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Abstract
Word embeddings have become a standard resource in the toolset of any Natural Language Processing
practitioner. While monolingual word embeddings encode information about words in the context of a
particular language, cross-lingual embeddings define a multilingual space where word embeddings from
two or more languages are integrated together. Current state-of-the-art approaches learn these embeddings
by aligning two disjoint monolingual vector spaces through an orthogonal transformation which preserves
the structure of the monolingual counterparts. In this work, we propose to apply an additional transforma-
tion after this initial alignment step, which aims to bring the vector representations of a given word and its
translations closer to their average. Since this additional transformation is non-orthogonal, it also affects
the structure of the monolingual spaces. We show that our approach both improves the integration of the
monolingual spaces as well as the quality of the monolingual spaces themselves. Furthermore, because
our transformation can be applied to an arbitrary number of languages, we are able to effectively obtain a
truly multilingual space. The resulting (monolingual and multilingual) spaces show consistent gains over
the current state-of-the-art in standard intrinsic tasks, namely dictionary induction and word similarity,
as well as in extrinsic tasks such as cross-lingual hypernym discovery and cross-lingual natural language
inference.

1. Introduction
A popular research direction in multilingual Natural Language Processing (NLP) consists in
learning mappings between two or more monolingual word embedding spaces. These mappings,
together with the initial monolingual spaces, define a multilingual word embedding space in
which words from different languages with a similar meaning are represented as similar vec-
tors. Such multilingual embeddings do not only play a central role in multilingual NLP tasks, but
they also provide a natural tool for transferring models that were trained on resource-rich lan-
guages (typically English) to other languages, where the availability of annotated data may be
more limited.

State-of-the-art models for aligning monolingual word embeddings currently rely on learning
an orthogonal mapping from the monolingual embedding of a source language into the embed-
ding of a target language. Somewhat surprisingly, perhaps, this restriction to orthogonal mappings,
as opposed to arbitrary linear or even non-linear mappings, has proven crucial to obtain optimal
results. The advantages of using orthogonal transformations are two-fold. First, because they are
c© Cambridge University Press 2019



2 Natural Language Engineering

more constrained than arbitrary linear transformations, they can be learned from noisy data in a
more robust way. This plays a particularly important role in settings where alignments between
monolingual spaces have to be learned from small and/or noisy dictionaries (Artetxe et al. 2017),
including dictionaries that have been heuristically induced in a purely unsupervised way (Artetxe
et al. 2018b; Conneau et al. 2018a). Second, orthogonal transformations preserve the distances
between the word vectors, which means that the internal structure of the monolingual spaces
is not affected by the alignment. Approaches that rely on orthogonal transformations thus have
to assume that the word embedding spaces for different languages are approximately isometric
(Barone 2016). However, it has been argued that this assumption is not always satisfied (Søgaard
et al. 2018; Kementchedjhieva et al. 2018; Patra et al. 2019). Moreover, rather than treating the
monolingual embeddings as fixed elements, we may intuitively expect that embeddings from dif-
ferent languages may actually be used to improve each other. This idea was exploited by Faruqui
and Dyer (2014), who learn linear mappings from two monolingual spaces onto a new, shared,
multilingual space. They found that the resulting changes to the internal structure of the monolin-
gual spaces can indeed bring benefits. In multilingual evaluation tasks, however, their method is
outperformed by approaches that rely on orthogonal transformations (Artetxe et al. 2016).

While the emphasis has shifted from static word vectors to contextualised language models
in recent years, it is worth mentioning that static vectors remain an important case of study. On
the one hand, static vectors are still needed in applications where the computational demands
of contextualised language models are prohibitive, or where word meaning needs to be captured
in the absence of context (e.g., ontology alignment). On the other hand, static vectors can also
provide useful prior knowledge when training contextualised models such as mBERT (Devlin
et al. 2019). In particular, Artetxe et al. (2020) show how static cross-lingual embeddings can be
exploited for zero-shot multilingual transfer of contextualised models.

In this article, we propose a simple method which combines the advantages of orthogonal
transformations with the potential benefit of allowing monolingual spaces to affect each other’s
internal structure. Specifically, we first align the given monolingual spaces by learning an orthog-
onal transformation using an existing state-of-the-art method. Subsequently, we aim to reduce any
remaining discrepancies by trying to find the middle ground between the aligned monolingual
spaces. Specifically, let (w, v) be an entry from a bilingual dictionary (i.e., v is the translation of
w), and let w and v be the vector representations of w and v in the aligned monolingual spaces.
Our aim is to learn linear mappings Ms and Mt such that wMs ≈ vMt ≈ v+w

2 , for each entry
(w, v) from a given dictionary. Crucially, because we start from monolingual spaces which are
already aligned, applying the mappings Ms and Mt can be thought of as a fine-tuning step. We
will refer to this proposed fine-tuning step as Meemi (Meeting in the middle)a. Our experimental
analysis reveals that this combination of an orthogonal transformation followed by a simple non-
orthogonal fine-tuning step consistently, and often substantially outperforms existing approaches
in cross-lingual evaluation tasks. We also find that the proposed transformation leads to improve-
ments in the monolingual spaces, which, as already mentioned, is not possible with orthogonal
transformations. This article extends our earlier work in Doval et al. (2018) in the following ways:

(1) We introduce a more general formulation of Meemi, in which the averages that are used
to compute the linear transformations can be weighted (e.g. by word frequencies as we
explore in this paper).

(2) We generalize the approach to an arbitrary number of languages, thus allowing us to learn
truly multilingual vector spaces.

aCode is available at https://github.com/yeraidm/meemi. This page will be updated with pre-trained models for new
languages.
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(3) We more thoroughly compare the obtained multilingual models, extending the number of
baselines and evaluation tasks. We now also include a more extensive analysis of the results,
e.g. studying the impact of the size of the bilingual dictionaries in more detail.

(4) In the evaluation, we now include two distant languages which do not use the Latin
alphabet: Farsi and Russian. This will further support the generalization of our conclusions.

2. Background: Cross-lingual Alignment Methods
In this article we analyze cross-lingual word embedding models that are based on aligning mono-
lingual vector spaces. The overall process underpinning these methods is as follows. Given two
monolingual corpora, a word vector space is first learned independently for each language. This
can be achieved with standard word embedding models such as Word2vec (Mikolov et al. 2013a),
GloVe (Pennington et al. 2014) or FastText (Bojanowski et al. 2017). Second, a linear alignment
strategy is used to map the monolingual embeddings to a common bilingual vector space. It is
worth mentioning that we do not require parallel or comparable corpora to build our multilingual
models as in the case of Zennaki et al. (2019) or Vulić and Moens (2016).

These linear transformations are learned from a supervision signal in the form of a bilingual
dictionary (although some methods can also deal with dictionaries that are automatically generated
as part of the alignment process; see below). This approach was popularized by Mikolov et al.
(2013b). Specifically, they proposed to learn a matrix W which minimizes the following objective:

n

∑
i=1
‖xiW− zi‖2 (1)

where we write xi for the vector representation of some word xi in the source language and zi is the
vector representation of the translation zi of wi in the target language. This optimization problem
corresponds to a standard least-squares regression problem, whose exact solution can be efficiently
computed (although Mikolov et al. (2013b) do not use this method). Note that this approach
relies on a bilingual dictionary containing the training pairs (x1, z1), ..., (xn, zn). However, once
the matrix W has been learned, for any word w in the source language, we can use xW as a
prediction of the vector representation of the translation of w. In particular, to predict which word
in the target language is the most likely translation of the word w from the source language, we
can then simply take the word z whose vector z is closest to the prediction xW.

The restriction to linear mappings might intuitively seem overly strict. However, it was found
that higher-quality alignments can be found by being even more restrictive. In particular, Xing
et al. (2015) suggested to normalize the word vectors in the monolingual spaces, and restrict
the matrix W to an orthogonal matrix (i.e., imposing the constraint that WWT = 1). Under this
restriction, the optimization problem (1) is known as the orthogonal Procrustes problem, whose
exact solution can still be computed efficiently. Another approach was taken by Faruqui and Dyer
(2014), who proposed to learn linear transformations Ws and Wt, which respectively map vec-
tors from the source and target language word embeddings onto a shared vector space. They
used Canonical Correlation Analysis to find the transformations Ws and Wt which minimize
the dimension-wise covariance between XWs and ZWt, where X is a matrix whose rows are
x1, ..., xn and similarly Z is a matrix whose rows are z1, ..., zn. Note that while the aim of Xing
et al. (2015) is to avoid making changes to the cosine similarities between word vectors from the
same language, Faruqui and Dyer (2014) specifically want to take into account information from
the other language with the aim of improving the monolingual embeddings themselves. Artetxe
et al. (2016) propose a model which combines ideas from Xing et al. (2015) and Faruqui and Dyer
(2014). Specifically, they use the formulation in (1) with the constraint that W be orthogonal, as
in Xing et al. (2015), but they also apply a preprocessing strategy called mean centering which is
closely related to the model from Faruqui and Dyer (2014). On top of this, in Artetxe et al. (2018a)
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they propose a multi-step framework in which they experiment with several pre-processing and
post-processing strategies. These include whitening (which involves applying a linear transforma-
tion to the word vectors such that their covariance matrix is the identity matrix), re-weighting each
coordinate according to its cross-correlation (which means that the relative importance of those
coordinates with the strongest agreement between both languages is increased), de-whitening (i.e.,
inverting the whitening step to restore the original covariances), and a dimensionality reduction
step, which is seen as an extreme form of re-weighting (i.e., those coordinates with the least
agreement across both languages are simply dropped). They also consider the possibility of using
orthogonal mappings from both embedding spaces into a shared space, rather than mapping one
embedding space onto the other, where the objective is based on maximizing cross-covariance.
This route is also followed by Kementchedjhieva et al. (2018). Other approaches that have been
proposed for aligning monolingual word embedding spaces include models which replace (1) with
a max-margin objective (Lazaridou et al. 2015) and models which rely on neural networks to learn
non-linear transformations (Lu et al. 2015).

A central requirement of the aforementioned methods is that they need a sufficiently large
bilingual dictionary. Several approaches have been proposed to address this limitation, showing
that high-quality results can be obtained in a purely unsupervised way. For instance, Artetxe et al.
(2017) propose a method that can work with a small synthetic seed dictionary, e.g., only con-
taining pairs of identical numerals (1,1), (2,2), (3,3), etc. To this end, they alternatingly use the
current dictionary to learn a corresponding orthogonal transformation and then use the learned
cross-lingual embedding to improve the synthetic dictionary. This improved dictionary is con-
structed by assuming that the translation of a given word w is the nearest neighbor of xW among
all words from the target language. This approach was subsequently improved in Artetxe et al.
(2018b), where state-of-the-art results were obtained without even assuming the availability of a
synthetic seed dictionary. The key idea underlying their approach, called VecMap, is to initialize
the seed dictionary in a fully unsupervised way based on the idea that the histogram of similarity
scores between a given word w and the other words from the source language should be similar to
the histogram of similarity scores between its translation z and the other words from the target lan-
guage. Another approach which aims to learn bilingual word embeddings in a fully unsupervised
way, called MUSE, is proposed in Conneau et al. (2018a). The main difference with VecMap lies
in how the initial seed dictionary is learned. For this purpose, MUSE relies on adversarial train-
ing (Goodfellow et al. 2014), similar as in earlier models (Barone 2016; Zhang et al. 2017a) but
using a simpler formulation, based on the model in (1) with the orthogonality constraint on W.
The main intuition is to choose W such that it is difficult for a classifier to distinguish between
word vectors z sampled from the target word embedding and vectors xW, with x sampled from
the source word embedding. There have been other approaches to create this initial bilingual dic-
tionary without supervision via adversarial training (Zhang et al. 2017b; Hoshen and Wolf 2018;
Xu et al. 2018) or stochastic processes (Alvarez-Melis and Jaakkola 2018), but their performance
has not generally surpassed existing methods (Artetxe et al. 2018b; Glavaš et al. 2019). For a more
comprehensive summary of existing methods, please refer to Ruder et al. (2019).

In this work, we make use of the three mentioned variants of VecMap, namely the super-
vised implementation based on the multi-step framework from Artetxe et al. (2018a), which
will be referred to as VecMapmultistep, the orthogonal method (VecMaportho) (Artetxe et al. 2016)
and its unsupervised version (VecMapuns) (Artetxe et al. 2018b). Similarly, we will consider the
supervised and unsupervised variants of MUSE (MUSE and MUSEuns, respectively) (Conneau
et al. 2018a). In the next section we present our proposed post-processing method based on an
unconstrained linear transformation to improve the results of the previous methods.b

bOther works have also shown how the orthogonal constrain can be relaxed (Joulin et al. 2018) when training with a specific
bilingual dictionary induction objective, but this has been shown not to be optimal for other tasks (Glavaš et al. 2019).
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Figure 1. Step by step integration of two monolingual embedding spaces: (1) obtaining isolated monolingual
spaces, (2) aligning these spaces through an orthogonal linear transformation, and (3) map both spaces
using an unconstrained linear transformation learned on the averages of translation pairs.

3. Fine-tuning Cross-lingual Embeddings by Meeting in the Middle
After the initial alignment of the monolingual spaces, we propose to apply a post-processing step
which aims to bring the two monolingual spaces closer together by lifting the orthogonality con-
straint. To this end, we learn an unconstrained linear transformation that maps word vectors from
one space onto the average of that word vector and the vector representation of its translation
(according to a given bilingual dictionary). This approach, which we call Meemi (Meeting in the
middle) is illustrated in Figure 1. In particular, the figure illustrates the two-step nature, where we
first learn an orthogonal transformation (using VecMap or MUSE), which aligns the two monolin-
gual spaces as much as possible without changing their internal structure. Then, our approach aims
to find a middle ground between the two resulting monolingual spaces. This involves applying a
non-orthogonal transformation to both monolingual spaces.

By averaging between the representations obtained from different languages, we hypothe-
size that the impact of language-specific phenomena and corpus specific biases will be reduced
whereas its core semantic features will become more dominant. However, because we start from
aligned spaces, the changes which are made by this transformation are relatively small. Our trans-
formation is thus intuitively fine-tuning the usual orthogonal transformation, rather than replacing
it. Note that this approach can naturally be applied to more than two monolingual spaces (Section
3.2). First, however, we will consider the standard bilingual case.

3.1 Bilingual models
Let D be the given bilingual dictionary, encoded as a set of word pairs (w, w′). Using the pairs in
D as training data, we learn a linear mapping X such that wX≈ w+w′

2 for all (w, w′)∈D, where
we write w for the vector representation of word w in the given (aligned) monolingual space. This
mapping X can then be used to predict the averages for words outside the given dictionary. To find
the mapping X, we solve the following least squares linear regression problem:

E = ∑
(w,w′)∈D

∥∥∥∥wX− w + w′

2

∥∥∥∥2

(2)

Similarly, we separately learn a mapping X′ such that w′X′ ≈ w+w′
2 .

It is worth mentioning that we had also experimented with non-linear mappings before arriving
at the present formulation. However, multilayer perceptrons paired with different regularization
terms to avoid overfitting, such as penalizing mappings that deviated excessively from the identity
mapping, obtained lower performance figures, which led us to discard this path at the moment.



6 Natural Language Engineering

We also consider a weighted variant of Meemi where the linear model is trained on weighted
averages based on word frequency. Specifically, let fw be the occurrence count of word w in the
corresponding monolingual corpus, then w+w′

2 is replaced by:

fww + fw′w′

fw + fw′
(3)

The intuition behind this weighted model is that the word w might be much more prevalent in the
first language than the word w′ is in the second language. A clear example is when w = w′, which
may be the case, among others, if w is a named entity. For instance, suppose that w is the name of
a Spanish city. Then, we may expect to see more occurrences of w in a Spanish corpus than in an
English corpus. In such cases, it may be beneficial to consider the word vector obtained from the
Spanish corpus to be of higher quality, and thus give more weight to it in the average.

We will write Meemi (M) to refer to the model obtained by applying Meemi after the base
method M, where M may be any variant of VecMap or MUSE. Similarly, we will write Meemiw
(M) in those cases where the weighted version of Meemi was used.

3.2 Multilingual models
To apply Meemi in a multilingual setting, we exploit the fact that bilingual orthogonal methods
such as VecMap (without re-weighting) and MUSE do not modify the target monolingual space
but only apply an orthogonal transformation to the source. Hence, by simply applying this method
to multiple language pairs while fixing the target language (i.e., for languages l1, l2, ..., ln, we
construct pairs of the form (li, ln) with i∈ {1, ..., n− 1}), we can obtain a multilingual space in
which all of the corresponding monolingual models are aligned with, or mapped onto, the same
target embedding space. Note, however, that if we applied a re-weighting strategy, as suggested
in Artetxe et al. (2018a) for VecMap, the target space would no longer remain fixed for all source
languages and would instead change depending on the source in each case. While most previ-
ous work has been limited to bilingual settings, multilingual models involving more than two
languages have already been studied by Ammar et al. (2016), who used an approach based on
Canonical Correlation Analysis. As in our approach, they also fix one specific language as the
reference language.

Formally, let D be the given multilingual dictionary, encoded as a set of tuples (w1, w2, ..., wn),
where n is the number of languages. Using the tuples in D as training data, we learn a linear map-
ping Xi for each language, such that wiXi ≈ w1+...+wn

n for all (w1, ..., wn)∈D. This mapping Xi
can then be used to predict the averages for words in the ith language outside the given dictionary.
To find the mappings Xi, we solve the following least squares linear regression problem for each
language:

Emulti = ∑
(w1,...,wn)∈D

∥∥∥∥wiXi −
w1 + ...+ wn

n

∥∥∥∥2

(4)

Note that while a weighted variant of this model can straightforwardly be formulated, we will not
consider this in the experiments.

4. Experimental Setting
In this section we explain the common training settings for all experiments. First, the monolingual
corpora that were used, as well as other training details that pertain to the initial monolingual
embeddings, are discussed in Section 4.1. Then, in Section 4.2 we explain which bilingual and
multilingual dictionaries were used as supervision signals. Finally, all compared systems are listed
in Section 4.3.
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4.1 Corpora and monolingual embeddings
Instead of using comparable corpora such as Wikipedia, as in much of the previous work (Artetxe
et al. 2017; Conneau et al. 2018a), we make use of independent corpora extracted from the
web. This represents a more realistic setting where alignments are harder to obtain, as already
noted by Artetxe et al. (2018b). For English we use the 3B-word UMBC WebBase Corpus (Han
et al. 2013), containing over 3 billion words. For Spanish we used the Spanish Billion Words
Corpus (Cardellino 2016), consisting of over a billion words. For Italian and German, we use the
itWaC and sdeWaC corpora from the WaCky project (Baroni et al. 2009), containing 2 and 0.8
billion words, respectively.c For Finnish and Russian, we use their corresponding Common Crawl
monolingual corpora from the Machine Translation of News Shared Task 2016,d composed of
2.8B and 1.1B words, respectively. Finally, for Farsi we leverage the newswire Hamshahri corpus
(AleAhmad et al. 2009), composed of almost 200M words.

In a preprocessing step, all corpora were tokenized using the Stanford tokenizer (Manning et al.
2014) and lowercased. Then we trained FastText word embeddings (Bojanowski et al. 2017) on
the preprocessed corpora for each language. The dimensionality of the vectors was set to 300,
using the default values for the remaining hyperparameters.

In our experiments we consider, first, 6 Indo-European languages, of which Spanish and
Italian are Romance, English and German are Germanic, Russian is Slavic, and Farsi is Iranian.
Second, we also include experiments for Finnish, which is a Uralic Finnic language (Dryer and
Haspelmath 2013). Finally, we have also included a set of exclusively distant languages: Arabic
and Hebrew, both of them Semitic Afro-Asiatic; Finnic Uralic Estonian, Slavic Indo-European
Polish, and Sino-Tibetan Chinese. For this latter set of languages, we use the pretrained mono-
lingual embeddings available from the FastText website,e obtained from Common Crawl and
Wikipedia. Since we could not access the source corpora for these monolingual embeddings, we
could not gather frequency information and therefore we only tested the default variant of Meemi
(i.e., not weighted). Furthermore, for the multilingual version of Meemi (see Section 3.2), we con-
sider those languages for which we train the corresponding monolingual embeddings: English,
Spanish, Italian, German, Russian, Farsi and Finnish.

4.2 Training dictionaries
We use the training dictionaries provided by Conneau et al. (2018a) as supervision. These bilin-
gual dictionaries were compiled using the internal translation tools from Facebook. To make the
experiments comparable across languages, we randomly extracted 8,000 training pairs for all lan-
guage pairs considered, as this is the size of the smallest available dictionary. For completeness
we also present results for fully unsupervised systems (see the following section), which do not
take advantage of any dictionaries.

4.3 Compared systems
We have trained both bilingual and multilingual models involving up to seven languages. In the
bilingual case, we consider the supervised and unsupervised variants of VecMap and MUSE to
obtain the base alignments and then apply plain Meemi and weighted Meemi on the results. For
supervised VecMap we compare with its orthogonal version VecMaportho and the multi-step pro-
cedure VecMapmultistep. For the multilingual case we follow the procedure described in Section
3.2 making use of all seven languages considered in the evaluation, i.e., English, Spanish, Italian,

cThe same English, Spanish, and Italian corpora are used as input corpora for the hypernym discovery SemEval task
(Section 6.1).

dhttp://www.statmt.org/wmt16/translation-task.html
ehttps://fasttext.cc/docs/en/crawl-vectors.html
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German, Finnish, Farsi, and Russian. Note that in the bilingual case all three variants of VecMap
can be used, whereas in the multilingual setting we can only use VecMaportho.

5. Intrinsic evaluation
In this section we assess the intrinsic performance of our post-processing techniques in cross-
lingual (Section 5.1) and monolingual (Section 5.2) settings.

5.1 Cross-lingual performance
We evaluate the performance of all compared cross-lingual embedding models on standard purely
cross-lingual tasks, namely dictionary induction (Section 5.1.1) and cross-lingual word similarity
(Section 5.1.2).

Model
English-Spanish English-Italian English-German

P@1 P@5 P@10 P@1 P@5 P@10 P@1 P@5 P@10

VecMapuns 34.8 60.6 67.0 31.4 53.7 60.7 23.2 42.7 50.2

MUSEuns 31.4 51.2 57.7 31.4 51.2 57.7 20.8 38.7 46.6

VecMaportho 32.6 58.1 65.8 32.9 56.5 63.4 22.8 42.8 50.4

Meemi (VecMaportho) 33.9 60.7 67.4 33.8 58.8 65.6 23.7 45.0 52.9

Meemiw (VecMaportho) 33.4 60.9 67.4 33.1 58.5 66.3 22.9 44.3 52.5

Meemi-multi (VecMaportho) 33.4 60.9 67.1 33.7 58.1 65.5 23.0 44.5 52.8

VecMapmultistep 33.8 60.7 68.4 33.7 58.9 66.5 24.1 45.3 53.6

Meemi (VecMapmultistep) 33.8 61.4 68.4 33.7 59.0 66.8 23.4 45.7 53.6

Meemiw (VecMapmultistep) 33.2 60.9 68.1 32.5 58.2 66.2 22.8 44.8 53.1

MUSE 32.5 58.2 65.9 32.5 56.0 63.2 22.4 40.9 48.9

Meemi (MUSE) 33.9 60.7 68.4 33.8 58.4 65.6 23.7 45.3 52.3

Meemiw (MUSE) 33.3 61.2 68.2 33.0 58.8 65.3 22.8 44.4 52.3

Model
English-Finnish English-Farsi English-Russian

P@1 P@5 P@10 P@1 P@5 P@10 P@1 P@5 P@10

VecMapuns 0.1 0.5 0.7 19.7 34.6 40.4 13.8 30.9 38.6

MUSEuns 23.7 45.0 52.9 18.1 32.8 37.8 14.4 31.2 38.5

VecMaportho 22.1 44.5 52.9 18.5 33.6 40.5 15.6 35.5 44.2

Meemi (VecMaportho) 24.8 48.9 57.7 20.0 37.1 43.8 19.0 40.5 49.9

Meemiw (VecMaportho) 22.6 48.3 56.5 19.8 35.2 41.6 17.4 39.9 49.4

Meemi-multi (VecMaportho) 23.1 48.3 57.2 21.0 37.9 44.4 18.8 41.7 50.5

VecMapmultistep 22.5 48.4 57.5 20.8 36.1 43.4 18.2 40.2 49.5

Meemi (VecMapmultistep) 24.0 50.8 58.9 20.0 36.9 42.4 19.3 41.5 50.6

Meemiw (VecMapmultistep) 21.6 48.3 57.2 21.5 38.5 43.7 17.4 40.9 49.7

MUSE 20.0 40.1 48.3 17.4 31.6 37.6 15.5 35.6 44.1

Meemi (MUSE) 23.0 46.1 54.0 19.3 36.0 41.7 18.7 40.5 49.7

Meemiw (MUSE) 21.7 46.9 55.0 19.5 33.8 39.8 18.1 40.0 49.5

Table 1. Precision at k (P@K) performance of different cross-lingual embedding models in the bilingual
dictionary induction task.
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Model
English-Arabic English-Hebrew English-Estonian English-Polish English-Chinese

P@1 P@5 P@10 P@1 P@5 P@10 P@1 P@5 P@10 P@1 P@5 P@10 P@1 P@5 P@10

VecMapuns 17.3 34.5 41.1 20.1 35.6 41.1 17.5 33.9 39.5 20.8 40.9 46.7 9.3 17.5 22.1

MUSEuns 0.0 0.0 0.0 0.0 0.0 0.0 8.6 17.9 22.1 10.7 22.8 28.3 0.0 0.0 0.1

VecMaportho 18.7 40.8 48.3 19.1 36.0 42.0 19.9 36.2 42.2 23.2 42.3 48.5 20.7 36.7 42.8

Meemi (VecMaportho) 20.0 45.0 52.4 20.5 38.8 45.0 21.3 37.9 43.9 24.2 45.0 50.1 23.2 40.7 47.4

VecMapmultistep 20.3 44.8 52.8 20.4 38.6 43.9 21.5 39.5 44.6 23.8 45.0 51.0 24.1 41.6 48.3

Meemi (VecMapmultistep) 20.8 46.6 53.5 20.9 39.2 45.2 21.2 38.3 43.7 23.2 44.8 50.4 24.2 42.7 48.6

MUSE 16.3 36.5 42.5 15.9 30.1 35.0 14.8 26.7 31.1 18.7 36.8 42.2 16.8 31.2 36.6

Meemi (MUSE) 17.3 38.6 45.3 16.6 30.9 36.1 17.9 32.3 36.9 21.1 40.8 46.5 17.1 31.4 37.0

Table 2. Dictionary induction results for distant language pairs using FastText pre-trained monolingual
embeddings as input using precision at k (P@K).

5.1.1 Bilingual dictionary induction
Also referred to as word translation, this task consists in automatically retrieving the word
translations in a target language for words in a source language. Acting on the corresponding
cross-lingual embedding space which integrates the two (or more) languages of a particular test
case, we obtain the nearest neighbors to the source word in the target language as our translation
candidates. The performance is measured with precision at k (P@k), defined as the proportion of
test instances where the correct translation candidate for a given source word was among the k
highest ranked candidates. The nearest neighbors ranking is obtained by using cosine similarity
as the scoring function. For this evaluation we use the corresponding test dictionaries released by
Conneau et al. (2018a).

We show the results attained by a wide array of models in Tables 1 and 2, where we can
observe that the best figures are generally obtained by Meemi over the bilingual VecMap mod-
els. The impact of Meemi is more apparent when used in combination with the orthogonal base
models, with improvements over the multi-step version of VecMap as well in most languages.
These improvements are statistically significant at the 0.05 level across all language pairs, using
paired t-tests. On the other hand, using the weighted version of Meemi (i.e., Meemiw in Table 1)
does not seem to be particularly beneficial on this task, with the only exception of English-
Farsi. In general, the performance of unsupervised models (i.e., VecMapuns and MUSEuns) is
competitive in closely-related languages such as English-Spanish or English-German but they con-
siderably under-perform for distant languages, especially English-Finnish and English-Russian.
We have double-checked the anomalous results for English-Finnish, and they appear to be correct
under our current testing framework after five runs obtaining the same result. Finally, the results
obtained by the multilingual model that includes all seven languages considered, i.e., Meemi-
multi (VecMaportho) in Table 1, improve over the base orthogonal model, but they do not improve
over the results of our bilingual model. We further discuss the impact of adding languages to the
multilingual model in Section 7.3.

5.1.2 Cross-lingual word similarity
Cross-lingual word similarity constitutes a straightforward benchmark to test the quality of bilin-
gual embeddings. In this case, and in contrast to monolingual similarity, words in a given pair
(a,b) belong to different languages, e.g., a belonging to English and b to Farsi. For this task we
make use of the SemEval-17 multilingual similarity benchmark (Camacho-Collados et al. 2017),
considering the four cross-lingual datasets that include English as target language in particular,
but discarding multi-word expressions. Also, we use the Multi-SimLex dataset published by Vulic
et al. (2020) for our experiments on the set of exclusively distant languages: Arabic, Hebrew,
Estonian, Polish, and Chinese. Performance is computed in terms of Pearson and Spearman
correlation with respect to the gold standard.
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Model
EN-ES EN-IT EN-DE EN-FA

r ρ r ρ r ρ r ρ

VecMapuns 71.1 70.5 69.2 68.8 70.9 70.4 35.7 33.4

MUSEuns 71.7 71.6 69.4 69.4 70.3 70.0 29.6 23.8

VecMaportho 71.6 71.6 70.2 70.1 70.9 70.7 29.2 23.7

Meemi (VecMaportho) 72.3 72.0 71.2 70.7 72.5 72.1 35.3 31.6

Meemiw (VecMaportho) 72.1 72.0 70.0 69.7 70.5 70.2 34.2 30.2

Meemi-multi (VecMaportho) 73.9 73.4 71.6 71.0 72.5 72.2 39.6 37.2

VecMapmultistep 72.8 72.4 71.6 71.2 72.7 72.2 36.5 31.7

Meemi (VecMapmultistep ) 72.1 71.5 71.1 70.9 72.6 72.3 40.4 39.0

Meemiw (VecMapmultistep ) 71.5 71.2 69.7 69.8 70.3 70.3 39.6 40.8

MUSE 71.9 71.9 70.4 70.4 70.5 70.2 29.7 23.9

Meemi (MUSE) 72.5 72.3 71.5 71.1 72.5 72.1 36.4 33.0

Meemiw (MUSE) 72.3 72.2 70.4 70.0 70.5 70.4 33.6 28.9

Table 3. Cross-lingual word similarity results in terms of Pearson (r) and Spearman (ρ) correlation.
Languages codes: English-EN, Spanish-ES, Italian-IT, German-DE, and Farsi-FA.

Model
EN-AR EN-HE EN-ET EN-PL EN-ZH

r ρ r ρ r ρ r ρ r ρ

VecMapuns 17.4 34.5 41.2 20.2 35.6 41.2 17.5 33.9 39.6 20.8

MUSEuns 0.0 0.0 0.0 0.0 0.0 0.0 8.7 17.9 22.1 10.7

VecMaportho 18.7 40.8 48.3 19.1 36.0 42.0 19.9 36.2 42.2 23.2

Meemi (VecMaportho) 20.0 45.0 52.4 20.5 38.8 45.0 21.3 37.9 43.9 24.2

VecMapmultistep 20.3 44.8 52.8 20.4 38.6 43.9 21.5 39.5 44.6 23.8

Meemi (VecMapmultistep) 20.8 46.6 53.5 20.9 39.2 45.2 21.2 38.3 43.7 23.2

MUSE 16.3 36.5 42.5 15.9 30.1 35.0 14.8 26.7 31.1 18.7

Meemi (MUSE) 17.3 38.6 45.3 16.6 30.9 36.1 17.9 32.3 36.9 21.1

Table 4. Cross-lingual word similarity results for distant language pairs using FastText pre-trained mono-
lingual embeddings as input in terms of Pearson (r) and Spearman (ρ) correlation. Language codes:
English-EN, Arabic-AR, Hebrew-HE, Estonian-ET, Polish-PL, and Chinese-ZH.

Tables 3 and 4 show the results of the different embeddings models in the cross-lingual word
similarity task. Except in a few cases for the VecMapmultistep model, our Meemi transformation
proves superior to the base models (at the 0.05 level for paired t-tests over all language pairs), and
to all their unsupervised variants. For distant languages, where the results are lower overall, our
Meemi transformation proves useful, generally outperforming the best VecMap models. Similarly
as in the bilingual dictionary induction task, the weighted version of Meemi proves robust only
on English-Farsi (Table 4), which suggests that this weighting scheme is most useful for distant
languages, as in this case the Farsi monolingual space (which is learned from a smaller corpus
and hence, as we will see in the next section, has a lower quality) gets closer to the English
monolingual space. As far as the multilingual model is concerned, it proves beneficial in all cases
with respect to the orthogonal version of VecMap, as well as compared to the bilingual variant of
Meemi.
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Model
English Spanish Italian German Farsi

r ρ r ρ r ρ r ρ r ρ

VecMapuns 72.8 72.3 70.2 70.4 67.8 68.1 70.6 70.2 23.5 21.1

MUSEuns 74.2 74.2 70.5 71.9 67.4 69.2 69.8 69.8 21.1 17.3

VecMaportho 74.1 73.9 70.0 71.5 67.2 69.0 70.1 70.1 21.1 18.2

Meemi (VecMaportho) 74.4 73.9 71.6 72.1 69.0 69.4 71.1 70.7 24.3 22.5

Meemiw (VecMaportho) 74.4 74.0 71.8 71.8 68.2 68.8 68.8 68.9 28.5 29.8

Meemi-multi (VecMaportho) 75.1 74.3 73.0 72.9 70.1 70.4 70.7 70.7 27.3 26.0

VecMapmultistep 73.8 73.3 71.8 72.0 69.6 69.7 71.8 71.2 24.8 22.2

Meemi (VecMapmultistep) 73.3 72.6 71.7 71.6 69.4 69.8 71.1 71.0 27.3 26.2

Meemiw (VecMapmultistep) 73.5 72.9 70.9 70.6 67.2 68.4 67.0 67.8 27.3 25.6

MUSE 74.2 74.2 70.5 71.9 67.4 69.2 69.8 69.8 21.1 17.3

Meemi (MUSE) 74.6 74.1 71.9 72.4 69.5 69.9 71.0 70.6 24.6 22.5

Meemiw (MUSE) 74.5 74.4 71.7 71.8 68.5 68.9 68.3 68.2 27.0 25.5

FastText 72.3 72.4 69.0 70.2 66.3 67.5 71.0 70.3 24.3 20.6

Human upper bound 89.3 - 89.0 - 90.0 - 91.6 - 90.6 -

Table 5. Monolingual word similarity results in terms of Pearson (r) and Spearman (ρ) correlation.

As for the results with distant languages in Table 4 (using pre-trained FastText embeddings),
the trend is even more pronounced. Meemi helps improve the performance in all languages for the
MUSE and VecMap orthogonal methods, and it also improves the performance of VecMapmultistep
in Arabic, Hebrew and Estonian.

5.2 Monolingual performance
One of the advantages of breaking the orthogonality of the transformation is the potential to
improve the monolingual quality of the embeddings. To test the difference between the original
word embeddings and the embeddings obtained after applying the Meemi transformation, we take
monolingual word similarity as a benchmark. Given a word pair, this task consists in assessing
the semantic similarity between both words in the pair, in this case from the same language. The
evaluation is then performed in terms of Spearman and Pearson correlation with respect to human
judgements. In particular, we use the monolingual datasets (English, Spanish, German, and Farsi)
from the SemEval-17 task on multilingual word similarity. The results provided by the original
monolingual FastText embeddings are also reported as baseline.

Table 5 shows the results on the monolingual word similarity task. In this task our multilingual
model representing seven languages in a single space clearly stands out, obtaining the best overall
results for English, Spanish and Italian, and improving over the base VecMaportho model on the
rest. With the exception of German, where the multi-step framework of Artetxe et al. (2018a)
proves most effective, the plain Meemi transformation improves over the base models, for both
VecMap and MUSE.

6. Extrinsic evaluation
We complement the intrinsic evaluation experiments, which are typically a valuable source for
understanding the properties of the vector spaces, with downstream extrinsic cross-lingual tasks.
This evaluation is especially necessary in the view that the intrinsic behaviour does not always cor-
relate well with downstream performance (Bakarov et al. 2018; Glavaš et al. 2019). In particular,
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for this extrinsic evaluation we will focus on the following question: how does our post-processing
method help alleviate limitations of cross-lingual models that are due to their use of orthogonality
constraints? In particular, we perform experiments with the orthogonal model of VecMap (i.e.,
VecMaportho), in combination with the proposed Meemi strategy, both in bilingual and multilin-
gual settings. For the latter case, we considered all six languages, i.e., Spanish, Italian, German,
Finnish, Farsi, and Russian, keeping English as the target language.

The tasks considered are cross-lingual hypernym discovery (Section 6.1) and cross-lingual
natural language inference (Section 6.2).

6.1 Cross-lingual hypernym discovery
Hypernymy is an important lexical relation, which, if properly modeled, directly impacts down-
stream NLP tasks such as semantic search (Hoffart et al. 2014; Roller and Erk 2016), question
answering (Prager et al. 2008; Yahya et al. 2013) or textual entailment (Geffet and Dagan 2005).
Hypernyms, in addition, are the backbone of taxonomies and lexical ontologies (Yu et al. 2015),
which are in turn useful for organizing, navigating, and retrieving online content (Bordea et al.
2016). We propose to evaluate the quality of a range of cross-lingual vector spaces in the extrinsic
task of hypernym discovery, i.e., given an input word (e.g., “cat”), retrieve or discover its most
likely (set of) valid hypernyms (e.g., “animal”, “mammal”, “feline”, and so on). Intuitively, by
leveraging a bilingual vector space condensing the semantics of two languages, one of them being
English, the need for large amounts of training data in the target language may be reduced.f

The base model is a (cross-lingual) linear transformation trained with hyponym-hypernym pairs
(Espinosa-Anke et al. 2016), which is afterwards used to predict the most likely (set of) hypernyms
given a new term. Training and evaluation data come from the SemEval 2018 Shared Task on
Hypernym Discovery (Camacho-Collados et al. 2018). Note that current state-of-the-art systems
aimed at modeling hypernymy (Shwartz et al. 2016; Bernier-Colborne and Barriere 2018; Held
and Habash 2019) combine large amounts of annotated data along with language-specific rules and
cue phrases such as Hearst Patterns (Hearst 1992), both of which are generally scarcely (if at all)
available for languages other than English. As a reference, we have included the best performing
unsupervised system for both Spanish and Italian (we will refer to this baseline as BestUns). This
unsupervised baseline is based on the distributional models described in Shwartz et al. (2017).

As such, we report experiments (Table 6) with training data only from English (11,779
hyponym-hypernym pairs), and enriched models informed with relatively few training pairs (500,
1K, and 2K) from the target languages. Evaluation is conducted with the same metrics as in the
original SemEval task, i.e., Mean Reciprocal Rank (MRR), Mean Average Precision (MAP),
and precision at 5 (P@5). Specifically, MRR rewards the position of the first correct retrieved
hypernym:

MRR =
1
|Q|

|Q|

∑
i=1

1
ranki

where Q is a sample of experiment runs and ranki refers to the rank position of the first relevant
outcome for the ith run. However, in this hypernym discovery dataset, the vast majority of terms
accept more than one correct hypernym, which is why MAP was considered as the official task
metric in the SemEval task. This metric is defined as follows:

fNote that this task is more challenging than hypernym detection, which is typically framed as a binary classification
problem (Upadhyay et al. 2018), as the search space is equal to the size of the vocabulary considered for each language.
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Train data Model
Spanish Italian

MRR MAP P@5 MRR MAP P@5

- BestUns 2.4 5.5 2.5 3.9 8.7 3.9

EN

VecMapuns 13.58 4.89 4.52 10.95 4.47 4.23

VecMapmultistep 2.49 0.82 0.06 3.65 1.37 1.22

VecMap 11.05 4.36 4.24 8.53 3.40 3.12

Meemi (VecMap) 14.62 5.56 5.43 11.50 4.52 4.36

Meemiw (VecMap) 15.33 5.89 5.69 13.11 5.08 4.72

Meemi-multi (VecMap) 14.39 5.50 5.22 11.46 4.58 4.44

EN + 500

VecMapuns 14.91 6.06 5.82 12.22 5.28 5.20

VecMapmultistep 11.00 4.37 4.43 9.36 3.99 3.82

VecMap 12.20 5.00 4.93 9.95 4.17 4.08

Meemi (VecMap) 15.64 6.13 5.87 11.29 4.78 4.57

Meemiw (VecMap) 16.29 6.58 6.40 13.94 5.33 4.87

Meemi-multi (VecMap) 15.03 6.20 6.26 12.46 4.88 4.60

EN + 1K

VecMapuns 16.85 6.76 6.48 13.43 5.47 5.21

VecMapmultistep 12.39 4.95 4.88 11.95 5.22 5.03

VecMap 12.99 5.44 5.21 12.71 5.23 5.01

Meemi (VecMap) 17.46 6.82 6.43 14.53 5.92 5.74

Meemiw (VecMap) 17.58 6.85 6.54 14.05 5.57 5.29

Meemi-multi (VecMap) 15.36 6.59 6.69 13.50 5.45 5.16

EN + 2K

VecMapuns 16.44 6.83 6.53 14.04 6.03 5.90

VecMapmultistep 14.42 5.75 5.54 13.97 5.86 5.68

VecMap 14.59 6.24 6.21 13.10 5.63 5.40

Meemi (VecMap) 18.63 7.67 7.48 15.4 6.29 5.95

Meemiw (VecMap) 17.52 6.96 6.76 14.4 5.86 5.60

Meemi-multi (VecMap) 17.17 6.90 6.78 14.29 5.83 5.45

Table 6. Cross-lingual hypernym discovery results in terms of Mean Reciprocal Rank (MRR), Mean Average
Precision (MAP), and precision at 5 (P@5). In this case, VecMap = VecMaportho.

MAP =
1
|Q| ∑

q∈Q
AP(q)

where AP (Average Precision) is the average of the P@K1, ..., P@Kn scores, where K1, ..., Kn
are the positions where the gold hypernyms appear in the ranking. As the maximum number of
hypernyms allowed per term was 15, we only consider the first 15 gold hypernyms in cases where
there are more.
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We report comparative results between the following systems: VecMapuns (the unsupervised
variant), VecMaportho (the orthogonal transformation variant), VecMapmulti-step (the supervised
multi-stage variant) and three Meemi variants: Meemi (VecMap); Meemiw (VecMap) and Meemi-
multi (VecMap). The first noticeable trend is the better performance of the unsupervised VecMap
version versus its supervised orthogonal and multi-step counterparts. Nevertheless, we find
remarkably consistent gains over both VecMap variants when applying Meemi, across all con-
figurations for the two language pairs considered. In fact, the weighted (Meemiw) version brings
an increase in performance between 1 and 2 MRR and MAP points across the whole range of
target language supervision (from zero to 2k pairs). This is in contrast to the instrinsic evaluation,
where the weighted model did not seem to provide noticeable improvements over the plain version
of Meemi. Finally, concerning the fully multilingual model, the experimental results suggest that,
while still better than the orthogonal baselines, it falls short when compared to the weighted bilin-
gual version of Meemi. This result suggests that exploring weighting schemes for the multilingual
setting may bring further gains, but we leave this extension for future work.

6.2 Cross-lingual natural language inference
The task of natural language inference (NLI) consists in detecting entailment, contradiction or
neutral relations in pairs of sentences. In our case, we test a zero-shot cross-lingual transfer setting
where a system is trained with English corpora and is then evaluated on a different language. We
base our approach on the assumption that better aligned cross-lingual embeddings should lead to
better NLI models, and that the impact of the input embeddings may become more apparent in
simple methods; as opposed to, for instance, complex neural network architectures. Hence, and
also to account for the coarser linguistic granularity of this task (being a sentence classification
problem rather than word-level), we employ a simple bag-of-words approach where a sentence
embedding is obtained through word vector averaging. We then train a linear classifierg to predict
one of the three possible labels in this task, namely entailment, contradiction or neutral. We use
the full MultiNLI English corpus (Williams et al. 2018) for training and the Spanish and German
test sets from XNLI (Conneau et al. 2018b) for testing. For comparison, we also include a lower
bound obtained by considering English monolingual embeddings for input; in this case FastText
trained on the UMBC corpus, which is the same model used to obtain multilingual embeddings.

Accuracy results are shown in Table 7. The main conclusion in light of these results is the
remarkable performance of the unsupervised VecMap model and, most notably, multilingual
Meemi for both Spanish and German, clearly outperforming the orthogonal bilingual mapping
baseline. Our results are encouraging for two reasons. First, they suggest that, at least for this task,
collapsing several languages into a unified vector space is better than performing pairwise align-
ments. And second, the inherent benefit of having one single model accounting for an arbitrary
number of languages.

7. Analysis
We complement our quantitative (intrinsic and extrinsic) evaluations with an analysis aimed at
discovering the most salient characteristics of the transformation that is found by Meemi. We
present a qualitative analysis with examples in Section 7.1, as well as an analysis on the impact of
the size of training dictionaries in Section 7.2 and on the performance of the multilingual model
in Section 7.3.

gThe codebase for these experiments is that of SentEval (Conneau and Kiela 2018).
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Model EN-ES EN-DE

VecMapuns 45.5 44.4

VecMapmultistep 44.4 37.7

VecMaportho 43.9 43.6

Meemi (VecMaportho) 44.9 43.8

Meemiw (VecMaportho) 40.4 43.5

Meemi-multi (VecMaportho) 46.6 45.5

Lower bound 38.0 33.4

Table 7. Accuracy, or the number of correct classifications (entailment, contradiction or neutral) over the
total number of tests instances, on the XNLI task using different cross-lingual embeddings as features.

7.1 Studying word translations
Table 8 lists a number of examples where, for a source English word, we explore its highest
ranked cross-lingual synonyms (or word translations) in a target language. We select Spanish as a
use case.

crazy telegraph

VecMap Meemi Meemi-multi VecMap Meemi Meemi-multi

loco loco chifladas telégrafo telegráfico telegraph

tonto loca locos telégrafos telégrafo telegraaf

enloquecere enloquecı́ loca telegráfico telegráfono telegraphone

locos enloquecı́as estúpidas telegráfica telegraf telegráfono

enloqueci locos alocadas telegrafo telegráfo telégrafo

conventions discover

VecMap Meemi Meemi-multi VecMap Meemi Meemi-multi

convenciones internaciones convenios descubrirá descubre descubr

internacional7 1972naciones reglas descubr descubrir descubrirán

convención protocolos convención descubrirán descubriendo descubrirnos

1961naciones convenios normas descubren descubra descubrira

internacionales3 1961naciones legislacionesnacionales descubriron descubrira descubrire

remarks lyon

VecMap Meemi Meemi-multi VecMap Meemi Meemi-multi

astrométricos lobservaciones observaciones rocquigny beaubois marcigny

observacionales mediciones observacionales rémilly bourgmont lyon

astrométricas lasobservaciones observacional martignac marcigny pierreville

astronométricas deobservaciones predicciones beaubois rémilly jacquemont

predicciones susobservaciones mediciones chambourcy jacquemont beaubois

Table 8. Word translation examples from English and Spanish, comparing VecMap with the bilingual and
multilingual variants of Meemi. For each source word, we show its five nearest cross-lingual synonyms.
Bold translations are correct, according to the source test dictionary (cf. Section 5.1.1).

Let us study the examples listed in Table 8, as they constitute illustrative cases of linguistic
phenomena which go beyond correct or incorrect translations. First, the word ’crazy’ is correctly
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translated by both VecMap and Meemi; loco (masculine singular), locos (masculine plural) or loca
(feminine) being standard translations, with no further connotations, of the source word. However,
the most interesting finding lies in the fact that for Meemi-multi, the preferred translation is a col-
loquial (or even vulgar) translation which was not considered as correct in the gold test dictionary.
The Spanish word chifladas translates to English as ‘going mental’ or ‘losing it’. Similarly, we
would like to highlight the case of ‘telegraph’. This word is used in two major senses, namely to
refer to a message transmitter and as a reference to media outlets (several newspapers have the
word ‘telegraph’ in their name). VecMap and Meemi (correctly) translate this word into the com-
mon translation telégrafo (the transmission device), whereas Meemi-multi prefers its named-entity
sense.

Other cases, such as ‘conventions’ and ‘discover’ are examples to illustrate the behaviour for
common ambiguous nouns. In both cases, candidate translations are either misspellings of the
correct translation (descubr for ‘discover’), or misspellings involving tokens conflating two words
whose compositional meaning is actually a correct candidate translation for the source word;
e.g., legislaciones nacionales (‘national rulings’) for ‘conventions’. Finally, ‘remarks’ offers an
example of a case where ambiguity causes major disruptions. In particular, ‘remark’ translates
in Spanish to observación, which in turn has an astronomical sense; ‘astronomical observatory’
translates to observatorio astronómico.

7.2 Impact of training dictionary and corpus size
Our method relies on the availability of suitable bilingual training dictionaries, where we can
expect that the size of these dictionaries should have a clear impact on the quality of the final
transformation. This is analyzed in Figure 2 for the task of cross-lingual word similarity. The
figure shows the absolute improvement (in percentage points) over VecMap by applying Meemi,
using different training dictionary sizes for supervision.

As can be observed, using Meemi improves the results, for all language pairs, when dictionaries
of 8K, 5K or 3K word pairs are used, but its performance heavily drops with dictionaries of
smaller sizes (i.e. 1K and especially 100). In fact, having a larger dictionary helps avoid overfitting,
which is a recurring problem in cross-lingual word embedding learning (Zhang et al. 2017a). The
most remarkable case is that of Farsi, where Meemi improves the most, but where access to a
sufficiently large dictionary becomes even more important. This behavior clearly shows under
which conditions our proposed final transformation can be applied with higher success rates. We
leave exploring larger dictionaries and their impact in different tasks and languages for future
work.

On the other hand, we have observed that while corpus size plays a role in the performance of
our models, it is not as notable as it might seem at first. Given the different corpus sizes of the data
we used to train our monolingual embeddings, we analyzed the correlation between these sizes,
mentioned in Section 4.1, and the performance figures presented in Tables 1, 3, and 5. The average
Pearson correlation across multilingual models in dictionary induction, where all languages are
available, is 0.38 (discarding VecMapuns due to its anomalous results for Finnish), while for cross-
lingual and monolingual word similarity it is 0.69 and 0.65, respectively. Note, however, that in
these latter cases we are missing two distant languages, i.e., Finnish and Russian.

7.3 Multilingual performance
In this section we assess the benefits of our proposed multilingual integration (cf. Section 3.2). To
this end, we measure fluctuations in performance as more languages were added to the initially
bilingual model. Thus, starting from a bilingual embedding space obtained with VecMaportho,
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(a) Meemi (VecMap)

(b) Meemi (MUSE)

Figure 2. Absolute improvement (in terms of Pearson correlation percentage points) by applying the Meemi
over the two base orthogonal models VecMap and MUSE on the cross-lingual word similarity task, with
different training dictionary sizes. As data points in the X-axis we selected 100, 1000, 3000, 5000 and 8000
word pairs in the dictionary.

we apply Meemi over a number of aligned spaces, which ultimately leads to a fully multilin-
gual space containing the following languages: Spanish, Italian, German, Finnish, Farsi, Russian,
and English. This latter language is used as the target embedding space for the orthogonal
transformations due to it being the richest in terms of resource availability.

To avoid a lengthy and overly exhaustive approach where all possible combinations from two
to seven languages are evaluated, we opted for conducting an experiment where languages are
divided into two groups and added one by one in a fixed order: the first group is formed by
languages that obtain the best alignments with English in previous experiments, which broadly
coincides with those that are closer to English in terms of language family and alphabet (i.e.,
Spanish, Italian, and German), and then the second group formed by the remaining languages
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Languages
English-Spanish English-Italian English-German

P@1 P@5 P@10 P@1 P@5 P@10 P@1 P@5 P@10

x-en (VecMaportho) 32.6 58.1 65.8 32.9 56.5 63.4 22.8 42.8 50.4

x-en 33.9 60.7 67.4 33.8 58.8 65.6 23.7 45.0 52.9

es-x-en 34.2 60.8 68.2 33.3 58.1 66.5 23.9 45.9 53.2

es-it-x-en 34.1 61.2 68.1 33.8 58.9 66.7 23.8 45.8 53.1

es-it-de-x-en 34.2 61.3 68.3 33.9 58.8 66.5 23.9 45.6 53.4

es-it-de-fi-x-en 33.6 60.9 67.5 33.8 58.0 65.8 23.1 44.7 52.7

es-it-de-fi-fa-ru-en 33.4 60.9 67.1 33.7 58.1 65.5 23.0 44.5 52.8

English-Finnish English-Farsi English-Russian

P@1 P@5 P@10 P@1 P@5 P@10 P@1 P@5 P@10

x-en (VecMaportho) 22.1 44.5 52.9 18.5 33.6 40.5 15.6 35.5 44.2

x-en 24.2 48.8 57.7 20.0 37.1 43.8 19.0 40.5 49.9

es-x-en 24.7 50.1 58.4 21.1 37.9 43.9 17.9 40.2 49.3

es-it-x-en 24.1 51.1 59.2 20.9 37.6 44.5 18.9 41.6 50.6

es-it-de-x-en 23.9 50.2 58.5 21.0 37.7 44.9 18.9 41.5 50.8

es-it-de-fi-x-en 23.5 48.6 57.5 21.2 37.5 44.0 19.1 42.1 51.4

es-it-de-fi-fa-ru-en 23.1 48.3 57.2 21.0 37.9 44.4 18.8 41.7 50.5

Table 9. Dictionary induction results obtained with the multilingual extension of Meemi over (VecMaportho)
in terms of precision at k (P@K). The sequence in which source languages are added to the multilingual
models is: Spanish, Italian, German, Finnish, Farsi, and Russian (English is the target). The x indicates the
use of the test language in each case (if the test language is already included, the following language in
the sequence is added). We also include the scores of the original VecMaportho as baseline.

(i.e., Finnish, Farsi, and Russian). However, this approach does not allow us to use, for example,
the English-Farsi test set until reaching the fifth step. To solve this, if the language that is needed
for the test set has not yet been included, we replace the last language that was added by the one
that is needed for the test set. For instance, while we normally add Italian as the second source
language (resulting in trilingual space en-es-it), for the English-German test set, the results are
instead based on a space where we added German instead of English (i.e. the trilingual space en-
es-de). In Table 9 we show the results obtained by the multilingual models in bilingual dictionary
induction.

The best results are achieved when more than two languages are involved in the training, which
correlates with the results obtained in the rest of the tasks and highlights the ability of Meemi to
successfully exploit multilingual information to improve the quality of the embedding models
involved. In general, the performance fluctuates more significantly when adding the first language
to the bilingual models and then stabilizes at a similar level to the bilingual case when adding
more distant languages.

8. Conclusion
In this article, we have presented an extended study of Meemi, a simple post-processing method
for improving cross-lingual word embeddings which was first presented in Doval et al. (2018).
Our initial goal was to learn improved bilingual alignments from those obtained by state-of-the-
art cross-lingual methods such as VecMap (Artetxe et al. 2018a) or MUSE (Conneau et al. 2018a).
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We do this by applying a final unconstrained linear transformation to their initial mappings. Our
extensive evaluation reveals that Meemi, using only dictionary translation as supervision, can
improve on the supervised and unsupervised variants of these models, in both close and distant
languages. This also confirms findings from recent work that unsupervised models may be more
brittle than supervised models, even if these are using only word translations as supervision (Vulić
et al. 2019).

In this work, we have also gone beyond the bilingual setting by exploring an extension of
the original Meemi model to align embeddings from an arbitrary number of languages in a single
shared vector space. In particular, we take advantage of the fact that, assuming the initial alignment
was obtained with an orthogonal mapping, Meemi can naturally be applied to any number of
languages through a single linear transformation per language.

Regarding the evaluation, we extended the language set to include, in addition to the usual
Indo-European languages such as English, Spanish, Italian or German, other distant languages
such as Finnish, Farsi, and Russian. The results we report in this article show that Meemi is highly
competitive, consistently yielding better results than competing baselines, especially in the case
of distant languages. We are particularly encouraged by the multilingual results, which prove that
bringing together distant languages from different families in a shared vector space appears to be
beneficial in most cases.

9. Future Work
We will continue to explore the possibilities of post-processing multilingual models, investigating
their impact in different tasks. Given the fact that going from restrictive orthogonal transforma-
tions to the less constrained Meemi transformation was found to be beneficial in the integration
of monolingual models, it remains to be seen whether there are benefits in further fine-tuning the
alignment, in the form of some kind of constrained non-linear transformation.

Given the recent breakthroughs in multilingual contextualized language models such as
mBERT (Devlin et al. 2019), we also plan on exploring the use of static (i.e., non-contextualized)
cross-lingual word embeddings as prior knowledge for those models, as was suggested by Artetxe
et al. (2020) (see ending of Section 1). More specifically, instead of freezing the pretrained input
embeddings when training the contextualized model, it would be interesting to analyze the effect
of updating the parameters of the cross-lingual word vectors jointly with the rest of the language
model. An advantage of our cross-lingual vectors, compared to the ones that were considered
by Artetxe et al. (2020), is that we can train them on a wider range of languages (i.e., not just
bilingual), which would allow for a more comprehensive exploitation of multilingual training
corpora.
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