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We use a hybrid k · p theory - tight binding (HkpTB) model to describe interlayer coupling simultaneously

in both Bernal and twisted graphene structures. For Bernal-aligned interfaces, HkpTB is parametrized using

the full Slonczewski-Weiss-McClure (SWMcC) Hamiltonian of graphite1, which is then used to refine the com-

monly used minimal model for twisted interfaces2,3, by deriving additional terms that reflect all details of the

full SWMcC model of graphite. We find that these terms introduce some electron-hole asymmetry in the band

structure of twisted bilayers, but in twistronic multilayer graphene, they produce only a subtle change of moiré

miniband spectra, confirming the broad applicability of the minimal model for implementing the twisted inter-

face coupling in such systems.

I. INTRODUCTION

The discovery of superconductivity in twisted bilayer

graphene (tBLG)4–8 has renewed interest in multilayer

graphene with one9–18 or multiple20–22 twisted interfaces, ex-

ploring topological and correlated-driven phases9–18. Various

theoretical approaches, including continuum model2,3,23–28,

tight-binding27–33 and density functional theory (DFT)33–37,

have established a link between these phenomena and the

existence of nearly flat bands for a twist angle θ ≈ 1.1◦,
known as “magic angle”38. These nearly dispersionless bands

were theoretically predicted for twisted bilayers3 and recently

observed with ARPES39. A detailed analysis in twistronic

graphene structures involving few-layer graphene flakes re-

quires refinement of theoretical models for their dispersion. In

particular, one may wonder how well the use of the full set of

interlayer couplings for bilayers or trilayers with Bernal stack-

ing (which affect the miniband dispersion at low energies)

comply with the minimal interlayer coupling Hamiltonian de-

scribing the hybridization across the twisted interface2,3.

To answer the above question, we develop a hybrid k · p

tight-binding (HkpTB) model and relate its parameters to

the Slonczewski-Weiss-McClure (SWMcC) Hamiltonian for

graphite40–42. The conventional minimal model2,3 is based

on the two-centre approximation23,24 (TCA), which constructs

the interlayer coupling integral from site-to-site hopping. In

HkpTB approach, we express Bloch states as plane-waves lo-

calised in the vertical direction, with the interlayer coupling

(in z-direction) implemented using the framework of tight-

binding model. We derive additional terms in the twistronic

graphene Hamiltonian which account for linear-in-momentum

corrections, proportional to v3 and v4 SWMcC parameters,

stacking-dependent on-site potentials, and next-nearest layer

hoppings, γ2 and γ5.

The analysis below is structured as follows. In Sec. II, we

describe the approach, set notations and then apply it to bi-

layer graphene with an arbitrary lateral offset between the lat-

tices of the two layers, which enables us to fully parametrise

our calculations. In Sec. III, we use that parametrization to

derive the Hamiltonian for tBLG, highlighting corrections be-

yond the minimal model. In Sec. IV, we compute the band

structure of tBLG and discuss the influence of the correcting

terms, and in Sec. V, we analyse minibands in twisted trilayer

(1+2) graphene.

II. FORMALISM

First, we revisit the intralayer and interlayer coupling in a

bilayer system using the basis of eigenfunctions, Ψl,k, in each

layer,













p̂2

2me

+ Vl(r, z)













|Ψl,k〉 = Ew|Ψl,k〉. (1)

Here, l = t, b labels the top and bottom layers, respectively, Ew

is the work function of the state Ψl,k in graphene, and Vl(r, z)

is the potential created by carbon atoms in the layer l. For a

bilayer, this transforms into single-particle Schrödinger equa-

tion,












p̂2

2me

+ Vt(r, z) + Vb(r, z)













|Ψ〉 = E|Ψ〉, (2)

which we solve using the basis of single-layer states43, |Ψk〉 =
∑

l cl,k|Ψl,k〉, and find the bilayer band structure from the fol-

lowing matrix equation,

Ĥ0C = E(I + S)C, (3)

where C is a column matrix made of coefficients cl,k with dif-

ferent quasi-momentum and layer index, I is the unit matrix,

and S contains the overlap integrals between pairs of eigen-

states in the upper and lower layers,

S (lk, l′k′) = 〈Ψl,k|Ψl′,k′〉 − δk,k′δl,l′ . (4)

The matrix elements of the operator Ĥ0 are

H0(lk, lk′) =〈Ψl,k|
p̂2

2me

+ Vt(r, z) + Vb(r, z)|Ψl,k′〉 = (5)

= Ew + 〈Ψl,k|Vl̄(r, z)|Ψl,k′〉,
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where l̄ refers to the opposite layer of l, and

H0(tk, bk′)=〈Ψtk|
p̂2

2me

+Vt(r, z)+
p̂2

2me

+Vb(r, z)− p̂2

2me

|Ψbk′〉

= 2EwS (tk, bk′) − 〈Ψtk|
p̂2

2me

|Ψbk′〉, (6a)

H0(bk, tk′)= 2EwS (bk, tk′) − 〈Ψb,k|
p̂2

2me

|Ψt,k′〉, (6b)

for different layers. The transformation C̃ =
√
I + SC reduces

Eq. (3) to ĤC̃ = EC̃,

Ĥ =
1

√
I + S

Ĥ0

1
√
I + S

≈ Ĥ0 −
1

2

{

Ĥ0,S
}

, (7)

where we expanded (I + S)−1/2 ≈ I − 1
2
S, and

{

X̂, Ŷ
}

denotes

the anticomutator of X̂ and Ŷ .

The following two subsections are devoted to training the

HkpTB approach with two systems, monolayer graphene and

Bernal bilayer graphene. Using the known low-energy band

structure, we quantify the input parameters in the HkpTB de-

scription and use them to describe the coupling across the

twisted interface.

A. Monolayer k·p basis

A monolayer graphene has carbon atoms sitting at the sites

of a planar hexagonal lattice, which divides into two Bravais

sublattices with a lattice constant of a [see Fig. 1(a)]. Around

the corners of the hexagonal Brillouin zone, we use Bloch

functions,

Ψ
( j)

λ,k
(r, z) =

∑

Rλ

e
i(K

( j)

ξ
+k)·Rλ
√

N
Φλ(r −Rλ, z), (8)

Rλ = na1 + ma2 + τλ.

In this expression, a1,2 = (±1/2,
√

3/2)a are the lattice vec-

tors, λ = A, B labels the sublattices, τA = 0, τB = (0, a/
√

3),

N is the number of unit cells and

K
( j)

ξ
= ξK[cos(2π j/3),− sin(2π j/3)], (9)

with j = 0, 1, 2, ξ = ±1 being the valley index and K = 4π/3a.

In Eq. (8), we also introduce orbital functions Φλ. Near the

Fermi level, the energy bands primarily stem from the out-of-

plane pz orbitals of the carbon atoms, affected by a trigonal

directionality towards the closest neighbours on the honey-

comb lattice. This is implemented in our theory by mixing the

s-wave symmetric pz orbital with a small f -wave symmetric

component,

Φλ(r, z) = f (r, z) − δλr3 sin(3ϕ) f̃ (r, z), (10)

where δA = δ, δB = −δ, and r = (x, y) = r(cosϕ, sinϕ) is the

planar projection of the position vector.

FIG. 1. (a) Monolayer graphene lattice, with the A and B sub-

lattices coloured in light blue and black, repectively. The eigen-

function Ψk is depicted by a plane-wave, with a z dependence am-

plitude inherited by pz-orbitals of carbon atoms in graphene. (b)

Graphene reciprocal space, highlighting the corners of the first Bril-

louin zone, K
( j)

ξ
, and six of the smallest reciprocal lattice vectors,

G = ±G1, ±G2, ±(G1 +G2).

We now expand the Bloch functions in Eq. (8) around K
(0)

ξ
.

Retaining the slowly varying harmonics, it takes the form

Ψ
(0)

λ,ξ,k
(r, z) ≈ eik·r

√
NΩ

2
∑

j=0

e
iK

( j)

ξ
·(r−τλ)F {Φλ} (K( j)

ξ
+ k, z),

(11)

with Ω being the area of a unit cell and

F {Φλ} (K ( j)

ξ
+ k, z) ≡

∫

R2

dre
i(K

( j)

ξ
+k)·r
Φλ(r, z) (12)

= F(|K ( j)

ξ
+ k|2, z)

− δλ
2i
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F̃(|K ( j)

ξ
+ k|2, z).

Notice that the functions F and F̃, the Fourier transform of

f and f̃ with respect to r, respectively, are expressed as a

function of the modulus square of the wavevector. This allows
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us to ease the functional form for the expansion around K
( j)

ξ

of Eq. (12),

F {

φs

}

(K
( j)

ξ
+ k, z) ≈ F(K2, z) (13)

+ 2k ·K ( j)

ξ
F′(K2, z) + iδλ24ξK

(

k ×K ( j)

ξ

)

z
F̃
′′′

(K2, z),

where we used expansion in ak ≪ 1, and the prime symbol on

F and F̃ represents the derivative with respect to K2.

The orbital wave functions belonging to the same sub-

lattice are orthonormalized, i.e., 〈Ψ(0)

λ,ξ,k
|Ψ(0)

λ,ξ′,k′〉 ≈ δk,k′δξ,ξ′ .
However, the overlap between orbital wave functions of dif-

ferent sublattices does not vanish. To the first order in k, it is

given by

〈Ψ(0)

A,k
|Ψ(0)

B,k
〉 = 〈Ψ(0)

B,k
|Ψ(0)

A,k
〉∗ ≈ s0π

∗
ξ, (14)

s0 =

∫

dz

Ω
F(K2, z)F′(K2, z),

with πξ ≡ ξkx + iky. To ease the notation, here and subse-

quently we omit the valley index ξ in the subscript of Bloch

functions, as it is a good quantum number. Terms proportional

to δ have been left out since the orbital mixing is assumed

small. In the Hilbert space spanned by Ψ
(0)

λ,k
, we introduce the

overlap matrix analogue to that in Eq. (4),

S λ′,λ(k) ≡ 〈Ψ(0)

λ,k
|Ψ(0)

λ′,k〉 − δλ′,λ, (15)

and the Ĥ0 matrix in Eq. (1), with matrix elements

H0λ′,λ(k) ≈ Ew, (16a)

H0B,A(k) =H∗0 B,A
(k) ≈ ~vπ∗ξ, (16b)

where v = Ews0/~ is the Dirac velocity. Here, we neglect

intra-sublattice hopping. Strictly speaking, due to the non-

vanishing overlap matrix S, the band structure is not given by

the eigenvalues of the matrix Ĥ0, but by those of Ĥ. However,

in this case, the anti-commutator in Eq. (7) contributes with a

second order correction1 in k, which we neglect, leaving

Hg(k) =

(

Ew v~π∗
ξ

v~πξ Ew

)

, (17)

as Dirac Hamiltonian for monolayer graphene.

B. HkpTB model for aligned bilayer graphene with an

arbitrary lateral interlayer off-set

Below, we consider aligned bilayer graphene: two lay-

ers rigidly stacked layers with the same crystallographic axes

with a lateral offset r0, counted from AA stacking [see Fig. 2

(a)]. In the present notation, the plane-wave representation of

the Bloch functions for the bottom layer, denoted by Ψ
(0)

b,λ,k
,

are identical to those of Eq. (11), while their counterparts in

the top layer are

Ψ
(0)

t,λ,k
(r, z) ≈e

i(k·r+K(0)

ξ
·r0)

√
NΩ

2
∑

j=0

e
iK

( j)

ξ
·(r−τλ−r0) (18)

× F {Φλ} (K ( j)

ξ
+ k, z − c0),

with c0 being the interlayer distance. Bernal bilayer graphene

corresponds to the special case r0 = ±τB, and AA stacking

to r0 = 0. We analyse the form of Ĥ in Eq. (7) for Bernal

stacking, with r0 = −τB, and then use the band structure pa-

rameters of Bernal bilayers40–42 to train and parametrise the

HkpTB model.

For the overlap matrix,

S l′λ′,lλ(k) ≡ 〈Ψ(0)

l,λ,k′ |Ψ
(0)

l,λ,k
〉 − δk′,kδl′,lδλ′,λ, (19)

using the basis Ψ
(0) †
k
=

(

Ψ
(0) ∗
t,A,k
,Ψ

(0) ∗
t,B,k
,Ψ

(0) ∗
b,A,k
,Ψ

(0) ∗
b,B,k

)

, the ma-

trix elements of the interlayer sector read

S tA,bA(k) = S tB,bB(k) (20a)

=

[

6K

∫

dz

Ω
F(K2, z − c0)F′(K2, z)

]

π∗ξ,

S tA,bB(k) =

[

6K

∫

dz

Ω
F(K2, z − c0)F′(K2, z) (20b)

−72δK2

∫

dz

Ω
F(K2, z − c0)F̃

′′′
(K2, z)

]

πξ

S tB,bA(k) = 3

∫

dz

Ω
F(K2, z − c0)F(K2, z), (20c)

The equations above are then used to write the matrix ele-

ments of Ĥ,

Htλ,bλ′ (k) =EwS tλ,bλ′ (k) +
~

2

2m
〈Ψ(0)

t,λ,k
|∇2|Ψ(0)

b,λ′,k〉,

H(k) ≈












Hg(k) + Et Tk

T
†
k

Hg(k) + Eb













, (21)

Tk =















−~v4π
∗
ξ
−~v3πξ

γ1 −~v4π
∗
ξ















,

Eα =
(

EαA 0

0 EαB

)

,

where α = t, b. The three parameters in Tk are related to the

commonly used Bernal bilayer band structure parameters

γ1 =3

∫

dz

Ω
F(K2, z − c0)

(

Ew + Ô(K, ∂z)
)

F(K2, z), (22a)

v4 = −
6K

~

∫

dz

Ω
F(K2, z − c0) (22b)

×
[

Ew + Ô(K, ∂z)
]

F′(K2, z),

v3 =v4 +
72K2δ

~

∫

dz

Ω
F(K2, z − c0) (22c)

×
[

Ew + Ô(K, ∂z)
]

F̃
′′′

(K2, z),

Ô(Q, ∂z) ≡ (~2/2m)
(

∂2
z − Q2

)

.

The other commonly used parameter in Bernal bilayer

graphene is the energy difference between dimer and non-

dimer sites,

∆′ = EtB − EtA = EbA − EbB = 9V, (23)
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where

Et/b,λ ≡ 〈Ψ(0)

t/bλ,k′ |Vb/t(r, z)|Ψ(0)

t/b,λ,k
〉, (24)

EtA =EbB = −6V,
EtB =EbA = 3V,

V ≡ 1

Ω

∫ ∞

−∞
dzVG

t (z)|F(K2, z)|2

=
1

Ω

∫ ∞

−∞
dzVG

b (z)|F(K2, z − c0)|2,

Vt/b(r, z) =
∑

G

(

eiG·r + eiG·(r±τB)
)

VG

t/b(z).

Here, the sum over G covers the six smallest reciprocal lattice

vectors, with modulus |G| = 4π/
√

3a, as shown in Fig. 1

(b), and we omit the Fourier component of the potentials at

G = 0, which produces a constant diagonal term, absorbed in

the overall energy shift of the resulting spectrum.

Equation (21) is the complete form of the SWMcC Hamil-

tonian, where we adopted the convention in Ref.46, which

includes a minus sign in front of v3 > 0. This sign deter-

mines the orientation of the trigonal distortion and the three

Dirac replicas of the band structure of bilayer graphene at very

low energies, and it has been shown to be negative in DFT

analysis46 and in recent ARPES measurements49. We point

out that an extra term in Eq. (22c), (v3 − v4), is a consequence

of asymmetry of A and B on-site orbitals in Eq. (10).

For an arbitrary shift of the top layer r0, interlayer matrix

elements of Hamiltonian Ĥ are

HtA,bA(k) =HtB,bB(k) ≈ γ1

3

∑

j

e
i(K

( j)

ξ
−K(0)

ξ
)·r0 (25)

−2

3
v4~

∑

j

e
i(K

( j)

ξ
−K(0)

ξ
)·r0k ·

K
( j)

ξ

K
,

HtA,bB(k) ≈γ1

3

∑

j

e
i(K

( j)

ξ
−K(0)

ξ
)·r0 eiξ 2π

3
j

−2

3
v4~

∑

j

e
i(K

( j)

ξ
−K(0)

ξ
)·r0 eiξ 2π

3
jk ·

K
( j)

ξ

K

+iξ
2

3
(v3 − v4)~

∑

j

e
i(K

( j)

ξ
−K(0)

ξ
)·r0 eiξ 2π

3
j





















k ×
K

( j)

ξ

K





















z

,

HtB,bA(k) ≈γ1

3

∑

j

e
i(K

( j)

ξ
−K(0)

ξ
)·r0 e−iξ 2π

3
j

−2

3
v4~

∑

j

e
i(K

( j)

ξ
−K(0)

ξ
)·r0 eiξ 2π

3
jk ·

K
( j)

ξ

K

−iξ
2

3
(v3 − v4)~

∑

j

e
i(K

( j)

ξ
−K(0)

ξ
)·r0 e−iξ 2π

3
j





















k ×
K

( j)

ξ

K





















z

,

FIG. 2. (a) Sketch of bilayer graphene, with a lateral offset r0 in the

top layer, and (b) twisted bilayer graphene, with the top/bottom layer

rotated by ±θ/2. The rotation axis is depicted by a purple vertical

line. (c) First Brillouin zone of the top (bottom) in red (blue), high-

lighting the origin, or Γ-point, and the corner K
(0)
t,+ (K

(0)

b,+
). (d) First

moiré Brillouin zone (mBZ), highlighting the high symmetry points.

while those in the intralayer sector are

EtA =EbB =
∆′

9

∑

G

(

1 + e−iG·τB

)

eiG·r0 , (26)

EtB =EbA =
∆′

9

∑

G

(

1 + e+iG·τB

)

eiG·r0 .

For the case r0 = −τB, we recover the matrix elements of

Bernal bilayer graphene.

III. INTERLAYER COUPLING ACROSS ONE TWISTED

INTERFACE

In twisted bilayer graphene, the crystallographic axes of the

two constituting layers form an angle θ. For small angles, the

Hamiltonian of one electron in such system can be constructed

with the same methodology as in the previous section, but us-

ing a spatially modulated top-layer shift r0 = θ ẑ×r, where ẑ

is the unit vector in the vertical direction. As a result, the inter-

layer hybridisation acquires periodic coordinate dependence.

For the minimal model, which corresponds to taking into ac-

count only the first term in each matrix element in Eq. (25),

the interlayer coupling becomes















HtA,bA(r) HtA,bB(r)

HtB,bA(r) HtB,bB(r)















≈ γ1

3

2
∑

j=0















1 eiξ 2π
3

j

e−iξ 2π
3

j 1















e
i(∆K

(0)

ξ
−∆K( j)

ξ
)·r
.

(27)
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Bilayer graphene v (m/s) γ1 (eV) v3 (m/s) v4 (m/s) ∆′ (eV) γ2 (eV) γ5 (eV)

Kuzmenko et al44 1.02·106 0.381 1.23·105 4.54·104 0.022 - -

Zhang et al45 3.0 0.40 0.3 0.15 0.018 - -

Jung et al46 8.45·105 0.361 9.17·104 4.47·104 0.015 - -

Bulk graphite v (m/s) γ1 (eV) v3 (m/s) v4 (m/s) ∆′ (eV) γ2 (eV) γ5 (eV)

Dresselhaus et al47 1.02·106 0.39 1.02·105 1.43·104 0.025 -0.020 0.038

Yin et al48 1.02·106 0.39 1.02·105 2.27·104 0.025 -0.017 0.038

TABLE I. List of SWMcC parameters found in the literature. For numerical simulations on bilayer graphene, we adopt the parameters of

Kuzmenko et al44. For numerical simlations of trilayer graphene, we adopt parameters by Dresselhaus et al.47. Relations of these parameters

to the HkpTB parametrization used in the present work is given by Eqs. 22, 23, 24, and 35. Notice that, in our notation, the difference between

dimer and non-dimer sites in bulk graphite is give by 2∆′.

Additionally, it is necessary to perform a unitary transforma-

tion to account for reciprocal space rotation between the top

and bottom layers, which shifts their K-points, K
(0)

t,ξ
in the top

layer and K
(0)

b,ξ
in the bottom layer, by ±∆K(0)

ξ
/2, respectively,

H → U†HU (28)

U =
















e
i∆K

(0)

ξ
·r/2
I 0

0 e
−i∆K

(0)

ξ
·r/2
I

















,

where I is the 2 × 2 unit matrix in the A-B sublattice space,

and

K
( j)

ξ
· r0 = θ

(

K
( j)

ξ,y
,−K

( j)

ξ,x

)

· r = −∆K( j)

ξ
· r.

Unitary transformation in Eq. (28) gives a twisted interface

coupling in the form2,3,23,24

HMM(r) =















H t(r) T (r)

T †(r) Hb(r)















, (29)

H t/b(r) ≡














0 v~(−ξi∂x − ∂y ± iθK/2)

v~(−ξi∂x + ∂y ∓ iθK/2) 0















,

T (r) =
γ1

3

2
∑

j=0















1 eiξ 2π
3

j

e−iξ 2π
3

j 1















e
−i∆K

( j)

ξ
·r

The HkpTB approach enables us to refine the description of

the interlayer sector of the Hamiltonian, and the effect of mod-

ulating on-site energy, which is written below in the 2D plane-

wave basis, suitable for the miniband analysis upon folding

onto a small mini Brillouin zone of the moiré superlattice. The

interlayer hybridisation of states is, then, described by

Tk,k′ =
γ1

3

2
∑

j=0















1 eiξ 2π
3

j

e−iξ 2π
3

j 1















δ
k′,k+∆K(0)

ξ
−∆K( j)

ξ

, (30)

+
~v4

3K

2
∑

j=0

(k + k′) ·K ( j)

ξ















1 eiξ 2π
3

j

e−iξ 2π
3

j 1















δ
k′,k+∆K(0)

ξ
−∆K( j)

ξ

+ iξ
~(v3 − v4)

3K

2
∑

j=0

[

(k + k′) ×K ( j)

ξ

]

z















0 eiξ 2π
3

j

−e−iξ 2π
3

j 0















× δ
k′,k+∆K(0)

ξ
−∆K( j)

ξ

,

supplemented by the potential created by one layer on the

other,

Ek′,k =
∆′

9

∑

G















1 + eiG·τB 0

0 1 + e−iG·τB















δk′,k+∆G. (31)

Here, ∆G ≡ θẑ × G is the wavenumber mismatch between

the reciprocal lattice vector of the top and bottom layers, and

we recall that the sum over G extends over the six smallest

reciprocal lattice vectors, ±G1, ±G2 and ±(G1 +G2).

IV. TWISTED BILAYER GRAPHENE

Now, we compute the miniband spectra of twisted bilayer

using the refined twisted interface coupling in Eq. (32) and

compare it with the spectra computed using the minimal

model. The miniband spectra are computed by zone folding

and diagonalisation of plane-wave states coupled by the inter-

layer hybridization terms in Eq. (30) and the additional moiré

superlattice potential in Eq. (31),

H(k′,k) =

















H t
k′,k + Ek′,k Tk′,k
T †
k,k′ Hb

k′,k + E
†
k′,k

















, (32)

H t/b

k′,k =

















0 v~π∗
t/b,ξ

v~πt/b,ξ 0

















δk′,k,

πt/b,ξ = ξkx + i(ky ∓ θK/2).

Examples of the resulting dispersions are shown in Fig. 3

(a) and (b), for a larger angle and for a magic angle, respec-

tively. For twist angles θ = 2◦, the band structure around the

corners of the mini Brillouin zone, at κ and κ′, inherits the

conical dispersion from that of monolayer graphene, with a

lower Dirac velocity3. The band anticrossing produces saddle

points in the first valence and conduction bands, which reflect

themselves as van Hove singularities (vHS) in the density of

states above and below the charge neutrality point50. For θ = 2

angle, the band structures obtained using the minimal model

and full SWMcC HkpTB model are virtually indistinguish-

able.
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FIG. 3. Twisted bilayer graphene at (a) θ = 2◦ and (b) θ = 1.1◦, with v = 1.02·106 m/s, γ1 = 0.381 eV, v3 = 1.23·105 m/s, v4 = 4.54·104 m/s and

∆′ = 0.022 eV44. Band structure using the HkpTB model for the twisted interface (left) and band structure using the minimal model2,3(middle).

Band structure along the high symmetry cut γ − κ − κ′
− γ using Eq. (32) (solid lines) and minimal model (dashed lines) in the twisted

interface.

The minimal model also predicts that the value for the

renormalised Fermi velocity diminishes as the twist angle

decreases2,3, vanishing for an angle of θ = 1.1◦ [see Fig.3(b)].

At this angle, the first valence and conduction bands span just

a few meV, which results in a strong enhancement of the den-

sity of states. The additional terms introduced by the full set

of SWMcC parameters in Eq. (32) do not, does not change

qualitatively this picture, yet they push other dispersive bands

upwards in energy. This results in the formation of a gap of

≈ 15 meV on the conduction side, a clear spectral isolation

of “zero-energy” bands painted in red, from those above it

in blue, and a small peak in the flat band dispersion around

the moiré Brillouin zone γ-point, which agrees with the trend

found in recent DFT calculations51.

V. TWISTED TRILAYER (1+2) GRAPHENE

Here, we combine the generalised interlayer coupling in

Eqs. (30) and (31) with the full SWMcC description of bi-

layer graphene in Eq. (21) to decribe twisted trilayer (1+2)

graphene: a monolayer stacked at a rotational fault upon a
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FIG. 4. Twisted trilayer graphene at (a) θ = 2◦ and (b) θ = 1.1◦, with v = 1.02 · 106 m/s, γ1 = 0.39 eV, v3 = 1.02 · 105 m/s, v4 = 1.43 · 104 m/s,

∆′ = 0.025 eV, γ2 = −0.02 eV, and γ5 = 0.038 eV47. Band structure using the HkpTB model in the twisted interface (left), band structure using

the minimal model (middle), and band structure along the high symmetry cut γ − κ − κ′
− γ using the HkpTB (solid lines) and minimal

(dashed lines) models in the twisted interface (right).

Bernal bilayer. As compared to twisted bilayers, for trilayer

graphene, the SWMcC Hamiltonian contains an additional

2 × 2 blocks that accounts for tunnelling between the top-

most layer and the bottommost layer40–42,52. In case of Bernal

graphite, such couplings are accounted for by γ5 and γ2 hop-

ping parameters, which distinguish the next-nearest layer cou-

pling for electrons on the lower graphene sites that appear un-

der the carbon (dimer sites with γ5) or the empty center of

hexagon (non-dimer sites with γ2) in the layer above. The

above mentioned difference reflects on the influence of the

middle layer on the electron tunnelling between the outer lay-

ers in, e.g., Bernal trilayer. For a twistronic trilayer, we also

account for such difference by distinguishing the couplings

between A and B sublattice Bloch states in the bottom layer of

Bernal bilayer with the plane wave states in the top (twisted)
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layer, which results in the overall trilayer Hamltonian,

H(k′,k) = (33)






























H t
k′,k + Ek′,k Tk′,k Gk′,k

T †
k,k′ Hb

k′,k + E
†
k′,k + Et Tb,k′,k

G†
k,k′ T

†
b,k′,k Hb

k′,k + Eb































,

Tb,k′,k ≡



















−~v4π
∗
b,ξ
−~v3πb,ξ

γ1 −~v4π
∗
b,ξ



















,

Gk′,k ≡
1

6

2
∑

j=0















γ5eiξ 2π
3

j γ2e−iξ 2π
3

j

γ5 γ2eiξ 2π
3

j















δ
k′,k+∆K(0)

ξ
−∆K( j)

ξ

,

(34)

where

γ2,5 = 6

∫

dz

Ω
F(K2, z − c0)

[

Ew + Ô(K, ∂z)
]

F(K2, z + c0).

(35)

While the numerical values of these two parameters for

twistronic trilayers, as well as the variations of on-site ener-

gies for the dimer and non-dimer sites, may differ from those

in bulk graphite of Bernal bilayers, for example, due to a small

variation of mean interlayer spacing, we expect their relative

size to be similar. Hence, we use the values from Bernal

graphite literature to assess the influence of these additional

couplings on the miniband spectra of twistronic trilayers.

The computed spectra of moiré minibands are shown in the

leftmost panel of Figs. 4 (a) and (b), for θ = 2◦ and θ = 1.1◦,
respectively, in comparison with the minibands computed us-

ing the minimal model. The comparison of the two spectra

shows that the influence of the additional terms, accounting

for the full set of SWMcC couplings, is weak, suggesting that

minimal model for the twisted interface coupling can be safely

combined with the most detailed description of the Bernal-

stacking part of twistronic few-layer graphene for the analysis

of flat bands in such systems10,11,53.

VI. SUMMARY

In this report, we construct the interacting Hamiltonian be-

tween two twisted graphene layers, first decomposing Bloch

functions into plane-waves confined in the perpendicular di-

rection, and then evaluating explicitly the matrix elements of

single-particle Hamiltonian. We find that the zeroth-order ex-

pansion of the resulting coupling yields the well-known con-

tinuum model used in the literature. In turn, we find a con-

tribution linear in momentum, which unlike existing models,

recovers the skew coupling for the limiting case of θ → 0◦ and

bears new features to the band structure, such as the electron-

hole asymmetry and the formation of gaps. For structures that

combine both twisted and aligned interfaces, the first order

contribution represents a small correction. This suggests that

the simultaneous use of the minimal model for twisted inter-

faces and the full SWMcC description in the Bernal few-layer

part of multilayer twistronic structure provides a reliable de-

scription of the band structure.
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