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ABSTRACT 

The relationship between levels of dominance and species richness is highly contentious, 

especially in ant communities. The dominance-impoverishment rule states that high levels of 

dominance only occur in species-poor communities, but there appear to be many cases of 

high levels of dominance in highly diverse communities. The extent to which dominant 

species limit local richness through competitive exclusion remains unclear, but such 

exclusion appears more apparent for non-native rather than native dominant species. Here we 

perform the first global analysis of the relationship between behavioral dominance and 

species richness. We used data from 1293 local assemblages of ground-dwelling ants 

distributed across five continents to document the generality of the dominance-

impoverishment rule, and to identify the biotic and abiotic conditions under which it does and 

does not apply. We found that the behavioral dominance – diversity relationship varies 

greatly, and depends on whether dominant species are native or non-native, whether 

dominance is considered as occurrence or relative abundance, and on variation in mean 

annual temperature. There were declines in diversity with increasing dominance in invaded 

communities, but diversity increased with increasing dominance in native communities. 

These patterns occur along the global temperature gradient. However, positive and negative 

relationships are strongest in the hottest sites. We also found that climate regulates the degree 
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of behavioral dominance, but differently from how it shapes species richness. Our findings 

imply that, despite strong competitive interactions among ants, competitive exclusion is not a 

major driver of local richness in native ant communities. Although the dominance-

impoverishment rule applies to invaded communities, we propose an alternative dominance-

diversification rule for native communities.  

 

Keywords: ants, behavioral dominance, coexistence, dominance-impoverishment rule, global 

scale, invasive species, precipitation, species richness, temperature 

 

INTRODUCTION 

Understanding the factors that drive variation in local species richness at different spatial and 

temporal scales remains a fundamental challenge to community ecology (Ricklefs, 1987; 

Chesson, 2000; Kneitel & Chase, 2004). Regional species pools are determined by 

evolutionary and historical factors, while environmental filtering and dispersal barriers set the 

limit on the species that might potentially occur in a local community (Cornell & Harrison, 

2014). The final realized diversity of communities then depends on local biotic interactions 

such as competition (Silvertown et al., 2006). The relative importance of competition is 

thought to vary predictably with environmental stress and disturbance, both of which 

constrain the capacity of dominant species to achieve levels of resource monopolization that 

lead to the exclusion of other species (Connell, 1978; Grime, 1979).  

 

The stress-disturbance-competition framework was originally developed for communities of 

plants (Grime, 1979) and other sessile organisms (Connell, 1978), but has also been applied 

to macro-scale analyses of the dynamics of ant communities (Andersen, 1995; 1997a). Like 
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plants, ants are principally central-place foragers whose foraging modules ramify in the 

environment to an extent that allows resource monopolization, leading to higher levels of 

competition than is the case for many other faunal groups (Andersen, 1991). Behavioral 

dominant species are aggressive species that are capable of exerting a strong influence on 

other species (Cerdá et al., 2013). The primary factors limiting ant productivity and the 

abundance of behaviorally dominant species are considered to be temperature (including a 

requirement of direct solar radiation), a structurally simple foraging environment, and the 

supply of liquid carbohydrates, particularly honeydew (Andersen 2010; Dunn et al., 2009). 

These factors combine in two highly contrasting environments, the canopies of lowland 

tropical rainforest, and on the ground in warm open habitats where honeydew is readily 

available (Andersen, 2000; 2003; 2010). The abundance of behaviourally dominant species is 

likewise highest in these environments (Andersen, 1995; 1997a; Davidson et al., 2003; 

Blüthgen & Fiedler, 2004). 

 

Despite competition being regarded as the ‘hallmark of ant ecology’ (Hölldobler & Wilson, 

1990), its role as a driver of community assembly and species richness remains somewhat 

contentious (Cerdá et al., 2013; Stuble et al., 2017). Hölldobler & Wilson (1990) proposed 

the ‘dominance-impoverishment rule’ to describe a negative relationship between local ant 

species richness and the abundance of behaviorally dominant species: “the fewer the ant 

species in a local community, the more likely the community is to be dominated behaviorally 

by one or a few species with large, aggressive colonies that maintain absolute territories”. 

This tenet was based on studies across a wide variety of environments, ranging from 

temperate and boreal forests of Europe (e.g., Vepsäläinen & Pisarski, 1982) to the canopies of 

tropical Africa and Australia (e.g., Room, 1971; Hölldobler, 1983). Hölldobler & Wilson 

(1990) argued that the high abundance of behaviorally dominant ants was due to the low 
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diversity of the sites in which they were found, rather than the cause of the low diversity. 

Both mechanisms, however, are possible. Here we use the term ‘dominance-impoverishment 

rule’ to describe the pattern generally, regardless of its mechanism. 

 

There have been many studies showing that behaviourally dominant ants exclude other 

species from near their nests (Savolainen et al., 1989; Parr, 2008; Cerdá et al., 2013) and 

from high-value food resources (Andersen, 1992; Parr et al., 2005). The presence of 

behaviourally dominant non-native (i.e., invasive) species often reduces local species 

richness through competitive exclusion (Hoffmann et al., 1999; Holway et al., 2002; Lach & 

Hooper-Bùi, 2010). However, there is only limited evidence that competitive exclusion by 

native species can be an important driver of patterns of local species richness (Andersen, 

1992; Parr, 2008), and this does not typically appear to be the case (Albrecht & Gotelli, 2001; 

Gibb & Hochuli, 2004; Baccaro et al., 2012; Stuble et al., 2017) and may be conditional on 

environmental disturbance (Gibb, 2011). Many examples of high levels of competitive 

dominance co-occur with high ant diversity, especially in Australia (Andersen, 2008; 2016; 

Arnan et al., 2011).  

 

We perform the first global analysis of the relationship between behavioral dominance and 

species richness in any faunal group, using data from 1,293 local ant assemblages distributed 

across five continents. In local communities, competitive exclusion is often expressed as a 

humped relationship between the abundance of dominant species and local species richness, 

conforming to general models of the control of local diversity in relation to resource 

availability (Grime, 1973; Cardinale et al. ,2009), productivity (Tilman, 1982) and 

disturbance (Connell, 1978; MacKey & Currie, 2001). Few species occur under hostile 
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environmental conditions, where the abundance of behaviorally dominant species will 

likewise be very low.  Both species richness and the abundance of dominant species can be 

expected to increase as environmental favorability improves, forming the ascending side of 

the humped diversity curve (Andersen, 1992; Parr et al., 2005). For example, local species 

richness increases with temperature up to a point (Dunn et al., 2009; Jenkins et al., 2011), and 

this also appears to be the case for the abundance of dominant ants (Andersen, 1995; 1997a). 

If competitive exclusion occurs, an inflection point will be reached where a continued 

increase in the abundance of dominant species is associated with declining species richness, 

creating the descending side of the humped diversity curve (Andersen, 1992; Parr et al., 

2005). In such a case, an extremely high abundance of dominant species would be associated 

with very low species richness, conforming with the dominance-impoverishment rule.  

 

However, humped diversity models in relation to environmental stress and disturbance apply 

to assemblages of species from clearly circumscribed environments (Chase & Leibold, 2002), 

and such patterns cannot be expected to emerge from broader scale analyses, where local 

processes are often overwhelmed by regional factors such as variation in climate (Andersen, 

1997b). A more robust global test of the relationship between dominant species and species 

richness is to compare species richness with and without dominant species under matched 

climates.  

 

The objective of our study is to examine the global relationship between behavioral 

dominance and diversity in ant communities, in the context of testing the generality of the 

dominance-impoverishment rule and its environmental drivers. Our specific aims are to: (1) 

compare species richness with and without the occurrence of dominant species; (2) document 
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the global relationship between species richness and the abundance of dominant species; and 

(3) analyze the interactions between climate, the abundance and identity (native or non-

native) of dominant species and ant richness. We predict that whereas high levels of 

behavioural dominance are associated with low diversity in invaded communities, this is not 

the case when dominant species are native. We therefore predict that the dominance-

impoverishment rule applies to communities dominated by non-native species, but not by 

native species.  

 

MATERIALS AND METHODS 

Ant assemblage database 

We assembled species composition data from 1,293 local ground-dwelling ant communities 

around the world (Fig. 1). The database includes primary data collected during the authors’ 

own field work and data derived from an exhaustive search of the scientific literature. The 

data are compiled in the Global Ants Database (GLAD, http://globalants.org/), a 

collaboration among ant ecologists worldwide bringing together data on the abundance and 

traits of ants in local assemblages worldwide (Dunn et al., 2009; Gibb et al., 2017; Parr et al., 

2017). Ant assemblages included in this study met the following criteria: (1) the ground-

foraging ant assemblage was sampled using pitfall trapping. We wanted to ensure that 

sampling was standardized, and pitfall traps were the most commonly used sampling 

technique in GLAD. If Winkler, Berlese funnel or bait sampling were conducted in addition 

to pitfall trapping, then such supplementary data were also used; (2) sampling was not 

trophically or taxonomically limited (for example, the study was not focused only on seed-

harvesting ants); (3) study sites had not undergone habitat transformation due to intensive 

land use, such as cropping or clear-cut forestry (we included moderately disturbed sites, such 
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as those affected by fire or grazing; such disturbance did not affect the presence of invasive 

ant species in our data set: Generalized linear mixed model, χ1
2
=0.96, p=0.326); and (4) we 

had information on factors such as sampling intensity and habitat type that might confound 

the behavioral dominance – diversity relationship, and which were included as covariates in 

statistical models (see below). Assemblage data came from all continents where ants occur: 

Oceania (41.0% of sites), North America (18.6%), Europe (16.6%), Africa (11.8%), South 

America (8.2%), and Asia (3.8%). GLAD includes data sets for regions that are not well-

represented in our analyses, but unfortunately these did not meet our selection criteria, 

especially relating to the use of pitfall traps.   

 

Defining behavioral dominance and invasive (non-native) species 

We focused on the relationship between diversity and behavioral dominance, rather than 

simply numerical dominance, because this is specified in the dominance-impoverishment 

rule.  At any rate, in those sites where behaviorally dominant species occurred, the abundance 

of behaviorally dominant species was highly correlated to the abundance of the most 

abundant species (Spearman r = 0.96, p<0.0001, n=645), i.e. behavioral and numerical 

dominance was highly correlated. We considered a species to be behaviorally dominant based 

on both aggressive behavior and effects on other species by excluding them from near their 

nests and from high-value food resources (Vepsäläinen & Pisarski, 1982; Savolainen et al., 

1989; Andersen, 1992; Cerdá et al., 2013). Behaviorally dominant species are thus defined as 

highly aggressive species that usually predominate numerically, occupy large territories, and 

have mutually exclusive distribution patterns at local scales. Given the large number of 

studies use, data are not available to demonstrate impact by dominant species in each of our 

study communities, and so we had to rely on a priori classifications of taxa based on the 
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literature and our combined expert knowledge. The following taxa were thus classified as 

behaviorally dominant (Appendix S1): Anonychomyrma, Anoplolepis, Azteca, Dorymyrmex 

(except insana group), Formica (only exsecta and rufa groups), Froggattella, Iridomyrmex, 

Linepithema, Liometopum, Oecophylla, Papyrius, Pheidole (only megacephala and fallax 

groups), Philidris, Solenopsis (sub-genus Solenopsis, i.e. “fire ants”), Tapinoma (nigerrimum 

group), and Wasmannia auropunctata. There is considerable empirical evidence that species 

in these taxa are behaviorally dominant and influence the structure and dynamics of local ant 

communities (e.g., Andersen, 1995; 1997a; Savolainen et al., 1989; Lach & Hooper-Bùi, 

2010; Arnan et al., 2011; Cerdá et al., 2013; Bertelsmeier et al., 2015a). Some species from 

other genera (e.g., Crematogaster) might also be good candidates, but the distribution of 

behavioural dominance among constituent species groups is poorly known, and so they have 

not been included. Army-ants (subfamily Dorylinae) were also not included. These species 

are behavioural dominant species, but their effects on other ant species are temporally limited 

given their nomadic life style.  

 

Our pool of behaviorally dominant species included five invasive species occurring in our 

communities outside their native ranges: the yellow crazy ant (Anoplolepis gracilipes), the 

Argentine ant (Linepithema humile), the big-headed ant (Pheidole megacephala), fire ants 

(Solenopsis spp., subgenus Solenopsis) and the electric ant (Wasmannia auropunctata) (Lach 

& Hooper-Bùi, 2010; Bertelsmeier et al., 2015a; 2015b; 2016). These species are considered 

the five top invasive ants (Bertelsmeier et al., 2016) and are on the list of the “100 of the 

world’s worst invasive alien species” (Lowe et al., 2000). 
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Climatic characterization of sites 

We selected two climatic variables that are consistently related to variation in ant 

communities globally (e.g., Dunn et al., 2009; Jenkins et al., 2011; Arnan et al., 2014; Gibb et 

al., 2015): mean annual temperature (hereafter, temperature) and annual precipitation 

(hereafter, precipitation). We acknowledge that other aspects of climate such as seasonality 

can have an important influence on ant communities, but there is no evidence that they are 

key drivers of ant diversity at a global scale. For each locality, temperature and precipitation 

information was obtained for the period 1950 - 2000 from the WORLDCLIM database 

(http://www.worldclim.org/bioclim) using rasters with the highest available resolution (30 

arc-s, approx. 1 x 1 km). Such a resolution provides climatic data that are directly applicable 

to the scale of sampling in our study communities (approximately 1 ha). 

 

Data analyses 

All analyses were performed in R v.3.2.4 statistical environment (R Core Team, 2016). We 

initially determined that temperature and precipitation were significantly but not highly 

correlated (Spearman r = 0.27, p<0.0001), so both variables were retained for analyses. 

 

We considered behavioral dominance at two levels: the (1) occurrence (presence-absence) 

and (2) abundance of dominant species in a site. Occurrence data were considered for all 

1,293 sites, whereas abundance data were considered only for those 645 sites where 

behaviorally dominant species occurred and where abundance data were available, in order to 

remove the effects of a high proportion of zeros. Abundance of behaviorally dominant 

species was computed as a proportion of total individuals sampled for all species combined.  
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We used two general linear mixed models (GLMMs) to test how behavioral dominance and 

climate relate to ant species richness. The first model used occurrence of dominant species 

(sites with vs sites without dominants), temperature and precipitation as explanatory variables 

with ln-transformed species richness as the response variable (‘Global occurrence model’, 

Table 1). The second model used abundance of dominant species, temperature and 

precipitation as explanatory variables with ln-transformed species richness as the response 

variables (‘Global abundance model’, Table 1). The abundance model also included the 

quadratic term of abundance, in case the relationship was unimodal (Andersen, 1992; Parr et 

al., 2005; Parr, 2008). To compare dominance-diversity relationships under native vs non-

native dominant species and along climate gradients, we first classified sites into three 

categories: “sites without dominants”, “sites with native dominants” and “sites with non-

native dominants” (our data set included no sites with both native and non-native dominants). 

We then tested the relationship between the interaction of dominant type (no dominants, 

native dominants, non-native dominants) and the climatic variables (temperature and 

precipitation) on species richness (ln-transformed) by using a GLMM (‘Dominants type x 

climate model’, Table 1). We also analyzed the relationship between the abundance of native 

and non-native dominant ants and species richness (ln-transformed) in separate GLMM 

models (‘Native dominants x climate model’; and ‘Non-native dominants x climate model’; 

Table 1). Both models included the interaction of the abundance of dominant ants and its 

quadratic term with the climatic variables (temperature and precipitation) as explanatory 

variables.  

 

Finally, we analyzed how climate variables shape the relative abundance of native and non-

native dominant species in two separate models where only the sites where dominants 

occurred and with available abundance data were used (‘Climate model of native dominants’ 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

and ‘Climate model of non-native dominants’, Table 1). In both models, the explanatory 

variables were temperature, precipitation and their interaction, and the abundance of native 

and non-native dominants species (logit transformed) were the response variables, 

respectively. All models included a set of covariates as fixed variables that were used to 

control for variation in sampling effort (number of trap days and transect length), region 

(continent and hemisphere) and habitat structural type (forest or open habitat). 

 

We used mixed-effects models because sites were spatially clustered. Thus, clusters of sites 

separated by no more than 100 km from each other were represented by a single random 

effect to control for potential autocorrelation between localized sites (see Gibb et al., 2015) 

while allowing the direct comparison between sites from nearby locations. The mixed-effect 

models (GLMMs) were fitted with the lme function in lme4 package in R. Akaike’s 

Information Criterion with a correction for finite sample sizes (AICc) was used to select the 

best-supported models (Burnham & Anderson, 2002). In each analysis, models were 

constructed using all combinations of explanatory variables. The best-supported models for 

each analysis were selected based on the AICc weights, which reveal the relative likelihood 

of a given model—based on the data and the fit—scaled to one; thus, models with a delta 

(AICc difference) < 2 were selected (Burnham & Anderson, 2002). We selected as relevant 

variables those that were included in the best-supported models. The model selection 

procedure was conducted using the dredge function in the MuMIn package in R. Both 

marginal and conditional R
2 
values of the best-supported models (which give the variation 

explained by fixed as well as fixed + random effects, respectively) were reported (Nakagawa 

& Schielzeth, 2013). 
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RESULTS 

Mean species richness was significantly higher at sites with than without dominant species 

(Table 1, ‘Global occurrence model’, Fig. 2; Appendix S2 for more details on outputs from 

model selection procedure), a pattern that was consistent between temperate latitudes and 

subtropical and tropical latitudes. Species richness increased linearly with mean annual 

temperature (R
2

marginal/conditional=0.23/0.65), but not with annual precipitation (Table 1, ‘Global 

occurrence model’). These relationships varied according to whether dominant species 

occurred at a site, and whether the dominant species were native or non-native, such that 

species richness tended to be lowest at sites with non-native dominant species, and highest at 

sites with native dominant species (Table 1, ‘Dominants type x climate model’, Fig. 3a). 

Mean species richness was 31.9% higher at sites with dominant species than those without 

only when the dominant species were native, but was 4.6% lower when the dominant species 

were non-native. The difference between sites dominated by non-native species and sites 

without dominant species varied markedly with temperature: there was no difference in 

species richness at low temperatures (temperature <15ºC), but as temperature increased, the 

difference between the two increased such that by 27ºC, there were 27.5% more species in 

sites without dominants than in sites with non-native dominants (Fig. 3a).  In contrast, species 

richness at sites dominated by native species tended to be higher than at sites without 

dominant species, although the difference increased with increasing temperature (Fig. 3a). 

Moreover, whereas native dominant species occurred across the full temperature gradient, 

non-native dominant species were absent from the coldest sites (temperature <7ºC; Fig. 3A). 

Notably, all sites in the very hottest environments (temperature >27ºC) had dominant species, 

and they were mostly native rather than non-native (Fig. 3a).  
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At sites where dominant species occurred and where abundance data were available, there 

was a unimodal relationship between species richness and the abundance of behaviorally 

dominant species (Table 1, ‘Global abundance model’), with a very shallow ascending side of 

the curve but steeper descent (Fig. 3b, R
2

marginal/conditional=0.20/0.72). Species richness was not 

only lower when non-native species were present relative to when they were absent, but it 

declined at a faster rate as their relative abundance increased (Table 1, ‘Native dominants x 

climate’ and ‘Non-native dominants x climate’ models, Fig. 3b). In both cases there was no 

interaction between relative abundance of dominant species and either temperature or 

precipitation (Table 1, ‘Native dominants x climate’ and ‘Non-native dominants x climate’ 

models). The relative abundance of non-native dominant species was not related to either 

temperature or precipitation, whereas that of native dominant species was related to both 

(Table 1, ‘Climate model of non-native dominants’ and ‘Climate model of native 

dominants’). There was a very shallow U-shaped relationship between the relative abundance 

of native dominants and temperature (Fig. 4a), with the relative abundance of dominants 

tending to be highest at the lowest and highest temperatures. The relative abundance of native 

dominant ants was negatively related to precipitation (Fig. 4b). 

 

DISCUSSION 

In nearly 1,300 local ant assemblages distributed across five continents, we found that where 

dominant species occurred and abundance data were available, the relationship between 

dominance and richness is humped-shaped. Such a relationship parallels models of the 

control of diversity in communities of plants and sessile intertidal organisms along gradients 

of resource availability (Grime, 1973), productivity (Tilman, 1982), or disturbance (Connell, 

1978). A premise in these models is that diversity initially increases with environmental 

favorability but then decreases as conditions allow highly competitive species to become so 
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dominant that they exclude other species. Such a unimodal relationship has been documented 

in ants sampled at very localized food resources in a variety of local communities (Andersen, 

1992; Parr et al., 2005; Campbell et al., 2015). However, there is only limited evidence that 

competitive exclusion from local food resources scales up to exclusion at the site level (e.g., 

Gibb & Hochuli, 2004; Baccaro et al., 2012; Parr, 2008).  

 

What causes the descending side of the dominance-diversity curve?  It cannot necessarily be 

attributed to competitive exclusion because the humped model applies specifically to local 

communities, and at larger scales there are confounding effects of climatic drivers of ant 

diversity. For example, if communities corresponding to very high levels of behavioural 

dominance associated with very low levels of species richness are from low-diversity systems 

(e.g. Formica-dominated communities from boreal forests), then this is not evidence of 

competitive exclusion in highly diverse systems. Indeed, our analysis shows many examples 

of very high diversity occurring with very high levels of behavioural dominance, and when 

native dominant species were present, species richness was actually higher than at sites 

without dominant species. The dominance-impoverishment ‘rule’ is clearly not a general one.  

 

The shape of the dominance-diversity relationship depended on whether the dominant species 

were native or non-native. In contrast to the situation with native dominant species, when the 

dominant species were non-native, species richness was 4.6% lower at sites with dominant 

species than those without. We thus found a positive relationship between the occurrence of 

dominant ants and species richness when the dominant species were native, but a negative 

relationship when they were non-native. There were also different relationships between 

species richness and the abundance of dominant species depending on whether the dominant 
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species were native or non-native, with the negative slope being much steeper in the latter. 

Ant richness increased with temperature regardless of whether dominant species were 

present, or whether dominant species were native or non-native. However, its interaction with 

behavioural dominance varied markedly with temperature. At lower temperature, sites with 

non-native dominant species had the same richness as those without dominant species, but 

had progressively lower richness with increasing temperature. Sites with native dominant 

species had higher richness than those without dominant species across the full temperature 

range, but slightly more so at higher temperature. Moreover, native dominant species 

occurred across the full temperature range, but non-native dominant species did not occur at 

either the coldest or hottest sites. The relative abundance of native dominant ants was lowest 

at moderate temperature, being greater at lower and higher temperature, and was highest at 

driest sites, whereas the relative abundance of non-native species was not related to climate.  

 

The extent to which the dominance-diversity relationships that we have reported are causal is 

unclear. The association between the occurrence of non-native dominant species and lower 

species richness can at least partly be explained by competitive exclusion, given that the 

elimination of native species by invasive invaders has been well demonstrated (Holway et al., 

2002; Lach & Hooper-Bùi 2010; Stuble et al., 2013). This is consistent with our finding that 

the association of non-native dominant ants with lower diversity increased with temperature, 

given that the effects of competition typically increase with increasing productivity (Grime, 

1979; Andersen, 1995; 1997a; Rees, 2013), and productivity in ants is strongly related to 

temperature (Andersen, 1995).  
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There are alternative explanations for the association of native dominant species with higher 

species richness. The most parsimonious explanation is that species richness and the 

abundance of native dominant species show parallel responses to increasing climatic 

favourability (Andersen, 1995). We found a positive relationship between temperature and 

ant species richness, and native dominant species occupy sites with higher temperature 

compared to sites without dominant species. However, we found that species richness tends 

to be higher in sites with dominant species than those without dominant species, regardless of 

temperature. Moreover, if habitat favorability alone is at work, we would expect parallel 

responses of species richness and the abundance of native dominants to mean annual 

temperature, but this was not the case (species richness increased linearly along the 

temperature gradient, but the abundance of dominant species followed a U-shaped 

relationship with temperature). The best-supported climate model of native dominants kept 

most covariates, suggesting that native dominants may be responding differently depending 

on the continent, hemisphere and habitat type.  

 

An alternative explanation is that dominant species actually promote species richness. Such 

facilitation might be through increased heterogeneity and resource availability, as suggested 

by Gibb (2011) for northern Europe in a study at the regional scale in boreal forests. 

Although Gibb (2001) found facilitation by dominant ants in the most disturbed (least 

productive) sites, we found that the presence of native dominant species had the greatest 

impact on species richness at warm (i.e. more productive) sites. Our results are consistent 

with the finding that facilitation occurs primarily at the most productive sites (Golberg et al., 

1999). An alternative mechanism for facilitation of species richness by dominant species is 

that they moderate the suppressive effect of subdominant species on subordinate species 

(Arnan et al., 2011). Further experimental work (see below) is required to clarify the causal 
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mechanism(s) behind the positive relationship between species richness and the abundance of 

dominant species. 

 

Why might non-native dominant species have a negative effect on local species richness 

when native dominant species do not? One explanation is a lack of co-evolution between 

invasive and native species, such that native species lack the particular compensatory 

mechanisms (e.g. niche partitioning, thermal tolerance-behavioral dominance trade-offs) that 

would allow coexistence (Cerdá et al., 2013). In non-invaded areas, dominant and non-

dominant species have evolved together and different compensatory mechanisms that allow 

coexistence have arisen; facilitation processes might even promote stable coexistence among 

species (Hart & Marshall, 2013). It is also worth mentioning that invasion and species 

richness suppression by invasive ant species has not been recorded for high-diversity systems 

with high levels of behavioral dominance of native species, that is, invasion and exclusion 

might only occur in communities that are ‘naïve’ to dominance. Another explanation relates 

to differences in social structure between native and non-native dominants: unlike many 

native species, invasive populations are often unicolonial (a population of ants inhabiting a 

single large polydomous colony), and so there is little or no aggression between workers from 

different nests (Passera, 1994; Holway et al., 2002; Robinson, 2014). Notably, Linepithema 

humile is entirely unicolonial in its introduced range, but often is not in its native range 

(Giraud et al., 2002). Such a difference in social structure might have a major role in shifting 

competition for resources from intraspecific (in multicolonial species of native dominant 

species) to interspecific (in unicolonial species of invasive dominant species), and thus 

potentially exerting a greater effect on local species richness.  
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The mechanisms underlying the dominance-diversity relationships we have reported are best 

tested through experimental manipulation of dominant ants (Gibb & Johansson, 2011). 

However, experimental removals or additions of dominant species (either native or non-

native) have shown conflicting results, variably showing positive (Gibb, 2011), negative 

(King & Tschinkel, 2008; Blinova, 2011; Gibb, 2011) or neutral (Andersen & Patel, 1994; 

Gibb & Hochuli, 2004; King & Tschinkel, 2006; 2013; Gibb & Johansson, 2011) effects on 

species richness. This suggests the effects of dominant species on species richness might 

depend on biotic (e.g., whether dominant species are native or non-native) and abiotic 

conditions (e.g., climate or habitat structure), as well as the interaction between them.  

 

If our results really are caused by interactions between dominant ants and the rest of the 

community, then this implies that biotic interactions (competition and possibly also 

facilitation) can be important drivers of diversity patterns at macro-ecological as well as local 

scales (Stubbs & Wilson, 2004; Slingsby & Verboom, 2006). We call for revisiting macro-

ecological studies that present environmental constraints as drivers of spatial patterns of 

diversity at large spatial scales when these studies were unable to distinguish environmental 

filtering from the outcome of biotic interactions. For instance, the effects of environmental 

favorability on species richness might be severely under- or overestimated in areas where 

non-native or native dominant species occur, respectively. Our results also raise serious 

concerns relating to some key drivers of global change. Economic globalization is triggering 

an exponential increase in the number of introductions of exotic species (Butchart et al., 

2010; Essl et al., 2011), and climate change is predicted to promote a proliferation of several 

non-native dominant ant species (Bertelsmeier et al., 2015b). Our findings suggest that 

reductions in ant diversity by dominant species will be greatest under a combination of 
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highest temperatures with highest occurrence of non-native ant species, and the frequency of 

this scenario is likely to increase under global change. 

 

In conclusion, we have shown that dominance-diversity relationships in ant communities vary 

markedly depending on whether dominant species are native or non-native. In particular, the 

association of high levels of behavioural dominance with low species richness that is often 

observed in invaded communities does not typically occur in native communities. Indeed, 

species richness in communities with native dominant species is consistently higher than in 

communities lacking dominant species. The dominance-impoverishment rule appears to be 

restricted to invaded communities, and we propose a ‘dominance-diversification rule’ for 

native communities.  

 

Such dominance-diversification appears to be peculiar to ants. Although ants have many 

parallels with plants in that both are central-place foragers with complex foraging modules, in 

plant communities both native and non-native dominant species exert negative influences on 

species diversity (Grime, 1973, Pyšek et al., 2012). As central place foragers, dominant ants 

cannot persistently monopolize key resources within their foraging territories in the 

comprehensive way that dominant plants can. Canopy trees, for instance, can 

comprehensively monopolize key plant resources such as light, providing no opportunity for 

the sort of temporal or fine-scale spatial niche differentiation, variable outcomes of 

competition, or forager priority effects that facilitate species co-existence in ant communities 

(Andersen, 2008). However, the dominance-diversification rule might apply to other mobile 

animal groups that, like ants, are organized in complex behavioral dominance hierarchies 
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(i.e., hummingbirds, fishes, lizards) (Werner, 1976, Des Granges, 1979), and further research 

is needed to test the applicability of this rule among other faunal taxa.  
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Table 1. Summary of the best-supported models analyzing the dominance-diversity 

relationship as well as the relationship between climate and behavioral dominance from 

different datasets. A reference name for each complete model, the variables included in each 

complete model, the variables included within the best-fitted models, the range of the 

marginal and conditional R
2
 values for the best-fitted models and the number of sites used for 

each analysis are shown. All complete models included a set of covariates (cov: Continent, 

Hemisphere, Habitat type, Pitfall days and Transect length). Abbreviations: BD, Behavioral 

dominance (two levels: sites without dominants and sites with dominants); DT, Dominance 

type (three levels: sites without dominants, sites with native dominants, and sites with non-

native dominants); MAT, Mean annual temperature; AP, Annual precipitation; RAB, 

Relative abundance of dominant ants; and S, Species richness.  

Model name Complete model Variables selected R
2

marginal/conditional N 

sites 

Effects on species richness    

Global occurrence 

model 

S = BD + MAT + AP + 

cov 

BD + MAT + 

Hemisphere 

0.29-0.34 / 0.66-

0.68 

1293 

Global abundance 

model 

S = RAB + RAB
2
 + MAT 

+ AP + cov 

RAB + RAB
2
 + 

Hemisphere 

0.12-0.20 / 0.72 645 

Dominants type x 

climate model 

S = DTxMAT + DTxAP 

+ DTxMATxAP + cov 

DTxMAT 0.35 / 0.69 1293 

Native dominants x 

climate model 

S = RABxMAT + 

RABxAP + 

RABxMATxAP + 

RAB
2
xMAT + RAB

2
xAP 

+ RAB
2
xMATxAP + cov 

RAB
2
 + Continent + 

Hemisphere 

0.04–0.17 / 0.72-

0.74 

523 

Non-native dominants 

x climate model 

S = RABxMAT + 

RABxAP + 

RAB + RAB
2
 + Habitat 

type + Hemisphere 

0.17–0.21 / 0.80-

0.84 

122 
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RABxMATxAP + 

RAB
2
xMAT + RAB

2
xAP 

+ RAB
2
xMATxAP + cov 

Effects on relative abundance of dominant 

species 

   

Climate model of 

native dominants 

RAB = MAT + MAT
2
 + 

AP + MATxAP + cov 

MAT + MAT
2
 + AP + 

Continent + Habitat type 

+ Hemisphere 

0.31-0.37 / 0.54-

0.59 

523 

Climate model of 

non-native dominants 

RAB = MAT + MAT
2 
+ 

AP + MATxAP + cov 

Continent + Habitat type 

+ Hemisphere 

0.11-0.12 / 0.41–

0.44 

122 
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FIGURE LEGENDS 

Figure 1. World map showing the 1293 independent study plots with no dominant ants 

(green circles), native (yellow circles), or non-native dominants (red circles). Many of the 

study plots were conducted in independent locations in relatively close proximity, so appear 

as a single plot. 

 

Figure 2. Relationship between ant species richness and the presence or absence of 

behaviorally dominant species in the world, and separated by temperate and subtropical and 

tropical latitudes. 

 

Figure 3.  Interaction effects of dominants type (sites without dominants, sites with native 

dominants and sites with non-native dominants) and mean annual temperature on species 

richness (ln-transformed) (a), and unimodal relationships between the relative abundance of 

behaviorally dominant species and ant species richness (ln-transformed) in sites with native 

or non-native dominant species (blue line), with only native dominants (green line) and sites 

with only non-native dominants (red line) (b). Shaded area represents the standard error. 

Circle size is proportional to sample size. 

 

Figure 4. Relationships between mean annual temperature (a) and annual precipitation (b) 

with the relative abundance (logit transformed) of native dominant species. Shaded area 

represents the standard error.  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 

 

 

 

 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 

 
 
 
 
 

 
 


