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Abstract 
Although a range of solar radiation forecasting methods 
have been developed for predicting photovoltaic 
generation, only a few of them focus on solar radiation 
forecasting for building energy demand. From the 
perspective of building performance modelling, solar 
radiation forecasting needs to meet several critical 
requirements including high spatial resolution (1m-2km) 
and high temporal resolution (5-60mins), the accurate 
value of Direct Normal Irradiance (DNI) and Diffuse 
Horizontal Irradiance (DHI), which differs the 
requirement for predicting photovoltaic generation. As 
the geometric sum of DNI and DHI, accurate prediction 
of Global Horizontal Irradiance (GHI) with high spatial-
temporal resolution tends to be the prerequisite for precise 
prediction of DNI and DHI.  
This research aims to construct a hybrid nowcasting 
model to predict GHI in high spatial-temporal resolution. 
In this article, the authors adopt an advanced 
Convolutional Neural Network (CNN) model with 
Residual Neural Network (ResNet) structure to identify 
the cloud image information and predict the GHI at 10 
minutes intervals merely using cloud images captured by 
a ground-based sky camera. On this basis, several ResNet 
structures are compared to achieve the optimal 
nowcasting model for GHI.  
The results present that the ResNet structure can 
efficiently capture the cloud information and the ResNet-
152 achieves better performance than other alternative 
structures on the nowcasting of GHI.  
Finally, the authors discussed the calculation of 
synchronous DNI and DHI using the predictive GHI and 
Dirint model, and the application of DNI and DHI as the 
input for the simulation of building energy management. 
Key Contributions 

• Classifying solar radiation forecasting methods 
and reviewing recent representative articles. 

• Proposing a hybrid method using CNN-ResNet 
models to nowcast solar irradiance. 

• Only using ground-based cloud images as input 
to predict solar irradiation. 

• Comparing several ResNet structures to achieve 
the optimal nowcasting model for GHI. 

Practical Implications 
This study makes it possible for relevant researchers to 
utilise predictive solar radiation data in a convenient 
manner, taking only cloud images as input instead of other 
difficult-to-obtain weather data. 
Introduction 
Due to the increasing cost and carbon emission of 
conventional fossil energy, renewable energy has 
gradually gained increasing interest in the research 
community (Leirpoll, et al., 2021), including architecture 
(Song & Song, 2020). As the representation of renewable 
energy sources, solar energy has great potential capacity 
to building energy management (Guermoui, Melgani, & 
Danilo, 2018). In building energy management, high 
spatial-temporal resolution GHI, DNI and DHI are the 
critical input parameters for achieving high-performance 
buildings through model predictive control (Du, Bandera, 
& Chen, 2019). However, accurate prediction of solar 
radiations at ground level has always been a challenging 
task considering the dynamic nature of cloud movement, 
water vapour and pollution of the air. In this case, many 
solar radiation forecasting methods have been developed 
in the past decades which achieved decent performance in 
their designated spatial and temporal horizons. 
Forecasting Methods for Solar Radiations 
A series of research have provided comprehensive 
reviews on solar radiation forecasting methods and 
proposed their classification of solar radiation forecasting 
methods (Diagne, David, Lauret, Boland, & Schmutz, 
2013) (Antonanzas, et al., 2016) (Yang, Kleissl, 
Gueymard, Pedro, & Coimbra, 2018). Refer to the 
viewpoints of the above research, solar radiation 
forecasting methods are classified into the following 
categories in this article:  
• Numerical Weather Prediction methods (NWPs)   
• Statistical and Learning methods 
• Top-down methods 
• Bottom-up methods 
• Hybrid methods 
Numerical Weather Predictions methods (NWPs) are 
mainly based on the mathematic models of the 
atmosphere and oceans to predict the weather in the future. 
The application of NWPs on solar radiation forecasting 
has the most extended history. It is often only used in large 
national institutions due to the requirement of 



supercomputers for complex calculation. Therefore, NWP 
methods are suitable for macroscopical and long-term 
forecast. Global Forecast System (GFS) and Weather 
Research and Forecasting (WRF) are representative 
models of NWPs.  
Due to the rapid development of computer techniques, 
Statistical and Learning methods have emerged in the last 
several decades. Statistical and Learning methods 
essentially analyse the pattern of historical data to predict 
future data. The most representative statistical methods 
involve Autoregressive Moving Average (ARMA) and 
Autoregressive Integrated Moving Average (ARIMA). 
Typical Learning methods include Support Vector 
Machines (SVM), Decision Trees, Artificial Neural 
Networks (ANNs) and Convolutional Neural Networks 
(CNNs). In general, for discrete models, Statistical and 
Learning methods can perform well in various spatial-
temporal resolution as long as the data samples have the 
appropriate spatial-temporal resolution. 
Top-down methods refer to the analysis of satellite cloud 
images obtained from the atmosphere above. Through 
examining two consecutive cloud images captured by the 
meteorological satellite, cloud motion can be tracked. 
Then, cloud motion is used to achieve predictive cloud 
cover information which is finally translated into the solar 
radiation forecast through mathematic models. The use of 
satellites means these methods have a good performance 
on regional and middle-term solar radiation forecasting. 
Bottom-up forecast methods, which share the similar 
principles to Top-down methods, have emerged in recent 
years because of their potentials for providing high 
spatial-temporal resolution solar radiation forecasting. 
The significant distinctions between Top-down and 
Bottom-up methods are camera position and photograph 
intervals. Typically, for bottom-up methods, a ground-
based all-sky camera called "Total Sky Imager" (TSI) is 
used to photograph cloud images from the ground. Similar 
to the principle of ordinary cameras, TSI can photograph 
cloud information at the intervals from one second to 
several minutes, and the captured images are then used for 
predicting solar radiation in very short-term temporal 
horizons from one second to several minutes.  
Hybrid methods usually consist of two or more of the 
above methods for taking advantage of the strengths of 
each methodology. In recent years, a series of Hybrid 
methods have demonstrated their superior performance 
for predicting forecasting high-quality solar radiation. 
Table 1 shows a series of representative studies on solar 
radiation forecasting between 2018 and 2021. More early 
literature review can refer to a previous study (Chen, Hu, 
& Li, 2019). Table 2 demonstrates the ability of different 
forecasting methods in various spatial-temporal horizons. 
Solar Irradiance Components  
Solar radiation forecasting mainly refers to three crucial 
solar irradiance components: Global Horizontal 
Irradiance (GHI), Direct Normal Irradiance (DNI) and 
Diffuse Horizontal Irradiance (DHI). GHI is the total 
irradiance from the Sun on a horizontal surface on Earth. 

DNI is measured at the surface of the Earth at a given 
location with a surface element perpendicular to the Sun. 
DHI is the radiation at the Earth’s surface from light 
scattered by atmospheric components, such as molecules 
and particles. The relationship between GHI, DNI and 
DHI can be expressed as: 
 GHI = DHI + DNI × cos(θ) (1) 
where θ is the solar zenith angle. 
Research Gaps of Forecasting Methods for 
Solar Radiations  
Based on the review of various forecasting methods for 
solar radiations, a range of significant research gaps are 
summarised as follows:  
Firstly, only a few studies focus on both spatial and 
temporal resolution of solar radiation forecasting.  
Secondly, the data acquisition for most studies tends to 
require complex data types and high-cost equipment.  
Finally, very few studies discuss the generation of DNI 
and DHI nowcasting from GHI nowcasting and the 
application of DNI and DHI nowcasting for the 
simulation of building energy management. 
In fact, filling the above research gaps of solar radiation 
forecasting is significant to the optimisation of building 
energy management. (Kim, Katipamula, & Lutes, 2020) 
indicates that the solar radiation forecast is crucial for 
intelligent load control to manage building loads. At first, 
unlike the huge scale infrastructure, such as regional grids, 
building energy management requires high spatial-
temporal resolution of solar energy information. Thus, the 
nowcasting of solar radiation ranges from 5 to 30 minutes 
in a specific spatial horizon from 1 meter to 2km. In 
addition, most simulation software for building requires 
specific DNI and DHI as input parameters due to the 
orientation of buildings. In the end, most of the individual 
buildings are impossible to afford expensive equipment 
for solar data acquisition. To sum up, it is worth exploring 
a solar radiation nowcasting method to meet the specific 
needs of building energy management.  
The Potential of Hybrid Nowcasting Method 
for Solar Radiations 
Therefore, this research aims to develop a hybrid 
nowcasting model to predict GHI in high spatial-temporal 
resolution. Due to the page limit, this paper focuses on the 
construction of the hybrid nowcasting model.  
The hybrid nowcasting model investigated in this paper 
mainly combines two major solar forecasting methods: 
Statistical methods and Bottom-up methods. Firstly, 
Bottom-up method use a ground-based sky camera to 
capture the cloud images in 10 minutes interval with 2km 
image range. Secondly, convolution neural network 
(CNN), which is a representative Learning method, is 
applied to learn the relation between cloud image and next 
time-step measured GHI. In the end, several ResNet 
structures of CNNs are compared to achieve the optimal 
nowcasting model for GHI. In this way, the high spatial-
temporal resolution nowcasting of GHI are achieved. 



Table 1 Solar radiation forecasting methods developed recently (2018-2021) 
Paper Parameter Frequency Data Resource Crucial Approach 

Numerical Weather Prediction (NWP) Methods 
(Miller, Rogers, Haynesa, Sengupta, & 
Heidinger, 2018) DNI, DHI Hourly,  

3-hour 
Public Meteorological 

Observations CIRACast 

(Pereira, Santos, & Rocha, 2019) GHI Hourly Public Meteorological 
Observations WRF OCP 

Statistical and Learning Methods  

(Yu, et al., 2018) GHI Hourly Weather Application 
Programming Interface (API)  BPN RBFNN ENN 

(Zalata , Robandi, & Riawan, 2018) GHI Hourly Weather Application 
Programming Interface (API)  ANN 

(SORKUN, İNCEL, & PAOLI, 2020) GHI Hourly Public Meteorological 
Observations Deep Learning LSTM 

(Miriyala, Nagalla, & Mitra, 2019) GHI Hourly Weather Application 
Programming Interface (API)  

Optimal Long Short Term 
Memory Networks 

Top-Down Methods  

(Kallio-Myers, Riihelä, Lahtinen, & 
Lindfors, 2020) GHI 15-min Meteorological Satellite Satellite Cloud Image 

(Alonso-Montesinos , Polo, Ballestrín, 
Batlles , & Portillo, 2019) DNI 15-min Meteorological Satellite 

Privately-owned Measurement Satellite Cloud Image 

Bottom-Up Methods  
(Bone, Pidgeon, Kearney, & 
Veeraragavan, 2018) DNI Hourly Ground-based Total Sky 

Imagers Ground Cloud Image 

(Caldas & Suarez , 2019) GHI 1-min Ground-based Total Sky 
Imagers Ground Cloud Image 

(Wang, et al., 2020) GHI 1-min Ground-based Total Sky 
Imagers Ground Cloud Image 

Hybird Methods  

(Kwon, Kwasinski, & Kwasinski, 2019) GHI 1-hour Weather Application 
Programming Interface (API) Nave Bayes Classifier 

(Wu, Li, & Xia, 2021) GHI 1-hour Weather Application 
Programming Interface (API)  MTS-ESN 

(Gentile, et al., 2020) GHI Hourly Meteorological Satellite WRF-ARW 

(Wang, et al., 2019) GHI 10-min Ground-based Total Sky 
Imagers CNN LSTM 

(Leelaruji & Teerakawanich, 2020) GHI 1-2-min Ground-based Total Sky 
Imagers CNN 

Table 2 Ability of Different Methods in Various Spatial-Temporal Horizon 
Methods NWP  Statistical & Learning Top-Down  Bottom-Up  Hybrid  

Spatial Horizon 5-20 km 1 m-2 km 1-10 km 1 m-2 km 1 m-20 km 
Temporal Horizon 4-36 hours 1 second-1 month 30 mins-6 hours 5-30 mins 1 second-1 month 

Methodology  
Figure 1 presents the working flow of the proposed hybrid 
nowcasting model. 
Data Acquisition  
In this study, National Renewable Energy Laboratory 
(NREL)’s Solar Radiation Research Laboratory (SRRL) 
dataset is used as the database. This database was 
established in 1981 by NREL at the South Table 
Mountain Campus (longitude: 105.18° W, latitude: 
39.74° N, elevation: 1,828.2m) (Stoffel & Andreas, 1981) 
(Anderberg & Sengupta, 2014). It provides two types of 
cloud images which were shot by the Yankee Total Sky 
Imager (TSI-800) with 1-min resolution and the EKO all 
Sky Imager with a 10-min resolution. Taking 
consideration of the requirement of this study, it is 
reasonable to select the cloud images photographed by the 

EKO Sky Imager as the training images since EKO Sky 
Imager can shoot an entire sky without shadow-band in a 
10-min resolution. The cloud images were captured with 
a high resolution of 1536*1536. All cloud images are 
colour images with RGB channels. The NREL database 
only records the daytime cloud images according to 
specific weather data. In other words, in different seasons, 
the recording period of cloud images is variable in line 
with the daytime length. In this study, cloud images 
recorded from 6:40 am to 4.30 pm are used. In addition, 
the cases with negative and zero GHI values in the early 
morning and late-night are eliminated from the database.  
Apart from cloud images, numerical meteorological 
parameters including GHI, DNI, DHI, temperature, 
relative humidity, wind speed, etc., are available 
according to various time scales, such as year, hour, 
minute. In addition, the Ineichen and Perez clear sky GHI 



(Stein, Holmgren, Forbess, & Hansen, 2016) are also 
provided. 

 
Figure 1 Working flow of hybrid nowcasting model 

To successfully train the CNN model, it is essential to 
avoid the over-fitting problem. The dataset chosen is 
crucial for model training and testing. From 01/10/2017 
to 01/10/2019, monitored numerical values and cloud 
images in two years are used as the dataset for the model 
training. Then, images and data in the period of 
01/10/2019 to 01/05/2020 are selected as the validation 
set. Moreover, the remaining data in 2020 plays the role 
of the testing set. Finally, the sample numbers in the 
training, validation and testing sets are 35040, 10080 and 
11520, respectively. All these data are generated every 10 
minutes means the CNN model established in this study 
predicts GHI 10 minutes ahead with respect to the time 
resolution.  
Convolutional Neural Networks (CNNs) 
• Basic working principle 
The crucial stage of this article is to predict solar 
irradiance based on cloud images. As an advanced image 
recognition approach, CNN (Convolutional Neural 
Networks) is applied to construct the nowcasting model. 
It has been proved that CNN has enabled great success in 
many research fields, such as speech recognition, image 
recognition (Krizhevsky, Sutskever, & Hinton, 2012), 
natural language processing (Ronan & Jason, 2008), etc.  
CNN can automatically learn features from big data sets 
and generalise the results to the same type of unknown 
data. An entire CNN system typically involves multiple 
convolution sections. Each convolution section contains 
three structures, namely convolution, activation and 
pooling. Multiple convolution sections process feature 
maps in sequence and finally output feature maps that 
capture high-level information of the input image. After 
that, this output result is input into a fully connected layer 
so as to establish the mapping relation between cloud 
image and solar irradiance. In this case, solar irradiance 
can be achieved through the analysis of cloud images. 
Figure 2 presents a typical convolution section’s interior 
logic workflow of the proposed CNN model (ResNet-
152). A convolution section can also be called a stage. In 
general, three maps volume are involved in a stage, as 
shown in Table 3. Different maps volume correspond to 

different solution functions as well as the structures 
mentioned above.  

Table 3 Maps volume in stage 
Map volume 

name Purpose Solution 
function 

Input map 
volume 

Store input image 
information Convolution 

Feature map 
volume 

Store image information 
after kernel filtering Activation 

Pooled map 
volume 

Reduce the space of 
feature maps Pooling 

 
Figure 2 Structure of CNN model (ResNet-152) 

• Convolution (Kernel filtering of input images) 
The essence of Convolution is Kernel filtering 
computation process. In this process, the kernel (filter) is 
the crucial element, which is applied across all the spatial 
locations and convolutes with input map volume (pixels 
of images for the first convolution section and feature 
maps from the previous convolution section otherwise). 
As convolutions are applied to map volumes, 3-D kernels 
are used. Take the first convolution section as an example. 
A 3-D kernel is comprised of multiple 2-D plane kernels. 
This 2-D component only scans picture pixel data under 
plane dimensions. That is to say, the 2-D block slides 
displacements on X and Y instead of axis Z. With respect 
to image structure, RGB channels form the entire picture 
colour and the number of pixels controls the size of the 
image. Combining kernel and image structure, X, Y 
present the total size of the photo along with horizontal 
and vertical directions, while RGB channels represent the 
Z information. Each 2-D image plane requires a 2-D 
kernel to collect data condition. Therefore, three 2-D 
kernels performed on three channels with RGB (Red, 
Green, Blue) and then generate a final feature map after 
convolution effect for a common photo. In this case, a 
picture needs a kernel composed of three 2-D kernels to 
scan. Note that multiple 3-D kernels are typically used to 
output feature maps with multiple channels. 
• Activation (Activation in feature maps volume) 
After the convolution step, to introduce non-linearity, an 
activation function is introduced to calibrate the 
convolution results for each pixel. In fact, the feature map 
volume includes feature maps after applying convolution 
and activation function. 
• Pooling 
As the feature maps have too complex pixel information 
after activation, in this phase, pooling operation, in fact as 
a subsampling manner, intends to decrease the feature 



map resolution. That helps to extract a more informative 
representation and meanwhile reduces the computational 
cost. Three commonly used pooling operations are max 
pooling, average pooling and L2 pooling. Max pooling 
means choosing the max pixel (or feature) value in a 
certain range to replace original data. Average pooling 
refers to selecting the averaged value among certain areas. 
L2 pooling is to take the mean squared value. It’s worth 
noting that pooling is not indispensable, especially under 
abundant computing capacity. Currently, some large 
CNNs only occasionally use pooling.  
A basic CNN stage consists of the aforementioned steps. 
Connecting with each stage constitutes the entire CNN 
structure. The final output of CNN is feature maps that are 
input into networks with follow-up classification or 
regression tasks.  
• Fully Connection Layer 
Fully Connection Layer appearing in CNN is used to 
aggregate information for making a global prediction, 
such as classification or regression. In other words, this 
network is used for achieving the prediction function, 
while the convolutional and max pooling layer is 
responsible for extracting efficient information from 
cloud images. Combining these two processes, the final 
solar irradiance forecast result is obtained. Fully 
Connection Layer establishes the connecting bridge 
between feature map and GHI values.   
The objective function of this study implements the L1 
function. Its target minimises the sum of the absolute 
difference between the target value and the estimated one. 
Another common objective function is L2 which 
minimises the sum of squares of the difference between 
the target and the estimated value. The robustness of L1’s 
loss function is better than L2. The L1 loss function is not 
easily affected by the observation with significant error. 
This is because the L1 increases only one error, while the 
L2 gets the square of the error. When it is large, it needs 
to adjust the model to a greater extent for accommodating 
this observation with L2, so the L2 loss function is not as 
stable as the L1 loss function. In the beginning, the L2 
loss function was adopted to train this model and could 
not reach an ideal result. After changing it to be L1, the 
model can estimate both the magnitude and trend of 
irradiation. 
ResNet Structure of CNN Model 
This study applies the CNN model for solar prediction 
purpose. Theoretically, more layers in depth are able to 
enable more learning capabilities for the neural network. 
However, the degradation problem gradually emerges as 
the increase of CNN layers significantly affects final 
forecast accuracy. Degradation problem refers to the 
problem that as the network depth increases, the final 
model accuracy gradually changes to be saturated and 
then degrades rapidly. In brief, the CNN model forecast 
accuracy level decreases when the number of model 
layers reaches a threshold value. Meanwhile, once the 
network has too many layers, the weight values for 
different neurons tend to be an oversize or undersized 
condition as an accumulation effect along with layers. In 

this case, to solve these two issues, a classical CNN model 
structure of ResNet (Residual Neural Network) was 
implemented in this research (He, Zhang, Ren, & Sun, 
2016). The ResNet structure of the CNN model could 
overcome this problem and make the number of CNN 
layer increase without limitation of layers under the 
premise of remaining forecast precision. 
Facing the degradation problem of multiple layers CNN 
construction, ResNet model integrated residual learning 
block to figure it out. It can enhance the layer of neutral 
network model via residual learning, which allows 
backpropagation to be effectively carried out even when 
certain neurons are saturated. This design makes it can 
efficiently learn very deep neural networks and thus 
outperform traditional CNN models.  
Figure 3 Typical structure of ResNet-152 presents a 
typical structure of the ResNet-152 model. In this 
research, several ResNet models are evaluated. For 
example, the ResNet-152 model consists of 152 
convolution layers, 2 max pooling layer, 2 averaged 
pooling layer and 1 fully connection layer. The block 
indicates the residual block with shortcut mechanism in 
two layers solving the degradation issue and improving 
the training efficiency. 

 
Figure 3 Typical structure of ResNet-152  

Using the CNN-ResNet model, this study can predict the 
Global Horizontal Irradiance (GHI) in 10 minutes ahead 
only using cloud images. 
Result 
In this section, the nowcasting results are listed to denote 
the model performance. In terms of model establishment, 
Table 4 presents the performance of model training. In 
this table, the ResNet-number refers to the layer number 
of corresponding models, as presented in the 
methodology section. Figure 4 shows the CNN model 
training result in terms of the loss function. It indicates 
that the nowcasting model achieves convergence situation 
at training and validation set after 1000 epochs which only 



shows 100 epochs in Figure 4. This phenomenon presents 
the ResNet-152 model has been optimised in maximum. 

 
Figure 4 Loss function for ResNet-152 model training 

It can be observed from Table 4 the ResNet-152 model 
has the optimal performance in forecast accuracy 
regarding performing indicators of Mean Absolute Error 
(MAE), Root Mean Square Error (RMSE). Although all 
these ResNet structures have similar R-values that 
measure the relative ability between variables and 
predicted value, MAE and RMSE are the primary loss 
function indicators indicating that ResNet-152 can 
achieve the optimal forecast condition. For example, the 
RMSE of ResNet-152 is lower than ResNet-34 by 2.9%.  

Table 4 Nowcasting performance of various ResNet  
Method RMSE MAE R 

ResNet-34 65.88 50.89 0.93 

ResNet-50 65.91 50.67 0.93 

ResNet-101 64.86 49.26 0.92 

ResNet-152 63.98 48.11 0.93 
Meanwhile, Figure 5 also presents the comparison 
between predicted values of the ResNet-152 and 
measured values in three typical days. All predicted 
values have a similar trend with measurement data and 
indicate agreement condition with actual values at a high 
degree. Coupling with quantity comparison with Table 4,  
this phenomenon shows that the ability of the ResNet 
model could achieve superior results via a large number 
of layers structure. In addition, the final result meets the 
expectation that the model performance improves with the 
increase of layer, which presents ResNet-152 has the best 
forecast ability. 

 
Figure 5 Measured and predicted GHI in typical days 

Table 5 presents the sky conditions and nowcasting 
performance from Nov.16 to Nov.18. On Nov.16, the sky 
was partly cloudy in the morning and transformed to be 
clear in the afternoon. On Nov.17, it was sunny all day 
without thick clouds. On Nov.18, it was overcast 
throughout the day. It is evident that the nowcasting 
accuracy on Nov.16 is the worst due to the high variability 
of sky conditions. 

Table 5 Nowcasting performance in three typical days 
Date Sky Conditions RMSE MAE R 

Nov.16 Partly Cloudy 67.01 51.31 0.94 
Nov.17 Clear 44.56 32.90 0.98 
Nov.18 Overcast 55.60 46.60 0.90 

Discussion  
In this study, the proposed hybrid nowcasting method for 
GHI mainly includes several advantages compared to 
other studies.  
At first, the classification, comparison and review of 
various solar radiation forecasting methods in this study 
provides a comprehensive horizon of this field.  
Secondly, the developed nowcasting method using 
optimised ResNet structure effectively overcomes the 
limitations of the basic CNN model used in other studies.  
In addition, the comparison of several ResNet structures 
that explore the optimal solution for the nowcasting and 
provides an in-depth understanding of ResNet models.  
Moreover, the proposed nowcasting method only use 
cloud images as the input parameters that decrease the 
application difficulty of the nowcasting method in areas 
without comprehensive meteorological data, such as 
humidity, wind speed, etc.  
Finally, according to the performance evaluation, the 
proposed nowcasting model can achieve a better RMSE 
and MAE compared to most similar solar forecasting 
models.   
Utilisation of GHI Nowcasting for Building  
In addition to developing the GHI nowcasting method, 
this study aims to discuss its utilisation for building 
energy management.  
Although most of the current studies usually apply GHI 
nowcasting for preventing solar energy facilities from 
ramp events (Kong, Jia, Dong, Meng, & Chai, 2020), the 
development of computer science and the advanced 
method of process control, such as Model Predictive 
Control (MPC), can promote the utilisation of GHI 
nowcasting for building energy management. (Dong & 
Lam, 2014) imports the solar radiation value in advance 
into the building control system to adjust interior 
equipment parameters. (Kwak, Seo, Jang, & Huh, 2013) 
adopts the solar forecast to achieve a novel methodology 
for short-term real-time energy demand prediction using 
a building simulated program. (Kummert, André, & 
Nicolas, 2001) utilises predicted solar irradiance 
condition to control the passive solar commercial building, 
which adjusts energy efficiency strategy in line with the 
weather conditions. 
 



Calculation of DNI and DHI from GHI 
Due to the location and orientation of buildings, it is worth 
noting that most simulation software for building energy 
management, such as Energy Plus, usually require 
specific values of DNI and DHI rather than GHI or use in-
built algorithms to calculate the DNI and DHI from GHI. 
Hence, it is worth exploring the methods for calculating 
DNI and DHI from the GHI. (Perez, Ineichen, Maxwell, 
Seals, & Zelenka, 1992) presented a model named 
DIRINT successfully split GHI into DNI and DHI at a 
high precision level. Using the DIRINT model, the 
authors of this article have calculated DNI and DNI from 
predicted GHI with reasonable accuracy compared to 
measurement.  
Limitations and Future Work  
This study has three main limitations. Firstly, the 
temporal horizon of the GHI nowcasting was limited to 
10 minutes interval.  Different temporal horizon ranging 
from 1 minute to 60 minutes should be tested to verify the 
performance of this nowcasting model. Secondly, more 
diverse sky conditions should be tested. Thirdly, the 
evaluation metrics are limited to MAE, RMSE and R in 
this study. Other metrics, such as Mean bias error (MBE), 
Normalized Root Mean Square Error (nRMSE), Mean 
Absolute Percentage Error (MAPE) could be applied. 
Conclusion 
This study developed a hybrid nowcasting method for 
Global Horizontal Irradiance (GHI) using an advanced 
CNN model with ResNet structure to identify the ground 
cloud images information collected by an open database 
– NREL dataset. Several ResNet structures are compared 
to achieve an optimal nowcasting model for GHI. The 
results show that the ResNet structure could efficiently 
capture the significant information of cloud images and 
the ResNet-152 has the optimal performance on solar 
irradiance nowcasting. The final result also indicates that 
a low prediction error and high relative coefficient values 
are obtained. The accomplishment of the nowcasting 
model apparently decreases the difficulty of solar 
irradiance forecast because it only needs to use cloud 
image. Nevertheless, considering the generalisation of 
this study, the proposed nowcasting model should be 
tested in various temporal horizon and weather conditions 
according to more evaluation metrics and optimised in 
future work. 
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