weights to samples based on their 

hronological order for non-stationary demand patterns. Cao and 

hen (2019) find improvements in quantile estimation, when com- 

ared to Holt-Winter’s forecasts coupled with a normality assump- 

ion of residuals, in two seemingly well-behaved empirical time 

eries. 

When distributional assumptions are reasonable, Bayesian 

ethods can offer a way to incorporate unknown demand param- 

ters in an inventory decision model ( Prak and Teunter, 2019 ), as 

ew information becomes available. They can be perceived as the 

iddle ground between assumed known (and unchanged) demand 

istributions on the one side and data driven distribution-free 

pproaches on the other, producing full predictive distributions. 

elland (2009) use Bayesian state-space formulations to forecast 

ow-count (intermittent) demand. Wang and Mersereau (2017) for- 

ulate a Bayesian inventory problem after change-points in de- 

and and provide heuristics to estimate its parameters. 

A number of heuristics have been employed in this literature to 

ackle complex integrated issues, when problems become analyti- 

ally intractable. We opt to present them under forecasting, as they 

re used to forecast quantities such as reorder point/order-up-to 

evels (e.g., Power approximation, Naddor’s Heuristic, Normal ap- 
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Fig. 9. The dispersion of the sampled integrated literature across journals. ∗full journal title: “International Journal of Industrial Engineering: Theory Applications and Prac- 

tice”. 

Fig. 10. Integrated (levels 2 and 3) inventory forecasting articles in IJPE, EJOR and 

IJF. In 2010, IJPE published a special issue on "Supply Chain Forecasting Systems". 
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roximation in, e.g., Sani and Kingsman, 1997 ; Babai et al. , 2010 ).

hey include evolutionary algorithms such as the ant colony opti- 

isation (e.g., Su and Wong, 2008 ) the hybrid artificial bee colony- 

haos algorithm (e.g., Tang et al. , 2020 ), or approximate Bayesian 

stimator smoothing heuristics (e.g., Karmarkar, 1994 ), among oth- 

rs. 

Machine learning (ML) approaches have gained popularity in re- 

ent years (12 out of 19 such publications in our sample are from 

he last five years) in bypassing finding the distribution of demand 

o integrate parameter estimation and inventory optimization. One 

f the things ML allows is the incorporation of ‘features’ or covari- 

te information about the products. Oroojlooyjadid et al. (2020) ap- 
404 
ly data-driven deep learning to a newsvendor formulation with 

ultiple features. Ban et al. (2019) propose another data-driven 

pproach with covariate information (e.g., price, colour, etc.), the 

residual tree method’ (an extension of the scenario tree method), 

 combined forecasting and optimization algorithm to choose or- 

er quantities. Cao and Shen (2019) employ a ‘double parallel feed- 

orward network-based quantile forecasting’ neural network to di- 

ectly estimate quantiles for a newsvendor formulation, also for 

ew items. 

The ‘other’ category includes forecasts based on diffusion 

odels (e.g., Ho et al. , 2002 ), Markov chain formulations (e.g., 

ervellera and Macciò, 2011 ), failure rate calculations (e.g., 

hodrati and Kumar, 2005 ), judgement (e.g., Syntetos et al. , 2009 ), 

nd robust optimisation approaches (e.g., Kim and Chung, 2017 ), 

mong others. Please note that these are not strictly forecasting 

ethods, but rather describe procedures and formulations that are 

sed either to produce forecasts or to estimate inventory parame- 

ers. Of these, robust optimisation seems to be very close to the 

ubject of integration. ‘Robust’ refers to robustness against dis- 

ributional assumptions, meaning that the methodology provides 

istribution-agnostic interval forecasts. 

.2.2. Forecasting performance metrics 

When it comes to measuring the performance of the forecasts, 

e can see that (mostly mean) squared errors and (mostly mean) 

bsolute errors are the two most popular error metrics ( Figure 12 ). 

oth of these metrics have links with inventory control in terms of 

he calculation of safety stocks. It is noteworthy that the vast ma- 

ority of metrics employed emphasizes point forecasts of the mean 

emand, with squared errors as proxies for the demand variance 

that would in most cases define safety stocks). 
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Fig. 11. On the left, forecasting methods employed by the literature for integration levels 2 and 3. Prevalence of exponential smoothing, moving average and Croston-like 

methods. On the right, (normalised, relative) preference of method across the integration levels. Distribution-based methods (bootstrapping, prediction intervals), Bayesian 

and state-space formulations closer to level 3. Multiple entries allowed per paper. 

Fig. 12. On the left, forecasting performance measures employed by the literature at levels 2 and 3. Squared and absolute errors are most prominent. On the right, relative 

preference of errors across the integration levels. Multiple entries allowed per paper. 
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While there are developments in point forecast accuracy esti- 

ators (e.g., Petropoulos and Kourentzes, 2015 ), there is a need 

o develop methods that can judge the accuracy of the entire 

ead time demand distribution or at least percentiles of interest 

 Kolassa, 2016 ). Such methods include the (discrete or continu- 

us) ranked probability score and probability integral transforms 

 Yelland, 2009 ; Kolassa, 2016 ). The category ‘other’ includes rela- 

ive errors (e.g., Willemain et al. , 1994 ), tracking signals (e.g., Tiacci 

nd Saetta, 2009 ), and times best (e.g., Chatfield and Hayya, 2007 ), 

mong other forecasting performance measures. 
405 
.3. Inventory control 

.3.1. Inventory policy 

When it comes to inventory policies, there is a clear dominance 

f the simple yet robust periodic order-up-to (T,S) policy (113 arti- 

les), with the continuous re-order point, order quantity (r,Q) pol- 

cy following (29 articles) (see Figure 13 ). The (T,S) policy in this 

iterature, refers to fixed periods (T), and therefore T does not need 

o be optimised. When one is only seeking to optimise the order- 

p-to level S, the problem degenerates to a solution of a simple 



T.E. Goltsos, A .A . Syntetos, C.H. Glock et al. European Journal of Operational Research 299 (2022) 397–419 

Fig. 13. On the left, inventory policies measures employed by the literature at levels 2 and 3. On the right, relative preference of policies across the integration levels. 

Multiple entries allowed per paper. 
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ewsvendor problem which essentially provides a target service 

evel to be achieved ( Eppen and Schrage, 1981 ). The large number 

f papers working with the (T,S) policy is easily explained by tak- 

ng into account the simplicity of the model, both to analyse and 

imulate, offering to mitigate some of the inherent complexity of 

he integrated approaches. It is also interesting to note that when 

ptimised in all variables, the (T,S) policy performs near optimally 

ompared with all other periodic review policies (see Lagodimos 

t al. , 2012 , for an in-depth discussion and de Kok, 2018 , who re-

ently reached the same conclusion with a different approach). On 

he other hand, the (r, Q) policy is quite more convoluted (see 

heng, 1992 , for its basic analysis under simple stochastic demand 

ssumptions). 

The prevalence of periodic order-up-to policies in the integrated 

eld may be partially attributed to the fact that a) in reality almost 

very inventory system is periodic, as forecasts are also almost al- 

ays periodic in nature (be it in hours, days, weeks, months), b) 

he move from the continuous to the periodic domain is a move 

owards more realistic (integrated) demand representations (e.g., 

agodimos et al. , 2018 ), and c) the robustness of the order-up-to 

olicy. 

We note the contributions from the (almost by definition in- 

egrated) control theoretic approach Automatic Pipeline Inventory 

nd Order Based Production Control System APIOBPCS ( John et 

l. , 1994 , see Lin et al. , 2017 for a recent review of its appli-

ations). APIOBPCS is a feedback-based block diagram framework 

onsisting of forecasting, work in progress, inventory, and produc- 

ion lead time policies (controllers). Appropriate parameters are 

elected among the policies with the “competing objectives of 1) 

apid inventory recovery and 2) attenuation of the unknown de- 

and fluctuation […] in an effort to understand supply chain dy- 

amics more completely” ( Lin et al. , 2017 , pp. 136–137). Clearly, 

his is in line with the goals of integrated inventory forecasting. 

The category ‘other’ includes fuzzy methodologies (e.g., Gumus 

t al. , 2010 ), empirical/rule-based approaches (e.g., Lee and Liang, 

018 ), and direct use of (forecasted) quantiles to estimate inven- 

ory parameters of interest (e.g., Amrani and Khmelnitsky, 2017 ), 

mong others. 

.3.2. Inventory performance metrics 

Most works in our sample (see Figure 14 ) measure inventory 

erformance through a (minimized) cost function (including, in 

ost cases, inventory holding and backorder costs) or customer 

ervice level achieved. (Maximized) profit functions (e.g., Johnston 

t al. , 2011 ) and fill rate service level representations (e.g., Heath 

nd Jackson, 1994 ) are less popular alternatives. Cycle (or cus- 

omer) service level (service level α) is very easy to find and com- 
406 
ute since it corresponds to a simple probability expression, while 

he fill rate corresponds to a more complicated form (see Silver et 

l. , 2017 , Schneider, 1981 , for an in-depth exposition of this service 

evel measures; and Diks et al. , 1996 in a multi-echelon context). 

ome articles avoid the cost/profit representation by measuring di- 

ectly average inventory, backorder volumes, or stockouts in terms 

f units (e.g., Babai et al. , 2014 ). 

Various inventory-related variance metrics (e.g., bullwhip ef- 

ect, Dejonckheere et al. , 2002 , or net stock amplification, e.g., 

aipuria and Mahapatra, 2014 ), closely associated with, but not 

onstrained to, system dynamics or control theoretic approaches 

e.g., APIOBPCS) can be considered inductive to integration, in as 

uch as they benchmark inventory performance against demand- 

r forecast-based characteristics. 

The category ‘other’ includes transportation costs (e.g., Tiacci 

nd Saetta, 2009 ), expected waiting time (e.g., Zhu et al. , 2017 ),

vertime and subcontracting (e.g., Ha et al. , 2018 ), and expediting 

e.g., Clottey et al. , 2012 ), among others. 

.4. Further information 

There are 123 papers that include theory development of 

ome/any kind, while 139 papers employ simulation, see Figure 

5 , left. Simulation has played an integral role in revealing inef- 

ciencies of the traditional assumptions and approaches when ap- 

lied in combination with real data (see Cattani et al. , 2011 ), and in

roviding arguments for integration (e.g., Eppen and Martin, 1988 ). 

t level 3, the split between these two categories is almost equal, 

hereas at level 2, we find a higher proportion of papers employ- 

ng simulation (58%). Out of the 139 papers that employ simu- 

ation, there are 90 papers that do so using empirical data (e.g., 

aves and Kingsman, 2004 , that use aircraft spare part monthly 

ime series; or parameters taken from the real world), and 54 using 

heoretical data (hypothesised, e.g., drawing from a normal distri- 

ution, e.g., Zhao and Leung, 2002 ). In total, 80 papers employed 

mpirical data and 100 papers employed theoretical data ( Figure 

5 , middle). 

There is another vector of integration that takes the perspec- 

ive of the entire supply chain, trying to investigate or optimise 

ey performance indicators across it ( Figure 15 , right, “multiple 

odes”). 43 (65% of which at level 2) articles in our sample did 

o, concerning themselves with more than one member (or node) 

f a supply chain (see de Kok et al. , 2018 for a recent review of

he area). Intermittent demands refer (as mentioned) to patterns 

here periods of positive demands are scarce, interspersed around 

uccessive periods of no demand. Our sample contains 63 papers 

ealing with such “slow” moving items, almost evenly split be- 
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Fig. 14. Inventory performance measures employed by the literature at levels 2 and 3. On the right, relative preference of policies across the integration levels. Multiple 

entries allowed per paper. 

Fig. 15. Number of papers that include analytical developments, simulation, empirical and theoretical data, multiple nodes and slow moving items. Integration levels 2 and 
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ween levels 2 and 3 ( Figure 15 , right, “Slow”). This high (propor-

ionally to the sample size) number of papers highlight the role 

ntermittent demand research has played in exercising and pro- 

oting inventory forecasting integration (see Boylan and Syntetos, 

021 ). 

Finally, three articles considered closed loop supply chains (see 

oltsos et al. 2019b for a recent review of the area). While the 

ample has missed a few others (e.g., Toktay et al. , 20 0 0 ), closed

oop inventory forecasting is an interesting niche open to contri- 

utions. It has been noted that while returns forecasting more of- 

en than not considers forecasting (returns) and inventory control 

ointly, as the focus lies on returns, literature in the area has al- 

ost invariably assumed known demand ( Goltsos et al. , 2019b ). 

.5. Summary and synthesis 

We find that the most common combination of forecasting pro- 

edures with inventory policies is that of exponential smoothing 

nd moving average with order-up-to policies. The mean forecasts 

re then coupled with variance estimations and assumed distribu- 

ions of errors to compute percentiles of interest. The simplicity of 

hese constituent formulations facilitates the discussion of the in- 

erently more complex integrated inventory forecasting question. 

ften, but perhaps not often enough, these combinations form the 

asis of rigorous benchmarking of more complex proposed ap- 

roaches. 

We note that simulation has played a very important role in 

he development of arguments in the integrated literature (as it 

as in supply chain management in general, see, e.g., Fagundes et 

l. , 2020 ). Firstly, it has exposed the mismatch of various theoret- 

cal assumptions with the reality faced by practitioners, especially 
407 
hen coupled with empirical data sets coming from industry. Sec- 

ndly, when properly employed, simulation can show the practi- 

al impact of proposed methodologies when compared to simpler 

enchmarks. 

A number of promising approaches and areas emerge from our 

ample: quantile estimation, robust optimisation, bootstrapping, 

ayesian inventory control, data driven and machine learning and 

mportantly the performance measurement of quantile and density 

orecasts. We expand on these streams in the following section. 

. Discussion 

Based on the review of our sample in Section 3 , we select a

ew promising areas for integration and attempt a more detailed 

iscussion. Some of the papers presented below are from the sam- 

le, but, in general, papers presented here are not constrained to 

t (especially when it comes to historic methodological develop- 

ents that for reasons discussed in section 2 do not appear in 

ur sample). Some come from forward and backward ‘snowball’ 

earches, complemented by independent mini reviews of the rel- 

vant streams. 

.1. Simple but fundamental interventions 

Before getting into such streams however, it is important to 

ote that integration and improvements can also originate from 

imple (yet fundamental) interventions. The seminal interven- 

ion to forecasting for intermittent demand came from Croston’s 

1972) appreciation of the ‘issue point bias’, and his proposed so- 

ution to it: forecast (smooth) demand size and length of inter- 

emand intervals independently (and update only after a demand 
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ccurrence). Syntetos and Boylan (2005) quantified and approxi- 

ately corrected a positive bias in Croston’s method. Further elab- 

ration in the area and the problem of obsolescence in particu- 

ar has prompted further important interventions (e.g., updating 

he demand occurrence every period in Teunter et al. , 2011 ; see 

lso different approaches by Prestwich et al. , 2014 and Babai et al. ,

019 ). 

Another example of integrated thinking providing important in- 

erventions in the area comes from the realisation that demand 

arameters cannot be directly substituted by forecasted ones (as 

s common). Prak et al. (2017) show that for mean-stationary nor- 

ally distributed demand, forecast errors are auto-correlated and 

hus safety stocks need to be inflated to avoid understocking. Prak 

nd Teunter (2019) provide a Bayesian framework to incorporate 

his parameter estimation uncertainty, one that can be applied to 

ny inventory model, demand distribution and parameter estima- 

or. Prak et al. (2021) provide a closed form solution to calcu- 

ate compound Poisson demand parameters, robust to the com- 

ounding distribution misspecification. They find improvements in 

he finite-sample bias and achieved fill rates in a continuous re- 

iew order-up-to system against literature suggested method-of- 

oments and maximum likelihood formulations. 

These select examples show there is certainly tremendous 

cope in uniting inventory and forecasting by a better conceptual 

nderstanding of their interaction, and identification of relevant 

pportunities for improvement. While more recent data driven and 

achine learning approaches, covered in the following subsections 

nd elsewhere, increasingly find applications to inventory forecast- 

ng problems, we have not yet exhausted the simple interventions 

hat offer direct solutions but also help speed up computations. A 

urther important benefit brought through such (often closed form) 

olutions to fundamental issues of inventory forecasting is their 

ase of communication, brought by their transparency (white-box 

ature – which also shortens potential innovation-adoption gaps). 

.2. Quantile estimation 

The general aim of integrated inventory forecasting is to derive 

ptimal inventory parameters without resorting to dubious distri- 

utional assumptions (an idea tracing back to at least Iyer and 

chrage, 1992 , for the deterministic (s, S) system). A number of 

apers have bypassed the problematic normality (or other distribu- 

ional) assumptions by directly forecasting the quantile of interest. 

his stream of literature started with (was inspired by) Koenker 

nd Basset’s (1978) work on (linear) quantile regression (extended 

o the autoregressive case by Koenker and Xiao, 2006 ). 

Trapero et al. (2019a) employ kernel density estimation (KDE –

ilverman, 1986 ) and (generalised) auto regressive conditional het- 

roskedasticity (ARCH – Engle, 1982 ; GARCH – Bollerslev, 1986 ) 

o forecast quantiles for directly computing safety stock levels. 

hey find improvements in terms of inventory performance, via 

DE in shorter lead times when the normality assumption is most 

uspect, and via GARCH in longer lead times where conditional 

eteroscedasticity becomes dominant. In a subsequent work, they 

nd further improvement when combining such quantile forecasts 

 Trapero et al. , 2019b ). Taylor (2007) and Cao and Shen (2019) find

ignificant accuracy improvements in estimating quantiles of in- 

erest, when compared to more traditional approaches (normality 

ssumption centred on simple exponential smoothing and Holt- 

inter’s point forecasts, respectively), which they traced back to 

he unsuitability of the traditional distributional assumptions. 

Of course, another approach is to forecast the entire distribution 

nd then to extract desired quantiles of interest ( Fildes et al. , 2019 ;

ee, e.g., Gneiting 2011b ; Kolassa, 2016 ; Sillanpää and Liesiö, 2018 ). 

his move from point to probabilistic forecasts is cutting across a 
408 
umber of scientific disciplines (see Gneiting and Katzfuss, 2014 , 

or a review and further argumentation). 

.3. Robust optimisation 

Robust optimisation (RO) deals with uncertain variables by only 

ooking at intervals without a need for further distributional in- 

ormation ( Wei et al. , 2011 ). In this sense, it produces results re-

ardless of the true underlying distribution that generates the data. 

O was proposed by Soyster (1973) , and it has been criticised, 

nd for years dismissed by researchers, because the robustness 

riginates from assuming worst-case-scenarios for all parameters, 

see arguments in Ben-Tal and Nemirovski, 20 0 0 ). To alleviate the 

verly conservative nature of the results, Mulvey et al. (1995) in- 

roduced scenario-based RO, while subsequent research applied RO 

o linear programming problems with uncertainty sets ( Ben-Tal 

nd Nemirovski, 1998 , 1999 , 20 0 0 and independently by El-Ghaoui 

nd Lebret, 1997 ; El-Ghaoui et al. , 1998 ; see Gabrel et al. , 2014 ;

anıko ̆glu et al. , 2019 , for reviews of the area). RO comes with

he benefit of computational tractability over alternative methods 

 Ben-Tal et al. , 2009 ). 

This independence from demand distribution assumptions has 

ade the RO approach conductive to inventory control applications 

nder demand uncertainty. Bertsimas and Thiele (2006) apply RO 

o an (s, S) inventory setting with backorders, and find evidence 

hat it outperforms dynamic programming formulations. See and 

im (2010) propose a RO approach to address a (T, S) setting facing 

RIMA (0,1,1) demand, and find that their formulation performs 

reasonably well’ compared to optimal policies, despite using sig- 

ificantly less information. Thorsen and Yao (2017) were the first 

o also consider uncertain lead times in this setting. Bertsimas et 

l. (2019) provide an adaptive RO framework to address dynamic 

roblems, providing the ability for it to adapt as new information 

ecomes available. The above works all find improvements over 

is-specified optimum policies (the cases where real or realised 

istributions are different than the assumed or sampled ones). 

.4. Bootstrapping 

Bootstrapping is a data driven non-parametric method of con- 

tructing empirical distributions of demand, and it works by re- 

ampling from the historical demands ( Efron, 1979 ). It is a gen- 

ralisation of the jackknife method ( Quenouille, 1949 , 1956 ; see 

iller, 1974 for a review). While we cover more data driven meth- 

ds in Subsection 4.6 , we dedicate a subsection to bootstrapping 

or its importance in inventory forecasting. Applications of boot- 

trapping include Clements and Taylor (2001) for autoregressive 

odels, Snyder et al. (2002) for exponential smoothing models, 

ubin (1981) for Bayesian models (sampling from the posterior 

istribution rather than the observed data). Bertsimas and Sturt 

2020) consider deterministic algorithms to calculate exact boot- 

trap quantities for the sample mean and confidence intervals. 

The first application of bootstrapping to inventory control can 

e traced back to Bookbinder and Lordahl (1989) , who used it 

o compute the reorder level in an (s, Q) system against a cycle 

ervice level criterion. Fricker and Goodhart (20 0 0) apply boot- 

trapping to the calculation of re-order points for a (s, S) sys- 

em against a fill rate and other service criteria. Bootstrapping has 

ound relatively wide application to intermittent demand contexts, 

here the scarcity of positive demand occurrences make paramet- 

ic approaches harder to implement (e.g., Willemain et al. , 2004 ; 

iswanathan and Zhou, 2008 ; van Wingerden et al. , 2014 ; Hasni et

l. , 2019b ; see Hasni et al. , 2019a for a recent review on bootstrap-

ing in intermittent demand contexts). 

While bootstrapping offers a solution to lacking distributional 

ts, it does not solve the issue of uncertainties arising from small 
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amples, nor of relevant overfitting issues. If only few observations 

re available, then bootstrapping draws from only these observa- 

ions, and does not anticipate on possible future values that are 

ifferent. Having said this, exceptions such as the jittering process 

rom Willemain et al. (2004) allow expectations of demand sizes 

ot previously observed. 

.5. Bayesian analysis 

Bayesian analysis provides a formal way to incorporate prior in- 

ormation, at times even before data becomes available to the de- 

and forecasting process. The forecaster can use domain knowl- 

dge to select a prior distribution, which is updated through the 

ayes theorem into the posterior distribution as more data be- 

ome available. Applications of Bayesian theory to inventory con- 

rol were pioneered by Dvoretzky et al. (1952) , Scarf (1959) , and 

zoury (1985) . 

This approach could be seen as a sound way to utilise classic 

nventory theory using a nimbler approach that updates the pa- 

ameters of the distribution as more data becomes available. The 

ependence on distributional assumptions also makes the Bayesian 

pproach resilient to issues of overfitting that can be generally 

ound in bootstrapping and machine learning approaches. A prob- 

em with this approach is that realistic distributions with more 

han one parameter often lead to intractable solutions, and are 

ften treated with unrealistic assumptions (e.g., Normal distribu- 

ion with known variance, in Azoury and Miyaoka, 2009 and Chen, 

010 ). This assumption is problematic in inventory control as the 

ariance dictates the size of the safety stocks and therefore is quite 

very) important ( Prak and Teunter, 2019 ). 

Bayesian theory is very useful in machine learning approaches, 

nd widely used in a number of neural network (and other) ap- 

lications. For example, Boutselis and McNaught (2019) employ a 

ayesian Network machine learning approach to a service logistics 

ontext. 

Prak and Teunter (2019) use Bayesian theory to discuss how 

emand uncertainty should be taken into account in inventory 

ontrol (when inventory formulations use estimated – rather than 

nown – parameters of demand). Toktay et al. (20 0 0) and Clottey 

t al. (2012) use Bayesian updating to incorporate new information 

n the returns of used products in distributed lag model formula- 

ions, as such products returned. In an intermittent demand con- 

ext, Babai et al. (2021a) propose a compound-Poisson approach, 

hile Ruiz et al. (2021) employ Bayesian degradation modelling, 

oth for spare parts inventory management. 

.6. Data driven approaches and machine learning 

Beutel and Minner (2012) take a data-driven approach that sets 

he inventory level as a dependent variable in a linear regression 

sing various explanatory variables of demand (covariates or fea- 

ures). This approach has been adopted by a number of researchers 

ho all report savings over classical inventory control methods 

see, e.g., Huang and van Mieghem, 2014 ; Shi et al. , 2016 ; Huber

t al. , 2019 ). 

Van Steenbergen and Mes (2020) use machine learning to fore- 

ast the demand of new products (within 18 weeks of introduc- 

ion) utilising product characteristics of old comparable products. 

hey find improvements in terms of forecast accuracy and inven- 

ory costs against a benchmark consisting of an empirical distribu- 

ion drawn straight from the test data, and another based on the 

otal demand of the most similar product, multiplied by some fixed 

oefficient of variation. 

Huber et al. (2019) use machine learning setups based on lin- 

ar regression, artificial neural networks (see Hornik, 1991) and 

radient-boosted decision trees (see Friedman, 2001 ) to predict 
409 
aily demand of a German bakery chain (newsvendor problem). 

hey compare forecast accuracy and cost against a well selected 

umber of benchmarks (including various exponential smoothing 

ethods - ES) and find that the machine learning methods out- 

erform in both accuracy and cost, but only when trained on the 

ntire dataset (ES perform best when the methods are trained on 

ne time series at a time). 

Ban and Rudin (2019) apply machine learning algorithms based 

n the empirical risk minimisation (ERM) principle and kernel 

ptimisation to a single time series of emergency room nurse 

taffing levels (approximated as a newsvendor problem). They cal- 

ulate means and 95% confidence intervals, and benchmark against 

 number of techniques and report improvements against the 

best practice’ (naïve seasonal forecast: average demand per day of 

eek). They demonstrate how to carry out a careful data-driven 

nvestigation, conclude that there is no single approach to solv- 

ng the ‘big data’ newsvendor problem (newsvendor formulation 

hich is solved with help of explanatory variables), and finally 

arn about the dangers of overfitting. 

A main concern for these methods is the fact that they are a 

black box’, which means that there is difficulty in justifying the 

esulting predictions. When improvements in forecasting accuracy 

an be convincingly showcased against robust, vigorous bench- 

arks, this is less of an issue (e.g., Huber et al. , 2019 ). How-

ver, this rigorous testing is perhaps not as common as it should 

e, with machine learning methods often tested in violation of 

est practice forecasting accuracy testing ( Fildes et al. , 2020 ; see 

ashman, 20 0 0 , for a review of established guidelines). Spiliotis 

t al. (2020) and Ma and Fildes (2020) offer exam ples of rigorous 

esting of new data-driven approaches and show promising results 

n terms of forecasting accuracy. It would be interesting to see 

ow these improvements translate in inventory savings. Beyond 

he correct selection of methods to benchmark against, we also 

ee applications on too few SKUs (e.g., Cao and Shen, 2019 ; Ban 

nd Rudin, 2019 ). One reason could be the computational inten- 

ity of these methods, although technological advances are mak- 

ng this argument increasingly fragile. Babai et al. (2020) com- 

are the neural network of Gutierrez (2008) and proposed iter- 

tions against bootstrapping, simple exponential smoothing and 

roston variants, in a dataset of 5135 intermittent demand time- 

eries. They find that simple exponential smoothing outperforms 

ll other methods both in terms of forecast accuracy and inventory 

erformance. 

It has also been noted that ML methods do not readily pro- 

ide predictive densities ( Fildes et al. , 2020 ). There have been how- 

ver some adaptations to provide probabilistic forecasts. Wen et al. 

2017) and Gasthaus et al. (2019) propose using monotonic regres- 

ion splines (see Wegman and Wright, 1983 ) optimised by a neural 

etwork with a continuous ranked probability score (see Section 

.7 ) objective. Salinas et al. (2020) propose an autoregressive re- 

urrent neural network model for producing probabilistic forecasts. 

an Steenbergen and Mes (2020) combine k-means clustering, ran- 

om forest (see Breiman, 2001 ) and quantile regression forest in a 

achine learning algorithm to compute quantiles and prediction 

ntervals. 

.7. Forecast evaluation 

The importance of forecast evaluation cannot be stressed 

nough, especially when used to select forecasts that are then se- 

uentially informing inventory decisions. Point forecasts are judged 

n a number of forecasting accuracy metrics (see Section 3.2.2 ), 

nd the lack of consensus on what these metrics should be is 

ell discussed in the literature (see, e.g., Makridakis et al. , 2020 ). 

 complicating factor is that different point forecasts are opti- 

ised at different values depending on the accuracy metric un- 
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er consideration ( Gneiting, 2011a ; Kolassa, 2019). For example, 

bsolute errors are consistent for median point forecasts, while 

quared errors are consistent for the mean ( Gneiting and Katzfuss, 

014 ). 

Feeding forecasts into reasonable inventory models is a good 

ay to gain extra confidence on the adequacy of the inventory 

orecasting assumptions (e.g., normality of residuals). In effect, 

hat is tested then is the veracity of the distributional assumption 

f the errors and the accuracy of the quantile extrapolation (e.g., 

rom the point forecast of mean demand to the often cycle service 

evel prescribed quantile of interest). What would perhaps be even 

etter, would be to optimise the forecasts directly on the end goal 

s it is measured through the relevant inventory policy each time 

n question ( Tratar, 2010 ; Kourentzes et al. , 2020 ). 

A more straightforward way to go about this would be to di- 

ectly judge the forecasting accuracy of the percentile of interest 

 Gneiting, 2011b ). For example, asymmetric piecewise linear loss 

unctions (also known as: the pinball, the linlin, hinge, tick, and 

ewsvendor loss) can be used to compare the relative accuracy of 

wo quantile forecasting models ( Koenker, 2005 ; Gneiting, 2011b ). 

ery often, inventory costs are compared at a number of target cy- 

le service levels, e.g., 90%, 95%, 99%. Such measures can be used 

o directly test losses at those quantiles of interest. 

A growing number of researchers argue that the focus should 

ove from point forecasts (be it mean or some quantile) to fore- 

ast full predictive densities (e.g., Gneiting, 2011b ; Snyder et al. , 

012 ; Kolassa, 2016 ; Fildes et al. , 2019 ; de Kok, 2019 ). Equally im-

ortant then is to be able to judge the accuracy of these forecasted 

istributions. But what does accuracy mean in this probabilistic 

orecasting context? Gneiting et al. (2007) define it as a com- 

ination of calibration (statistical consistency between distribu- 

ional forecasts and observations) and sharpness (concentration of 

he predictive distributions). Recently, (proper) scoring rules have 

een introduced that can rank predictive distributions on both 

hese traits (see Gneiting and Raftery, 2007 ; Gneiting and Katzfus, 

014 ). 

We mention a few scoring rules here for the interested reader, 

ithout going into much detail. One such measure is the Continu- 

us Ranked Probability Score (CRPS) ( Brown, 1974 ; Matheson and 

inkler, 1976 ; Gneiting and Raftery, 2007 ), or its Discrete equiv- 

lent (DRPS) ( Epstein, 1969 ; Murphy, 1971 ; Snyder et al. , 2012 ),

ith the intuitive definition of a pinball loss across all quantile lev- 

ls ( Gasthaus et al. , 2019 ). Another is the Brier or quadratic score

 Brier, 1950 ). As Boylan and Syntetos (2006) point out however, in 

ost applications of inventory control, we are more interested in 

articular parts of the predictive distribution (e.g., at 90% + to cor- 

espond with the most common target cycle service levels). The 

coring rules offer little guidance as to how competing forecasting 

ethods might fair in those particular percentiles (e.g., the overall 

inning distribution might be overperforming in parts of the dis- 

ribution we are not interested in and losing in the parts that we 

re). 

The Probability Integral Transform for continuous density fore- 

asts (PIT) ( Rosenblatt, 1952 ) and the randomised PIT for discrete 

redictive densities (rPIT) (see, e.g., Kolassa, 2016 , and references 

herein) is another standard way to evaluate distributions. By cre- 

ting a histogram of PIT values and checking for its uniformity 

through goodness-of-fit tests, see, e.g., Inglot and Ledwina, 2006 ), 

e can see in which percentiles the predictive distributions dif- 

er. In other words, having uniform PITs indicates a well-calibrated 

orecast; however, it does not inform us of its sharpness ( Gneiting 

t al. , 2007 ). To overcome the deficiencies of proper scoring rules 

nd PIT, Kolassa (2016) proposes these measures to be used in 

onjunction. Another option is to incorporate quantile-weighted 

PRS in alignment with the target cycle service levels of interest 

 Gneiting and Ranjan, 2011 ). 
410 
onclusion 

We have reviewed the literature of integrated inventory control 

nd forecasting. To do so, we consulted experts in both fields to in- 

orm our database keyword search but also the integration frame- 

ork. The framework defined four levels (0 to 3; see Appendix B ). 

he first two levels describe non-integrated and the last two, 

hich are the focus of our review, integrated approaches. We find 

he integrated literature started formulating into a stream in the 

arly 1970s. This is logical as integration cannot happen in a vac- 

um and must be preceded by an in-depth analysis of its con- 

tituents (integration levels 0 and 1). 

Since then, a growth has been identified, which seems to have 

lateaued at about 10 articles per year over the last decade. 

his may be interpreted as a change of focus of authors back to 

he individual streams, which underlines the importance of this 

ork (as well as others’ calls for integration). The analysis of the 

ntegrated (levels 2 and 3) sample revealed promising research 

treams which were followed up with further exploration of the 

ndividual streams (including but not constrained to the papers 

ound in our sample). It is worth noting the role of research on 

low/intermittent demand which historically approached forecast- 

ng and inventory control jointly. The same is also true for re- 

earch on circular (closed) loops and returns forecasting, which 

hile mostly employing integrated approaches is still an area wide 

pen to contributions. 

Historically, forecasters were interested in the performance of 

mostly point) forecasts (of mean demand), measured through ac- 

uracy metrics serving as proxies for forecasting utility. Inventory 

ontrollers, on the other hand, considered forecasts (when they at 

ll did) as an exogenous variable beyond their control or interest, a 

eadily available and to specification input to the inventory control 

rocess. The underlying notion is that an expert forecaster would 

reate a ‘perfect’ forecast (that will accurately describe a true de- 

and distribution as needed), which would then be serially picked 

p by an expert stockist, to be transformed in as good as possi- 

le inventory quantities of interest. Where these forecasts are good 

in terms of both accuracy and conformity to inventory control as- 

umptions), literature at levels 0 and 1 (e.g., EOQ formulations) 

rovide optimal inventory decisions. 

From the inventory perspective, which for the literature un- 

er consideration is in effect the end goal of inventory forecast- 

ng, three historical trends have emerged. First was the assumption 

hat every observation is independent and identically distributed, 

rawn from a real underlying distribution. Using these observa- 

ions, an estimation of the latter is made, and substituted in its 

lace (and treated as if it was the real distribution). The realisa- 

ion that demands are more often than not time-correlated led to 

n adaptation of this process, and to the emergence of a second 

rend. 

Researchers would typically train point forecasts of the mean, 

ssume some distribution of residuals (most often Gaussian with 

ean of zero), calculate a variance metric (often the mean squared 

rror) and follow tables or algorithms to reach the target service 

evel prescribed quantile. We have seen that this approach is not 

deal as a) we tend to judge forecast accuracy for the mean or 

uantiles irrelevant to our end goals, b) the very convenient nor- 

ality (or other) distributional assumption of errors is often in vi- 

lation ( Koenker and Basset, 1978 ). 

The third stream then relaxes the assumption of normality, or 

ny distributional or parametric assumption, to move directly from 

he observations to the quantiles of interest. We outlined exam- 

les of this stream in Section 3 and further elaborated on them 

n Section 4 . Bootstrapping, robust optimisation, and density fore- 

asts or quantile estimation are examples of streams attempting 

ust that. Heuristic and increasingly more so machine learning ap- 
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roaches are called upon to provide solutions to these complex 

roblems. Data driven solution approaches have taken advantage 

f recent developments in computing power and big data to help 

ith solving them. 

A parallel argument that arises from these historic paradigm 

hifts, or perhaps can be used to explain them, is that of the 

peed of change. The assumption that demand characteristics re- 

ain stable for a long time was perhaps reasonable up to the end 

f the 20th century, but is maybe not much so anymore ( Bowersox, 

007 ). For one, product life cycles have since reduced, which, other 

han directly violating the above assumption, also leads to a great 

eduction in time length of available data ( Basallo-Triana et al. 

017 , Baardman et al. , 2018 , Van Steenbergen and Mes, 2020 ). 

While bootstrapping and machine learning approaches do not 

ely on distributional assumptions, problems arise especially when 

ew demand observations are available. Overfitting and their inap- 

itude to anticipate possible future values that are not encountered 

n the sample are the main problems. On the other hand, Bayesian 

pproaches do not face these problems, they do however depend 

n distributional assumptions. 

It is worth noting that the vast majority of research is dedi- 

ated to linear supply chains: from resource extraction to serving 

ustomer demand. Increasingly however, governments, customers 

nd companies are interested in how to retain resources in circu- 

ation (the circular economy) as much as possible before disposal 

 Goltsos et al. , 2019a ). We note that demand inventory forecasting 

hould be in this sense expanded to demand and returns inventory 

orecasting, an area which is open to contributions. 

.1. The role of integrated inventory forecasting 

The need for integration has been to an extent substantiated 

rom the combination of levels 0 and 1 research (in level 2 pa- 

ers, often in exploration of the validity of relevant theoretical as- 

umptions through simulation in real data). However, what this 

lso implicitly highlights is the fact that integration is not required 

hen the distributional assumptions are robust. Integration should 

e treated as an injection of realism, to treat (or investigate poten- 

ial) violated assumptions – but not to complicate for the sake of 

omplication. So, literature of levels 0 and 1 provide a mosaic from 

here to draw solutions when the relevant assumptions (more or 

ess) hold, but also foundations or inspiration to enable and edu- 

ate the naturally more complex integrated approaches. 

Literature at level 2 then seems to identify cases where sequen- 

ial application of non-integrated approaches underperform. Simu- 

ation has played a prominent role in this domain, in particular 

hen combined with industry data, to expose dubious assump- 

ions that lead to performance losses. Literature at level 3 delves 

eeper and explores the reasons behind the inaccuracies, employ- 

ng integration as a remedy. Often, non-integrated literature pro- 

ides bounds for their integrated counterparts. For example, the 

lassical EOQ cost function provides upper cost boundaries for the 

ore realistic, optimal discrete EOQ, with Lagodimos et al. (2018 , 

p. 119) advising “extreme caution when transferring results be- 

ween the continuous and discrete-time frameworks” – or in other 

ords, when in violation of the continuous time assumption. The 

bove discussion is graphically summarised in Figure 16 . 

.2. The trade-off between complexity and efficiency gains 

As the scope widens to accommodate this integration, the an- 

lytical and computational burdens increase. Demand assumptions 

re relaxed, forecasts need to be produced and inventory policies 

eed to accommodate the fact that demand is forecasted, increas- 

ng the complexity of mathematical or algorithmic models or sim- 
411 
lations. For these reasons, machine learning techniques, heuristics 

nd simulation are often relied upon to explore the intertwined in- 

entory forecasting problems (solutions). 

We have shown many examples where integration has provided 

etter results than non-integrated approaches (see Sections 3 and 

 ). However, there exists a trade-off between increasing complex- 

ty and potential gains from pursuing it. An important aspect of 

omplexity in research is how it affects its adoption by practice. 

iemi et al. (2009) , investigating the innovation-adoption gap with 

egard to inventory management techniques, note that “despite all 

he theory available, the inventory management techniques in use 

n companies are often very elementary”. The logical question that 

rises is, when is it worth to address these extended complexities? 

t follows that integration is not to be pursued for the sake of in- 

egration – in other words a case needs to be made in terms of 

fficiency gains over effort expended. 

What is perhaps missing is an evaluation of this trade-off be- 

ween benefits of integration and the realism of the assump- 

ions, as well as the severity and likelihood of finding oneself 

n violation. Quite a few papers have attempted to quantify this 

y benchmarking inventory performance of integrated approaches 

gainst more traditional ones (e.g., Taylor, 2007 , for the order-up- 

o level calculation). This should perhaps become the standard, 

n line with the mostly adhered notion of benchmarking against 

also) simple forecasting procedures (such as simple exponen- 

ial smoothing) when comparing forecasting methods (e.g., Eaves 

nd Kingsman, 2004 ). (Relatively) simple integration can reveal 

he scope for improvement (relative to non-integrated approaches) 

nd provide potential areas where deeper exploration would be 

erited. 

What is a simple way to integrate? Integration is a spectrum, 

nd often the distinction between levels 2 and 3 are not clear. We 

an however attempt to define where it starts. On the lower end 

of level 2), the minimum requirement would be a sequential ap- 

lication of forecasting and inventory control. Demand history is 

nalysed, inventory quantities of interest are forecasted, and these 

orecasts inform an inventory policy. So, from a forecasting per- 

pective, forecasts need to be subject to an analysis of their ‘utility’. 

rom an inventory control perspective, this means that modelling 

hould not overly rely on convenient assumptions of known de- 

and but expose itself to more realistic assumptions of demand 

nd forecasts. 

.3. Forecasting for inventory control 

What to forecast (and how to assess it) remains an open, ac- 

ively researched question. An unbiased forecast of e.g., the me- 

ian (where the absolute errors optimise in) describes the level of 

nventory that would satisfy demand (from stock on hand) 50% of 

he time. The question is, why are we forecasting (and comparing 

erformance against) the median (or mean), if the target service 

evels are rarely 50% (i.e., in a newsvendor type setting the inven- 

ory holding and backorder cost being equal)? That is to say, point 

mean/median) forecasts are not enough for inventory control pur- 

oses, however accurate they might be. 

The utility of the forecasts is in effect a proxy evaluation of 

ow good the inventory forecasting system in consideration is, in 

redicting a quantile of interest (that directly or indirectly corre- 

ponds to a service level; Gardner, 1990 ). At a minimum, there 

hould also be a forecast for the variance of the forecast errors, 

erhaps through some mean squared error smoothing procedure 

 Brown, 1982 ; Bretschneider, 1986 ; see Babai et al. , 2021b , for a

omparison of approaches). But still a (point) forecast of mean de- 

and and variance also requires a distributional assumption to 

ompute safety stocks (i.e., quantiles of interest), and at times re- 
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Fig. 16. Integration serves to identify and treat cases where the assumptions are dubious. Integration comes at a cost of complexity, but also with potential for improvements. 
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T

8 Some keywords were excluded for being too broad or of little relevance to 

our needs (e.g., ‘production’ or ‘observed’), and some were conjoined (‘supply’ and 

‘chain’ where the two most frequent words after ‘demand’) or manipulated into a 

single entry (‘season’, ‘seasonal’ and ‘seasonality’ are represented by ‘seasonal’). 
ying on the first two moments alone is not enough ( Lagodimos et 

l. , 1995 ). 

It seems that one of the most promising approaches, from an 

ntegrated inventory forecasting perspective at least, is to forecast 

he entire lead time demand distribution, bypassing the need to 

ely on at times dubious distributional assumptions ( Taylor, 2007 ; 

nyder et al. , 2012 ; Barrow and Kourentzes, 2016 ; Kolassa, 2016 ;

mrani and Khmelnitsky, 2017 ) and then extracting the relevant 

uantiles – an area in need of further exploration ( Fildes et al. , 

020 ). Among the same lines, point forecast accuracy research 

s progressing (e.g., Petropoulos and Kourentzes, 2015 ), but the 

eed for accuracy measures for the entire distribution is pressing 

 Kolassa, 2016 ). 

Bayesian methodologies offer a natural connection to classic in- 

entory theory while using a nimbler approach that updates the 

arameters of the distribution as more data become available. They 

eadily provide probability densities rather than point forecasts; 

owever, the inventory forecaster still needs to assume a distri- 

ution (and the selection can complicate the parametrisation ef- 

orts). Robust optimisation and bootstrapping approaches are inter- 

sting ways to avoid problematic distributional assumptions, espe- 

ially when avoiding assumptions of i.i.d. demand. Machine learn- 

ng approaches show great promise with their ability to calculate 

nventory parameters of interest directly from the data, while in- 

orporating covariate information (features) beyond the timeseries. 

ore effort should be expended in dealing with issues of overfit- 

ing and to employ proper benchmarking. 

As we move towards more integrated research on inventory 

orecasting, the good practice of forecast evaluation should be ex- 

anded to include rigorous benchmarking of the entire inventory 

peration. Such a benchmark should include a relevant inventory 

olicy, with a carefully selected number of appropriate forecasting 

ethods and distributional assumptions. Any parameter (including, 

.g., weights for the exponential smoothing family) should be opti- 

ised on the bottom-line inventory performance metric (most of- 

en, some cost equation alongside a service level). Cross-validation 

nd testing across a number of SKUs are well established aspects 

f forecasting benchmarking that should be retained here too. 

Finally, and perhaps most importantly, this integrated thinking 

hould instigate fundamental, simple solutions to the joint ques- 

ion of inventory forecasting. Beyond any future developments in 

he streams discussed above, there is certainly tremendous scope 

n uniting inventory and forecasting by a better conceptual under- 

tanding of their interaction. Such theoretic, often closed form for- 

ulations, provide solutions that can also assist heuristic, machine 

earning and other applications by providing solid foundations and 

reeing up processing power. 
412 
unding 

Engineering and Physical Sciences Research Council (EPSRC): 

roject EP/P008925/1 ; Innovate UK and EPSRC: project KTP10171 . 

cknowledgements 

We sincerely appreciate discussions and feedback received dur- 

ng the following events, which helped shape our paper: an Inter- 

ational Institute of Forecasters workshop in Lancaster (2016); a 

esearch seminar in the Technical University of Darmstadt (2016); 

he International Symposium on Inventories in Budapest (2018); 

nd the International Symposium on Forecasting in Santander 

2016). We would also like to acknowledge the contribution of the 

wo anonymous referees, who greatly helped to improve the con- 

ent of the paper and its presentation. 

ppendix A. Search string 

Our keyword sets were informed in three ways: i) initial key- 

ord selection and search, ii) (key)word analysis on the resulting 

aper (pre-)sample, and iii) expert consultation. To initiate the sur- 

ey of the literature, we created an initial keyword set that re- 

urned a pre-sample of the literature (1500 articles). We then went 

hrough all titles of the pre-sample papers, and when needed ab- 

tracts, excluding irrelevant ones, ending up with 60 articles. For- 

ard and backward searches revealed a further 150 relevant arti- 

les, bringing the pre-sample to 210 articles. We performed a con- 

ent analysis on this pre-sample and produced lists of forecasting- 

nd inventory control-related keywords ranked by instances of ap- 

earance in titles, abstracts or keywords 8 . At the same time, we 

ontacted leading academics in the broader fields of forecasting 

nd inventory control, asking them to produce five keywords for 

ach group. The results of both exercises served to educate the fi- 

al keyword selection. 

The selected keywords were thematically split between fore- 

asting and inventory control, and then further into “area-defining”

nd “context-specific” sets. We put broad keywords that tend to 

reate many hits (of a broad scope) in the former, and the rest, 

hich form an inclusive (albeit not exhaustive) attempt to capture 

ifferent areas and niches of the relevant literature, in the latter. 

he ‘context specific’ keyword sets attempt to exclude irrelevant 

https://doi.org/10.13039/501100000266
https://doi.org/10.13039/501100006041
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Fig. 17. Keyword sets compilation. 
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to our paper) literature that may share some of the keywords 

e.g., weather or energy forecasting, or financial/stock market 

esearch). 

For a paper to be included in the sample, it had to contain at 

east one word of each group of keywords in its title, abstract or 

uthor selected keywords (see Figure 4 ). We focused on academic 

apers and restricted ourselves to English manuscripts to ensure 

eadability across the authors. Finally, papers from various areas 

rrelevant to our search academic fields (e.g., medicine, meteorol- 

gy, etc. – as these were defined by Scopus) were excluded to help 

ocus the sample. 

ppendix B. Levels of integration 

Any papers irrelevant to our focus we find in our final sample 

re considered erroneous inclusions. This in a sense also includes 

iterature of the non-integrated levels 0 and 1 (that may end up 

n the final sample), as by merit of the search string, we are look- 

ng for papers dealing with inventory and forecasting concurrently 

and therefore literature of levels 0 and 1 should be largely ex- 

luded). While our focus is on the integrated levels, with exam- 

les mostly taken from our sample, levels 0 and 1 are included in 

he framework for completeness, with examples mostly taken from 

eminal books and reviews of the field. Any integrated literature 

levels 2 and 3) that inadvertently ends up outside the sample are 

onsidered erroneous exclusions ( Fig. 17 , Fig. 21 ). 

1. Integration level 0 

This level consists of what may be termed the ‘traditional’ lit- 

rature on forecasting and inventory control, respectively. It can be 

een as a natural first step whereby the research is relying on con- 
Figure 18. Inventory control level 0 - no mention of

413 
enient assumptions to solve the simplest possible models (where 

he research question still exists). 

Inventory level 0 models assume that all information on de- 

and (generating process, DGP) that can be obtained at the point 

f decision making is given, and they do concern themselves with 

ow the information is obtained (I0, Figure 18 ). There is no men- 

ion of any forecasting or estimation of parameters taking place, 

ot even as a recognition that there is a need to do so. Demand 

s assumed to be known deterministically (e.g., fixed demand rate 

er unit time as assumed in the basic EOQ formulation in Harris, 

913 ) or stochastically (e.g., normal distribution with known mean 

nd variance in other formulations in Lagodimos, 1992 ). Examples 

f these works can be found in all standard books in operations 

nd supply chain management (e.g., Hadley and Whitin, 1963 ; Zip- 

in, 20 0 0; Muckstadt and Sapra, 2010 ). 

Along the same lines, the traditional forecasting literature, 

here methods’ development and/or testing solely emphasises 

orecast accuracy, has no mention of any subsequent use of these 

orecasts. That is to say, in F0 ( Figure 19 ) forecasting is treated as

eing an end in itself (e.g., Makridakis et al. , 1998 ), not concerning

tself with the utility of the forecasts. 

Please note that what we represent here as “forecasting accu- 

acy”, “service level” and “inventory cost” can take many forms. 

orecast accuracy can mean a variety of things such as point fore- 

ast error measurements, e.g., mean squared or absolute errors. 

ervice level might refer to cycle service level or fill rate. Inventory 

related) cost can refer to holding costs, ordering costs, backorder 

osts or costs lost sales, among others. In any case, what we intend 

o highlight here is that forecasting and/or inventory performance 

s somehow evaluated. We discuss in Section 3 examples of the 

easures we encountered in our sample for both forecasting and 

nventory control. 
 forecasting and need to estimate parameters. 
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Fig. 19. Forecasting level 0 - no mention of inventory control or any subsequent stages of computation and evaluation. 
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2. Integration level 1 

This level describes literature very similar to that included in 

evel 0, with one important point of departure: the recognition 

hat demand should actually be forecasted, or that the forecasts are 

o be used for the end goal of controlling inventories. While these 

re important qualifications to position the research in the broader 

ontext of inventory forecasting, the literature here has otherwise 

imilar modelling decisions and assumptions as it does in level 0. 

Research of Inventory level 1 (I1, Figure 20 ) mentions this need, 

ut forecasting is not employed per se. It is discussed as a sepa- 

ate entity (see Silver et al. , 1998 , 2017 ) and with no integration of

orecasts (and their errors) in the inventory policies (see Waters, 

008 ). 

Similarly, research in F1 ( Figure 23 ) does not consider forecast- 

ng utility metrics or bottom-line inventory implications (i.e., the 

orecast accuracy implications). That is to say, they do not pursue 

he investigation of how forecasts are affecting the ultimate goal 

f controlling inventories, not going much further than mentioning 

otential inventory implications (e.g., Hyndman and Athanasopou- 

os, 2018 ). This is also reflected in seminal reviews of time series 

orecasting, e.g., see Gardner (1985 , 2006 ) (with focus on exponen- 

ial smoothing) and De Gooijer and Hyndman (2006) . 
Fig. 20. Inventory level 1 – Same as I0 but with a disc

Fig. 21. Forecasting Level 1 – Same as F0 but with a di

414 
3. Integration level 2 

At integration level 2, demand is assumed stochastic and un- 

nown, and is forecasted. An inventory policy is turning the fore- 

asts into inventory quantities of interest. The applications at this 

evel are serial in nature, in the sense that forecasting methods and 

nventory policies are selected (and/or optimised) in isolation, and 

heir interrelation is not closely examined (e.g., Willemain et al. , 

994 ; Eaves and Kingsman, 2004 ). 

Level I2 ( Figure 22 ) describes articles where a forecasting pro- 

edure is selected and applied, as an input to an inventory con- 

rol model, which is where the focus of the paper in question 

ies. Syntetos and Boylan (2006) , for example, investigate the in- 

entory performance (holding cost and fill rate – the percent- 

ge of demand served directly from stock on hand) by simu- 

ating a periodic (review period T) order-up-to (level S), (T, S) 

olicy, with various forecasting methods as input. Another ex- 

mple is Watson (1987) , that incorporated periodic exponen- 

ial smoothing and moving average forecasts in an EOQ-type 

odel, to explore the effect of forecast errors in achieving service 

evels. 

Similarly, but when the scope and focus of the paper is on fore- 

asting, the paper is assigned the level F2 ( Figure 23 ). Some inven-
ussion of a need to "somehow” forecast demand. 

scussion of inventory and potential implications. 
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Fig. 22. Inventory control level 2 – Demand is forecasted and is serially informing the inventory control process. 

Fig. 23. Forecasting level 2 – Demand is forecasted and is serially informing an inventory control process. 
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ory policy is employed, and there is some evaluation of the fore- 

ast’s ‘utility’ in terms of inventory implications (most often cost 

nd service level). Gardner (1990) makes a very good example, em- 

loying efficiency curves 9 between different forecasting procedures 

o evaluate their inventory performance in a reorder point (r) order 

uantity (Q), (r, Q) inventory policy. 

4. Integration level 3 

Integration level 3 is reserved for papers that approach the 

roblem of inventory forecasting jointly. That is to say, they take 

n integrated approach whereby some contribution is achieved by 

ooking at the entire picture. In that sense, forecasting modelling 

ecisions are influenced by the inventory modelling decisions (and 

ice versa), and most often a joint metric is pursued. A holistic 

nderstanding of the specific (and joint) nature of the inventory 

orecasting problem is required as it is furthered. This would then 

onstitute a development towards inventory forecasting as a joint 

ntity. As such, the framework converges at level IF3, to describe 

ntegrated inventory forecasting research. Literature here goes be- 

ond serial application and is more often than not concerned with 

he interrelations of forecasting and inventory control in specific 

emand contexts in violation of common (convenient) assump- 

ions. At a minimum, modelling decisions relating to both fore- 

asting and inventory control are judged on inventory performance 

etrics (e.g., optimizing simple exponential smoothing parameter 

lpha directly on inventory performance in Kourentzes et al. , 2020 ). 

The fact that demand parameters are forecasted has its own 

mplications, and literature at IF3 ( Figure 24 ) attempts to investi- 

ate and address them. For example, Prak et al. (2017) observed 

hat while demand may not be correlated, forecast errors are, 

eading to undershoots when neglected. They proposed appropri- 

te safety stock adjustment mechanisms when the one-step-ahead 
9 Curves (efficiency frontiers) contrasting different methods against some inven- 

ory performance measures, e.g., cost against achieved service level ( Brown, 1967 ; 

ardner and Dannenbring, 1979 ). 

(

r

415 
orecast errors are informing the variance calculations. Hoberg et 

l. (2007) compared a linear and a proposed non-linear (inte- 

rated) inventory policy with simple exponential smoothing fore- 

asts, against stationary and non-stationary demand, and found the 

ntegrated approach reduces order amplification. Dejonckheere et 

l. (2002) employed transfer functions to investigate the influence 

f forecast errors in the bullwhip effect (inventory variance over 

emand variance) in supply chains. The above are a collection of 

apers showing how the research interests in IF3 have grown to 

nclude the interrelations of forecasting and inventory control. 

Forecasts are moving away from forecasting the mean to also 

orecasting the variance ( Brown, 1962 ; Bretschneider, 1986 ; Snyder, 

004 ), but also further into forecasting the entire lead time distri- 

ution ( Barrow and Kourentzes, 2016 ). In the same wavelength, ef- 

ort is expended to propose forecasting accuracy metrics that bet- 

er represent the end goal of inventory control, including ways to 

udge forecasts in their ability to forecast percentiles of interest 

 Kolassa, 2016 ). While the performance of the system will be ulti- 

ately judged by appropriate inventory metrics, there is still merit 

o track forecasting performance as it can help to identify issues 

n the forecasting process – and track performance losses to the 

emand generating process. 

Finally, we note that the proposed integration levels attempt to 

lassify a semi-abstract spectrum of integrated literature. As such, 

here is a certain degree of subjectivity in assigning the levels for 

ach paper. Especially when it comes to books, certain chapters 

ight be of different levels than others (e.g., Silver et al. , 1998 , and

ubsequent editions, could be seen as a mostly level F1 book with 

 chapter on forecasting being level F2). 

.5. Classification beyond integration 

Beyond the assignment of an integration level to each paper 

and as a stepping-stone to help us reach that decision), we have 

ecorded a further number of variables. These are presented below. 

• Bibliometric information: This information is directly extracted 

from Scopus. We are interested in the year of publication and 



T.E. Goltsos, A .A . Syntetos, C.H. Glock et al. European Journal of Operational Research 299 (2022) 397–419 

Fig. 24. Inventory forecasting level 3 - Full integration. 
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journal of publication. This will help us get a feel for the area 

and its size over time. 
• Methods and policies employed: We record forecasting meth- 

ods used to forecast demand (e.g., exponential smoothing fam- 

ily), as well as inventory policies used to satisfy demand (e.g., 

order-up-to). We also note when particular model (e.g., state 

space) or approach (e.g., aggregation) or solution methodologies 

(e.g., heuristics or machine learning) are employed. If a paper 

employs two or more policies and/or methods (e.g., for compar- 

ison purposes), the record will reflect all employed, as required 

for forecasting or for inventory control. 
• Performance measurement: Here we capture information on 

the metrics used for the evaluation of either the forecasts or the 

inventory performance. These are forecasting accuracy metrics 

(e.g., mean squared error) and inventory performance metrics 

(e.g., bullwhip effect, cost, or average inventory), respectively. 

Again, multiple entries on both forecasting and inventory met- 

rics are captured. 
• Methodology-related information: We also record whether 

a paper pursued some theoretical development, making no 

judgement on veracity or significance. Introducing new formu- 

lae, models, algorithms, proofs of lemmas/theorems, are judged 

as an analytical development. Repetitions of methods proposed 

in other papers do not qualify, while adaptations do. We simi- 

larly note if simulation is taking place on any kind of data and 

scenarios. Simple numerical examples and simulations that oc- 

cur elsewhere and are not reported in the paper (omitted) do 

not qualify. These two variables could simultaneously be true 

or false for a single paper. 
• Extraneous information: Further to the above we also record if 

a paper is dealing with slow/intermittent demand, if it concerns 

multiple nodes in a supply chain, or closed loop supply chains. 

Finally, we make a note if data employed (e.g., demand/sales 

time series) are empirical (e.g., time series taken from industry) 

or theoretically generated (e.g., when demand is drawn from a 

normal distribution with e.g., mean μ= 200 and standard devi- 

ation σ = 20). 
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