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THE MINKOWSKI INEQUALITY IN DE SITTER SPACE

JULIAN SCHEUER

The classical Minkowski inequality in the Euclidean space provides a lower
bound on the total mean curvature of a hypersurface in terms of the surface
area, which is optimal on round spheres. We employ a locally constrained
inverse mean curvature flow to prove a properly defined analogue in the
Lorentzian de Sitter space.

1. Introduction

The main results. In this paper we prove an optimal Minkowski inequality for
compact, spacelike and mean convex hypersurfaces in the upper branch of the
(n+1)-dimensional Lorentzian de Sitter space. To state the main result, we provide
the involved terminology. Let n ≥ 2 and denote by Mn+2

1 the (n+2)-dimensional
Minkowski space, i.e., Rn+2 with metric

〈v,w〉 = −v0w0
+

n+1∑
α=1

vαwα.

We define the upper branch of the de Sitter space by

Sn+1
1 =

{
y ∈Mn+2

1 : 〈y, y〉 = 1, y0 > 0
}

and understand this submanifold to be equipped with the induced metric. Then Sn+1
1

is a Lorentzian manifold with constant sectional curvature 1; see Section 2 for a
detailed discussion. The following theorem is the main result of this paper.

Theorem 1.1. Let 6 ⊂ Sn+1
1 be a spacelike, compact, connected and mean-convex

hypersurface. Then there holds∫
6

H1 ≤ vol(6̂)+ϕ(|6|)

with equality precisely if 6 is totally umbilic. Here ϕ : R+ → R is the strictly
increasing function which gives equality on the y0-slices.
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We review the standard terminology used here very briefly and refer to Section 2
for a more detailed discussion. A hypersurface 6 ⊂ Sn+1

1 is called spacelike, if
its induced metric is Riemannian. 6 is called mean-convex, if for a suitable unit
normal vector field ν the normalized mean curvature H1 with respect to −ν is
positive. 6̂ denotes the region enclosed by the slice {y0

= 0} and 6, while vol(6̂)
denotes its enclosed volume; see (2-6). Finally, |6| denotes the surface area of 6.

To prove Theorem 1.1, we employ a locally constrained inverse mean curvature
flow. This flow is designed to preserve the surface area and to increase the quantity

W2(6)=

∫
6

H1− vol(6̂).

We will prove that it converges smoothly to a coordinate slice, which will imply
Theorem 1.1. To state the result about the curvature flow, we introduce some
more notation. The space Sn+1

1 is isometric to the space R+×Sn with the warped
product metric

g =−dr2
+ϑ2(r)σ,

where σ is the round metric on Sn and ϑ = cosh; see Lemma 2.1. For a hyper-
surface 6 we define

u =−g(ϑ∂r , ν)

to be the support function, where ν is the future directed normal vector field on 6,
where the time orientation is inherited from Mn+2

1 .

Theorem 1.2. Let 6 ⊂ Sn+1
1 be a spacelike, compact, connected and mean-convex

hypersurface. Then there exists a unique immortal solution

x : [0,∞)×Sn
→ Sn+1

1 ,

which satisfies

(1-1)
ẋ =

(
u− ϑ ′

H1

)
ν,

x(0,Sn)= x0,

where x0 is an embedding of 6. As t → ∞, the embeddings x(t, ·) converge
smoothly to a coordinate slice, which is uniquely determined by |6|.

Background.

Minkowski inequality. For a closed and convex hypersurface in the Euclidean
space Rn+1, the Minkowski inequality states that

(1-2)
∫
6

H1 ≥ |S
n
|

1
n |6|

n−1
n

with equality precisely when 6 is a round sphere. For surfaces n = 2 this was
originally proved by Minkowski [1903]. Using inverse curvature flows, (1-2) was,
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among more general estimates called Alexandrov–Fenchel inequalities, generalized
to starshaped and mean-convex hypersurfaces in [Guan and Li 2009]. Using
Huisken’s and Ilmanen’s weak inverse mean curvature flow [2001] one can replace
the starshapedness by outward minimality. It is open until today whether (1-2) holds
for general mean-convex hypersurfaces. The Michael–Simon–Sobolev inequality
[Michael and Simon 1973] gives an estimate on the total mean curvature, however
its optimal constant is not the desired optimal constant in (1-2), also compare
[Brendle 2021]. In case n = 2, there is an L2-stability result for immersed surfaces
[Kuwert and Scheuer 2020], namely there holds∣∣∣∣ 1

√
|6|

∫
6

H1− 2
√
π

∣∣∣∣≤ c‖ Å‖2L2(6)
,

where Å is the trace-free part of the second fundamental form. Also see [Dalphin
et al. 2016] for a comprehensive overview over related results for the case of closed
hypersurfaces of the Euclidean space. For hypersurfaces with free boundary on a
cone there are similar results [Cruz 2019]. Both sides of (1-2) can be considered as
special cases of the quermassintegrals Wk(6). We refer to [Gallego and Solanes
2005; Gao et al. 2001–02; Solanes 2006] for a comprehensive introduction and
useful further references. In the Euclidean case, (1-2) then reads

W Rn+1

2 (6)≥ cnW Rn+1

1 (6)
n−1

n .

The superscript is added to indicate the special structure of Wk(6) in the Euclidean
case.

There are analogues of these quantities in the hyperbolic and spherical spaces
Hn+1 and Sn+1. However, the Wk(6) are then not given by curvature integrals, but
by linear combinations of them. While the quantities W1(6) are up to dimensional
constants given by surface area in all of the three spaceforms, the values of W2(6)

in the nonflat spaces are (up to dimensional constants)

W Hn+1

2 (6)=

∫
6

H1− vol(6̂), W Sn+1

2 (6)=

∫
6

H1+ vol(6̂),

where 6̂ is the region enclosed by 6.
A possible generalization of (1-2) to other ambient manifolds would then be to

derive an inequality between W2(6) and W1(6) (we drop the superscript again for
the following informal discussion).

In the hyperbolic space, [Gallego and Solanes 2005] treats the case of convex
hypersurfaces through a rough estimate which does not characterize the case of
equality, while in [Wang and Xia 2014] an optimal inequality was proved in the
class of horospherically convex hypersurfaces. Various inequalities between Wi ,
1≤ i ≤ 3, were provided in [Brendle et al. n.d.; Guan and Li 2021; Li et al. 2014].
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Other variants of such estimates involving total mean curvature, surface area and
possibly other quantities, are contained for example in [Borisenko and Miquel 1999;
de Lima and Girão 2016; Natário 2015; Wei and Xiong 2015].

In the sphere there are also many variants of (1-2), for example [Girão and Pin-
heiro 2017; Makowski and Scheuer 2016; Wei and Xiong 2015] and in other ambient
spaces there are weighted Minkowski-type inequalities [Brendle et al. 2016; Ge et al.
2015; McCormick 2018; Scheuer and Xia 2019; Wang 2015; Wei 2018; Xia 2016].

In the de Sitter space we are only aware of one similar result, which recently
appeared [Andrews et al. 2020]. The Alexandrov–Fenchel inequality proved in this
paper is deduced as a corollary from its dual version in the hyperbolic space with
the help of a well-known duality method available for convex hypersurfaces of the
sphere and hyperbolic/de Sitter space; see [Gao et al. 2001–02; Gerhardt 2015]
and Section 2.

Note that the inequality in Theorem 1.1 cannot be deduced by duality from
hyperbolic space, as such is not defined for nonconvex hypersurfaces.

Locally constrained curvature flows. The strategy to prove Theorem 1.1 is to employ
a suitably defined curvature flow, i.e., a variation of the hypersurface 6 which is
defined through its curvature and possibly lower order quantities. This method
has become very popular for the deduction of geometric inequalities during the
past decades. For example, Huisken [1987] studied the volume preserving mean
curvature flow, where the mean curvature flow is modified by addition of a global
term, namely the averaged mean curvature. Long-time existence and convergence
to a round sphere is proven, if the initial datum is convex. This reproved the
isoperimetric inequality in all dimensions for convex domains. Similar nonlocal
flows have been widely used to prove other geometric inequalities in the Euclidean
and hyperbolic space [Andrews 2001; Athanassenas 1997; Cabezas-Rivas and
Miquel 2007; Ivaki and Stancu 2013; McCoy 2003; 2004; 2005; Sinestrari 2015].
These nonlocal flows are hard to study due to the nonlocal term involved and the
results mentioned above usually required preservation of convexity at the least.

A new kind of volume preserving curvature flow was invented by Pengfei Guan
and Junfang Li [2015]. In the Euclidean space it is

(1-3) ẋ =
1

2n
16|x |2 = (1− u H1)ν,

where H1 is the normalized mean curvature and u the support function. This flow
obviously preserves the enclosed volume and it can be calculated that it decreases
the surface area unless 6 is a round sphere. This gives a further proof of the
isoperimetric inequality. The major advantage over the classical volume preserving
mean curvature flow is that it preserves the starshapedness and hence the technical
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obstructions are lower. Hence there has been some recent interest in these so-
called locally constrained curvature flows. Later, the flow (1-3) was also studied
in other ambient manifolds [Guan et al. 2019]. From that idea, it was tempting
to modify (1-3) in such a way that the modified flow preserves other geometric
quantities. For example, the flow

(1-4) ẋ =
( 1

H1
− u

)
ν

in Rn+1 preserves the surface area and decreases the total mean curvature, giv-
ing another proof of the Minkowski inequality for starshaped and mean-convex
hypersurfaces. To quickly complete the list of previous literature on these locally
constrained flows, we refer to the related results in [Guan and Li 2018; Scheuer
et al. 2018; Scheuer and Xia 2019].

Note that while (1-4) is very easy to treat in Rn+1 as it is basically a rescaling of
the inverse mean curvature flow originally treated in [Gerhardt 1990; Urbas 1990],
it seems hard to study the proper modification of this flow in the other spaceforms.
In the hyperbolic space there is a partial unpublished result [Brendle et al. n.d.]
which requires an additional initial gradient smallness assumption, while in the
sphere there is no result.

The purpose of this paper is to prove the full convergence result of the correct
version of (1-4) in the Lorentzian de Sitter space under the most natural assumptions,
which are spacelikeness and mean convexity, and in turn obtain the Minkowski
inequality for such hypersurfaces.

Outline. In Section 2 we spend some time to review the geometry of de Sitter space
and to introduce our notation. We take some care here, as we will also deduce some
maybe not so well known relations between hypersurfaces of de Sitter space and
their duals in the hyperbolic space. In particular we will deduce the dual flow of
(1-1) in the hyperbolic space. In Sections 3 and 4 we collect the relevant evolution
equations and deduce the required a priori estimates to obtain long-time existence.
In Section 5 we prove that the flow converges to a coordinate slice and complete
the proof of the Minkowski inequality.

2. Geometry of de Sitter space and duality

We recall some facts about hypersurfaces of semi-Riemannian manifolds as well as
basic properties of the de Sitter space, most of which can be found in [O’Neill 1983].

For a semi-Riemannian manifold (M, 〈 · , · 〉) with Levi-Civita connection D and
a hypersurface M we have the Gaussian formula for vector fields V,W on M
(which are smoothly extended to M),

DV W = DV W + II(V,W ),
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where D is the Levi-Civita connection of the metric induced by the inclusion
ι : M → M and the decomposition is orthogonal. The normal part II( · , ·) is
called the vector valued second fundamental form. There holds the Gauss equation
[O’Neill 1983, p. 100]

(2-1) 〈R(V,W )X, Y 〉
= 〈R(V,W )X, Y 〉+ 〈II(V, X), II(W, Y )〉− 〈II(V, Y ), II(W, X)〉,

where we used the curvature tensor convention from [O’Neill 1983],

R(X, Y )Z = DY DX Z − DX DY Z − D[Y,X ]Z

for all vector fields X, Y, Z on M. The shape operator S of M derived from a
normal N, which is defined by

〈S(V ),W 〉 = 〈II(V,W ), N 〉,

satisfies the Weingarten equation [O’Neill 1983, p. 107]

(2-2) S(V )=−DV N .

Let n ≥ 2 and Mn+2
1 be the (n+2)-dimensional Minkowski space with metric

〈v,w〉 = −v0w0
+

n+1∑
α=1

vαwα.

The Lorentzian de Sitter space is defined as the hyperquadric

Sn+1
1 = {y ∈Mn+2

1 : 〈y, y〉 = 1}.

Differentiating 1= 〈γ, γ 〉 along an arbitrary curve γ in Sn+1
1 , we obtain that the

normal space of Sn+1
1 ⊂Mn+2

1 is spanned by the spacelike position vector field y
and thus Sn+1

1 has sign 1 in Mn+2
1 . From (2-2) we also obtain that the shape operator

of Sn+1
1 is

S(V )=−DV y =−V

and hence II( · , ·) = −〈· , · 〉y. We obtain from (2-1) that the Riemann tensor R
of Sn+1

1 satisfies

〈R(V,W )X, Y 〉 = 〈V, X〉〈W, Y 〉− 〈V, Y 〉〈W, X〉.

It follows that Sn+1
1 has constant sectional curvature

K (ei , e j )=
〈R(ei , e j )ei , e j 〉

〈ei , ei 〉〈e j , e j 〉
=
〈ei , ei 〉〈e j , e j 〉

〈ei , ei 〉〈e j , e j 〉
= 1

for every orthogonal unit vectors ei , e j [O’Neill 1983, p. 77].
For the calculations in this paper it will be convenient to have a warped product

structure for Sn+1
1 and hence we prove the following lemma.
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Lemma 2.1. The Lorentzian manifold Sn+1
1 is isometric to the warped product

R×Sn with metric
g =−dr2

+ϑ2(r)σ,

where σ is the round metric on Sn and ϑ = cosh. The hyperbolic space

Hn+1
:= {ỹ ∈Mn+2

1 : 〈ỹ, ỹ〉 = −1, ỹ0 > 0}

is diffeomorphic to R+×Sn with metric

g̃ = dr̃2
+ ϑ̃2(r̃)σ,

where ϑ̃ = sinh.

Proof. It follows from [O’Neill 1983, p. 111] that the map

φ : R×Sn
→ Sn+1

1 ⊂Mn+2
1 , (r, p) 7→ (ϑ ′(r), ϑ(r)p)

is a diffeomorphism. Let x i be local coordinates on Sn. The pullback metric of φ
is calculated as follows:

g(∂r , ∂r )= |(ϑ, ϑ
′ p)|2 =−1,

g(∂r , ∂x i )= 0,

since p is normal to ∂x i p in Rn+1 and

g(∂x i , ∂x j )= ϑ2(r)σi j

by definition. The hyperbolic case is proven by replacing ϑ by ϑ̃ in the above
proof. �

In order to employ the duality between Sn+1
1 and Hn+1 we need the following for-

mulae. The first follows from the previous proof and the second is a straightforward
computation of the push-forward of ϑ∂r . Recall that e = e0 is the future-directed
timelike standard unit vector in Mn+2

1 .

Lemma 2.2. As quantities of the ambient manifold, the function ϑ ′(r) is given by

ϑ ′(r)=−〈y, e〉
and the vector field ϑ∂r is

ϑ∂r = e−〈e, y〉y,

where we identified (r, p) with y ∈ Sn+1
1 ⊂ Rn+2

1 .
Similarly, the function ϑ̃(r̃) is given by

ϑ̃ ′(r̃)=−〈ỹ, e〉
while the vector field ϑ̃∂r̃ is given by

ϑ̃∂r̃ =−e−〈e, ỹ〉ỹ.
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Remark 2.3. We will see later that the curvature flow is only parabolic if ϑ ′ > 0.
Hence we will restrict ourselves to the upper branch {r > 0} ⊂ Sn+1

1 .

Spacelike hypersurfaces of de Sitter space. Let6⊂Sn+1
1 be a spacelike, compact,

connected hypersurface. The manifold Sn+1
1 is globally hyperbolic [Gerhardt 2006,

Theorem 1.4.2] and
S0 = {0}×Sn

a Cauchy hypersurface, terminologies which are defined, e.g., in [Gerhardt 2006,
Definitions 1.3.7, 1.3.8]. From [Gerhardt 2006, Proposition 1.6.3, Remark 1.6.4]
we obtain that 6 is a smooth graph over S0, i.e., in the coordinates from Lemma 2.1
we have

6 = {(ρ(x i ), x i ) : (x i ) ∈ S0},

where in the sequel latin indices range between 1 and n, while greek indices
range from 0 to n. As mentioned above, we assume ρ > 0. In order to shorten
notation we often write

x0
= r

and hence a point x ∈ Sn+1
1 has the coordinate representation x = (xα) in a given

coordinate system.
Now we describe the geometry of 6 in terms of the ambient geometry and ρ,

starting with the introduction of some notation. Fix a local coordinate system (ξ i )

for 6. For tensors on 6 we use the coordinate notation, e.g., the induced metric g
is written as g = (gi j ), where

gi j = g(∂ξ i , ∂ξ j ).

If ∇ denotes the Levi-Civita connection of g, in order to shorten the appearance of
evolution equations, we will denote the coordinate functions of covariant derivatives
of tensors by the use of semicolons: If A = (ai1...ik

j1... jl ) is a k-contravariant and
l-covariant tensor (or merely a function), its covariant derivative is denoted by

∇∂xm A = (ai1...ik
j1... jl ;m).

For spacelike hypersurfaces 6 we define ν to be the future directed (timelike)
normal, i.e.,

g(∂r , ν) < 0.

We derive the shape operator S = (hi
j ) of 6 from −ν,

hi j := gikhk
j =−g(II(∂ξ i , ∂ξ j ), ν)

and call the tensor (hi j ) the second fundamental form of 6. The eigenvalues
(κi )1≤i≤n of the shape operator are called the principal curvatures of 6. This
definition implies that

II(∂ξ i , ∂ξ j )= hi jν.
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This is in accordance with the convention in [Gerhardt 2006, Theorem 1.1.2] and
we use this reference for further formulae.

From [Gerhardt 2006, (1.6.13)] we obtain that the second fundamental form of
the slices {x0

= r} is given by

hi j :=
ϑ ′(r)
ϑ(r)

gi j .

The induced metric in terms of ρ is

gi j =−ρ;iρ; j +ϑ
2(ρ)σi j =−ρ;iρ; j + gi j .

Defining
v2
= 1−ϑ−2σ i jρ;iρ; j ,

the second fundamental form satisfies

(2-3) v−1hi j = ρ;i j + hi j ,

[Gerhardt 2006, (1.6.11)], where we note that in this reference the past directed
normal is used. Also note that in order to control the property of a hypersurface of
being spacelike, one has to ensure v2 > 0.

The function
u := ϑ

v
=−g(ϑ∂r , ν)

is of special interest and can be regarded as a generalized support function.

Graphical hypersurfaces of hyperbolic space. Let 6̃ ⊂ Hn+1 be starshaped with
respect to the origin in the coordinates given by Lemma 2.1,

6̃ = {(ρ̃(x i ), x i ) : (x i ) ∈ S0}.

With the corresponding notation as for the de Sitter space, we always chose the
normal ν̃ to 6 to point in the same direction as ∂r̃ , i.e.,

g̃(∂r̃ , ν̃) > 0.

We derive the shape operator of 6 from −ν̃ and obtain from [Gerhardt 2006,
(1.5.10)] that

(2-4) h̃i j ṽ
−1
=−ρ̃;i j +

˜hi j ,

where
ṽ2
= 1+ ϑ̃−2σ i j ρ̃;i ρ̃; j .

We also may define the support function of 6̃ to be

ũ = g̃(ϑ̃∂r̃ , ν̃).
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Duality. There is an important relation between strictly convex hypersurfaces of
the hyperbolic space containing the origin and strictly convex hypersurfaces of
the upper branch of de Sitter space. It states that these two sets are in one-to-one
relation through the idempotent Gauss maps

x̃ := ν, x := ν̃.

Furthermore the respective principal curvatures satisfy the relation

κ̃i = κ
−1
i

and the induced metric of the dual hypersurfaces are given by

(2-5) g̃i j = hikhk
j , gi j = h̃ik h̃k

j .

We refer to [Gerhardt 2006, Theorems 10.4.4, 10.4.5, 10.4.9] for a more thorough
discussion. In the theory of curvature flows, the method of duality has successfully
been employed several times, e.g., [Bryan et al. 2020; Gerhardt 2015; Yu 2017].

Later we will employ the following relations between the support functions and
the respective height functions of the dual hypersurfaces.

Lemma 2.4. Let 6 ⊂ Sn+1
1 be a strictly convex, compact and spacelike hypersur-

face. Then its dual 6̃ ⊂ Hn+1 is starshaped with respect to the origin and the
height/support functions satisfy

ϑ ′(r)= ũ, ϑ̃ ′(r̃)= u.

Proof. We use Lemma 2.2 and 〈x, x̃〉 = 0. There holds

u =−〈e−〈e, x〉x, x̃〉 = −〈e, x̃〉 = ϑ̃ ′(r̃),

ũ =−〈e+〈e, x̃〉x̃, x〉 = −〈e, x〉 = ϑ ′(r). �

Volume, surface area and Minkowski identities. A function f on a spacelike
hypersurface 6 ⊂ Sn+1

1 is in L1(6), if the differential n-form | f |dωg has a finite
integral over 6, in which case we write∫

6

f :=
∫

Sn
f dωg.

Here dωg is the Riemannian volume form on 6. For a spacelike hypersurface
6 = graph ρ as above we define the enclosed volume as in [Makowski 2013,
Section 4] by

(2-6) vol(6̂)=
∫

Sn

∫ ρ(·)

0

√
det(gi j (s, ·))√

det(σi j )
ds

and the surface area by

|6| =

∫
6

1.
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Now we recall some crucial integral identities, which are known as Minkowski
identities in the Riemannian context. We restrict to those we need, while more
general versions were proved in [Kwong 2016]. First of all let

Hk(κ)=
1(n
k

) ∑
1≤i1≤···≤ik≤n

κi1 . . . κik , 1≤ k ≤ n,

be the normalized elementary symmetric polynomials, where we also define H0= 1.
We calculate

(2-7) ϑ ′(ρ);i j = ϑ
′ρ;iρ; j +ϑρ;i j = ϑ

′ρ;iρ; j +
ϑ

v
hi j −ϑ

′gi j =−ϑ
′gi j +

ϑ

v
hi j .

Regarding the functions Hk = Hk(gi j , hi j ) in dependence of the metric and the
second fundamental form, in spaceforms the tensors

H i j
k =

∂Hk

∂hi j

are divergence free. Taking into account that

gi j H i j
k = k Hk−1, 1≤ k ≤ n,

we obtain from tracing (2-7) with respect to H i j
k and integration that

(2-8)
∫
6

ϑ ′Hk−1 =

∫
6

u Hk, 1≤ k ≤ n.

In the hyperbolic space the same relations can be deduced from (2-4).

3. Evolution equations

To prove the Minkowski inequality for 6, we make use of normal variations and
therefore we recall some known variational formulae and deduce the ones we
specifically need here.

A quite general treatment also appears in [Gerhardt 2006, Chapter 2], while our
framework does not fit into the setting discussed there. Hence we take some more
care in this section.

General evolution equations. Let T > 0, M compact and connected and

x : (0, T )×M→ Sn+1
1

a time-dependent family of embeddings of the spacelike hypersurfaces

6t = x(t,M).

Let us denote their normal velocity by f , i.e.,

ẋ = f ν.
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From [Gerhardt 2006, p. 94] we get

∂t gi j = 2 f hi j and ν̇ = f;k gk j x; j

where (gk j ) is the inverse of g and a dot denotes the covariant time derivative of a
tensor field along the curve x(·, ξ).

As [Gerhardt 2006] uses a different convention for the Riemann tensor, for the
reader’s convenience we deduce the evolution of the shape operator here.

Lemma 3.1. There holds

∂t h
j
i = f;i j

− f h j
k hk

i + f δ j
i .

Proof. Let∇ denote the Levi-Civita connection of g. We differentiate the Weingarten
equation

∇x;i ν = hk
i x;k

covariantly with respect to time and get

∂t hk
i x;k + hk

i ẋ;k = ∇ ẋ∇x;i ν = ∇x;i∇ ẋν+ R(x;i , ẋ)ν = ∇x;i∇ ẋν+ f x;i

and hence, after multiplying with x; j ,

gk j∂t hk
i = f gi j − f hk

i hk j + g(∇x;i ( f;k gkl x;l), x; j )

= f gi j − f hk
i hk j + f;i j . �

Lemma 3.2. Volume, surface area and total mean curvature evolve by

∂t vol(6̂t)=

∫
6t

f, ∂t |6t | = n
∫
6t

f H1

and

∂t

∫
6t

H1 = (n− 1)
∫
6t

f H2+ ∂t vol(6̂t).

Proof. According to [Gerhardt 2006, (2.4.21)], the radial function ρ satisfies

∂ρ

∂t
= f v,

where we note again the flip of our normal compared to that reference. Hence

∂t vol(6̂t)=

∫
Sn

f v

√
det(gi j (ρ(·), ·))√

det(σi j )
=

∫
Sn

f

√
det(gi j )√
det(σi j )

=

∫
6

f.

There holds

∂t
√

det(gi j )=
det(gi j )gkl∂t gkl

2
√

det(gi j )
= n f H1

√
det(gi j ).
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The second claim follows. We calculate

∂t

∫
6t

H1 =
1
n

∫
6t

f (n2 H 2
1 − |S|

2
+ n)

=
2
n

(n
2

) ∫
6t

f H2+

∫
6t

f. �

Specific evolution equations. In order to prove the Minkowski inequality, we want
to build a flow that preserves the surface area and increases the quantity

W2(6)=

∫
6

H1− vol(6̂).

A natural flow to consider is the locally constrained inverse mean curvature flow

(3-1) ẋ =
(

u− ϑ
′(ρ)

H1

)
ν,

which indeed has the desired properties:

Lemma 3.3. Along (3-1) the surface area is preserved and the quantity

W2(6t)=

∫
6t

H1− vol(6̂t)

is nondecreasing and strictly increasing unless the flow hypersurfaces are totally
umbilic.

Proof. From Lemma 3.2 and (2-8) we obtain

1
n
∂t |6t | =

∫
6t

(u H1−ϑ
′)= 0

and

∂t W2(6t)= (n− 1)
∫
6t

(
u H2−

ϑ ′H2

H1

)
= (n− 1)

∫
6t

(
ϑ ′H1−

ϑ ′H2

H1

)
≥ 0,

where we used
H2 = H 2

1 −‖ Å‖2,

where Å is the trace-free part of the second fundamental form. �

We need the evolution equation for the radial and support function and so define

L= ∂t −
ϑ ′

nH 2
1
1−ϑρ;

k∂k .
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Lemma 3.4. (i) The radial function ρ satisfies

Lρ = ϑ −
2ϑ ′

H1
v−1
+

ϑ ′2

ϑH 2
1
+

ϑ ′2

nϑH 2
1
‖∇ρ‖2.

(ii) The support function u satisfies

(3-2) Lu =−
ϑ ′

nH 2
1
‖ Å‖2u−

ϑ2

H1
‖∇ρ‖2.

Proof. (i) The choice of the normal implies

∂tρ =

(
u−

ϑ ′

H1

)
v−1.

From (2-3) we obtain

∂tρ−
ϑ ′

nH 2
1
1ρ =

(
u−

ϑ ′

H1

)
v−1
−

ϑ ′

nH 2
1

gi j (v−1hi j − hi j )

=

(
u−

ϑ ′

H1

)
v−1
−
ϑ ′

H1
v−1
+

ϑ ′2

nϑH 2
1

gi j gi j

= ϑv−2
−

2ϑ ′

H1
v−1
+

ϑ ′2

ϑH 2
1
+

ϑ ′2

nϑH 2
1
‖∇ρ‖2.

The result follows from

‖∇ρ‖2 =

(
gi j
+

gikρ;k g jlρ;l

v2

)
ρ;iρ; j = 1− v2

+
(1− v2)2

v2 =
1− v2

v2 .

(ii) We calculate that the vector field ϑ∂x0 is conformal:

(ϑ∂x0);α = ϑ
′r;α∂x0 +ϑ0

β

0α∂xβ .

The Christoffel-symbols of g are

0
β

0α =
1
2

gβδ
(
∂

∂x0 gαδ +
∂

∂xα
g0δ −

∂

∂xδ
g0α

)
=

{
0 if β = 0

ϑ ′

ϑ
δi
α if β = i,

and hence

(ϑ∂x0);α = ϑ
′r;α∂x0 +ϑ ′δi

α∂x i = ϑ ′δ0
α∂x0 +ϑ ′δi

α∂x i = ϑ ′δβα∂xβ = ϑ
′∂xα .
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Therefore

∂t u =−g(∇ ẋ(ϑ∂r ), ν)− g(ϑ∂r , ν̇)= f ϑ ′− g(ϑ∂r , x; j ) f;k gk j ,

u;i =−hk
i g(ϑ∂r , x;k)

and
u;i j =−hk

i; j g(ϑ∂r , x;k)−ϑ ′hi j + hk
i hk j u.

Hence

∂t u−
ϑ ′

nH 2
1
1u=−

ϑ ′

nH 2
1
‖A‖2u+ϑ ′

(
u−

ϑ ′

H1

)
+
ϑ ′2

H1
−g(ϑ∂r , x; j )

(
u−

ϑ ′

H1

)
;k

gk j

+
ϑ ′

H 2
1

H1;
k g(ϑ∂r , x;k)

=−
ϑ ′

nH 2
1
(‖A‖2− nH 2

1 )u− g(ϑ∂r , x; j )u;k gk j
+ g(ϑ∂r , x; j )

ϑ

H1
ρ;

j

=−
ϑ ′

nH 2
1
‖ Å‖2u+ϑg(∇ρ,∇u)−

ϑ2

H1
‖∇ρ‖2. �

We conclude this section with the full evolution of the shape operator.

Lemma 3.5. There holds

(3-3) Lhi
j =−ϑ

′

(
‖A‖2

nH 2
1

h j
i −

2
H1

hm
i h j

m+h j
i

)
+u

(
δ

j
i −

h j
i

H1

)
+
ϑ ′

H 2
1
(H1δ

j
i −h j

i )

+
ϑ

H 2
1

H1;
jρ;i +

ϑ

H 2
1

H1;iρ;
j
− 2

ϑ ′

H 3
1

H1;i H1;
j .

Proof. From Lemma 3.1 we have

∂t h
j
i =

(
u−

ϑ ′

H1

)
;i

j

−

(
u−

ϑ ′

H1

)
h j

k hk
i +

(
u−

ϑ ′

H1

)
δ

j
i .

We have to expand the second order term. There holds(
u−

ϑ ′

H1

)
;i
= u;i −

ϑ

H1
ρ;i +

ϑ ′

H 2
1

H1;i

and(
u−

ϑ ′

H1

)
;i j
= u;i j −

ϑ ′

H1
ρ;iρ; j +

ϑ

H 2
1

H1; jρ;i −
ϑ

H1
ρ;i j +

ϑ

H 2
1

H1;iρ; j

− 2
ϑ ′

H 3
1

H1;i H1; j +
ϑ ′

H 2
1

H1;i j .
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In order to replace the term H1;i j , we have to use the Codazzi and Gauss equa-
tion (2-1). As in [O’Neill 1983, p. 76] we define

R(∂k, ∂l)∂ j = Rm
jkl∂m .

There holds
nH1;i j = hk

k;i j = hk
i;k j

= hk
i; jk + hm

i Rk
mk j − hk

m Rm
ik j

= hi j;k
k
+ hm

i Rk
mk j − hk

m Rm
ik j .

We use (2-1) and g(ν, ν)=−1 to deduce

Ri
jkl = g(R(∂k, ∂l)∂ j , ∂m)gim

= δi
l g jk − δ

i
k g jl − hi

l h jk + hi
kh jl

and hence

nH1;i j = hi j;k
k
+ hm

i Rk
mk j − hk

m Rm
ik j

= hi j;k
k
+ hm

i (δ
k
j gmk − ngmj − hk

j hmk + hk
khmj )

−hk
m(δ

m
j gik − δ

m
k gi j − hm

j hik + hm
k hi j )

= hi j;k
k
− (n− 1)hi j − hm

i hmkhk
j + nH1hm

i hmj

−hi j + nH1gi j + hk
mhm

j hik −‖A‖2hi j

= hi j;k
k
− nhi j + nH1hm

i hmj + nH1gi j −‖A‖2hi j .

From (2-3) we obtain(
u−

ϑ ′

H1

)
;i j
=−hk

i; j g(ϑ∂r , x;k)−ϑ ′hi j + hk
i hk j u−

ϑ ′

H1
ρ;iρ; j +

ϑ

H 2
1

H1; jρ;i

−
ϑ

H1
(v−1hi j − hi j )+

ϑ

H 2
1

H1;iρ; j − 2
ϑ ′

H 3
1

H1;i H1; j

+
ϑ ′

nH 2
1

(
hi j;k

k
− nhi j + nH1hm

i hmj + nH1gi j −‖A‖2hi j
)

=−hk
i; j g(ϑ∂r , x;k)−ϑ ′hi j+hk

i hk j u+
ϑ

H 2
1

H1; jρ;i−
u
H1

hi j+
2ϑ ′

H1
gi j

+
ϑ

H 2
1

H1;iρ; j − 2
ϑ ′

H 3
1

H1;i H1; j +
ϑ ′

nH 2
1

hi j;k
k
−
ϑ ′

H 2
1

hi j

+
ϑ ′

H1
hm

i hmj −
ϑ ′

nH 2
1
‖A‖2hi j .
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Thus

Lhi
j =−ϑ

′h j
i +

ϑ

H 2
1

H1;
jρ;i −

u
H1

h j
i +

ϑ ′

H1
δ

j
i +

ϑ

H 2
1

H1;iρ;
j
− 2

ϑ ′

H 3
1

H1;i H1;
j

−
ϑ ′

H 2
1

h j
i + 2

ϑ ′

H1
hm

i h j
m −

ϑ ′

nH 2
1
‖A‖2h j

i + uδ j
i

=−ϑ ′
(
‖A‖2

nH 2
1

h j
i −

2
H1

hm
i h j

m + h j
i

)
+ u

(
δ

j
i −

h j
i

H1

)
+
ϑ ′

H 2
1
(H1δ

j
i − h j

i )

+
ϑ

H 2
1

H1;
jρ;i +

ϑ

H 2
1

H1;iρ;
j
− 2

ϑ ′

H 3
1

H1;i H1;
j . �

4. A priori estimates

We establish C2-estimates for (3-1) and use standard regularity theory for parabolic
equations to conclude smooth convergence of the flow to a round sphere.

We assume throughout this section that 6⊂Sn+1
1 is a smooth, closed, connected,

spacelike and mean-convex hypersurface.
Then the differential operator L is strictly parabolic at 6 and hence the flow (3-1)

has a unique solution for a short time T ∗ with initial hypersurface 60 = 6. The
a priori estimates of this section refer to this solution.

Estimates up to first order.

Lemma 4.1. Along the flow (3-1) for all (t, ξ) ∈ (0, T ∗)×M there holds

min
M
ρ(0, ·)≤ ρ(t, ξ)≤max

M
ρ(0, ·),(i)

u(t, ξ)≤max
M

u(0, ·).(ii)

Proof. (i) The radial function ρ satisfies

∂tρ =

(
u−

ϑ ′

H1

)
v−1.

From (2-3) we obtain that spatial maximal points of ρ we have

0≥1ρ = nH1− n
ϑ ′

ϑ

and hence

u−
ϑ ′

H1
≤ 0.

Therefore max ρ is nonincreasing and the reverse estimate proves that min ρ is
nondecreasing.

(ii) Directly follows from (3-2) and the maximum principle. �
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Curvature estimates. Tracing (3-3) yields the evolution of the normalized mean
curvature:

LH1 =
ϑ ′

nH1
(‖A‖2− nH 2

1 )+
2ϑ

nH 2
1

g(∇H1,∇ρ)−
2ϑ ′

nH 3
1

‖∇H1‖
2.

Lemma 4.2. (i) For all (t, ξ) ∈ (0, T ∗)×M there holds

H1(t, ξ)≥min
M

H1(0, ·).

(ii) There exists a constant c = c(M0) such that

H1 ≤ c.

Proof. (i) Follows directly from the maximum principle.

(ii) Define

w = log H1+ λu− ρ,

where λ is determined to be a large number. Then

Lw =
LH1

H1
+

ϑ ′

nH 2
1
‖∇ log H1‖

2
+ λLu−Lρ

=
ϑ ′

nH 2
1
‖ Å‖2(1− λu)+

2ϑ
nH 2

1
g(∇ log H1,∇ρ)−

ϑ ′

nH 2
1
‖∇ log H1‖

2

−
λϑ2

H1
‖∇ρ‖2−ϑ +

2ϑ ′

H1
v−1
−

ϑ ′2

ϑH 2
1
−

ϑ ′2

nϑH 2
1
‖∇ρ‖2

≤−ϑ +
2ϑ ′

H1
v−1
+

c
H 2

1
‖∇ρ‖2

for large λ. If H1 is too large, this is negative and hence we obtain a bound on H1

by the maximum principle. �

Lemma 4.3. There exists a constant c = c(M0) such that

‖A‖2 ≤ c.

Proof. We estimate the largest principal curvature κn . By a well known trick, see
[Gerhardt 2011, p. 500], it suffices to estimate the evolution of hn

n = κn at a point
where κn attains a space-time maximum. At such a point we introduce coordinates
such that

gi j = δi j , hi j = κiδi j .
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Using
0< H1 ≤ κn ≤ ‖A‖ =

√
κ2

1 + · · ·+ κ
2
n ,

(3-3) and all previously deduced bounds, we obtain constants ε and c such that

Lhn
n =−ϑ

′

(
‖A‖2

nH 2
1
κn −

2
H1
κ2

n + κn

)
+ u

(
1−

κn

H1

)
+
ϑ ′

H 2
1
(H1− κn)+

2ϑ
H 2

1
H1;nρ;n − 2

ϑ ′

H 3
1

(H1;n)
2

≤−εκ3
n + cκ2

n + c+ c|H1;n|‖∇ρ‖− ε|H1;n|
2.

After employing Cauchy–Schwarz to absorb |H1;n|, we see that the expression on
the right-hand side is negative, provided κn is sufficiently large. This threshold
depends on ε and c. The proof is complete due to the maximum principle. �

Corollary 4.4. The flow (3-1) starting from 6 exists for all times and satisfies
uniform estimates in Cm(Sn) for all m ≥ 0.

Proof. After the previously established C2-estimates this is standard from parabolic
regularity [Krylov 1987] applied to the graph function ρ. �

5. Completion of the proof

To complete the proof, we have to show that the flow converges to a round sphere.

Lemma 5.1. The flow (3-1) converges to a uniquely determined coordinate slice
and hence Theorem 1.2 holds.

Proof. Along the flow the quantity

W2(6t)=

∫
6t

H1− vol(6̂t)

is clearly bounded and nondecreasing. Hence

∂t W2(6t)= (n− 1)
∫
6t

ϑ ′‖ Å‖2

H1
→ 0

as t →∞ and thus every subsequential C∞-limit 6∞ must be totally umbilical.
As H1 > 0, 6∞ is strictly convex. The dual hypersurface 6̃∞, which is given by
the Gauss map

x̃ = ν : M→ Hn+1
⊂Mn+2

1 ,

is thus also totally umbilical, see [Gerhardt 2006, Theorem 10.4.4], and hence a
geodesic sphere. From (2-5) we obtain

|6∞| =

∫
6̃∞

H̃n,
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which is, up to an additive constant, the (n−1)-quermassintegral W̃ n−1(6̃∞) in Hn+1.
See [Wang and Xia 2014] for a definition. As |6∞| is independent of the subse-
quential limit, so is W̃ n−1(6̃∞) and hence the radius and the principal curvatures of
6̃∞ are uniquely determined. This implies that H1 takes the same value 0< H∗< 1
for every subsequential limiting hypersurface 6∞. In particular, the function H1

converges uniformly to H∗ along the flow. Let

r0 = tanh−1(H∗).

We claim that the flow converges to the slice {r = r0} smoothly and prove this in
several steps.

(i) For every subsequential limit 6∞ with corresponding radial function ρ∞
there holds

max
M
ρ∞ ≥ r0,

since at a point where the maximum is attained we have

0≥1ρ∞ = nH∗− n tanh(ρ∞)

and hence ρ∞ ≥ r0 due to the monotonicity of tanh.

(ii) Define
ϕ(t)=max

M
ρ(t, ·)− r0 = ρ(t, ξt)− r0.

Then ϕ is Lipschitz and hence differentiable almost everywhere. Let ε > 0 and
fix some Tε > 0 to be specified later. Let t > Tε be a point of differentiability
of ϕ and suppose

ϕ(t)≥ ε.

Note that this condition is only nonvoid for bounded ε ≤ ε0, due to the barrier
estimates. Then there holds

ϕ′(t)= ∂tρ(t, ξt)=

(
u−

ϑ ′

H1

)
v−1(t, ξt)= ϑ −

ϑ ′

H1
,

where the right-hand side is evaluated at ρ(t, ξt). We estimate

ϕ′(t)=
ϑ ′

H1

(
coth(ρ(t, ξt))H1− 1

)
≤
ϑ ′

H1

(
coth(r0+ ε)H∗− 1

)
+ cr0 |H1− H∗|

= −
ϑ ′

H1

ϑ ′(r0)

ϑ(r0)ϑ ′2(η)
ε+ cr0 |H1− H∗|

=

(
−
ϑ ′

H1

ϑ ′(r0)

ϑ(r0)ϑ ′2(η)
+

cr0

ε
|H1− H∗|

)
ε,
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where we have used the mean value theorem and η∈ [r0, r0+ε0]. As H1→ H∗,
we may now choose T = Tε , which only depends on ε and the initial data,
such that for all t > Tε with ϕ(t)≥ ε there holds

ϕ′(t)≤−δε .

From [Scheuer 2015, Lemma 4.2] it follows that

lim sup
t→∞

max
M
ρ(t, ·)≤ r0.

(iii) Combining (i) and (ii) we obtain

lim
t→∞

max
M
ρ(t, ·)= r0.

(iv) A similar argument applied to min ρ implies

lim
t→∞

min
M
ρ(t, ·)= r0.

Hence the unique limit is the slice {r = r0} and the proof is complete. �

Proof. Now we prove Theorem 1.1. So let 6 ⊂ Sn+1
1 be a spacelike, compact,

connected and mean-convex hypersurface. According to Theorem 1.2, we may
deform6 in an infinite amount of time to a coordinate slice Sr∞ of radius r∞. Define

ϕ1(r)= |{x0
= r}|, ϕ2(r)=W2({x0

= r}).

From Lemma 3.2 we see that both of these function are strictly increasing functions
of r . By Lemma 3.3 there holds

W2(6)≤W2(Sr∞)= ϕ2(r∞)= ϕ2 ◦ϕ
−1
1 (ϕ1(r∞))= ϕ2 ◦ϕ

−1
1 (|6|).

From the proof of Lemma 3.3 we obtain that if we have equality in this inequality,
6 must be totally umbilic, otherwise the flow would increase W2 strictly.

It remains to show that total umbilicity implies equality. So let 6 be totally
umbilic. Now it suffices to prove that this property is preserved along the flow (3-1),
since we know that this flow deforms 6 into a coordinate slice on which equality
holds. Furthermore, if all flow hypersurfaces are totally umbilic, W2 is constant.
As |6t | is constant anyway, the equality must already hold on 6.

So let us prove that (3-1) preserves total umbilicity. If 6 is totally umbilic, it
must be strictly convex. Hence for a short time the flow hypersurfaces6t are strictly
convex. As in [Bryan et al. 2020, Section 4] and employing Lemma 2.4 we can
calculate, that up to a tangential diffeomorphism the dual hypersurfaces 6̃t ⊂Hn+1

satisfy the flow equation

˙̃x =
(

u−
ϑ ′

H1(κi )

)
ν̃ =

(
ϑ̃ ′− nũ

σn(κ̃)

σn−1(κ̃)

)
ν̃,
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where σk is the k-th elementary symmetric polynomial. This is a locally constrained
curvature flow of contracting type in hyperbolic space. In the Euclidean space such
kind of flows were studied in [Guan and Li 2018]. Although in the nonflat spaces no
satisfactory convergence results are available in general, we can still show that this
flow preserves the total umbilicity. It has the property that it preserves the (n−1)-
quermassintegral W̃ n−1(6̃t) in Hn+1, while it decreases W̃ n(6̃t) and we have

(5-1) ∂t W̃ n(6̃t) < 0

at t > 0 unless 6̃t is totally umbilic. Since by assumption 6̃ is totally umbilic,
we have

W̃ n(6̃)= ψ(W̃ n−1(6̃)),

see [Wang and Xia 2014, Theorem 1.1], with a suitable function ψ . If 6̃t was not
totally umbilic for some t > 0, by (5-1) we would obtain

W̃ n(6̃t) < ψ(W̃ n−1(6̃t)),

which violates [Wang and Xia 2014, Theorem 1.1]. Hence the 6̃t must be totally
umbilic and, going back to the flow in de Sitter space, 6t must be totally umbilic.
Hence (3-1) preserves the total umbilicity and the proof is complete. �
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