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A B S T R A C T   

Introduction: Most literature on optimal group-sequential designs focuses on minimising the expected sample size. 
We highlight other factors for consideration. 
Methods: We discuss several quantities less-often considered in adaptive design: the median and standard devi-
ation of the random required sample size, and the probability of committing an interim error. We consider how 
the optimal timing of interim analyses changes when these quantities are accounted for. 
Results: Incorporating the standard deviation of the required sample size into an optimality framework, we 
demonstrate how and when this quantity means using a group-sequential approach is not optimal. The optimal 
timing of an interim analysis is shown to be highly dependent on the pre-specified preference for minimising the 
expected sample size relative to its standard deviation. 
Conclusions: Examining multiple factors, which measure the advantages and disadvantages of group-sequential 
designs, helps determine the best design for a specific trial.   

1. Introduction 

Adaptive designs have received substantial recent attention; a 
response to escalating costs in the drug development process and their 
potential to improve efficiency [1]. Amongst available types of adap-
tation, group-sequential (GS) designs are the most established in prac-
tice. In a GS approach, interim analyses that can terminate the trial are 
conducted after pre-planned numbers of participants. With this, the 
average sample size required by a GS design is often lower than a cor-
responding fixed-sample design [2]. 

When designing a GS trial, the timing of the interim analyses and the 
interim stopping boundaries are key required factors that can greatly 
influence a design’s operating characteristics. Accordingly, there are 
many papers on optimal GS designs [3–22]. The majority of these 
minimise a weighted combination of expected sample sizes (ESSs) at 
particular treatment effects. 

Here, we highlight the value of considering other factors in the 
optimality criteria that directly address the drawbacks of a GS approach. 
Through this, we extend previous work on optimal interim analysis 
timing in a way that allows examination of when prior desires indicate a 
fixed-sample approach should be preferred. 

2. Methods 

2.1. Group-sequential designs 

Consider a balanced two-arm GS trial with a normally distributed 
outcome. Other settings can be treated similarly; we discuss single- and 
two-arm trials with Bernoulli data in the Supplementary Materials. 

Assume a maximum of J analyses are allowed, with analysis j ∈ {1, 
…,J} conducted using data from tjn patients on each arm, 0 < t1 < t2 <

⋯ < tJ = 1. Set t = (t1,…, tJ). Outcome Xik ~ N(μk,σ2), where k ∈ {0,1} 
indicates treatment arm and i ∈ {1,…,n} indicates participant. The 
variance of the outcomes, σ2, is assumed known. Suppose we test H0 : τ 
= μ1 − μ0 ≤ 0, wishing to control the type-I error-rate to α ∈ (0,1) when 
τ = 0 and have power of 1 − β ∈ (0,1) when τ = δ > 0. At analysis j, we 
use a Wald test-statistic, Tj = τ̂ j

̅̅̅̅̅̅̅̅̅̅̅̅̅
Ij(n, t)

√
, where 

τ̂ j =
1

tjn
∑tjn

i=1
(xi1 − xi0),

Ij(n, t) =
tjn
2σ2.
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Then, Tj = (T1,…,Tj) is multivariate normal with E
(
Tj
)
=

τ
̅̅̅̅̅̅̅̅̅̅̅̅̅
Ij(n, t)

√
= τ
( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅

I1(n, t)
√

, …,
̅̅̅̅̅̅̅̅̅̅̅̅̅
Ij(n, t)

√ )
and 

{
Cov

(
Tj,Tj

) }

j1 j2
=

{
Λj(n, t)

}

j1 j2
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Ij1 (n, t)/Ij2 (n, t)

√
for 1 ≤ j1 ≤ j2 ≤ j [23]. 

Design requires upper (efficacy) and lower (futility) stopping 
boundaries, which we denote by e = (e1,…,eJ) and f = (f1,…, fJ), with ej 
> fj for j ∈ {1,…,J − 1}. We also set eJ = fJ, so that the trial terminates 
with a decision on whether to reject H0 after at most J stages. The de-
cision rules at analysis j are  

• if Tj > ej terminate the trial, rejecting H0;  
• else if Tj ≤ fj terminate the trial, but do not reject H0;  
• else continue the trial to stage j + 1. 

In total, a design is given by choices for n, t, e, and f. Using these, and 
the implied distribution of Tj, we can compute the probability of stop-
ping for efficacy (Ej) or futility (Fj) at analysis j using    

where ϕj{xj = (x1,…,xj),μ,Σ} is the PDF of a j-dimensional multivariate 
normal distribution with mean μ and covariance matrix Σ evaluated at 
(x1,…,xj). 

Furthermore, the probability H0 is rejected and the ESS for any τ can 
be found with 

P(τ|n, t, e, f) =
∑J

j=1
Ej(τ|n, t, e, f),

ESS(τ|n, t, e, f) =
∑J

j=1
2ntjSj(τ|n, t, e, f),

for Sj(τ|n, t,e, f) = Ej(τ|n, t,e, f) + Fj(τ|n, t,e, f). 
We can also calculate several other quantities, which we will 

examine the importance of. These are the median sample size (MSS), the 
standard deviation of the sample size (SDSS), and the probability of an 
interim error (PIE) 

MSS(τ|n, t,e, f)=

⎧
⎪⎪⎨

⎪⎪⎩

2n
(
tj +0.5tj+1

)
:∃jsuch thatS̃j(τ|n, t,e,f)= 0.5,

2ntj : argminj∈{1,…,J}

{

S̃j(τ|n, t,e,f)≥ 0.5
}

,

SDSS(τ|n, t,e,f)=
(
∑J

j=1

(
2ntj
)2Sj

(

τ |n, t,e,f)
)

− ESS(τ|n, t,e,f)2
,

PIE(τ|n, t,e,f)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑J− 1

j=1
Ej(τ|n, t,e, f) : τ≤ 0,

∑J− 1

j=1
Fj(τ|n, t,e, f) : τ> 0,

where S̃j(τ|n, t, e, f) = S1(τ|n, t, e, f) + ⋯ + Sj(τ|n, t, e, f). While the PIE 
arises in error-spending designs [24], the MSS and SDSS are rarely 
mentioned in the GS design literature. 

2.2. Optimal designs 

Many methods are available for specifying e and f. We consider two 
approaches  

• Wang-Tsiatis bounds [17]: ej = CtjΔ− 0.5 for j ∈ {1,…,J} and fj = − ej 
for j ∈ {1,…,J − 1}. Here, C is chosen for any n and t by solving P(0| 
n, t,e, f) = α.  

• Futility stopping only, with pre-specified interim bounds: We set e1 
= ⋯ = eJ− 1 = ∞ and nominate values for f1, …, fJ− 1. Like the above, 
fJ = eJ is chosen for any n and t by solving P(0|n, t,e, f) = α. 

In either case, given t, we identify n as the solution to 

argminn∈ℝ+P(δ|n, t, e, f) ≥ 1 − β,

i.e., the minimal value such that the power requirement is met. 
Thus, we have methods for choosing n, e, and f, for given t. As in 

Togo and Iwasaki [16] and Xi et al. [22], we will focus on how to 
optimally determine t. Togo and Iwasaki [16] focused on Wang-Tsiatis 
boundaries, choosing t to minimise ESS(δ|n, t,e, f). Xi et al. [22] 
considered our other setting with futility stopping only, discussing 
several optimality criteria consisting of weighted sums of ESSs. 

Ej(τ|n, t, e, f) =

⎧
⎪⎪⎨

⎪⎪⎩

∫ ∞

e1

ϕ1

{
x, τ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
I1(n, t)

√
,1
}

dx : j = 1,
∫ e1

f1
…
∫ ej− 1

fj− 1

∫ ∞

ej

ϕj

{
xj, τ

̅̅̅̅̅̅̅̅̅̅̅̅̅

Ij(n, t)
√

,Λj(n, t)
}

dxj…dx1 : j ∈ {2,…, J},

Fj(τ|n, t, e, f) =

⎧
⎪⎪⎨

⎪⎪⎩

∫ f1

− ∞
ϕ1

{
x, τ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
I1(n, t)

√
,1
)

dx : j = 1,
∫ e1

f1
…
∫ ej− 1

fj− 1

∫ fj

− ∞
ϕj

{
xj, τ

̅̅̅̅̅̅̅̅̅̅̅̅̅

Ij(n, t)
√

,Λj(n, t)
}

dxj…dx1 : j ∈ {2,…, J},
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Fig. 1. The ESS, SDSS, MSS, and PIE curves are shown, in the Wang-Tsiatis designs with several values of Δ, for several values of t1 as a function of τ.  

Fig. 2. The optimal value of t1 is shown, in the Wang-Tsiatis designs with several values of Δ, as a function of w ∈ [0,1], the weight given to the expected sample size 
in the three optimality criteria, for θ = δ. 
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We seek to demonstrate how focusing solely on minimising ESSs can 
negate consideration of the drawbacks of a GS approach. Namely, any 
use of a GS design involves a trade-off in terms of reducing the ESS at 
particular treatment effects while increasing the maximal sample size 
and introducing non-zero variation in the required sample size. There-
fore, modifying previous suggestions we consider the optimal solutions 
to three optimality problems 

argmint∈[01]J : 0<t1<⋯<tJ=1wESS(θ|n, t, e, f) + (1 − w)SDSS(θ|n, t, e, f),

argmint∈[01]J : 0<t1<⋯<tJ=1 wESS(θ|n, t, e, f) + (1 − w)MSS(θ|n, t, e, f),

argmint∈[01]J : 0<t1<⋯<tJ=1 w
ESS(θ|n, t, e, f)

maxt’∈[01]J : 0<t’1<⋯<t’J=1ESS(θ|n, t’, e, f)
+

(1 − w)
PIE(θ|n, t, e, f)

maxt’∈[01]J : 0<t’1<⋯<t’J=1PIE(θ|n, t’, e, f)
,

for different values of the weight w ∈ [0,1] which categorises the rela-
tive desires to minimise the two factors in the objective functions. We 

consider θ ∈ {0,δ}, as these have been common choices historically in 
the optimal design literature. Note rescaling is including in the third 
optimality problem as the two factors exist on different scales. 

2.3. Examples 

To correspond to a typical confirmatory trial, we assume α = 0.025 
and β = 0.1. The results will not depend on the values of δ and σ; we set δ 
= 0.3 and σ2 = 1 arbitrarily. We focus on two-stage designs (J = 2); some 
results for J = 3 are given in the Supplementary Materials. We allow a 
fixed-sample (J = 1) design to be identified as optimal by allowing t1 =

t2 = 1. Code for reproduction of our results is available from 
https://github.com/mjg211/article_code. 

3. Results 

3.1. Wang-Tsiatis designs 

Fig. 1 shows the ESS, SDSS, MSS, and PIE curves as a function of τ and 

Fig. 3. The optimal values of t1 and f1 are shown, in the stopping for futility designs, as a function of w ∈ [0,1], the weight given to the expected sample size in the 
three optimality criteria, for θ ∈ {0,δ}. 
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t1, for several Δ. It depicts why focusing solely on the ESS may lead to 
designs with large values for the SDSS, MSS, or PIE. For example, the 
smallest considered value of t1 produces the smallest value of ESS(δ) for 
all examined Δ, but its SDSS curve is substantially more variable. 

Accordingly, in Fig. 2 we present the optimal value of t1 for several Δ, 
as a function of w, for the three optimality criteria. We consider only θ =
δ, as the symmetry of Wang-Tsiatis bounds means θ = 0 will always 
recommend a fixed-sample design. 

For the optimality criteria incorporating SDSS(δ) and PIE(δ), small w 
results in a single-stage design (i.e., t1 = 1) being optimal. For larger w, 
the optimal timing of the interim analysis changes rapidly in w; indic-
ative of a large trade-off between the two factors that make up the 
optimality criteria. Results for the optimality problem involving MSS(δ) 
are different; they indicate regardless of Δ and w, t1 in the region of 0.5 is 
optimal. 

3.2. Futility stopping 

Next, we consider optimising t1 and f1 in the designs that allow early 
stopping for futility alone. The solutions as a function of w are given in 
Fig. 3 for θ ∈ {0,δ} for the three optimality criteria. 

For θ = 0, with all three optimality criteria w need not be large for a 
GS approach (i.e., t1 < 1) to be optimal. However, the optimal timing of 
the interim analysis and the optimal futility bound again often change 
quickly in w, and vary substantially across the optimality criteria. For θ 
= δ, the inclusion only of early stopping for futility means a GS design is 
typically only optimal for larger w. 

4. Discussion 

Adaptive designs are not always useful [25]. In a GS design, several 
issues can arise, for example, it may not be clear what will happen to 
trial staff if a study terminates early. Costing the trial can also be more 
challenging, as it may be necessary to determine costs for each possible 
sample size. Such issues mean in some settings the advantages a GS 
design brings may not outweigh the drawbacks. 

Therefore, we have here demonstrated the utility of directly 
considering factors that address disadvantages when optimising the 
design. The optimal design was demonstrated to be highly sensitive to 
the choice of weighting parameter w (Figs. 2–3). Thus, in practice this 
may mean a trialist could choose to compromise on the ESS for, e.g., a 
large reduction in SDSS. By determining what factors matter most to 
their study, our approach would allow a trialist to determine when an 
interim analysis could be most effectively timed, and indeed whether 
one should be conducted at all. 

For two-stage single-arm trials with Bernoulli data, we also demon-
strate in the Supplementary Materials how a small concession on the ESS 
may lead to much larger gains in terms of reducing the SDSS. This echoes 
similar findings from Hanfelt et al. [11] for the MSS. 

In conclusion, we encourage those considering utilising a GS design 
to explicitly evaluate the MSS, SDSS, and PIE when choosing a design. 
They can have a notable impact on the optimal design, and may even 
indicate that a GS design would not be appropriate. 
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Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
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