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Modest changes in Spi1 dosage 
reveal the potential for altered 
microglial function as seen 
in Alzheimer’s disease
Ruth E. Jones1,2, Robert Andrews1,4, Peter Holmans3, Matthew Hill2 & Philip R. Taylor1,2,4*

Genetic association studies have identified multiple variants at the SPI1 locus that modify risk and age 
of onset for Alzheimer’s Disease (AD). Reports linking risk variants to gene expression suggest that 
variants denoting higher SPI1 expression are likely to have an earlier AD onset, and several other AD 
risk genes contain PU.1 binding sites in the promoter region. Overall, this suggests the level of SPI1 
may alter microglial phenotype potentially impacting AD. This study determined how the microglial 
transcriptome was altered following modest changes to Spi1 expression in primary mouse microglia. 
RNA-sequencing was performed on microglia with reduced or increased Spi1/PU.1 expression to 
provide an unbiased approach to determine transcriptomic changes affected by Spi1. In summary, a 
reduction in microglial Spi1 resulted in the dysregulation of transcripts encoding proteins involved in 
DNA replication pathways while an increased Spi1 results in an upregulation of genes associated with 
immune response pathways. Additionally, a subset of 194 Spi1 dose-sensitive genes was identified 
and pathway analysis suggests that several innate immune and interferon response pathways are 
impacted by the concentration of Spi1. Together these results suggest Spi1 levels can alter the 
microglial transcriptome and suggests interferon pathways may be altered in individuals with AD 
related Spi1 risk SNPs.

Alzheimer’s Disease (AD) is the most prevalent form of Dementia, affecting millions of people  worldwide1. 
Studies investigating AD genetics and pathology have suggested immune gene networks may contribute to an 
increased risk of developing  AD2,3. SPI1 encodes PU.1, a central transcription factor in microglial development 
and activation, and has a genome-wide significant genic association with AD in the IGAP GWAS (rs3740688 
Odds Ratio 0.92 Meta p = 5.4 ×  10−13), comprising 35,274 Alzheimer’s disease cases and 59,163  controls4. In addi-
tion, a 56-protein interaction network consisting of strongly enriched rare coding variants (p = 1.08 ×  10–7, and 
common variants with Late-Onset AD gene-wide significance (p = 2.98 ×  10–7) identified SPI1 as a central hub 
 gene5. Several studies have suggested SPI1/PU.1 levels impact on the microglial transcriptome, therefore affect-
ing the phenotype of these cells. Several single-nucleotide polymorphisms (SNPs) associated with an increased 
risk of AD are thought to lie within the Spi1 gene  locus3,6,7. The SNP variant  rs1057233a is thought to result in a 
higher level of Spi1 expression and earlier age of AD  onset7. Moreover, Spi1 is thought to influence the expres-
sion of other AD risk  genes5,7,8.

The PU.1 transcription factor is essential for the survival and function of  macrophages9–13 and is well con-
served between humans and mice (> 85% protein similarity, BLAST protein alignment (RefSeq ID’s NP_003111.2 
and NP_035485, respectively). In hematopoietic development low levels of PU.1 drives B-lymphocyte develop-
ment whereas cells expressing high levels of PU.1 are committed to the myeloid  lineage14–16. In development PU.1 
levels are regulated to commit precursors to a macrophage or B-cell  lineage17–23. In these early experiments PU.1 
appeared to have dose-dependent transcriptional thresholds in foetal liver  macrophages24. PU.1 also regulates 
expression of several key macrophage receptors such as CSF1R, CD11b and  CD4525–27. Moreover PU.1 interacts 
with other lineage-determining factors such as C/EPBα/β to alter the chromatin landscape resulting in a spe-
cialised macrophage  epigenome28–30.
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In both primary human microglia and the BV-2 mouse microglia cell line, reductions in PU.1 have resulted 
in changes to gene expression and a reduced phagocytic  capacity7,31,32. Additionally, increased PU.1 expression 
in BV-2 cells resulted in increased zymosan phagocytosis, and amplified both ROS, NO and cytokine produc-
tion after LPS  stimulation32. Though the impact of altered Spi1 on the microglial transcriptome would ideally 
be studied in freshly isolated cells, such as those from a transgenic mouse model, at the time of this study no 
appropriate Spi1 over-expression transgenic mouse lines were available.

CSF1R inhibitors are a potential AD therapeutic and prevent AD-associated microgliosis by blocking the 
CSF1R/PU.1 survival signalling  pathway33–36 but the impact on peripheral macrophages has not been reported. 
Knowing how subtle changes in SPI1/PU.1 levels contribute to the microglial tissue resident subset transcriptome 
could allow more specific pathways could be targeted.

RNA-sequencing was used to assess changes to the microglial transcriptome following modest changes to Spi1 
expression in microglia from primary mixed-glia cultures. Modest changes to PU.1 protein were desirable as they 
reflect the expression changes caused by the risk allele, and therefore the biology underlying AD. A moderate 
reduction in microglial Spi1 resulted in altered expression of cell cycle related genes while small Spi1 increases 
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upregulated immune response genes. A subset of genes identified as Spi1 dose-sensitive highlighted a potential 
dose-dependent interferon driven immune response regulated by Spi1.

Results
RNA-sequencing data shows impact of Spi1 dose on microglia transcriptome. The effect of Spi1 
shRNA knock down (KD) and Spi1 pSIEW over expression (OE) was assessed in flow cytometric sorted micro-
glia after 11 days of lentivirus infection. Following Spi1 knock-down (Spi1 shRNA compared to control shRNA) 
1615 genes were up- and 1462 down-regulated, using an adjusted p value of < 0.05 cut-off (Benjamini–Hochberg 
corrected for multiple testing). A proportion of down-regulated genes (230 genes) surpassed the -2  log2 fold-
change cut-off (Fig. 1A). In the Spi1 over-expression dataset (Spi1 pSIEW compared to pSIEW) 284 genes had 
an increased expression, 62 were down-regulated (p < 0.05). In this comparison 71 up-regulated and 4 down-
regulated exceeded a  log2 fold-change value of 2. Principal component analysis (PCA, Supplementary Fig. 1) 
confirmed that samples within the same group had greater similarity, while the Spi1 pSIEW and Spi1 shRNA 
samples clustered separately.

The datasets with altered Spi1 expression were then compared to identify which subset of genes were likely 
affected by Spi1/PU.1 in a dose-dependent manner. This identified 196 genes which were significantly diminished 
in the Spi1 knock-down and upregulated in the Spi1 over-expression dataset (Adjusted p value of ≤ 0.05; Fig. 1B). 
When the direction of the gene fold-changes was compared 162 of these genes were lower in the dataset with 
lower Spi1 and higher in the Spi1 over-expression dataset and 32 genes where expression was increased following 
Spi1 knock-down and reduced in the Spi1 over-expression dataset (Fig. 1C). Therefore, 194 genes were classed 
as Spi1 dose-sensitive (Supplementary Table 1).

RNA-sequencing confirmed Spi1 fragments per Kilobase of transcript per Million mapped reads (FPKM) 
values were significantly lower in cultures infected with Spi1 shRNA as opposed to the control shRNA (Fig. 1D, 
One-Tailed Unpaired T-test on  Log10 data p = 0.0166). Spi1 mRNA expression was increased in the Spi1 pSIEW 
samples compared to the control virus (Fig. 1E, One-Tailed Paired T-test on  Log10 data p = 0.0013).

PU.1 protein was assessed in independent microglia samples (Fig. 1D–E) and was reduced by ~ 70–80% in 
Spi1 shRNA samples compared to control shRNA infected microglia (Fig. 1D One-tailed Paired T-test, p = 0.0013 
and Supplementary Fig. 3B One-tailed Paired T-test, p = 0.001). Spi1 over-expression in microglia increased 
PU.1 protein expression by ~ 70% compared to microglia infected with pSIEW control virus (One-tailed Paired 
T-test, p = 0.0131). The values clearly cluster within each biological group and the means of Spi1 shRNA and 
Spi1 pSIEW microglia compared to the appropriate control viruses are disparate indicating PU.1 was altered by 
these Spi1 modulating viruses.

Gene ontology analysis in Spi1 knock-down and Spi1 over-expression datasets. Differentially 
expressed genes (p < 0.05 significance threshold) in the Spi1 KD and Spi1 OE datasets were separately assessed 
using DAVID (Database for Annotation, Visualization and Integrated Discovery, version 6.8). Figure 2 displays 
the Gene Ontology (GO) terms from the 20 most significantly enriched pathways in each dataset (corrected p 
values p < 0.05, FDR). In primary microglia with a lower Spi1 expression the most significantly changed path-

Figure 1.  Results of RNA-Seq experiment in primary mixed-glial cultures (A) Volcano plots summarising 
the distribution of genes in the Spi1 knock-down (purple) and Spi1 over-expression (orange). In the Spi1 
knock-down dataset a 1462 genes were down-regulated (grey background) and 1615 up-regulated with a p 
value of ≤ 0.05 (solid lines), as indicated by the numbers on the graph. In the Spi1 over-expression dataset the 
majority of the genes, 284, were up-regulated and 62 genes had down-regulated expression. (B) Genes that were 
significantly changed in both the Spi1 knock down (KD, purple) and the Spi1 over expression (OE, orange) 
using a p ≤ 0.05 threshold. A Plot of adjusted p values from all genes in both datasets. Genes that were below the 
p ≤ 0.05 threshold in the Spi1 knock-down dataset are highlighted in purple, those that were below the p ≤ 0.05 
cut-off in the Spi1 over-expression are within the orange bar. In the bottom left corner the red line surrounds the 
196 genes that were significantly changed in both datasets. (C) Venn diagrams summarising the gene expression 
that were significantly changed (p ≤ 0.05) in either the Spi1 knock-down dataset (purple), the Spi1 over-
expression dataset (orange) or changed in both datasets (red). Of interest were the genes with expression that 
appears to be sensitive to the Spi1 dose in microglia, namely the 194 genes that appear to be expressed relative to 
the dose of Spi1. (D) The  log10 number of Spi1 mRNA fragments per Kilobase of transcript per Million mapped 
reads (FPKM) shows that Spi1 was lower in Spi1 shRNA infected microglia than in control shRNA infected 
microglia (One-tailed Unpaired T-test on the  log10 transformed data, p = 0.0166, n = 4 for control shRNA 
and n = 3 for Spi1 shRNA). PU.1 protein expression was normalised to the non-infected (NI) samples in each 
experiment (as described in methods). Microglia infected with the Spi1 shRNA (solid purple) have reduced 
PU.1 expression compared to cells infected with a control shRNA (lined purple) (One-tailed Paired T-test, 
p = 0.0013, n = 3 per group). (E) Spi1 mRNA expression (FPKM) was increased in the samples infected with 
the Spi1 over-expression construct (filled orange) compared to empty vector control samples (outline orange), 
(One-tailed Paired T-test on the  Log10 transformed data, p = 0.0013, n = 4 per group).The Spi1 over-expression 
virus (Spi1 pSIEW) increased PU.1 protein expression in microglia by roughly half compared to cells infected 
with an empty vector control (lined orange). One-tailed Paired T-test, p = 0.0131, n = 4 per group) (D–E) Each 
dot represents the value from one biological replicate, the means are indicated by the horizontal lines and the 
error bars display the standard deviation about the mean. All experiments were performed using mixed glia 
cultures from 8-week-old female C57BL/6J mice. Figures (A–C) were made in GraphPad PRISM 6 (version 
3.07) and (D–E) in GraphPad PRISM 8 (version 8.4.3; both GraphPad Software, Inc.).
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ways were related to cell cycle and DNA repair (Fig. 2A). However, microglia with higher Spi1 (Fig. 2B) had an 
over representation of genes related to antigen presentation pathways, immune system processes and response 
to interferon.

Spi1 dose-sensitive subset highlight interferon response pathways. The absolute  log2 fold-
changes of 162 genes reduced by Spi1 knock-down and increased by Spi1 over-expression significantly cor-
related to each other (Fig. 3A) and the 32 genes that were increased by Spi1 knock-down and reduced by Spi1 
over-expression (Fig. 3B) were also found to correlate (Two-tailed Spearman Rank Test approximate p < 0.0001 
and r > 0.8 for both). This further supports the hypothesis that the expression of these genes is controlled in a 
Spi1 dose-sensitive manner. Collective analysis of the 194 Spi1 dose-sensitive gene list using GO terms through 

Figure 2.  The 20 most siginificantly changed biological pathways in the Spi1 knock-down (A) and Spi1 
over-expression (B) datasets assessed using DAVID. In these graphs the Benjamini–Hochberg adjusted p 
value(−  Log10) is displayed on the x-axis, the Gene Ontology (GO) term listed on the y-axis, the percentage of 
the gene list in each cluster is denoted by the size of the bubble and the colour denotes the fold-change, where a 
darker colour indicates a stronger enrichment. The vertical black line indicates the p value cut-off of 0.05. Bubble 
plots were made using the ‘tidyverse’37 and ‘ggpubr’38 packages in  R39,40.
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DAVID indicated an enrichment of immune response genes (Fig. 3C), particularly pathways linked to interferon 
and viral defence responses. These results suggest that a high microglial Spi1 expression may result in more 
responsive microglia that produce more interferon, though further work would be required to confirm this 
experimentally.

Several gene clusters implicate immune system responses. The data were assessed using hierarchi-
cal clustering of the FPKM expression values (Fig. 4). Six discrete clusters were identified, and gene lists were 
assessed using DAVID as before. Genes with an increased expression in microglia over-expressing Spi1 (Cluster 
1) are enriched for pathways involving MHCII processing and presentation of antigens. The genes in Cluster 2 
appear to be the most Spi1 sensitive, where expression was reduced in the Spi1 shRNA and increased in the Spi1 

Figure 3.  Absolute  Log2 fold-changes in Spi1 dose-sensitive genes. (A) Absolute  log2 fold-change values were 
used the 162 genes where p ≤ 0.05 with negative fold-change values in the Spi1 knock-down dataset (purple) 
and positive fold-change values in the Spi1 over-expression dataset (orange) were assessed separately from the 
32 genes where p ≤ 0.05 and Spi1 dose had the opposite effect on expression (B). Two-tailed Spearman Rank 
test identified significant correlations between the  log2 fold-changes in both graphs (approximate p < 0.0001 
and r > 0.8). (C) Top 10 most significantly altered “Biological Processes” according to the Benjamini–Hochberg 
adjusted p value. The bubble size indicates the percentage of the gene list aligned to this pathway. The colour 
indicates the fold enrichment, which is the proportion of genes present in this list compared to the background 
gene expression. The vertical black line indicates the p value threshold of 0.05. Figures (A, B) were made in 
GraphPad PRISM 6 (version 3.07) and (C) using the ‘tidyverse’37 and ‘ggpubr’38 packages in  R39,40.
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over-expression samples compared to relative controls. Most pathways associated with the genes in this cluster 
are related to the immune response including the response to viruses. Cluster 3 contained genes that were down-
regulated in the Spi1 shRNA samples compared to the controls and were related to interferon signalling and 
immune response pathways. Cluster 5 contains genes that had a higher expression in the Spi1 shRNA samples 
compared to the control shRNA samples. The GO TERMS associated with the genes in this cluster include those 
related to cell cycle and DNA replication pathways. Overall, this reinforces previous reports that reduced Spi1 
seems to impact cell cycle which was not unexpected given the involvement of PU.1 in survival  signalling11,41. 
A lowering of Spi1 appeared to reduce activation of immune response related pathways while increasing Spi1 
expression seemed to have the opposite effect.

Figure 4.  Hierarchical clustering analyses with the 20 most siginificantly changed biological pathways each 
cluster assessed using DAVID. (A) Hierarchical clustering of rows, where each row represents the scaled  log10 
FPKM values for each gene, with dendrogram higlighting cluster boundaries. The Pearson correlation was used 
to calculate the Z-Scores and UPGMA agglomeration methods were used. These 6 clusters were produced using 
the cutree function at a height of 1.59. (B) The gene lists were assessed using DAVID and a bubble plot created 
to highlight the top 5 most significatly enriched pathways (p value threshold of < 0.05) in each gene cluster. 
Cluster 1 contains genes that had increased expression following a higher Spi1 expression and are mainly linked 
to immune responses and MHCII antigen presentation. Cluster 2 appears to contain more of the Spi1 dose-
sensitive genes and are enriched for viral/immune response signalling pathways. Genes in Cluster 3 had a lower 
expression in the Spi1 shRNA dataset and are related to immune response and interferon signalling pathways. 
Cluster 4 contained no significantly enriched pathways using the p ≤ 0.05 threshold. Cluster 5 contains multiple 
genes related to cell cycle and DNA replication pathways, whose expression was increased in the Spi1 shRNA 
samples. The bubble size denotes the fold enrichment and the colour Benjamini–Hochberg adjusted p values. 
Figures were made with the ‘tidyverse’37, ‘gplots’42, ‘plotly’43, ‘dendextend’44 and ‘colourspace’45 packages in 
 RStudio39,40, code adapted  from46,47 complete Markdown is available in Supplementary Information.
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PU.1 dose-related transcriptomic differences were not limited by direct binding. Changes in 
gene expression after manipulation of PU.1 could arise from changes in direct DNA binding or via secondary 
effects. To identify possible direct targets of PU.1 that were differentially expressed, the proportion of protein 
coding genes that contained a PU.1 binding site sequence, especially within the promoter region, were assessed 
utilising a published ChIP-Sequencing (ChIP-Seq) dataset available  online30. Figure 5 shows ~ 70% of genes dif-
ferentially expressed in the Spi1 RNA-Seq datasets contained a PU.1 binding site and therefore expression was 
potentially directly modified by Spi1. Moreover, 30–40% of genes in Spi1 KD and Spi1 OE datasets had PU.1 
binding sites within the promoter region suggesting their expression was directly altered by Spi1/PU.1. These 
proportions remained consistent even in the Spi1 dose-sensitive subset. Only differentially expressed genes in 
the Spi1 KD were enriched for PU.1 binding sites in the promoter region (Fisher’s exact test, p value of over-
lap = 1.6 ×  10−16). Given the proportion of overlapping genes was similar across all three test sets (Spi1 KD, Spi1 
OE and Spi1 dose-sensitive) it seems Spi1 was not limited to directly regulating genes, but likely indirectly medi-
ates expression of multiple other genes via secondary downstream processes.

Comparison to human AD risk genes. Protein network analysis suggest Spi1/PU.1 is one of several 
“hub” genes within a network of AD risk  genes5, which was further supported by Cis-eQTL analyses in mono-
cytes and  macrophages7. The RNA-Sequencing profiles generated in this paper were compared to the Interna-
tional Genomics of Alzheimer’s Project (IGAP) dataset, to investigate if there was an enrichment of AD genetic 
risk within the differential expressed sets of genes. Supplementary Table 2 denotes the gene sets used in this 
MAGMA analysis. In the Spi1 over-expression dataset a 21 gene set (Fig. 6), corresponding to a Benjamini–
Hochberg adjusted p value of ≤ 1 ×  10−6 for differential expression, were enriched for AD genetic risk (adjusted 
p value = 0.035). The individual IGAP p values can be viewed alongside the corresponding Spi1 over-expression 
data in Supplementary Table 3. This gene list (Fig. 6B) contained Ifit3, Oas1b and Oas2 which GO analysis linked 
to the interferon response pathway and Rnf144b and Treml4 which are related to antigen presentation pathways, 
implicating the immune system response in AD pathology.

Discussion
Manipulation of Spi1 expression in primary mixed glia cultures were used to identify how microglial gene expres-
sion was altered following modest changes to Spi1/PU.1 (Fig. 1). Analysis of the RNA-sequencing datasets pro-
duced from these cultures have provided insight into how Spi1 dose affects the microglia transcriptome. Briefly 
Spi1 knock-down resulted in changes to gene expression of components of cell cycle checkpoint pathways while 

Figure 5.  Comparison of Spi1 KD, Spi1 OE and 194 Spi1 Dose-sensitive genes to Spi1/PU.1 Chip-Seq dataset. 
Spi1 binding sites were determined from PU.1 Chip-Seq published data available  online30 as described in 
methods. Fisher’s exact tests were used to determine if there was a significant overlap between the datasets (A) 
includes the results from all protein coding genes with a Spi1 binding region (defined by Chip-seq in grey) that 
are also expressed in KD (purple), OE (orange) RNA-seq datasets or the Spi1 dose-sensitive genes (red). (B) The 
proportion of genes expressed in the RNA-seq datasets that contained a Spi1 binding site within the promoter 
region. The KD dataset contained a significant number of genes with a Spi1 binding sequence in the promoter 
(Fisher’s exact test, overlapping p value = 1.6 ×  10−16). No significant enrichment was noted in either the Spi1 
OE or dose sensitive genes. Figures were made in PowerPoint based on results from ‘GeneOverlap’48 package in 
 RStudio39,40.
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over-expression of Spi1 altered enriched pathways related to MHCII, interferon response and viral response 
(Figs. 3, 4). Comparing these RNA-Seq datasets to ChiP-Seq data suggests that approximately 70% of the dif-
ferentially expressed genes were likely directly altered by Spi1 binding whereas the rest appeared to be altered 
via other mechanisms (Fig. 5).

Strengths of this experimental approach include assessing the bidirectional impact of Spi1/PU.1 changes 
(Fig. 1) on the microglial transcriptome in an unbiased manner in primary cell cultures. We supplemented our 
cultures with TGF-β which partially compensates for the loss of complex environmental cues microglia would 
normally receive. However, it does not fully replicate the in vivo context and there were no suitable transgenic 
mice available to study the impact of Spi1 dose on microglia in situ. The reduction in Spi1 FPKM values and PU.1 
protein levels can be clearly seen in both microglia (Fig. 1D and Supplementary Fig. 3B) and in RAW264.7 cells 
(Supplementary Fig. 2). Figure 1E clearly shows that the Spi1 pSIEW plasmid results in increased Spi1 mRNA 
and PU.1 expression in microglia.

PU.1 has been previously linked to proliferation in macrophages. Bone-marrow derived Macrophages over-
expressing PU.1 increased GM-CSF and M-CSF dependent proliferation and cell number, the opposite was 
seen in cells transfected with an anti-sense PU.19. However, there are some conflicting reports in the literature 
as to the role of PU.1 in microglia proliferation. In this model absolute cell numbers did not differ between Spi1 
shRNA and control shRNA infected microglia, neither were there significant fold-change differences between 
normalised cell cycle data (Supplementary Fig. 3). In human microglia cultures an siRNA mediated reduction 
of PU.1 resulted in a lower cell number, disintegration and rounding of some cells but at the final timepoint 
viability appeared unaffected. This suggests some microglia could survive with reduced PU.141. Another simi-
lar study observed no reduction in microglia number, though PU.1 loss was measured at a culture level so the 
reduction could not be quantified on a single-cell  level31. In summary, we did not observe significant changes 
in the proportion of cells in each phase of the cell cycle following a reduction in PU.1 (Supplementary Fig. 3), 
despite the differential expression of cell cycle associated genes within the Spi1 KD RNA-Seq dataset (Fig. 2).

PU.1 has been shown to bind the promoter of the Csf1-receptor (Csf1r) increasing expression of Csf1-recep-
tor49, which is highly linked to microglia survival and proliferation. In BV-2 cells a reduction in PU.1 also results 
in a reduced Csf1r  expression7 though no cell number/viability data was provided. It was recently shown that 
BV-2 cells with diminished PU.1 expression were more vulnerable to caspase-dependent cell death, while PU.1 
over-expressing cells appear to have delayed onset of death. Baseline cell viability did not appear to be impacted 
by PU.1 modulation in these  cells32. In the Spi1 RNA-seq datasets generated in this paper Csf1r expression was not 
significantly altered (Benjamini–Hochberg adjusted p values 0.665 in KD and 0.999 in OE), though the impact 
on Csf1r protein expression was not investigated here. Given that Csf1r inhibitors have been shown to prevent 
AD-related microgliosis and partially ameliorate disease pathology in vivo33–36 it would be interesting to see if 
Csf1R protein was affected in Spi1 shRNA infected microglia and if the reduction in PU.1 had a similar impact 
to Csf1r inhibitors on disease progress.

Figure 6.  Summary of Spi1 over-expression genes that were significantly enriched in the IGAP dataset. 
(A) Volcano plot of the Spi1 over-expression gene expression changes relative to the empty vector control, 
highlighting the p ≤ 1 ×  10−6 threshold that was shown to be significantly enriched by MAGMA analysis in the 
IGAP dataset (MAGMA’s empirical multiple testing corrected p value 0.035). The adjusted p value for this gene 
set was 0.0033 and an enrichment effect size of 0.51. (B) Bubble plot of the genes from the Spi1 over expression 
dataset that were enriched for AD genetic risk via MAGMA comparison to the human IGAP database, against 
the Benjamini–Hochberg adjusted p values from the Spi1 over-expression RNA-sequencing data with the fold-
change shown in colour. The vertical black line indicates the p value threshold of 0.05. Figure (A) was made in 
GraphPad PRISM 6 (version 3.07) and (B) using the ‘tidyverse’37 and ‘ggpubr’38 packages in in  RStudio39,40.
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Over-expression of Spi1 resulted in differentially expressed genes enriched for MHCII related pathways, 
interferon response pathways and response to virus pathways (Fig. 2B). Though there may be minor concerns 
that the significance of viral immune response pathways could be an unintended effect of using lentiviruses to 
manipulate Spi1 expression this is unlikely as comparisons were made relative to an almost identical control 
virus that lacked the Spi1 coding sequence. Additionally, this study identified a subset of 194 genes that appear 
to be Spi1 dose sensitive, linked to GO terms such as “Cellular response to interferon” and “Defence response to 
virus” (Fig. 3). Therefore, an increased level of Spi1 appears to cause transcription of genes associated with an 
inflammatory phenotype that might be relevant to AD genetic risk mechanisms (Fig. 6).

Previous work has identified that Spi1 is able to influence multiple gene networks in  microglia5,7,31 and has 
been proposed as central to a network of AD risk genes that are conserved between  species50. Basal cytokine 
expression was higher in BV-2 cells over-expressing PU.1, and was further potentiated by LPS stimulation com-
pared to control  samples32. Media taken from LPS treated PU.1 over-expressing BV-2 cells promoted a reactive 
astrocyte phenotype which was not observed in astrocytes treated with media from LPS treated BV-2 cells 
with reduced PU.1  expression32. Together these results suggest that PU.1 dose likely modulates the cytokine 
response in stimulated BV-2 microglia cells. In co-transfected NIH-3T3 fibroblasts PU.1 was required to bind 
either IFN Regulator Factor 4 (IRF-4) or IFN Consensus Binding Protein (ICSBP) for maximal induction of an 
IL-1β reporter  assay51. Therefore, it is likely that increased Spi1/PU.1 expression levels in microglia may result 
in a more inflammatory microglial profile, potentially in conjunction with additional transcription factors. GO 
analysis of the Spi1 knock-down and over-expression datasets suggest that the level of Spi1 may impact microglial 
phenotype. Work in BV-2 cells suggests that reduced PU.1 results in a less reactive phenotype whereas PU.1 over 
expression primes cells for a more reactive  response32. Further profiling is needed to ensure the pathway analysis 
matches the phenotype presented in this model or ideally in vivo.

Several gene-expression studies in AD model mice have highlighted Spi1 as a target of interest. Salih et al. 
identified a network of microglial genes expressed by amyloid-associated microglia, collated from five transgenic 
mouse lines, including Spi1, and 74 other genes that were identified as Spi1 dose-sensitive in this  study52. These 
genes included Oas1b, Oas2, Ifit3 which were all highly differentially expressed in the Spi1 over-expression dataset 
(Fig. 6) and are linked to interferon  signalling53. Sierskma et al. identified 18 genes that both overlapped with AD 
GWAS datasets and were maintained between young and old APP transgenic mice, which were predominantly 
expressed by microglia and appear to be regulated by Spi150.

There are several reports in the literature that imply human and mouse microglia have phenotypic differences. 
For example, work in primary human microglia suggests that the responses to IFN-γ, TGF-β1 and M-CSF may 
be species  specific54. As this work was carried out in primary mouse cultures there could be concerns that the 
impact of reduced or increased Spi1/PU.1 might not be present in human biology.

However, studies investigating PU.1 in human microglia suggest there are shared Spi1/PU.1 dose dependent 
pathways in microglia. In addition to SPI1 binding sites being located near other AD risk genes or regulatory 
 elements5,7,8, SPI1 risk alleles associated with a higher gene expression have been shown to lower the age of onset 
in  AD7. Transcriptional profiles of microglia isolated from frozen human AD and control cortical tissue sug-
gest an overall species difference in the disease associated signature, though an increased SPI1 expression was 
measured in AD samples compared to  controls55 validating previous observations by  others31.

In primary human microglia cultures siRNA mediated reductions in PU.1 resulted in a decrease in Amyloid-β 
1-42 peptide  phagocytosis41, in a similar manner to observations in BV-2  cells7,32. Analysis of mixed microglia/
pericyte cultures where PU.1 was reduced via siRNA showed reduced expression of DAP12 and HLA-DR/DP/
DQ31. Moreover, similar gene expression changes to immune response and lipid metabolism genes were observed 
in BV-2 cells and human iPSC microglia following PU.1 siRNA knock-down32. Together these studies show that 
while the impact of SPI1 dose on microglia phenotype needs to be assessed in both species, some functional 
changes appear common to both human and mouse microglia.

In summary, disease relevant reductions in Spi1 highlighted dysregulation of genes involved in cell cycle 
checkpoint pathways. Modest increases in microglial Spi1 expression results in dysregulation of genes linked 
to immune response and interferon signalling, suggestive of a more pro-inflammatory microglial phenotype. 
This study highlights how relatively modest changes to Spi1/PU.1 expression alone can have a large impact on 
the microglial transcriptome of primary mixed-glial cultures, providing candidate pathways for future studies 
investigating Spi1 dependent processes and AD relevant biology.

Methods
Primary mixed glia cultures. Brains from 8-week-old C57BL/6 J mice (Charles River) were collected and 
transported in Hank’s Balanced Salt Solution (HBSS without  Mg2+ or  Ca2+; Gibco) on ice. These culture experi-
ments were repeated 10 times (n = 10), 4 were used to generate RNA-Sequencing replicates and 6 for subsequent 
validation experiments. For most cultures three brains were sufficient per experiment (one 6 well-plate), though 
for some experiments more cells were required so cultures were scaled up accordingly. Brains were digested 
using the Neural Tissue Digest Kit-P in C-tubes as per manufactures directions (Miltenyi Biotec). Two brains 
were digested in each C-tube using program 37_ABDK on the GentleMACS OctoDissociator (Miltenyi Biotec) 
to produce a single cell suspension. Cell suspensions were passed through a 70 μM strainer (Falcon) into a 50 mL 
tube and centrifuged at 300 × g for 7 min. The supernatant was aspirated and the pellet resuspended in 10 mL 
Dulbecco’s Minimum Essential Media (DMEM containing 4.5 g/L D-Glucose, GlutaMAX and supplemented 
with 15% (v/v) heat-inactivated Foetal Bovine Serum (FBS) and 100 units/mL (v/v) Penicillin and 100 μg/mL 
Streptomycin (v/v); all Gibco) before centrifugation at 300 × g for 7 min. The supernatant was aspirated, and 
the pellet resuspended in 2 mL per brain of DMEM media containing 10 ng/mL recombinant murine M-CSF 
(Peprotech). Cell suspensions were then pooled as required and placed in a 6-well plate (2  mL per well) or 
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100 mm × 20 mm (diameter × height) tissue culture plates, 12 mL per plate, and moved to a humid incubator 
with 95% air and 5%  CO2 overnight to allow the microglia to adhere.

Myelin was resuspended in the media (with 24 h of digest) by gentle plate agitation and the media containing 
the myelin debris was discarded. The cell monolayer was carefully washed with DMEM media. The wash media 
was then replaced with fresh DMEM media with 10 ng/mL M-CSF and this was again replaced two days later. 
On day 5 of culture the media was replaced with DMEM media containing 10 ng/mL M-CSF and 50 ng/mL 
recombinant mouse TGF-β1 (eBioscience or Biolegend). TGF-β supplementation was used to promote a more 
homeostatic phenotype in vitro56,57. Recombinant murine TGF-β1 was purchased either from eBioscience or 
Biolegend, both of which were produced in a similar way. The Biolegend recombinant TGF-β1 was diluted to a 
100 μg/mL stock in an equal volume of sterile filtered 2% BSA, 0.2 M glycine in DPBS to match the eBioscience 
product.

From this point forward all culture media contained M-CSF and TGF-β1 was replaced every two days. On 
day 10, these cultures were infected with Spi1 shRNA, control shRNA, Spi1 pSIEW or pSIEW lentivirus parti-
cles as appropriate. To achieve this the culture media was replaced with 3 mL fresh media and 100–300 μL of 
lentivirus was added to each plate. The volumes of Spi1 targeting and control viruses were kept the same within 
each experiment. After 6 h each plate received an additional 3 mL of culture media. The media on these cultures 
continued to be changed every 2 days, supplemented with M-CSF and TGF-β1 as before.

All animal experiments were conducted in accordance with UK Home Office Guidelines and Animal [Sci-
entific Procedures] Act 1986 which included full review and approval by the local ethical review board (Animal 
Welfare and Ethical Review Body, AWERB, of the Biological Standards Committee) and the granting of a UK 
Home Office Project Licence. The study was conducted in compliance with the ARRIVE guidelines.

Sample processing for RNA-sequencing. After 21  days the media was removed, set-aside, and the 
mixed glial cells harvested by incubating with ~ 10 mL Accumax (Sigma) at 37 °C for 10–20 min. The monolayer 
was gently washed with DMEM media and any remaining attached cells were carefully removed using a plastic 
scraper (Greiner). The cell suspension was added back to the media and centrifuged at 300 × g for 7 min. The 
supernatant was removed via pipetting and the cell pellet was resuspended in 0.5% BSA in DPBS with a 1:1000 
dilution of LIVE/DEAD near-IR staining solution for 30 min on ice per manufacturers direction (Molecular 
Probes).

Samples were centrifuged at 300 × g for 7 min and the supernatant aspirated via pipette. Each sample was 
resuspended in 500 µL block solution (4 μg/mL Rat anti-mouse FcγRII/III (clone 2.4G2) and 5% (v/v) filtered 
rabbit serum in 0.5% BSA (w/v), 5 mM EDTA in DPBS) and kept on ice for 10 min. CD11b (Clone M1/70 
PerCP-Cy5.5 conjugate, BD Biosciences final dilution 2 μg/mL) and CD45 (Clone 30-F11 eFlour 450 conjugate, 
eBioscience final dilution 2 μg/mL) antibodies were diluted to a 4 μg/mL concentration in 0.5% BSA (w/v), 5 mM 
EDTA in DPBS. 500 μL of the antibody staining solution was added to each sample, to give a final antibody 
concentration of 2 μg/mL, and the samples were incubated on ice for a further 15 min. The tubes were then 
centrifuged at 300 × g for 7 min and the supernatant removed.

The cells were resuspended in 1 mL of 0.5% BSA (w/v), 5 mM EDTA in DPBS and kept cool before undergoing 
fluorescent activated cell sorting on a FACS Aria III (BD Biosciences). Dead cells were excluded from the sort 
and microglia were selected using CD11b/CD45 double staining and GFP as a marker of infection. The sorted 
cells were then pelleted via centrifugation, the supernatant aspirated and the pellet lysed for RNA using the Mini 
RNeasy kit (Qiagen) per manufacturer’s directions.

Lentivirus preparation. The shRNA vector construct and lentivirus production method has been described 
 in58 and sucrose-gradient purification  in59. The insert sequences for the control shRNA and Spi1 shRNA can be 
seen in Table 1.

The over-expression plasmid used a spleen focus forming virus (SFFV) promoter to drive expression of 
murine Spi1 (Ensemble reference CCDS 16,425.1). An Internal Ribosome Entry Site (IRES) was used to initiate 
translation of a downstream eGFP reporter. Lentiviruses were purified by overlaying the virus containing media 
over a 20% sucrose solution before ultracentrifugation at 26,000 rpm for 90 min at 4 °C in a SW28Ti swinging-
bucket ultracentrifuge rotor assembly in an Optima XPN-80 Ultracentrifuge (Beckman Optima Ultracentrifuge) 
and the viral pellet was resuspended in AimV media.

RNA-sequencing data analysis. RNA was isolated from cell sorted GFP + microglia using the RNeasy 
Mini kit (Qiagen) per manufacturer’s instructions and eluted in nuclease free water. RNA integrity and con-
centration were assessed using the Agilent 2100 Bioanalyzer (Aligent). Complementary (cDNA) libraries were 
generated using the Truseq stranded total RNA with Ribo-Zero GOLD kit (Illumina). Paired end sequencing 

Table 1.  shRNA sequences including termination sequence (bold).

Spi1 shRNA sequence (5′ → 3′)

GAT GTG CTT CCC TTA TCA AAC CTC GAG GTT TGA TAA GGG AAG CAC ATC TTTTT 

Control shRNA sequence (5′ → 3′)

GTC TCG CTT GGG CGA GAG TAA GTA GTG AAG CCA CAG ATG TAC TTA CTC TCG CCC AAG CGA GAC TTTTT 
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was then performed using the Illumina HiSeq 2500 sequencing platform to a read depth of between 30 and 40 
million pairs.

The FASTQ files were processed with  Trimmomatic60 to remove paired-end reads and quality was con-
firmed in FastQC using default  parameters61. Following this sequence reads were mapped to the mm10 genome 
(GRCm38) using the STAR  pipeline62 and featureCounts was used to assign counts to  transcripts63 with the 
GRCm38.84 Ensembl gene build GTF. The Ensembl FTP site was used to download the reference genome and 
 GTF64. Differential gene expression was performed using the DESeq2  package65. Genes that were not significant 
after the differential expression analysis were discarded; significance was defined as an adjusted p value (Padj) 
of < 0.05 (Benjamini–Hochberg correction for multiple testing).

Assessing PU.1 promoter binding sites. A microglial PU.1 ChIP-sequencing (ChIP-seq) dataset (GSM1533906) 
isolated from C57BL/6 mice of a similar age (8–9 weeks)30 was accessed via the Cistrome  database66. This dataset 
was then run through  HOMER28 to generate an annotated peak file with genomic features. The promoter region 
was defined as 1000 base pairs upstream or 100 base pairs downstream of the transcription start site.

Duplicates were removed from the annotated ChIP-seq dataset and compared to gene discoveries from knock-
down, over-expression and dose-sensitive Spi1 RNA-sequencing datasets. The background genome size was the 
number of genes detected in each RNA-Sequencing dataset defined as either all control and/or all experimental 
samples had a raw read count of ≥ 5. In the Spi1 knock-down dataset 17,962 genes were detected and 16,998 genes 
in the Spi1 over-expression data. For the 194 Spi1 dose-sensitive genes a merged list of genes expressed in either 
the Spi1 knock-down or over-expression RNA-sequencing datasets was generated, and duplicates removed, to 
give a background gene number of 16,753.

Finally, the ChIP-seq datasets were compared against their respective RNA-Seq dataset (Padj ≤ 0.05) in R using 
the ‘tidyverse’ and ‘GeneOverlap’ packages. Here, a Fisher’s exact test was utilised to confirm if there was any 
significant enrichment of PU.1 ChIP-seq binding sites in genes expressed in Spi1 knock-down, over-expression 
or dose-sensitive datasets.

Gene ontology analysis. Enriched gene Ontology (GO) terms were identified using the Database for Annota-
tion, Visualization and Integrated Discovery (DAVID, version 6.8) and compared against a background of genes 
expressed in at least one Spi1 RNA-seq dataset (16,998 genes). Gene expression in the Spi1 RNA-seq datasets 
was defined as having a raw read count ≥ 5 in all control and/or all experimental samples. The most significantly 
altered terms from the GOTERM_BP_DIRECT list, henceforth called Biological Process GO Terms, were down-
loaded for subsequent analysis. Bubble plots were generated in R using the ‘ggplot2’ package, and an adjusted 
p value cut-off of 0.05 as indicated on each plot. Data utilised in these plots included the Benjamini–Hochberg 
adjusted p value, the percentage of the genes from the RNA-seq datasets that aligned to this pathway and the 
fold enrichment, which was defined as the proportion of genes present in this list compared to the Spi1 RNA-Seq 
gene expression background.

Hierarchical clustering analysis. Hierarchical clustering was performed utilising ‘gplots’, ‘dendextend’ and ‘col-
orspace’ packages in R with code adapted  from46,47, to produce a heatmap and dendrogram to better visualise the 
clusters. Complete markdown can be found in Supplementary Methods. FPKM values were  log10 transformed, 
and z-scored (Pearson Correlation method) prior to clustering. Hierarchical clustering resulted in six distinct 
clusters which are highlighted in different colours in the dendrogram (Fig. 4).

Enrichment of association signal in IGAP GWAS data. As Spi1 has been implicated in the regulation of other 
AD risk gene expression, both RNA-Seq datasets were tested for enrichment of association with AD risk in the 
International Genomics of Alzheimer’s Project (IGAP) GWAS  dataset67. Firstly, the BioMart feature in Ensembl 
was used to convert mouse genes differentially expressed in the Spi1 knock-down and over-expression datasets 
into human  orthologs68.

Gene sets were then determined for each Spi1 RNA-Seq dataset using p value cut-offs between 0.05 and 
1 ×  10−10. Direction of differential expression was not considered when defining gene sets. These gene sets (Sup-
plementary Table 2) were tested for enrichment in the IGAP dataset using Multi-marker Analysis of GenoMic 
Annotation (MAGMA)  analysis69.

Flow cytometric analysis of PU.1. Mixed glial cultures were harvested on day 21. Culture media was 
carefully removed and retained. Cells were detached by incubating with Accumax for 10–20 min at 37 °C, added 
to the appropriate culture media and centrifuged at 300 × g for 7 min. Approximately 2 ×  105 cells per sample were 
fixed in 4% formalin solution (in DPBS) on ice for 30 min. Formalin was removed by centrifugation (300 × g for 
7 min) and cells were permeabilised on ice in 90% ice cold methanol (v/v in PBS). Samples were centrifuged at 
300 × g for 7 min and the supernatant discarded. To ensure the methanol was completely removed an additional 
wash step using 500 μL of wash solution (0.5% (w/v) BSA, 5 mM EDTA and 2 mM  NaN3 in DPBS) and centrifu-
gation at 300 × g for 7 min. The supernatant was discarded, and the cell pellets were then re-suspended in 50 µL 
of block solution (5% (v/v) filtered Rabbit Serum, 4 μg/mL Rat Anti-mouse FcγRII/III 2.4G2 clone in wash solu-
tion) and incubated on ice for 20–30 min. Following the blocking step 50 μL of CD11b, CD45 and PU.1 antibod-
ies (listed below) were added and cells were incubated for 30–60 min on ice in the dark. The following antibodies 
were used in Flow cytometric experiments; Anti-CD11b FITC (56C, 8 μg/mL, produced in house), Anti-CD11b 
BV421 (M1/70, 2 μg/mL, Biolegend), Anti-CD11b PerCP-Cy5.5 (M1/70, 2 μg/mL, BD Biosciences), Anti-CD45 
eFlour450 or PE-Cyanine7 conjugates (30-F11, 2 μg/mL, eBioscience), Anti-PU.1 AF647 (7C2C34, 5 μg/mL, 
Biolegend) and Rat IgG2a,k AF647 Isotype Control (RTK2758, 5 μg/mL, Biolegend).
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Cells were washed with wash solution 3 times and centrifuged at 300 × g for 7 min. After the final wash the 
cell pellets were re-suspended in 500 μL of wash solution and acquired on Attune NxT cytometer (Thermofisher). 
Data was analysed using FlowJo software (version 10; FlowJo LLC). Single colour and isotype controls were used 
as appropriate. Post data collection relative PU.1 protein levels were determined using the Median Fluorescent 
Intensity (MFI) values in the PU.1 antibody channel. First the isotype background signal from the same channel 
was subtracted. These values were then normalised between experiments by diving each value by the average 
MFI value (minus isotype) of the appropriate control sample.

Statistics and figures. Statistical analyses were performed using GraphPad PRISM 6 (version 3.07) and 
GraphPad PRISM 8 (version 8.4.3; both GraphPad Software, Inc.), unless otherwise stated. All statistical tests 
will be described as appropriate. p values of > 0.05 were taken as non-significant (ns). p values of ≤ 0.05 will be 
denoted with a single asterisk*, p values of ≤ 0.01 will be written as **, p values of ≤ 0.001 by *** and p value 
of ≤ 0.0001 as ****. Figures were made using both GraphPad PRISM 6, GraphPad PRISM 8 (version 3.07 & 8.4.3; 
GraphPad Software, Inc.) and R Studio (Version 1.2.5042 copyright 2009–2020 RStudio, Inc.39) with base R ver-
sion 4.0.0 (2020–04-24, copyright 2020 The R Foundation for Statistical  Computing40). The following R packages 
were used ‘tidyverse’37, ‘ggpubr’38, ‘gplots’42, ‘plotly’43, ‘dendextend’44, ‘colourspace’45 and ‘GeneOverlap’48.
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