Research Article

Proteomics-based identification of cancer-associated proteins in chronic lymphocytic leukaemia

Suliman A. Alsagaby a,b,⁎, Ian A. Brewis c, Rajendran Vijayakumar d, Fahad A. Alhumaydhi e, Ameen S. Alwashmi e, Naif K. Alharbi f,g, Waleed Al Abdulmonem h, Mariappan Premanathan a, Guy Pratt i, Christopher Fegan b, Christopher Pepper b,j, Paul Brennan b

a Department of Medical Laboratories Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11932, PO Box 1712, Saudi Arabia
b Division of Cancer & Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, United Kingdom
c TIME Institute, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, United Kingdom
d Department of Medical Laboratories Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11932, PO Box 1712, Saudi Arabia
e Department of Infectious Disease Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
f King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
g Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
h Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
i CRUK Institute for Cancer Studies, University of Birmingham, Vincent Drive, Edgbaston, Birmingham B15 2TT, United Kingdom
j Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom

1. Introduction

Chronic lymphocytic leukaemia (CLL) is a malignant disease that affects B-cells and is characterised by a lymphocytosis of mature like B-cells that accumulate in peripheral blood, lymph node, bone marrow and spleen [1]. CLL is predominantly a disease affecting older people; the median age of diagnosis is 70 years of age [2]. The cause of CLL is still unknown, yet some hereditary factors have been found to increase the risk of developing CLL [3]. Significant advances in CLL therapy have been accomplished yet the current treatment does not eradicate the disease but reduces the tumour burden and helps prolong patients’ survival [4,5].

While genetic factors and chromosomal abnormalities play key roles in CLL [6], aberrant protein expression has been shown to...
heavily impact on the biology and the clinical outcomes of the disease [7]. Signalling through the B-cell receptor is a key factor for the progression of CLL [8]. Interestingly, BCR expression and signalling was shown to be strongly associated with the CLL cells carrying unmutated immunoglobulin variable heavy (IGHV) genes (UM-CLL) compared with those harbouring mutated IGHV (M-CLL) [9]. Consequently, UM-CLL is typically characterized by poor prognosis, whereas M-CLL identifies patients with a generally favourable clinical course [10,11]. Another interesting protein is zeta chain-associated protein kinase 70 (ZAP-70) that is not expressed in normal B-cells, but is highly produced in CLL cells from patients with a rapid progression of the disease, where it aberrantly participates in the signal transduction following BCR engagement [12,13,14]. Furthermore, over-expression of CD38, CXCR4, and CD49d is characteristic of enhanced migration of CLL cells to the microenvironment of lymph nodes, in which they receive proliferative and pro-survival signals, and are considered predictors of a high-risk form of the disease [15,16,17,18,19]. In contrast to normal B-cells, CLL cells exhibit an increased expression of the anti-apoptotic protein BCL-2, which among others, such as MCL-1, promote the survival of CLL cells and predict an undesirable prognosis of the disease [20,21,22]. Collectively, these findings highlight the heavy influence of aberrant protein expression on the behaviour of CLL.

Proteomics studies have been conducted on CLL cells to provide new insights into the biology of CLL by identifying new proteins with the potential to alter the pathology [23]. For example, heat shock protein 27, which inhibits apoptosis [24], was associated with high-risk CLL [25]. In addition, haematopoietic lineage cell-specific protein, which was implicated in CLL migration and tissue infiltration [26] was shown to correlate with the rapid progression of CLL [27]. Furthermore, the onco-protein T cell leukaemia/lymphoma enhances the activation of the NF-kB pathway and induces a CLL-like disease in transgenic mice, was reported to be highly expressed in CLL cells from patients with poor prognosis [28,29]. In a comprehensive proteomics study, increased expression of adhesion proteins, such as CD44, and decreased expression of proteins involved in the egress of CLL cells from lymph node, like adenylyl cyclase-inhibiting G alpha protein and dynamin-2, were implicated in the retention of the malignant cells in the microenvironment of lymph nodes [30]. Therefore, proteomics holds great promise in being able to deepen our understanding about the aberrant protein expression associated with malignant diseases such as CLL.

In the present work we reported a CLL proteome consisting of 919 proteins with false discovery rate (FDR) = 1%. Our findings identified small sizes of nucleolin specifically in CLL cells from patients with good prognosis and detected an up-regulated expression of THRAP3 and HP1BP3 in CLL cells compared with normal B-cells. Consistently, high expression of HP1BP3 and THRAP3 was found to significantly predict poor prognosis in CLL patients.

PBMCs using an Accuri C6 cytometer and CFlow software (BD) following staining with anti-human CD19 antibody conjugated to allophycocyanin (Invitrogen). Samples with less than 95% CD19 positive cells (CLL cells) were subjected to T cell depletion using CD3-magnetic beads (Invitrogen) in order to enrich for CLL cells. Viability of the samples was measured using an Annexin V apoptosis assay kit (eBioscience) and flow cytometry. Table 1 summarised the characteristics of CLL samples that were used in this study. Detailed description of the CLL samples and the disease prognosis are provided in Table S1.

2.2. Isolation of normal B-cells from healthy donors

Fresh buffy coat samples from healthy volunteers (n = 4) were obtained from the Welsh Blood Service. Lymphoprep and gradient centrifugation were used to isolate PBMCs from the buffy coat samples. Assessment of the CD19 positive cells in the isolated PBMCs was conducted using an Accuri C6 cytometer and CFlow software (BD) following staining with anti-human CD19 antibody conjugated to allophycocyanin (Invitrogen). Positive isolation using CD19-magnetic beads (Invitrogen) was performed to enrich for B-cells. Next, CD19-magnetic beads were detached from the isolated cells (B-cells) using DETACHaBEADS CD19 (Invitrogen). The viability of B-cells was assessed using an Annexin V apoptosis assay kit (eBioscience) and an Accuri C6 cytometer with CFlow software (BD).

2.3. Cellular fractionation

Thawed cells were treated with 0.5 ml hypotonic buffer (10 mM triethylammonium bicarbonate, 1.5 mM MgCl₂, and 10 mM KCl) containing 1 mM phenylmethanesulfonylfuoride and 0.1% (v/v) Nonidet P40 (NP40) detergent for 15 min on ice. Samples were then centrifuged for 5 min (10,000 × g) at 4°C and the supernatant from each sample was transferred into another tube and labelled NP40 fractions. The remaining pellets were washed twice with 1 ml hypotonic buffer followed by centrifugation. Next, 0.2 ml 1% sodium dodecyl sulphate (SDS) solution was added and the sample was subjected to heating at 90°C for 20 min followed by sonication. This was sufficient to solubilize the washed pellets (termed SDS fractions). Protein concentrations were measured using the bicinchoninic acid assay (BCA) protein assay (Sigma).

To generate complete cell lysate, cells were resuspended in 0.2 ml 1% SDS supplemented with PMSF (final concentration 1 mM) and sonicated for 5 min. To enhance the solubilization of the cells, samples were heated at 90°C for 20 min. Following centrifugation of the samples for 5 min (10,000 × g), cellular pellet was not visible indicating complete solubilization of the cells. Protein concentration of the complete cell lysate was determined using the bicinchoninic acid assay (BCA) protein assay (Sigma).

<table>
<thead>
<tr>
<th>Factor</th>
<th>Subset</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median Age</td>
<td>70</td>
<td>36</td>
</tr>
<tr>
<td>Range</td>
<td>53–88</td>
<td>16</td>
</tr>
<tr>
<td>CD38</td>
<td><20%</td>
<td>20</td>
</tr>
<tr>
<td>≥20%</td>
<td>98%</td>
<td>12</td>
</tr>
<tr>
<td>IGHV status</td>
<td>≥98%</td>
<td>15</td>
</tr>
<tr>
<td>ZAP-70</td>
<td><20%</td>
<td>21</td>
</tr>
<tr>
<td>≥20%</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

IGHV status ≥ 98%, ZAP-70 ≥ 20% and CD38 ≥ 20% are characteristics of poor prognosis. However, IGHV status < 98%, ZAP-70 < 20% and CD38 < 20% are predictors of good prognosis.
2.4. Protein detection by gel electrophoresis and western blotting

Cellular proteins were separated by one dimensional (1D) gel electrophoresis using pre-cast NuPAGE 4–12% Bis-Tris Zoom gels (Invitrogen) under reducing conditions. For specific protein detection, proteins were transferred onto polyvinylidene fluoride membranes (GE Healthcare), probed with specific antibodies and identified using alkaline phosphatase chemiluminescent detection protocol. Antibodies against eight different proteins were applied: from Sigma anti-actin antibody (A-2066; used at 1/1000); from Abcam anti-histone H4 antibody (ab31830; used at 0.5/1000), anti-HP1BP3 antibody (ab98894; used at 1/1000); and anti-THRAP3 antibody (ab71985; used at 1/1000); from Sant Cruz Biotechnology anti-nucleolin antibody (sc-8031; used at 1/1000); and from Upstate Biotechnology anti-coronin-1A antibody (#07-493; used at a 1/2000 dilution).

2.5. Protein precipitation and digestion

Protein precipitation using a 2D clean up kit (GE Healthcare) was performed on identical amounts of protein (20 μg) from NP40 fraction, SDS fraction and complete cell lysate that were generated from CLL samples. Following resuspension of the precipitated proteins of NP40 and SDS fractions in 20 μL of 20 mM triethylammonium bicarbonate (TEAB) they were denatured using 1 μL of 2% SDS and reduced with 2 μL of 50 mM tris(2-carboxyethyl) phosphine (TCEP) at 60°C for 1 h. Protein alkylation was performed using 1 μL of 200 mM methylmethanethiosulfonate in isopropanol for 10 min at room temperature. Finally, protein digestion was conducted using 2 μL of sequencing grade porcine trypsin (Promega) overnight at 37°C (the ration of enzyme/substrate = 1/20).

Precipitated proteins from the complete lysate were resuspended in 50mMTris HCl with 0.1% SDS. DTT (final concentration = 20 mM) was added to the protein suspension and samples were incubated for 10 min at 95°C. Next, iodoacetamide (IAA) was added to the samples (final concentration = 40 mM) which were incubated at room temperature in the dark for 30 min. DTT (final concentration = 10 mM) was added to the samples. For digestion, samples were incubated with 2 μL of sequencing grade porcine trypsin (Promega) overnight at 37°C (the ration of enzyme/substrate = 1/20).

2.6. Separation of peptides by liquid chromatography

Peptides (13.3 μg) from NP40 and SDS fractions of CLL samples were dried using a vacuum centrifuge and then resuspended in 15 μL LC loading solution (2% (v/v) acetonitrile in water with 0.05% (v/v) trifluoroacetic acid (TFA)). Next, from the 13.3 μg peptide 9 μg was injected in a 2D nano LC system (UltiMate 3000, Dionex). Peptides from the NP40 fractions and SDS fractions were independently separated on a strong cation-exchange (SCX) column (Bio-SCX, 500 μm, 15 mm, 5 μm, Dionex) using increasing concentrations of NaCl (flow-through, 100 mM, 200 mM, 400 mM, 800 mM, and 1 M). Then, the peptide fractions were cleaned using a reverse-phase desalting column. Next the peptides were subjected to additional separation using a reverse-phase (RP) column (PepMap 75 μm i.d., 30 cm, 3 μm, 100 Å, Dionex) at a flow rate equal to 300nl/min. We used two buffers for separation on the RP column; A = 2% (v/v) ACN in water with 0.05% (v/v) TFA and B = 98% (v/v) ACN in water with 0.01% (v/v) TFA. The separation on the RP column was conducted using an increasing concentration of solvent B; from 5% to 20% for 25 min and then from 20% to 50% for 25 min. To monitor the separation profile, a chromatogram was recorded at 214 nm. A robot micro-fraction collector (Dionex) was used to spot the separated peptides (1 spot/8 seconds) onto an LC/MALDI plate. MALDI matrix α-cyano-4-hydroxycinnamic acid (CHCA) (2 mg/ml CHCA in 70% (v/v) in 0.1% (v/v) TFA containing 10 fmol/ml Glu-Fib) was constantly added to the column effluent via an m-tex mixing piece at a flow rate of 1.4 ml/min.

Pepitides (10 μg) from the complete cell lysate of CLL samples were dried using a vacuum centrifuge and then resuspended in 15 μL LC loading solution (2% (v/v) acetonitrile in water with 0.05% (v/v) fluorooacetic acid (FA)). Of the 10 μg peptides, 2 μg were injected into HPLC (1268 Infinity; Agilent Technologies) coupled with Chip-Cube (Agilent Technologies). The separation was conducted on a Polaris-HR-Chip-3C18 with a 360 nl enrichment column and a 75 μm × 150 mm analytical column, which both are packed with Polaris C18-A, 180 Å, 3 μm stationary phase (Agilent Technologies). Mobile phase consisted of two puffers: A = 5% (v/v) ACN in water with 0.1% (v/v) FA and B = 95% (v/v) ACN in water with 0.1% (v/v) FA. The pepitides were injected into the enrichment column using the mobile phase A at flow rate = 3 μl/min. Next, the separation of the peptide on the analytical column was performed using an increasing concentration of solvent B: 3% to 55% for 46 min and from 55% to 75% for 15 min at flow rate = 0.4 μl.

2.7. Mass spectrometry analysis

Resolved pepitides from the NP40 fractions and SDS fractions were analysed using an Applied Biosystems 4800 MALDI TOF/TOF mass spectrometer with a 200 Hz solid-state laser operating at a wavelength of 355 nm. The precursor masses in all LC-MALDI sample positions were measured in an MS positive reflector mode using 800 laser shots (mass range 700–3000 Da; focus mass 1400). Glu-Fib that was added to the MALDI matrix was used as an internal standard in each spot for the MS analysis. For peptide sequencing, precursor fragmentation was conducted for the most abundant six precursors with signal to noise higher than 30 in each spot position. Common trypsin autolysis peaks and matrix ion signals and precursors within 300 resolution of each other were excluded from the selection. In MS/MS positive ion mode 4000 spectra were averaged with 1 kV collision energy (collision gas was air at a pressure of 1.661026 Torr) and default calibration.

The resolved pepitides from the complete cell lysate were eluted into Agilent 6540 UHD Accurate-Mass quadrupole time-of-flight (Q-TOF) mass spectrometer through electro-spray ionization (ESI) source using Agilent HPLC Chip-Cube. The ESI was performed with a drying gas (nitrogen) at temperature of 355°C and flow rate 4 L/min. The mass spectrometry analysis was conducted at positive ion mode with a mass/charge (m/z) range of 250–3000 and five spectra/sec. Auto MS/MS of precursor ions was done with the following settings: maximum precursor per cycle was five, absolute threshold was 2000 counts and relative threshold percentage was 0.01. Active exclusion was enabled at 2 spectra and released after 1 min. Precursor charge state selection and preference were set to 2+ and then 3+.

2.8. Data analysis

To perform protein identification based on peptide sequencing, the MS and MS/MS spectra from the NP40 fractions and SDS fractions were loaded into ProteinPilot 2.0.1 software (Applied Biosystems) with the Paragon and ProGroup algorithms and searched against the Human SwissProt database (release 2018(04)) that had 20,385 entries. The search was performed only against human proteins with trypsin as an enzyme used for digestion and cysteine alkylation with methyl methane-thiosulfonate. One missed cleavage was allowed. Two different scores are reported by ProteinPilot for each protein identification. First, the total protein score, which
gives a measurement of all peptides that contribute to an identification of a protein. Second, the unused protein score, which provides an assessment of only peptides that are specifically used to identify a protein but not other proteins with a higher rank. To determine the rate of incorrect protein identification, ProteinPilot 2.0.1 software was also used to run false discovery rate (FDR) analysis on the MS and MS/MS spectra. Protein identification was restricted to those that were reported with an unused protein score ≥ 2 with confidence threshold ≥ 99% and FDR = 1%.

The MS and MS/MS spectra generated from the complete cell lysate were loaded into Spectrum Mill Protein Identification software (Agilent Technologies) and searched against the Human SwissProt database (release 2018(04)) that had 20,385 entries. The search parameters were set as follows: protein digestion was by trypsin, the maximum number of missed cleavages was two as recommended by the user manual provided by Agilent Technologies. Carboxymethylation of cysteine was selected for fixed modification, and for variable modifications (oxidized methionine, pyroglutamic acid (N-termQ), phosphorylated serine, phosphorylated threonine and phosphorylated tyrosine) were selected. The precursor mass tolerance was set at +/− 20 ppm and the product mass tolerance was +/− 50 ppm. To ensure reporting high quality data set of CLL proteome, auto-validation of peptide sequencing and protein identification was set at FDR ≤ 1%. Only protein identifications (with protein score > 20; FDR ≤ 1%) based on two or more distinct peptides (with peptide score > 6; FDR ≤ 1%) were reported in this study.

Fig. 1. Schematic illustration of the proteomics workflow that was used in the present study. Following the isolation of CLL cells, they were subjected to cellular fractionation. The protein extract in the NP40 fraction, SDS fraction and complete cell lysate was independently precipitated and digested using trypsin. The resultant peptides were separately resolved by two-dimensional liquid chromatography (2D-LC; NP40 and SDS fractions) or one-dimensional liquid chromatography (1D-LC; complete cell lysate). Next, peptides were subjected to mass spectrometry analysis to determine the peptide masses (MS) and the mass of peptide fragments (MS/MS); MALDI TOF/TOF MS for NP40 and SDS fractions and ESI Q/TOF MS for complete cell lysate. The MS and MS/MS data were used to perform peptide sequencing using ProteinPilot software or Spectrum Mill Protein Identification software with the Human SwissProt (protein) database in order to identify proteins.
2.9. Transcriptomics data sets

Two independent transcriptomics data sets of CLL (accession number: GSE22762 [31] and GSE39671 [32]) from GEO http://www.ncbi.nlm.nih.gov/geo/ were used for the analysis that aimed to investigate the prognostic potential of THRAP3, HP1BP3 in CLL patients. Three reasons led to the selection of these two data sets. First, they included information about the clinical outcomes of the disease; GSE22762 contained data about overall survival (OS) and GSE39671 included information about time to first treatment (TTFT). Second, the two data sets were based on independent cohorts containing more than 100 patients each. Third, both data sets were generated using the same oligonucleotide microarray platform (Affymetrix Human Genome U133 Plus 2.0 Array). The DataSet SOFT files of the transcriptomics data sets were downloaded from GEO and used.

2.10. Statistical analysis

Protein scores (total and unused), FDR and confidence threshold of protein identification (in NP40 and SDS fractions) were calculated using ProteinPilot 2.0.1 software (Applied Biosystems) with the Paragon and ProGroup algorithms. Spectrum Mill Protein Identification software (Agilent Technologies) was used to calculate the score and FDR of peptides and proteins identified in the complete cell lysate. Prism software (graphpad) was also employed to construct Kaplan-Meier curves and to calculate p-values with hazard ratios (HRs) based on the long-rank test. Column graphs were prepared using Excel software and the associated p-values were calculated using the unpaired Student’s t-test. Heatmap was constructed using the heatmapper tool (http://heatmapper.ca/) [33]. Pathway enrichment analysis and the associated p-values were calculated using “Reactome Pathway Database” (https://reactome.org/) [34].

3. Results

3.1. Proteomics analysis

In the current study, we performed 11 proteomics experiments on 11 CLL samples with variable prognosis. Information about the prognostic markers of the 11 CLL samples is shown in Table S1. Six proteomics experiments (2D nano-LC with MALDI TOF/TOF MS) were conducted on the NP40 and SDS fractions from six CLL samples. Next, five proteomics experiments (1D nano-LC with ESI Q/TOF MS) were done on complete cell lysate generated from 5 CLL samples. The utilized proteomics workflow is illustrated and summarised in Fig. 1. We identified 359 proteins in the NP40 fractions and 142 proteins in the SDS fractions (73 proteins were common in both fractions; total number of proteins = 428). Table S2, Table S3, Table S4, Table S5 and Table S6 show the full list of the reported proteins and the peptides used for protein identifications. The 428 proteins were identified using two or more distinct peptides with a minimum unused protein score = 2 (confidence threshold ≥ 99% and FDR = 1%). From the complete cell lysate of five CLL samples we reported 718 proteins (Table S6 and Table S7). The protein identification was based on two or more distinct peptide with peptide score > 6 (FDR ≤ 1%) and protein score > 20 (FDR ≤ 1%). Collectively, our study reported a CLL proteome consisting of 919 proteins with FDR ≤ 1% (Table 2).

Our study identified 359 proteins in the NP40 fractions and 142 proteins in the SDS fractions; 73 proteins were common in the two fractions (Fig. 2A). To explore the type of protein enrichment in the NP40 fractions and in the SDS fractions, we used Gene Ontology (GO) data coupled with Quick GO tool (https://www.ebi.ac.uk/QuickGO/) [35]. Proteins specific to the NP40 fractions and to the SDS fractions were annotated to one or more of the following GO terms “cytosol, membrane, mitochondrion or nucleus”. The analysis revealed that cytosolic proteins were more predominant in the NP40 fractions, while nuclear proteins dominated the SDS fractions (Fig. 2B).

3.2. Validation of the proteomics findings

Our proteomics work reported a CLL proteome consisting of 919 proteins (FDR ≤ 1%). To confirm the mass spectrometry-based protein identification, the detection of four proteins was validated in CLL samples using Western blotting and specific antibodies. The proteomics data showed that HP1BP3, histone H4, coronin-1A and nucleolin were identified in CLL cells with multiple peptides (n ≥ 3), unused protein score ≥ 5.8 and sequence coverage ≥ 9.4%.

Table 2

<table>
<thead>
<tr>
<th>Type of protein extract</th>
<th>Instruments</th>
<th>Size of identified proteome</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP40 fraction</td>
<td>2D nano-LC with MALDI TOF/TOF MS</td>
<td>359 proteins</td>
</tr>
<tr>
<td>SDS fraction</td>
<td>2D nano-LC with MALDI TOF/TOF MS</td>
<td>142 proteins</td>
</tr>
<tr>
<td>Complete cell lysate</td>
<td>1D nano-LC with ESI Q/TOF MS</td>
<td>718 proteins</td>
</tr>
<tr>
<td>All the three types of protein extract (NP40 fraction, SDS fraction and complete cell lysate)</td>
<td>All proteomic instruments</td>
<td>919 proteins</td>
</tr>
</tbody>
</table>

(A) NP40 fractions

359 proteins

(B) SDS fractions

142 proteins

Fig. 2. Venn diagram and protein localization analyses of the reported proteins. Venn diagram shows common and specific proteins in the NP40 fractions and SDS fractions (A). Gene Ontology, coupled with Quick GO tool, was used to determine the type of protein enrichment in the NP40 fractions and SDS fractions (B).
The validation analyses of these proteins in CLL samples (n = 8 for each protein) using specific antibodies agreed with the mass spectrometry findings (Figs. 3A-4D). Lower molecular weight bands of nucleolin (two bands: ~57 kDa and ~68 kDa) were predominantly detected in CLL samples from patients at the early stage of the disease (stage A) and with good prognostic markers (M-CLL and ZAP-70 negative; n = 8, p = 0.008, Fig. 3D, Fig. 3E and Fig. 3F respectively). These data may propose a potential association of the small size nucleolin with good prognosis of CLL. This finding was also associated with a decreased ratio of the full-length nucleolin (110 kDa) to actin in CLL cells from patients with good prognosis (n = 8, p = 0.05, Fig. 3D and 3G).

3.3. CLL-associated proteins

CLL cells were previously shown to upregulate the expression of RNA processing proteins. Therefore, we studied the expression of the RNA processing proteins (THRAP3 and HP1BP3) in CLL cells versus normal B-cells. Our proteomics data set showed that THRAP3 was detected specifically in SDS fractions with 3 different peptides, unused protein score = 6 and sequence coverage = 6.8. The identification details of HP1BP3 by mass spectrometry were mentioned earlier.

It has been controversial what defines the best normal counterpart to CLL cells, with B-cells expressing CD19, CD5, CD23 and TLR9 being suggested as good normal match of CLL cells [36]. CD5+ normal B-cells with or without CD23 and TLR9 represent a small proportion of normal B-cells population (approximately 15%) [37], thus larger volume of samples and extensive cell sorting are required to isolate sufficient number of CD5 B-cells for western blotting analysis. As a result, this restricted us to the use of CD19+ B-cells from the peripheral blood of healthy donors as a normal control of CLL cells.

The isolation of normal B-cells from four healthy donors began with the isolation of peripheral blood mononuclear cells (PBMCs)
from buffy coat samples. Subsequent flow cytometric analysis showed that further enrichment of B-cells was required (average CD19+ cells = 5%; standard deviation = 2%; Fig. 4A). Next, positive purification of B-cells was conducted using CD19-magnetic beads followed by DETACHaBEADS CD19 reagents to remove the beads from the isolated B-cells. This step resulted in an enrichment of the CD19+ population (CD19+ cells ≥ 85%; Fig. 4B).

The expression of THRAP3 and HP1BP3 was evaluated in CLL cells and normal B-cells using Western blotting and specific antibodies. The analyses showed that these two proteins were over-expressed in CLL cells compared with normal B-cells. The average of THRAP3/actin was 1.10 in CLL cells compared with 0.10 in normal B-cells (n = 9; p = 0.00007; Fig. 4C and Fig. 4E). Similarly, the average of HP1BP3/actin was 1.38 in CLL cells compared with
0.22 in normal B-cells (n = 10; p = 0.0002; Fig. 4D and Fig. 4F). Interestingly, the anti-HP1BP3 antibody (ab98894) detected a smaller size of HP1BP3 (~57 kDa) specifically in the normal B-cells, but not in the CLL cells (n = 10, p = 0.0001; Fig. 4D and Fig. 4G). Alternative splicing was reported to produce 4 different isoforms of HP1BP3, which are documented at the level of protein in the UniProt knowledgebase (https://www.uniprot.org/). Fig. 4H shows a representation of these isoforms and the region that is targeted by the anti-HP1BP3 antibody (ab98894) that was used in this study. Therefore, the small size of HP1BP3 (~57 kDa) detected specifically in normal B-cells is likely to be the isoform 2 of the protein.

Public repositories like GEO represent rich sources of omics data sets that can be used to investigate the relation between a gene of interest and a disease [38,39]. Therefore, two independent transcriptomics data sets of CLL (GSE22762 and GSE39671) from GEO with clinical details about overall survival (OS) or time-to-first-treatment (TTFT) were used to investigate whether the transcript expression of THRAP3 and HP1BP3 could be relevant to CLL prognosis. Initially the median expression of the transcripts corresponding to HP1BP3 and THRAP3 in each data set was used to divide the patients into two groups: a low expression group, where the expression of THRAP3 and HP1BP3 was below the median, and a high expression group, where the expression of HP1BP3 and THRAP3 was above the median. Next, the OS and TTFT data were compared in the low and high expression groups of the two data sets using Kaplan-Meier curve. The analysis showed that the median expression of THRAP3 and HP1BP3 did not significantly segregate CLL patients into two groups with different prognosis. Therefore, an effort was made using the “Cutoff Finder” tool (http://molpath.charite.de/cutoff/) [40] to search for a cutoff value (z-score) of the expression of THRAP3 and HP1BP3 that significantly predicts the prognosis of CLL patients. As a result, an increased expression of HP1BP3 (above a cutoff value: z-score = 0.41) was found to predict early need of therapy (n = 121, p = 0.008, HR = 2.10, Fig. 5A). Likewise, high expression of THRAP3 identified patients with early treatment (z-score = 0.21, n = 121, p = 0.05, HR = 1.70, Fig. 5B) and short overall survival (z-score = 0.57, n = 107, p = 0.005, HR = 3.80, Fig. 5C).

Next, we attempted to explain the association of THRAP3 with poor prognosis of CLL by employing Pearson score (PS) to identify genes that correlated with the expression of THRAP3 in CLL cells from 130 patients (data set GSE39671). Correlation with the expression of THRAP3 was detected for 210 genes (PS ≥ 0.40; p < 0.00001). Interestingly, some of these genes play roles in cell division and tumor growth, such as cell division cycle 14A (CDC14A), cell division cycle 40 (CDC40), cell cycle associated protein 1 (CAPRIN1), microtubule-associated protein 9 (MAP9), fibroblast growth factor receptor 1 (FGFR1), SRC proto-oncogene tyrosine kinase (SRC) and Src homology 2 domain containing adaptor protein B (SHB) and Kirsten rat sarcoma viral oncogene homolog (KRAS) (Fig. 6A). To gain insights into the functional roles of the 210 genes, we performed pathway enrichment analysis using “Reactome Pathway Database”. The analysis found a significant enrichment by the 210 genes for cancer-related pathways like FGFR1 signalling, Ras signalling and VEGFR2-mediated cell proliferation (Table 3). Following the same concept, we employed PS to identify genes that exhibited correlation with the expression of HP1BP3 in CLL cells using the data set GSE39671. The analysis found 2223 genes to be correlated with the expression of HP1BP3 in 130 CLL patients (PS ≥ 0.40; p < 0.00001). Fig. 6B shows the correlation between HP1BP3 and known CLL-related genes, such as CD79B, B-cell linker (BLNK), bruton tyrosine kinase (BTK), T-cell leukemia/lymphoma 1A (TCL1A) and CD40. Utilizing “Reactome Pathway Database” we conducted pathway enrichment analysis of the 2223 genes (Table 3).

Fig. 5. Investigations of the prognostic potential of THRAP3 and HP1BP3 in CLL. Two data sets of CLL from GEO were used (GSE22762 and GSE39671). Low expression was defined as patients with expression of THRAP3 or HP1BP3 < a z-score; high expression of THRAP3 or HP1BP3 was defined as > a z-score. The z-scores 0.41, 0.20, 0.57 were used for the analyses of HP1BP3 with TTFT (A), THRAP3 with TTFT (B) and THRAP3 with OS (C), respectively. UD: undefined; HR: hazard ratio of high expression versus low expression.
4. Discussion

Proteomics is a useful approach to study aberrant protein expression in CLL in order to provide novel insights into the pathology of the disease [23]. The dynamic range of cellular proteins was reported to reach six-fold [41]. Therefore, cellular fractionation was previously described as an effective method to increase the chance of identifying larger number of proteins using gel-free based proteomic approaches [42,43,44,45]. Following the same concept, we performed cellular fractionation on CLL cells (NP40 fractions and SDS fractions). The NP40 fractions appeared to be enriched with cytosolic proteins, whereas the SDS fractions were enriched with nuclear proteins. For example, only one histone protein (nuclear protein) was detected in the NP40 fraction.

Fig. 6. Heatmap presentation of the correlation of TRAP3 and HP1BP3 with other genes in CLL cells from 130 patients. The analysis was conducted on the data set GSE39671; the Pearson score (PS) ranged from 0.40 to 0.58 for TRAP3 (A) and 0.51 to 0.76 for HP1BP3 (B) with p value less than 0.00001. Green is high expression and red is low expression.
contrast, 13 different histone proteins were identified in the SDS fractions. In the complete cells lysate preparation, only 4 histone proteins were identified, although the proteomics experiments were conducted using Agilent 6540 UHD Accurate-Mass Q-TOF mass spectrometer, which yielded larger proteome identifications compared with Applied Biosystems 4800 MALDI TOF/TOF mass spectrometer. Although the size of the proteome detected in the SDS fractions was small (142 proteins), working on SDS fractions seemed justifiable when DNA-associated proteins are of interest.

The good quality of our CLL proteome was evident at the validation analyses. The specific antibody-based protein identification of all examined proteins (n = 4) in CLL samples was consistent with the proteomics findings, adding more validity to the reported CLL proteome.

Nucleolin (110 kDa) is a pro-survival protein that stabilizes the transcript of BCL-2 in CLL cells and inhibits FAS-induced apoptosis in B-cell lymphomas [46,47]. In CLL cells, the expression of nucleolin positively correlates with the level of BCL-2, supporting the conception that nucleolin is a stabilizing protein of BCL-2 mRNA [47]. The same study also showed that in contrast to normal B-cells, CLL cells over-express both nucleolin and BCL-2. As an anti-apoptotic protein BCL-2 is one of the main drivers of the survival of CLL cells and is considered a marker of poor prognosis in CLL patients [20]. Our preliminary data (n = 8) showed lower abundance of the intact nucleolin (110 kDa) that was associated with the detection of small sizes of the protein (−68 kDa and −57 kDa) in CLL cells from patients with good prognosis. These findings might indicate an active degradation of nucleolin (110 kDa) in CLL cells from patients with good prognosis compared with those from patients with poor prognosis. The stability of nucleolin (110 kDa) has been shown to be proliferation-dependent [48]. In proliferating peripheral blood lymphocytes (PBLs) nucleolin (110 kDa) was the main detected band, whereas smaller sizes of nucleolin (68 kDa, −57 kDa and 43 kDa) were predominantly found in less proliferative or non-dividing PBLs [48]. Given the roles of nucleolin (110 kDa) in the survival and proliferation, our findings are in consistence with the phenotype of good prognosis of CLL. Furthermore, our data may provide an explanation, at least partially, for the lower capacity of good prognosis CLL cells to undergo proliferation and resist apoptosis compared with poor prognosis CLL cells [49]. The sample size we used to study nucleolin was small (n = 8). Therefore, studying the expression of nucleolin in a larger number of CLL samples is required to confirm our finding.

In the present study, THRAP3, which is an RNA processing protein, was found with high expression in CLL cells compared with normal B-cells. This finding supports a recently published work, where CLL cells were shown to over-express proteins implicated in mRNA processing [50]. THRAP3 plays role in the cell cycle progression, where it is required for the production of mature transcript of cyclin D1 [51]. CLL cells that express cyclin D1 were shown to reside in the proliferation centre in lymph nodes, indicating a role of cyclin D1 in the proliferation of CLL cells [52]. In contrast to the historical view, that described CLL as a dysfunctional apoptosis-driven disease, CLL is currently viewed as a dynamic cancer composed of malignant cells with variable rates of proliferation and apoptosis [49]. In fact, CLL cells have a prolonged proliferation history compared with normal B-cells as evidenced by the shorter telomeres of the malignant cells [53]. Given the role of THRAP3 on the progression of cell cycle, its increased expression shortens telomeres of the malignant cells [53]. In agreement with this finding, we also found genes that have been documented at the level of protein in UniProt knowledge base (https://www.uniprot.org/). The anti-HP1BP3 antibody

Table 3

<table>
<thead>
<tr>
<th>Pathway name</th>
<th>No of genes found</th>
<th>No of genes in total</th>
<th>p value</th>
<th>Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHC-mediated cascade:FGFR1</td>
<td>4</td>
<td>30</td>
<td>0.002</td>
<td>THRAP3</td>
</tr>
<tr>
<td>FRS-mediated FGFR1 signaling</td>
<td>4</td>
<td>31</td>
<td>0.002</td>
<td>THRAP3</td>
</tr>
<tr>
<td>Signaling by FGFR1 in disease</td>
<td>5</td>
<td>58</td>
<td>0.003</td>
<td>THRAP3</td>
</tr>
<tr>
<td>Signaling by FGFR1</td>
<td>5</td>
<td>62</td>
<td>0.004</td>
<td>THRAP3</td>
</tr>
<tr>
<td>Signaling to RAS</td>
<td>3</td>
<td>26</td>
<td>0.010</td>
<td>THRAP3</td>
</tr>
<tr>
<td>Signaling by RAS mutants</td>
<td>4</td>
<td>54</td>
<td>0.014</td>
<td>THRAP3</td>
</tr>
<tr>
<td>Signaling by moderate kinase activity BRAF mutants</td>
<td>4</td>
<td>54</td>
<td>0.014</td>
<td>THRAP3</td>
</tr>
<tr>
<td>Signaling downstream of RAS mutants</td>
<td>4</td>
<td>54</td>
<td>0.014</td>
<td>THRAP3</td>
</tr>
<tr>
<td>Activation of RAS in B cells</td>
<td>2</td>
<td>11</td>
<td>0.015</td>
<td>THRAP3</td>
</tr>
<tr>
<td>VEGFR2 mediated cell proliferation</td>
<td>3</td>
<td>31</td>
<td>0.016</td>
<td>THRAP3</td>
</tr>
<tr>
<td>Signaling by EGFR</td>
<td>4</td>
<td>61</td>
<td>0.020</td>
<td>THRAP3</td>
</tr>
<tr>
<td>Signaling by Insulin receptor</td>
<td>5</td>
<td>97</td>
<td>0.025</td>
<td>THRAP3</td>
</tr>
<tr>
<td>RAF activation</td>
<td>3</td>
<td>37</td>
<td>0.025</td>
<td>THRAP3</td>
</tr>
<tr>
<td>Signalling to ERKs</td>
<td>3</td>
<td>42</td>
<td>0.035</td>
<td>THRAP3</td>
</tr>
<tr>
<td>Synthesis of DNA</td>
<td>54</td>
<td>132</td>
<td>0.000002</td>
<td>HP1BP3</td>
</tr>
<tr>
<td>DNA Replication</td>
<td>55</td>
<td>141</td>
<td>0.000006</td>
<td>HP1BP3</td>
</tr>
<tr>
<td>S Phase</td>
<td>64</td>
<td>179</td>
<td>0.00002</td>
<td>HP1BP3</td>
</tr>
<tr>
<td>mRNA Splicing</td>
<td>64</td>
<td>196</td>
<td>0.0002</td>
<td>HP1BP3</td>
</tr>
<tr>
<td>Oxygen-dependent proline hydroxylation of Hypoxia-inducible Factor Alpha</td>
<td>26</td>
<td>72</td>
<td>0.004</td>
<td>THRAP3</td>
</tr>
<tr>
<td>Downstream signaling events of B Cell Receptor (BCR)</td>
<td>31</td>
<td>93</td>
<td>0.006</td>
<td>HP1BP3</td>
</tr>
<tr>
<td>Extension of Telomeres</td>
<td>21</td>
<td>62</td>
<td>0.02</td>
<td>HP1BP3</td>
</tr>
<tr>
<td>Activation of NF-kappaB in B cells</td>
<td>23</td>
<td>72</td>
<td>0.02</td>
<td>HP1BP3</td>
</tr>
<tr>
<td>Cell Cycle</td>
<td>167</td>
<td>715</td>
<td>0.03</td>
<td>HP1BP3</td>
</tr>
</tbody>
</table>

"Reactome Pathway Database" was employed to perform pathway enrichment analysis. "No of genes found" indicates the number of genes that correlated with THRAP3 or HP1BP3 and were assigned to a pathway. "No of genes in total" is the number of all known genes that function in a pathway.

Chan AC, Van Oers N, Tran A, et al. Differential expression of ZAP-70 and Syk A341 cells [63]. Consistent with the known roles of HP1BP3, our growth in all tested mice and the tumor was bigger and more resistant of shorter time to first treatment in CLL patients. In line with data showed that high expression of HP1BP3 transcript was predictive in cellular proliferation, where it maintains heterochromatin integrity during G1 to S phase of the cell cycle affecting the duration of G1 phase [62]. In addition, HP1BP3 is a pro-survival protein; it mediates chromatin condensation that protects cells from hypoxia-induced apoptosis [63]. Furthermore, HP1BP3 increases the tumorigenesis of malignant cells. For example, HP1BP3-deficient cancer cells (A341) produced tumours in 50% of injected mice, whereas A341 cells expressing HP1BP3 induced tumor growth in all tested mice and the tumor was bigger and more resistant to chemotherapy in mice that received HP1BP3 expressing A341 cells [63]. Consistent with the known roles of HP1BP3, our data showed that high expression of HP1BP3 transcript was predictive of shorter time to first treatment in CLL patients. In line with this finding, our correlation analysis identified an association between the expression of HP1BP3 and others genes that enriched for CLL-related pathways such as cell cycling [49], BCR signaling [9], activation of NF-κB [64] and extension of telomeres [53]. Taken together, these findings suggest a role of HP1BP3 in the growth and survival of CLL cells.

5. Conclusions

Overall, our study adds to the known role of HP1BP3 in chronic lymphocytic leukemia. HP1BP3 is a pro-survival protein that maintains heterochromatin integrity and protects cells from hypoxia-induced apoptosis. Furthermore, HP1BP3 expression is associated with shortened time to first treatment in CLL patients. These findings suggest a role of HP1BP3 in the growth and survival of CLL cells.

Ethical approval

The present study was approved by the South East Wales Research Ethics Committee and all clinical materials were obtained with the patients’ written informed consent in accordance with the ethical approval (02/4806).

Conflicts of interest

The authors declare no conflict of interest.

Financial support

The authors would like to thank the Deanship of Scientific Research at Majmaah University in Saudi Arabia for supporting this work under Project Number [R-2021-1].

Acknowledgments

The authors would like to thank the Cardiff University Central Biotechnology Service (CBS), Proteomic Facility.

Supplementary material

References

