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A Measurement for Distortion Induced Saliency
Variation in Natural Images

Xiaohan Yang, Fan Li, Member, IEEE, and Hantao Liu

Abstract—How best to measure spatial saliency shift induced
by image distortions is an open research question. Our previous
study has shown that image distortions cause saliency to deviate
from its original places in natural images, and the degree of such
distortion-induced saliency variation (DSV) depends on image
content as well as the properties of distortion. Being able to
measure DSV benefits the development of saliency based image
quality algorithms. In this paper, we first investigate the plausibil-
ity of using existing mathematical algorithms for measuring DSV
and their potential limitations. We then develop a new algorithm
for quantifying DSV, based on a deep neural network. In the
algorithm, namely ST-DSV, we design a coarse-grained to fine-
grained saliency similarity transformation approach to achieve
DSV measurement. The experimental results show that the
proposed ST-DSV algorithm significantly outperforms existing
methods in predicting the ground truth DSV.

Index Terms—Saliency, distortion, similarity measure, image
quality assessment, deep neural network

I. INTRODUCTION

W ITH the rapid development of multimedia technology,
a large amount of digital images are being generated,

stored, processed and transmitted every day. These images
are also widely shared across social media [1]-[4]. We are
facing an unprecedented situation where end-users expect high
quality visual experiences. Hence, image quality assessment
(IQA) has become a popular research topic in both academia
and industry [5]-[12]. Recently, a significant approach in IQA
is to integrate saliency to its objective algorithms [13]-[18].
However, challenges to optimizing the use of saliency in IQA
algorithms remain.

Recent research shows that image distortion causes gaze
distraction, resulting in the shift of saliency from its original
locations [19], [20]; and that being able to measure the
distortion-induced saliency variation (DSV) significantly helps
improve the accuracy of IQA algorithms [21]-[23]. How best
to quantify DSV remains an open research question, which is
the topic to be investigated in this paper.

Our previous research established a ground truth benchmark
for the measurement of the distortion-induced saliency varia-
tion (DSV) [24]. First, the SIQ288 database was constructed,
where human saliency maps of distorted images and their ref-
erences were rigorously derived from 5760 eye movement tri-
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als recorded with 160 human observers. The database consists
of 288 test images selected from the recognized LIVE database
[25], including 18 pristine reference images and 270 distorted
images with five different distortion types and three distortion
levels. The distortion types include JPEG compression (JPEG),
JP2K compression (JP2K), white noise (WN), Gaussian blur
(GB), and fast-fading (FF). The same reference image is
distorted by each distortion type with three quality degradation
levels (i.e., High, Medium, Low). Table I illustrates the outline
of the composition of the SIQ288 database, including the
reference images (RI) and distorted images (DI). Note, each
image has a saliency map derived from eye movement trials.
The analysis of the saliency maps shows that, because of
the distortion-induced saliency variation (DSV), the visual
saliency of a distorted image is different from that of the pris-
tine reference image. Then, we built a benchmark to measure
DSV by using a subjective measurement method [26]. Sixteen
experts in computer vision were requested to observe and
score the similarity between the saliency map of a distorted
image and that of the pristine reference image. Finally, the
difference mean saliency variation score (DMSS) of each
”distorted” saliency map was obtained. DMSS indicates the
perceived difference between the ”distorted” saliency map and
the ”original” saliency map, which quantifies DSV. Fig. 1
shows the DSV of the FF distorted images in the benchmark.
The higher the DMSS, the less similar the deviated saliency
is from the “original” saliency.

Original                    High quality             Medium quality               Low quality 

          

(a)                        (b)                       (c)                        (d) 

          

Reference                DMSS=15.618              DMSS=28.021               DMSS=67.220 

(e)                        (f)                        (g)                          (h) 

Fig. 1. Illustration of the distortion-induced saliency variation (DSV).
DMSS (difference mean saliency variation score) represents the
degree of similarity between the deviated saliency map and the
reference saliency map. The higher the DMSS, the less similar the
deviated saliency is from the “original” saliency.

In practice, saliency maps could be computed; however,
measuring distortion-induced saliency variation (DSV) via
subjective testing is impractical for real-world applications.
A more realistic way to integrate DSV into IQA algorithms is
to develop a metric for DSV, which can automatically predict
the subjective DMSS. Unfortunately, so far there is no dedi-



TABLE I
The outline of the SIQ288 database, including the reference images

(RI) and distorted images (DI). Each image has a saliency map
derived from eye movement trials.

RI DI
Bikes 5(distortion types)*3(quality levels)=15

Buildings 5*3=15
Caps 5*3=15

Cemetry 5*3=15
Lighthouse1 5*3=15
Lighthouse2 5*3=15
Manfishing 5*3=15
Monarch 5*3=15

Ocean 5*3=15
Paintedhouse 5*3=15

Parrots 5*3=15
Plane 5*3=15

Rapids 5*3=15
Sailing 5*3=15
Statue 5*3=15
Stream 5*3=15

Studentsculpture 5*3=15
Womanhat 5*3=15

Total number:18 Total number:270

cated DSV metric. There are few mathematical algorithms, as
described by the MIT saliency benchmark [27], that calculate
the similarity between saliency maps so could be potentially
used to evaluate DSV [26]. However, these algorithms may not
be adequate for DSV. In particular, these similarity measures
focus on evaluating a computational saliency map’s ability in
predicting salient objects in natural images. These measures
may not be able to capture the saliency variation inducted by
images distortions, which is essential for DSV. In this paper,
we analyze existing algorithms of saliency similarity and their
capabilities and limitations of evaluating DSV.

We also propose a new algorithm to quantify DSV. The pro-
posed algorithm, namely ST-DSV, uses a deep neural network
(DNN) to realize a coarse-grained to fine-grained saliency
similarity transformation. More specifically, first a coarse-
grained saliency similarity DNN is constructed to capture the
similarity level when comparing different deviated saliency
maps relative to the same reference saliency map. Then, the
coarse-grained DNN is transferred to a fine-grained saliency
similarity DNN to learn the precise similarity score (i.e.,
DMSS) across different reference saliency maps. The proposed
algorithm is proven effective for the measurement of DSV.

The remainder of this paper is organized as follows. Section
II analyzes the ability of existing saliency similarity metrics
for the evaluation of DSV. Section III describes the proposed
ST-DSV algorithm in detail. Section IV demonstrates the
experimental results. Section V gives discussions and Section
VI concludes the paper.

II. ANALYSIS OF STATE-OF-THE-ART ALGORITHMS FOR
THE EVALUATION OF DSV

We hypothesize that existing saliency similarity measures
cannot sufficiently capture saliency shift induced by image
distortions, so cannot quantify DSV. Now, we verify this
hypothesis below.

A. Saliency similarity metrics
We use similarity metrics to measure DSV between a ref-

erence saliency map (i.e., originated from a pristine reference
image) and a deviated/distorted saliency map (i.e., originated
from a corresponding distorted image of the reference). Pop-
ular metrics are the area under the receiver operating charac-
teristic curve (AUC), including AUC-Borji [28] and s-ACU
[29], Normalized Scanpath Saliency (NSS) [30], Information
Gain (IG) [31], Similarity (SIM) [32], Pearson’s Correlation
Coefficient (CC) [33], Kullback-Leibler Divergence (KL) [34],
and Earth Mover’s Distance (EMD) [35]. The general use of
these metrics is already described in more detail in [28]-[35],
and we only briefly repeat their meaning in the context of
DSV measurement as follows:

In the approach of the AUC-Borji [28] and s-AUC [29], the
distorted map is interpreted as a classifier of whether pixels
are fixated or not, according to the fixations of the reference.
The perfect similarity of AUC-Borji and s-AUC corresponds
to a score of 1 while a score of 0.5 indicates a chance level.

The NSS [30] measures the average of values of the
distorted saliency map at fixation locations of the reference.
When NSS > 0, the higher the value of the measure, the
more similar the saliency maps are. NSS <= 0 indicates that
the comparison is not meaningful.

The IG [31] measures to what extent the information gain
of the saliency map is better than the centre prior baseline.
The IG above zero indicates the measurement on the fixation
locations of the distorted saliency map is better than the centre
prior baseline.

The SIM [32] is to sum up the minimum saliency value
at every pixel location between the distorted map Sd and the
pristine reference saliency map Sp. The SIM ranges between 0
and 1. A larger SIM value indicates a higher similarity between
Sd and Sp.

The CC [33] is the linear correlation coefficient, which
assesses the linear relationship between Sd and Sp. The CC
ranges between -1 to 1. When the correlation value is close
to -1 or 1, there is a perfect similarity between Sd and Sp.

The KL [34] aims to use the entropy-based metric to
measure the difference between Sd and Sp. The smaller the
KL, the higher the similarity between Sd and Sp.

The EMD [35] aims to measure the spatial distance between
Sd and Sp to solve the transportation problem from linear
optimization. The goal is to describe how spatially far away
Sd is from Sp. A larger EMD indicates a higher dissimilarity
between Sd and Sp, while the EMD of zero indicates that the
two saliency maps are the same.

It should be noted that the above-mentioned saliency simi-
larity metrics exhibit different characteristics, so they capture
different aspects of pattern “similarity”, as already discussed
in [34]. It is often not straightaway to compare the advantages
and disadvantages between these metrics directly, as some
metrics might be more suitable for certain applications (e.g.,
object detection), but less suitable for other applications (e.g.,
emotions).

The intention of the paper, however, is not to replace
exciting saliency similarity metrics for general-purpose appli-
cations. Our goal is to find an effective solution to quantify



TABLE II
The performance (i.e.,SROCC, PLCC and KROCC) of existing saliency similarity metrics based on DSV benchmark database [26].

AUC-Borji s-AUC NSS IG CC SIM KL EMD

SROCC 0.509 0.536 0.612 0.299 0.734 0.708 0.302 0.573
PLCC 0.514 0.536 0.680 0.287 0.786 0.758 0.336 0.637

KROCC 0.372 0.354 0.433 0.203 0.544 0.516 0.209 0.402

TABLE III
Illustration of two categories of saliency similarity metrics.

Category Location-based Distribution-based
Metric s-AUC,AUC-Borji,NSS, IG SIM,CC,EMD,KL

Required format of reference Fixation locations Fixation density map
Required format of test stimulus Fixation density map Fixation density map

distortion-induced saliency variation (DSV); and analyzing
existing metrics is an intuitive step to check if these metrics
are suitable for such specific application of measuring DSV.
The benchmark dataset gives ”ground truth” for DSV measure-
ment [26]. In making the benchmark, expert human subjects
assessed DSV in a fully-controlled perception experiment; the
DSV quantification by means of DMSS was rendered from the
subjective assessment. Since human visual system (HSV) is so
far the most reliable assessor/metric of visual information [25],
[39], [55], subjective DSV (i.e., DMSS) can be regarded as the
”ground truth” measurement. By analyzing existing metrics
against the ”ground truth”, insights are provided as to what
would be beneficial for developing a suitable metric.

In order to evaluate the performance of the saliency similar-
ity metrics on DSV, we can calculate the correlation between
each metric (i.e., predicted scores) and the subjective scores
of DSV (i.e., DMSS), using Spearman Rank-Order Correlation
Coefficient (SROCC) [36], Kendall’s Rank Order Correlation
Coefficient (KROCC) [37] and Pearson Linear Correlation Co-
efficient (PLCC) [38]. The SROCC and KROCC represent the
prediction monotonicity and the PLCC measures the prediction
accuracy [39]. Higher SROCC, KROCC and PLCC values
indicate higher correlation between an objective metric and
the ground truth of the DSV. The SROCC, KROCC and PLCC
results on the DSV benchmark database are listed in Table II.

It can be seen from Table II that the saliency similarity
metrics are not strongly correlated with the ground truth of the
DSV. Among the eight metrics, the performance of CC and
SIM is better than other metrics. Metrics, such as IG and KL
show very poor correlation with subjective DSV. Therefore, it
is worthwhile to further analyze the capabilities and limitations
of these metrics in quantifying DSV.

B. The limitations of saliency similarity metrics

The saliency similarity metrics can be divided into two
categories, including the location-based and the distribution-
based metrics [34], as shown in Table III. The location-
based metrics use the discrete fixation locations of the pristine
reference and the fixation density (i.e., saliency) map of the
distorted counterpart to measure saliency similarity, while the

distribution-based metrics use the saliency maps of both pris-
tine reference and distorted counterpart. Hence, s-AUC, AUC-
Borji, NSS and IG metrics are classified as the location-based
metrics and SIM, CC, EMD, KL metrics are the distribution-
based metrics.

Original               High quality           Medium quality            Low quality 

             

(a)                     (b)                     (c)                     (d) 

             

Reference              DMSS=16.187            DMSS=36.932            DMSS=51.438 

(e)                     (f)                      (g)                     (h) 

         

(i)                     (j)                       (k)                    (l) 

Fig. 2. The saliency maps of the pristine reference “Cemetry” image
from the SIQ288 database and its high, medium and low quality
images (distorted by JEPG). (a)-(d) are the images of reference, high,
medium and low quality. (e)-(h) are their saliency maps. (i)-(l) are
the image patches extracted from (a)-(d) to better visualize distortions
(i.e., as indicated by the red boxes in (a)-(d).

TABLE IV
The comparison of DMSS and the location-based metrics for Fig. 2.

Metric High quality Medium quality Low quality
DMSS 16.187 36.932 51.438

AUC-Borji 0.627 0.662 0.618
s-AUC 0.579 0.609 0.558
NSS 1.575 1.623 1.489
IG 0.547 0.612 0.544

1) The limitations of location-based metrics: As shown in
Table II, the performance of location-based metrics is rather
poor. The correlation of the IG metric is less than 0.3, which
means IG is inconsistent with subjective DSV. Furthermore,
the AUC-Borji , s-AUC and NSS metrics cannot quantify DSV



accurately, because the average correlation is low and around
0.5-0.6.

Original                   High quality               Medium quality               Low quality 

             

(a)                        (b)                        (c)                         (d) 

             

         Reference                 DMSS=22.180              DMSS=45.463               DMSS=63.358 

(e)                        (f)                         (g)                        (h) 

             

(i)                        (j)                         (k)                        (l) 

Fig. 3. The saliency maps of the pristine reference “Ocean” image
from the SIQ288 database and its high, medium and low quality
images (distorted by FF). (a)-(d) are the images of reference, high,
medium and low quality. (e)-(h) are their saliency maps. (i)-(l) are
the image patches extracted from (a)-(d) to better visualize distortions
(i.e., as indicated by the red boxes in (a)-(d).

TABLE V
The comparison of DMSS and the location-based metrics for Fig. 3.

Metric High quality Medium quality Low quality
DMSS 22.180 45.463 63.358

AUC-Borji 0.664 0.614 0.587
s-AUC 0.613 0.538 0.537
NSS 1.489 1.377 1.385
IG 0.253 0.267 0.214

Fig. 2 shows an examples of how DSV is measured subjec-
tively by the ground truth DMSS scores; and that the higher
the distortion (i.e., the lower the image quality), the larger the
saliency variation relative to the original saliency. As shown in
Table IV, the DMSS score increases with the increase of the
distortion level. The table also shows the objective measures of
DSV using the AUC-Borji, s-AUC, NSS and IG. It can be seen
that these metrics fail in capturing the properties of DSV. They
all fail the instance of ”Medium quality”, where metrics give
the largest value of saliency variation. For a good metric, we
should expect that the metric’s values monotonically decrease
as DMSS values increase. Note that the values of DMSS
represent dissimilarity (i.e., the higher the value, the more
dissimilar); the values of metrics represent similarity (i.e., the
higher the value, the more similar.)

Fig. 3 shows an additional example of ground truth DSV
measured by the DMSS scores. Table V shows the results
of DSV measured by the location-based metrics (AUC-Borji,
s-AUC, NSS and IG). As can be seen from Fig. 3 and
Table V, DMSS scores increase as distortions increase. This
means when image quality degrades, its saliency becomes
more dissimilar to the reference saliency (of the pristine
image). AUC-Borji and s-AUC metrics seem to capture the
tendency of DSV in this example, but it should be noted
that their values around 0.5 indicate the prediction is likely
to be meaningless (i.e., around chance level) [23]. For the

AUC based metrics, chance is at 0.5 and AUC scores larger
than 0.5 indicate correspondence between maps above chance
[28], [29], [34]. More critically, the MIT saliency benchmark
[27] suggested the baseline for AUC-Borji is 0.66 and s-AUC
is 0.63; and scores below the baseline indicate performance
below chance level. Therefore, both metrics are not suitable
for DSV measurement. The NSS metric fails the ”Medium
quality” instance, where metric gives the lowest value of
saliency variation; while the IG metric fails the ”Medium
quality” instance, where metric gives the highest value of
saliency variation.

Original          High quality      Medium quality      Low quality 

    

(a)               (b)               (c)               (d) 

    

    Reference        DMSS=37.044      DMSS=68.518      DMSS=69.993 

(e)               (f)               (g)               (h)  

  

(i)                (j)               (k)               (l) 

 

Fig. 4. The saliency maps of the pristine reference ”Womanhat” image
from the SIQ288 database and its high, medium and low quality
images (distorted by FF). (a)-(d) are the images of reference, high,
medium and low quality. (e)-(h) are their saliency maps. (i)-(l) are
the image patches extracted from (a)-(d) to better visualize distortions
(i.e., as indicated by the red boxes in (a)-(d).

TABLE VI
The comparison of DMSS and the KL and EMD metrics for Fig. 4.

Metric High quality Medium quality Low quality
DMSS 37.044 68.518 69.993

KL 0.144 0.143 0.139
EMD 0.725 0.727 0.613

In summary, these location-based metrics, when used for
DSV measurement, are inconsistent with ”ground truth”
DMSS scores, as shown in Table IV and V. The analyses
indicate that s-AUC, AUC-Borji, NSS and IG metrics are not



suitable candidates for DSV quantification. This is probably
attributed to the fact that these metrics focus on locality
(i.e., fixation locations) as their predominant determinant for
the saliency similarity measurement. However, when DSV
is measured between the reference and distorted saliency
maps, both the locality and spatial distribution of saliency
are important influencing factors [26]. This may explain why
these location-based metrics give unsatisfactory results, as they
cannot capture changes of spatial saliency distribution.

2) The limitations of distribution-based metrics: In general,
distribution-based metrics are applicable for measuring the
DSV, because their calculation is based on comparing the
reference and distorted saliency maps. However, both KL and
EMD give almost identical scores to the “High quality” and
“Medium quality” instances. This indicates that KL and EMD
fail in distinguishing the saliency variation induced by “high”
and “medium” image quality. Also, both KL and EMD give an
inconsistent measure for the “Low quality” instance, since its
measure should be the largest for this instance. For KL and

Original                High quality              Medium quality              Low quality 

             

(a)                      (b)                       (c)                        (d) 

             

            Reference               DMSS=13.759             DMSS=13.804             DMSS=17.216 

(e)                      (f)                       (g                        (h)       

               

(i)                      (j)                       (k)                        (l) 

 

Fig. 5. The saliency maps of the pristine reference ”Lighthouse2”
image from the SIQ288 database and its high, medium and low
quality images (distorted by GB). (a)-(d) are the images of reference,
high, medium and low quality. (e)-(h) are their saliency maps. (i)-
(l) are the image patches extracted from (a)-(d) to better visualize
distortions (i.e., as indicated by the red boxes in (a)-(d).

TABLE VII
The comparison of DMSS and the SIM and CC metrics for Fig. 5.

Metric High quality Medium quality Low quality
DMSS 13.759 13.804 17.216
SIM 0.825 0.840 0.817
CC 0.889 0.908 0.870

EMD metrics, Table II illustrates that they are inconsistent
with the subjective DSV, as the correlation is low. These
metrics are based on the measure of probability distribution
of saliency values, which is, however, not sensitive to local
structural changes in saliency. Fig. 4 and Table VI show the
saliency maps of a reference image, and the corresponding
distorted images from the SIQ288 database; and how the DSV
is measured by the ground truth DMSS and by the objective
metrics, KL and EMD, respectively.

It can be seen from Fig. 4 that with the increase of distortion
(see Fig. 4 (a)-(d)), the saliency variation becomes larger (see
Fig. 4 (e)-(h)). As shown in Table VI, this trend is clearly
reflected by the ground truth DMSS. However, both KL and
EMD give almost identical scores to the “High quality” and
“Medium quality” instances. This indicates that KL and EMD
fail in distinguishing the saliency variation induced by “high”
and “medium” image quality. Also, both KL and EMD give
an inconsistent measure for the “Low quality” instance, where
the predicted score should be the largest for either KL or
EMD (note, for KL and EMD, the larger the value, the more
dissimilar of the measure).

Original                   High quality                Medium quality               Low quality 

             

 (a)                         (b)                         (c)                         (d) 

             

Reference                  DMSS=7.148                DMSS=17.521               DMSS=95.994 

(e)                         (f)                         (g)                         (h) 

           

(i)                         (j)                         (k)                          (l) 

Fig. 6. The saliency maps of the pristine reference ”Cemetry” image
from the SIQ288 database and its high, medium and low quality
images (distorted by WN). (a)-(d) are the images of reference, high,
medium and low quality. (e)-(h) are their saliency maps. (i)-(l) are
the image patches extracted from (a)-(d) to better visualize distortions
(i.e., as indicated by the red boxes in (a)-(d).

TABLE VIII
The comparison of DMSS and the distribution-based metrics for

Fig. 6.

Metric High quality Medium quality Low quality
DMSS 7.148 17.521 95.994
EMD 1.226 0.733 1.718
SIM 0.883 0.887 0.630
CC 0.965 0.970 0.555

For CC and SIM metrics, as shown in Table II, their
performance in measuring DSV is better than other metrics.
CC and SIM metrics, to some extent, can reflect the degree
of saliency deviation relative to the reference. However, these
simple metrics exhibit some limitations in dealing with com-
plex saliency patterns. For example, some distortion types,
such as Gaussian blur (GB) and white noise (WN), represent
evenly distributed distortions in an image. In the saliency
map of the distorted image, gaze tends to be concentrated on
(not deviated significantly from) the areas with highly salient
features.

Fig. 5 shows the reference image and its GB distorted im-
ages (see Fig. 5 (a)-(d)), and their corresponding saliency maps



(see Fig. 5 (e)-(h)). It can be seen from Fig. 5 that saliency
variation is rather subtle for the “Medium quality” and “High
quality” instances, i.e., the saliency map of Fig. 5 (g) appears
to show only a slightly higher variation than that of Fig. 5 (f);
and that saliency variation for the “Low quality” instance is
more obvious, i.e., the saliency map of Fig. 5 (h) shows the
highest variation amongst all instances. This is clearly reflected
in the ground truth DSV measurement, as shown in Table VII
that the DMSS score of the “Medium quality” instance is
slightly larger than the score of the “High quality” instance,
and that the DMSS score of the “Low quality” instance is
much larger than the other two instances. CC and SIM metrics,
on the other hand, give a higher score (i.e., larger similarity and
smaller DSV) for the “Medium quality” instance than “High
quality” instance, which is inconsistent with the ground truth.

Fig. 6 illustrates an additional example of ground truth DSV
measured by the DMSS scores. Table VIII shows the results
of DSV measured by EMD, SIM and CC. As can be seen
from Fig. 6, DMSS scores increase as distortions increase,
meaning when image quality degrades, its saliency becomes
more dissimilar to the reference saliency (of the pristine
image). So, for a good metric, we should expect that the values
of EMD (i.e., measuring dissimilarity) monotonically increase
as DMSS values (i.e., measuring dissimilarity) increase; and
that the values of SIM and CC (i.e., measuring similarity)
monotonically decrease as DMSS values increase. However,
EMD, SIM and CC all fail the instance of ”Medium quality”
(i.e., they all give the largest score), as show in Table VIII.

In summary, these distribution-based metrics, when applied
for DSV, are inconsistent with ”ground truth” DMSS scores,
as shown in Table VI, VII and VIII. The analyses suggest that
KL, EMD, SIM and CC metrics are not suitable candidates
for DSV quantification. This is mainly because these metrics
emphasize on the distribution of saliency intensity values
but ignore local structural patterns in measuring saliency
similarity. However, the measured DSV between the reference
and distorted saliency maps is sensitive to the local structural
changes in saliency patterns [26]. This may explain why these
distribution-based metrics give unsatisfactory results, as they
have limitations in dealing with local structural changes in
saliency.

Existing similarity metrics mainly aim to use the linear
accumulation approach to construct a pixel-based model to
evaluate saliency similarity. These metrics, therefore, do not
adequately reflect (both global and local) structural variation
in saliency. This is the reason why these metrics show a
poor correlation with subjective DSV benchmark. In light of
the above analyses of the limitations of existing algorithms,
we will now design a new algorithm which can effectively
measure the distortion-induced saliency variation in natural
images.

III. THE PROPOSED ST-DSV METHOD

We propose a deep neural network based on a coarse-
grained to fine-grained saliency similarity transformation to
evaluate DSV (ST-DSV). Deep learning is a powerful tech-
nique to solve complicated problems, however, it requires large
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Fig. 7. The framework of the proposed ST-DSV method. Note that
C indicates the convolution layer, and P indicates the pooling layer,
and FC indicates the fully connected layer.

amounts of labeled data. For our problem of DSV, the current
benchmark dataset [24] is limited in its size. It should be noted
that the ground truth label of DSV (i.e., DMSS) is derived from
a fully-controlled perception experiment (rather than simple
image annotation); and acquiring a large DSV dataset is non-
trivial (e.g., the size of dataset is increased often at the expense
of the reliability of the perceptual label due to human limits
[25],[46]. To leverage deep learning with limited data, we
take the approach of using data augmentation in conjunction
with transfer learning. More specifically, we leverage domain-
relevant pre-trained models and then restructure and fine-tune
them for the DSV problem. Fig. 7 shows the framework
of the proposed ST-DSV method. First, to augment saliency
data, we use a pairwise labeling strategy to construct an
auxiliary domain, which represents a task highly related to
the target task of quantifying DSV. Then, a Siamese network
[9], [11] with twin tailored VGG is built to approximately
discriminate the level of similarity between the distorted and
reference saliency maps. Finally, a branch of the trained
Siamese network (with tailored-VGG) is used for fine-tuning
with the DSV benchmark database to predict the saliency
similarity scores.

A. Pairwise labeling strategy

As mentioned above, transfer learning is exploited to build
a DNN model by avoiding the small dataset problem. This
approach is plausible for example the large-scale ImageNet
database can be first used to learn a classification task [45], and
the shared features of the deep network can then be transferred
to learn a new but related target task using a small database.

For our DSV target task, the learning goal is to measure
the saliency similarity score, which can intuitively show the
degree of saliency shift between the distorted saliency map
and the reference saliency map. Due to the essential difference
between the DSV measurement task and the image classifica-
tion task, direct transfer learning is difficult to maximize the
utilization of shared features. Therefore, we propose a pairwise
labeling strategy to construct an auxiliary domain, which can
help bridge tasks and gradually approach our target task (e.g.,
DMSS prediction).



The pairwise labeling strategy aims to define a “similarity
level” label to represent the relative level of similarity when
comparing different saliency maps. Since there are four differ-
ent forms of saliency maps in the DSV benchmark database,
including three forms of distorted images (i.e., High-quality,
Medium-quality and Low-quality) and one form of reference
image, we design four levels of labeling (i.e., 0, 1, 2, 3) based
on the ”similarity level” between the pairwise saliency maps.
In this case, the similarity level is regarded as the degree
of saliency shift to roughly quantify DSV. Fig. 8 shows the
four levels of labeling for the pairwise saliency maps. The
label 0 means the “perfect” similarity, which is obtained by
comparing the two same reference saliency maps. Note that
it is the best label among the four levels of labeling. The
label 1 means the “good” similarity between the High-quality
saliency map and the reference. It indicates that the similarity
is lower than that of level 0. Similarly, the label 2 is used to
represent the “poor” similarity between the Medium-quality
saliency map and the reference. The similarity level is lower
than that of label 1. The label 3 is used to represent the
“bad” similarity between the Low-quality saliency map and
the reference, which indicates that the similarity level is the
lowest. Once the similarity level of saliency maps is defined,

versusversus versus

Reference High quality Medium quality Low quality
(DMSS=15.618) (DMSS=28.021) (DMSS=67.220)

Reference

versus

Label 0 Label 1 Label 2 Label 3
 

Fig. 8. The four levels of labeling for the pairwise saliency maps.

transfer learning is in place to transfer information from
previously learned image classification task to the auxiliary
domain of learning a saliency map classification task, and
consequently to the target task of DMSS prediction. The
auxiliary domain acts as an intermediate bridge to enhance
the sharing of features, progressively. Thus, the relevance of
multiple tasks is significantly enhanced.

B. Preprocessing

In the DSV benchmark database, each saliency map rep-
resents a single-channel (i.e., gray-scale) image. However,
the input of a DNN should be a three-channel (i.e., R, G
and B) image. We need to perform data preprocessing to
generate a suitable format of input for our ST-DSV method.
The idea is to mimic the way DSV is subjectively measured,
reflecting the situation of comparing the distorted saliency
map against the reference. Fig. 9 shows the data preprocessing
and label assignment, where the input format of the DNN is

Reference Reference Empty

Reference_label0

R G B

Reference
High quality
(DMSS=15.618)

R G B

High quality_label1

Empty

Reference_DMSS

Pre-training stage Fine-tuning stage

High quality_DMSS=15.618

Pre-training stage Fine-tuning stage

 

Medium quality_label2

R G B

Low quality_label3

R G B

Reference
Medium quality
(DMSS=28.021) Empty EmptyReference

Low quality
(DMSS=67.220)

Medium quality_DMSS=28.021 Low quality_DMSS=67.220

Fine-tuning stage Fine-tuning stagePre-training stage Pre-training stage

 

Fig. 9. The “pseudo color” image and label assignment in the ST-DSV
method. (a) The reference saliency map with label 0 and DMSS=0.
(b)The High-quality saliency map with label 1 and DMSS=15.618. (c)
The Medium-quality saliency map with label 2 and DMSS=28.021.(d)
The Low-quality saliency map with label 3 and DMSS=67.220.
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Fig. 10. The input instances of saliency maps of image named “Plane”
with FF distortion in the pre-training and fine-tuning stages. (a) The
six possible input instances of the Siamese network in the pre-training
stage. (b) The input of the tailored VGG in the fine-tuning stage.



shown both for the pre-training stage and fine-tuning stage.
We convert the single-channel saliency map into a three-
channel “pseudo color” image to meet the required format
of the DNN input. Because the subjective DSV (e.g., DMSS)
is rendered by comparing the similarity between the distorted
saliency map and the reference, the “pseudo color” image is
contructed as follows: R component represents the reference,
G component represents the distorted saliency map, and B
component represents an “empty” map with all values set to
be 0. By doing so, in the pre-training stage, the input label
of the DNN is the similarity level (label 0, label 1, label 2 or
label3), while in the fine-tuning stage, the input label of the
DNN becomes DMSS, which represents a regression score.

Once the “pseudo color” images and the corresponding
labels are constructed, the inputs are clearly defined for the
pre-training and fine-tuning stages, respectively. Note that
the input represents a pairwise “pseudo color” images with
pairwise label levels for the pre-training stage and the input
represents a single “pseudo color” image with DMSS for the
fine-tuning stage. In order to clearly illustrate the DNN input,
we take the saliency maps of the image named “Plane” and
their labels as an example to show possible instances of the
DNN input. Fig. 10 (a) shows six possible inputs for the
Siamese network in the pre-training stage. Fig. 10 (b) shows
the input of the tailored VGG (a branch of trained Siamese
network) in the fine-tuning stage.

C. The network architecture of ST-DSV

We first train a Siamese network to rank saliency maps
in terms of similarity levels. Data augmentation is achieved
as the paired saliency maps with four levels actually expand
the training samples by 9 times as to the original data. As
shown in Table IX, with the same available saliency data,
the training samples in the pre-training stage are 9 times
the training samples in the fine-tuning stage. Note that DSM
indicates the “distorted saliency map” and RSM indicates
the ”reference saliency map”. More specifically, the input of
the pre-training stage is a pair of saliency maps and their
corresponding ”similarity level” labels. This stage represents
a classification task of different input options. The input
of the fine-tuning stage is a distorted saliency map and its
corresponding ”DMSS score” label. This stage represents a
regression task that follows a one-on-one relationship. Then,
we use fine-tuning to transfer the coarse-grained similarity
level represented in the trained Siamese network to the fine-
grained similarity score (i.e., DMSS).

In the pre-training stage (Fig. 7(a)), the Siamese network
[47] consists of twin tailored VGG network branches. The
twin tailored VGG is used with the aim of sharing weights of
previously learned models. More specifically, the architecture
of the tailored VGG network is constructed by removing the
softmax layer of the original VGG network [50] (i.e., used
for classification task) and replacing it with an output FC
layer. By doing so, the parameters/weights of the pre-trained
VGG network can be transferred to tailored VGG network.
An example of the input instances of the Siamese network is
illustrated in Fig. 10(a), where pairs of “pseudo color” images

TABLE IX
Illustration of input in pre-training (PT) and fine-tuning (FT) stages.

Option Input(PT) Input(FT)

1 RSM with label 0

DMS with DMSS

RSM with label 0

2 RSM with label 0
DSM with label 1

3 RSM with label 0
DSM with label 2

4 RSM with label 0
DSM with label 3

5 DSM with label 1
DSM with label 1

6 DSM with label 1
DSM with label 2

7 DSM with label 1
DSM with label 3

8 DSM with label 2
DSM with label 2

9 DSM with label 2
DSM with label 3

and level labels represent six input instances for the saliency
maps originated a reference image and images distorted with
a specific distortion type. Once pairs of saliency maps and
level labels are fed into the Siamese network, the network can
learn to rank the similarity level of the saliency maps. The
tailored VGG is to learn the properties of DSV by comparing
the pairwise saliency maps at different similarity levels. Since
DMSS essentially reflects the changes of complex structural
information, the advantage is that the DSV features represent-
ing the higher-level semantics of structural information could
be learned. At the same time, the Siamese network with the
twin tailored VGG is designed to compare different similarity
levels of saliency maps to capture the relative changes of
saliency patterns. It makes matched maps in a pair are pulled
closer and unmatched maps are pushed further away.

In the fine-tuning stage (Fig. 7(b)), the “pseudo color”
images with the DMSS labels illustrated in Fig. 10(b) are
fed into a learned tailored VGG branch to predict DMSS.
Since the tailored VGG branch is able to discriminate the
saliency similarity by using the coarse-grained levels, the
process of fine-tuning, therefore, transfers the coarse-grained
similarity levels to the fine-grained similarity scores to learn
the regression task of DSV measurement.

D. The loss function of ST-DSV

When we pre-train the Siamese network, the loss function
is adopted to discriminate the relative similarity levels. We
consider the difference of deep features between the pairwise
saliency maps under different similarity levels and design a
trade-off threshold to control the optimal level of the Siamese
network output. The loss function L1 is defined as:

L1(S
m;Sn; θ) = max(0, f(Sm; θ)− f(Sn; θ) + ζ) (1)



where Sm,Sn denote the two paired saliency maps (i.e.,
originated from two distorted images, one distorted and one
reference images, or two reference images). f(Sm; θ),f(Sn; θ)
respectively denote the output feature representation in the
last layer of the two branches of the Siamese network. In our
Siamese network, the output of the final layer is a single scalar,
which aims to be indicative of DSV similarity. θ represents the
parameters of Siamese network. ζ denotes the margin.

Here we assume, without loss of generality, that the simi-
larity level ranking of Sm is higher than Sn. Since our goal is
to rank similarity level, the gradient of the loss L1 (Equation
1) is given by:{

∇θL = 0 case1

∇θL = ∇θf(Sm; θ)−∇θf(Sn; θ) case2
(2)

Note that case 1 means f(Sm; θ)−f(Sn; θ)+ζ ≤ 0 and case 2
means otherwise condition. When the outcome of the Siamese
network is in accordance with the pre-defined ranking, the
gradient should be zero. Otherwise, the network needs to
adjust parameter θ to meet the requirement that the similarity
level ranking of Sm is higher than Sn. Given the gradient
of the loss L1 with respect to model parameters θ, we can
train the Siamese network to rank similarity level. The margin
parameter ζ is set to 10.

After training the Siamese network, we extract the single
branch for fine-tuning and use the Euclidean distance as the
loss function L2

L2(yi; ŷi) =
1

M

M∑
i=1

(yi − ŷi)2 (3)

where M is the number of saliency maps in mini-batch. yi is
the ground truth score of DSV (i.e., DMSS) of the i-th saliency
map. ŷi is the predicted score of DSV.

TABLE X
The sizes of saliency maps in the DSV benchmark database.

Size(pixel) Number of saliency maps
768× 512 192
632× 505 16
634× 438 16
627× 482 16
480× 720 48

E. The training strategy of ST-DSV

Since the sizes of the saliency maps in the DSV benchmark
database are not the same, as shown in Table X, image crop-
ping is applied. In implementation of the DNN, we randomly
crop the image path of 430× 430 pixels to generated a “sub-
image”, and this process is done repeatedly by the DNN to
cover the entire image content. If the cropped size is too
small, it is likely that the patch dose not contain representative
structure of the DSV. However, if the cropped patch is too
large, the input saliency map needs zero padding by adding a
large number of zero values, This may lead to the change of

saliency patterns e.g., the proportion of salient and non-salient
areas might be changed.

We use the Caffe [48] framework and train it using the mini-
batch Stochastic Gradient Descent [49] with an initial learning
rate of 1e-4 for efficient Siamese network training and 1e-6
for fine-tuning. Training rates are decreased by a factor of
0.1 every 10k iterations for a total of 50K iterations. During
training we sample a single “sub-image” from each training
saliency map per epoch. The trade-off threshold is set to be
10.

IV. EXPERIMENTS AND RESULTS

A. Database and evaluation metrics

The performance of our proposed ST-DSV method is val-
idated against the DSV benchmark database [24], [26]. The
three commonly used metrics, SROCC, PLCC, KROCC as
already mentioned in Section II, are used for the performance
evaluation. These metrics measure the correlation between
a set of predicted scores of DSV and a set of human
subjective scores of DSV. The subjective scores are DMSS
values, which represent the ground truth DSV measurement.
A DMSS score measures the perceived difference between the
distorted saliency map and the reference saliency map. For the
three performance metrics, a value close to 1 indicates high
performance of an objective DSV measure.

B. Performance on the DSV benchmark database

We compare the performance of our proposed ST-DSV
method to the state-of-the-art saliency similarity methods,
including AUC-Borij [29], s-AUC [30], NSS [31], CC [32],
SIM [32], IG [33], KL [34], EMD [35]. In addition, we also
compare the performance of our method to some ”structural
similarity/visual fidelity” methods, including the traditional
methods (SSIM [40], MS-SSIM [41], VIF [42] and FSIM
[43]) and the deep learning methods (DIQaM-FR [44] and
GraphIQA [54]).

Because our ST-DSV method is based on deep learning, we
divided the DSV benchmark database into two sets, including
a training set and a test set. In our experiments, 80% of the
distorted saliency maps are used as the training set and the re-
maining 20% of the distorted saliency map are used as the test
set. Also, the training set consists of 70% samples for training
and 10% samples for validation. In terms of the number of
samples for fine-tuning the model, we used the entire DSV
benchmark which contains 270 distorted saliency maps (note
these saliency maps are originated from 18 references, i.e.,
each reference corresponds to 15 distorted maps). For each
run (i.e., eight runs in total), we divided (randomly as per
references) the dataset into 80%-training (including validation)
and 20%-test sets. Effectively, this data split gives a training set
of 210 maps (i.e., 195 maps (originated from 13 references)
for training and 15 maps (originated from 1 reference) for
validation) and a test set of 60 maps (i.e., originated from 4
references). Because the random split takes place based on
the references, the generated training, validation, and test sets
do not overlap at all in terms of content, which ensures a
rigorous training strategy. This process is repeated eight times



TABLE XI
The performance of different saliency similarity and structural similarity/visual fidelity metrics on the DSV benchmark database.

Metric AUC-Borji s-AUC NSS IG CC SIM KL EMD SSIM MS-SSIM VIF FSIMc DIQaM-FR GraphIQA ST-DSV
SROCC 0.527 0.586 0.657 0.336 0.736 0.716 0.343 0.569 0.470 0.553 0.533 0.521 0.697 0.735 0.820
PLCC 0.535 0.586 0.672 0.343 0.766 0.748 0.339 0.610 0.501 0.560 0.534 0.541 0.712 0.750 0.836

KROCC 0.384 0.418 0.492 0.238 0.562 0.538 0.247 0.412 0.337 0.408 0.375 0.390 0.501 0.542 0.632

TABLE XII
The performance of saliency similarity and structural similarity/visual fidelity metrics for five different distortion types on the DSV

benchmark database.

Metric FF GB JP2K JPEG WN
SROCC PLCC KROCC SROCC PLCC KROCC SROCC PLCC KROCC SROCC PLCC KROCC SROCC PLCC KROCC

AUC-Borji 0.512 0.588 0.356 0.620 0.649 0.458 0.600 0.659 0.504 0.520 0.546 0.398 0.433 0.416 0.331
s-AUC 0.583 0.614 0.451 0.596 0.653 0.428 0.589 0.610 0.462 0.549 0.575 0.410 0.542 0.504 0.417
NSS 0.664 0.667 0.542 0.618 0.723 0.477 0.611 0.669 0.462 0.663 0.702 0.519 0.554 0.515 0.446
IG 0.121 0.319 0.080 0.295 0.368 0.205 0.422 0.514 0.333 0.297 0.350 0.220 0.306 0.373 0.238
CC 0.767 0.797 0.655 0.608 0.697 0.485 0.710 0.691 0.568 0.740 0.774 0.587 0.704 0.720 0.585
SIM 0.686 0.710 0.557 0.566 0.680 0.428 0.734 0.761 0.591 0.729 0.770 0.576 0.731 0.755 0.590
KL 0.210 0.494 0.163 0.309 0.369 0.254 0.458 0.392 0.352 0.410 0.364 0.326 0.243 0.344 0.184

EMD 0.575 0.609 0.443 0.518 0.593 0.394 0.637 0.635 0.500 0.630 0.684 0.473 0.488 0.533 0.378
SSIM 0.447 0.544 0.355 0.459 0.399 0.349 0.635 0.640 0.502 0.473 0.511 0.381 0.606 0.648 0.476

MS-SSIM 0.554 0.677 0.450 0.581 0.631 0.423 0.535 0.549 0.407 0.590 0.594 0.481 0.575 0.580 0.420
VIF 0.568 0.632 0.407 0.457 0.424 0.326 0.440 0.543 0.333 0.495 0.506 0.381 0.671 0.654 0.515

FSIMc 0.512 0.666 0.411 0.567 0.575 0.436 0.536 0.540 0.416 0.506 0.546 0.411 0.594 0.651 0.463
DIQaM-FR 0.632 0.650 0.594 0.615 0.631 0.608 0.584 0.592 0.577 0.567 0.585 0.541 0.629 0.647 0.612
GraphIQA 0.642 0.633 0.621 0.635 0.657 0.638 0.604 0.612 0.579 0.580 0.587 0.560 0.641 0.655 0.628
ST-DSV 0.851 0.881 0.712 0.790 0.861 0.614 0.864 0.824 0.735 0.781 0.833 0.617 0.767 0.808 0.614

TABLE XIII
The performance of saliency similarity and structural similarity/visual fidelity metrics for three different distortion levels on the DSV

benchmark database.

Metric Low Level Medium Level High Level
SROCC PLCC KROCC SROCC PLCC KROCC SROCC PLCC KROCC

AUC-Borji 0.487 0.534 0.350 0.580 0.559 0.429 0.490 0.503 0.375
s-AUC 0.528 0.557 0.372 0.614 0.622 0.462 0.542 0.528 0.376
NSS 0.666 0.695 0.492 0.667 0.674 0.504 0.590 0.651 0.443
IG 0.407 0.466 0.312 0.313 0.332 0.222 0.066 0.252 0.051
CC 0.671 0.697 0.507 0.753 0.748 0.591 0.700 0.791 0.546
SIM 0.681 0.680 0.507 0.711 0.698 0.557 0.637 0.730 0.482
KL 0.091 0.244 0.072 0.241 0.244 0.186 0.338 0.379 0.241

EMD 0.415 0.395 0.291 0.539 0.531 0.407 0.540 0.624 0.391
SSIM 0.422 0.436 0.307 0.453 0.475 0.342 0.300 0.411 0.218

MS-SSIM 0.475 0.529 0.356 0.562 0.575 0.413 0.441 0.481 0.354
VIF 0.552 0.543 0.400 0.524 0.546 0.397 0.349 0.363 0.228

FSIMc 0.483 0.490 0.372 0.540 0.511 0.409 0.430 0.492 0.326
DIQaM-FR 0.655 0.658 0.540 0.625 0.640 0.503 0.609 0.614 0.522
GraphIQA 0.661 0.669 0.581 0.632 0.654 0.551 0.622 0.620 0.537
ST-DSV 0.786 0.828 0.578 0.783 0.775 0.604 0.772 0.830 0.620

to eliminate the performance bias. For each run, the training
and test sets are randomly selected as described above. The
average values of the obtained SROCC, PLCC and KROCC
are reported as the final results. To have a fair comparison
among different metrics, each of the other metrics is applied
to the test set for eight times (as the process mentioned above)
and the average performance is calculated.

Table XI shows the performance of different saliency and
image similarity/visual fidelity metrics. The best performance
is shown in bold. Compared with “saliency similarity” metrics
(AUC-Borji, s-AUC, NSS, IG, CC, SIM, KL and EMD), it

can be seen that the proposed ST-DSV metric outperforms
other metrics. As already extensively discussed in Section
II, existing saliency similarity metrics are formulated on a
pixel-by-pixel basis, which limits their ability of capturing
complex structural variation in saliency patterns. The lim-
itations of these pixel-based metrics are overcome by our
ST-DSV method that adopts deep learning, making use of
the entire visual content that composes a saliency map. The
model can thereby extract strongly task-relevant deep features
to represent the complex higher-level properties of saliency
patterns.



Furthermore, compared with ”structural similarity/visual
fidelity” methods (SSIM, MS-SSIM, VIF, FSIMc, DIQaM-
FR and GraphIQA), we observe that our propose ST-DSV
method is superior. This might be attributed to the fact that
these existing methods are specifically designed to quantify
structural similarity or visual fidelity between two natural
images. The computed features (by SSIM, MS-SSIM, VIF,
FSIMc) or learned features (by DIQaM-FR and GraphIQA)
do not necessarily describe the variation of saliency maps,
which differ from normal ”natural” images. In this respect,
our ST-DSV method uses a task-specific coarse-grained and
fine-grained saliency similarity transformation design, which
can effectively simulate the characteristics of DSV as rendered
by subjective assessment.

C. Performance on individual distortion types and levels

In Table XII, we evaluate the performance of the proposed
ST-DSV method and other competing metrics on individual
distortion types. Also, we compare the performance of these
metrics on different distortion levels, as shown in Table XIII.
The ST-DSV model was trained with all distortion types or
levels contained in the training set (80%) and tested on the
distortion types or levels (unseen in the training set) on the
test set (20%). The best performance among all cases is
shown in bold. As shown in Table XII and Table XIII, for
each distortion type or level, the ST-DSV method gives the
best performance. This suggests our metric is rather robust.
The superior performance of our proposed method might be
attributed to the fact that it captures the dependency between
DSV and changes of distortion types/levels.

To verify this hypothesis, we plot the ground truth DSV
(i.e., DMSS scores) versus our ST-DSV method (i.e., predicted
scores) for different distortion types and again for different
distortion levels, as shown in Fig. 11. It can be seen that the
ST-DSV method shows a similar trend to the ground truth DSV
in terms of how the scores differ in accordance with different
distortion types or levels. For example, as shown in Fig. 11(a),
DSV is largest for the FF distortion (i.e., FF causes the largest
saliency variation), which is well predicted by the ST-DSV
method (i.e., the predicted saliency variation is largest for FF
amongst all distortion types). Also, as shown in Fig. 11(b),
DSV monotonically increases as the image quality decrease
(i.e., higher distortion level causes larger saliency variation);
and this trend of saliency variation is accurately predicted by
our ST-DSV method (i.e., the lower the image quality, the
larger the predicted saliency variation).

D. The ablation experiments

We conduct three types of ablation experiments to verify the
advantageous properties of our proposed ST-DSV method: (1)
ablation experiment to verify the superiority of the baseline
network architecture, (2) ablation experiment to verify the
superiority of the Siamese network core, and (3) ablation ex-
periment to verify the superiority of the classification strategy.
The results are listed in Table XIV, Table XVand Table XVI.

In terms of different baseline network architectures, we
compare VGG, AlexNet [50], ResNet18, ResNet34 and
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Fig. 11. Performance (i.e., SROCC) of ST-DSV for different distor-
tion types and levels on the DSV benchmark database. (a) ST-DSV
performance for different distortion types. (b) ST-DSV performance
for different distortion levels.

ResNet50 [51]. These pre-trained models are each directly
used for fine-tuning with the DSV benchmark database. Note
in this paper, we mainly focus on the design of ST-DSV
method by using DNN architectures with simple stack con-
volution layers; thereby VGG is pre-selected as a baseline
architecture. Including complex DNNs with external enhance-
ment modules (e.g., a residual block) may produce better
results but at the expense of model’s simplicity, therefore,
is considered outside the scope of this paper. As can be
seen from Table XIV, AlexNet, ResNet34 and ResNet50 give
relatively low performance because AlexNet’s architecture is
too shallow, which causes poor learning ability of DMSS, and
architecture of ResNet34/ResNet50 is too deep, which leads
to overfitting phenomenon. VGG and ResNet18 give relatively
high and comparable performance. Since VGG exhibits a
much simpler architecture, we select the VGG framework as
the baseline in the design of ST-DSV network.

In terms of different Siamese network core components, we
compare our final ST-DSV design, ST-DSV using AlexNet as
the Siamese network core (i.e., AlexNet-DSV), and ST-DSV
using ResNet50 as the Siamese network core (i.e., ResNet50-
DSV). This comparison reveals how different Siamese network
core components, when built in to our overall metric design,
can affect the metric performance. As can be seen from Ta-
ble XV, ST-DSV is superior to AlexNet-DSV and ResNet50-
DSV, suggesting the proposed ST-DSV network design is
rather advantageous in maximizing the learning ability of
saliency similarity features.

In terms of different classification strategies, we compare
VGG, ST-DSV and VGG-C. The VGG method means that the
VGG network is directly used for fine-tuning with the DSV
benchmark database. The VGG-C method means that the VGG
network is first used to classify 4 saliency similarity levels
and then the last fully-connected layer of the network with
4 classifications (VGG-C) is modified to a one-dimensional
output for fine-tuning with the DSV benchmark database. It
can be seen from Table XVI that the classification strategy
(i.e., pair-wise labeling classification) of our ST-DSV method
is superior to both VGG (no classification) and VGG-C (sim-
ple classification) methods. This indicates the importance of
developing sophisticated DSV-specific classification methods.



TABLE XIV
The performance of different DNN baseline network architectures

for DSV prediction.

Method SROCC PLCC KROCC
VGG(Baseline) 0.734 0.745 0.535

AlexNet 0.708 0.715 0.521
ResNet18 0.740 0.747 0.535
ResNet34 0.722 0.730 0.528
ResNet50 0.702 0.744 0.501

TABLE XV
The performance ST-DSV model using different Siamese network

core components.

Method SROCC PLCC KROCC
AlexNet-DSV 0.725 0.737 0.544

ResNet50-DSV 0.713 0.750 0.516
ST-DSV 0.802 0.836 0.632

V. DISCUSSION

A. The rationality of coarse-grained label

The proposed coarse-grained ”similarity level” label is a
unique feature of our proposed method, so we give a further
discussion on this point. First, the labeling method has been
designed to capture DSV in a coarse-grained manner, as
already explained above. Second, to verify the rationality, we
conduct a new experiment by shuffling similarity-level labels
so that each distorted saliency map could be assigned by
any available label and all combinations of label assignment
are covered in the experiment. For each instance of label
assignment, we calculate the network performance as shown
in Table XVII. By doing this, the results indicate the label
assignment of the proposed ST-DSV is reliable and gives the
best network performance.

B. The overflow and underflow

To verify whether the network has overflow/underflow is-
sues we conduct further experiments, as also suggested by
[52].

TABLE XVI
The performance of different classification strategies for DSV

prediction.

Method SROCC PLCC KROCC
VGG 0.734 0.745 0.535

VGG-C 0.750 0.796 0.550
ST-DSV 0.820 0.836 0.632

TABLE XVII
The model performance (i.e., SROCC) using different

coarse-grained ”similarity level” label assignment instances. Note
that PES means ”perfect” similarity, GOS means ”good” similarity,

POS means ”poor” similarity and BAS means ”bad” similarity.

Method PES GOS POS BAS SROCC
1 Label 0 Label 1 Label 3 Label 2 0.712
2 Label 0 Label 2 Label 1 Label 3 0.771
3 Label 0 Label 2 Label 3 Label 1 0.620
4 Label 0 Label 3 Label 2 Label 1 0.605
5 Label 0 Label 3 Label 1 Label 2 0.609

ST-DSV Label 0 Label 1 Label 2 Label 3 0.820

In terms of preventing overflow/underflow from the stand-
point of training sample size, we compare the performance of
the proposed ST-DSV method using different sizes of training
samples (i.e., from 60 to 240 saliency maps from the DSV
benchmark database). Note the theoretical maximum size of
training data is 270 (0 for testing data), we decided not to go
over the size of 240 for training data, otherwise the test data
is too small. Fig. 12(a) shows training sample data size vs
prediction performance (i.e., SROCC). The training sample
size selected in our model is highlighted in red color. As
can be seen in Fig. 12(a), when the training sample size
increases from 60 through to 210, the prediction performance
of the model increases, which indicates the model has no
underflow problem. When the training sample size increases
from 210 through to 240, the prediction performance remains
unchanged, which indicates that the network is not subject to
overflow. So, we selected the training sample size of 210 so
the standard train-test split (80%-20%) is maintained.

In terms of preventing overflow/underflow from the stand-
point of number of network layers, we construct a DNN
in the proposed ST-DSV method using different numbers of
convolution layers (C) (i.e., from 7 to 16 C contained in the
VGG network). Note 7 means the C of third group of VGG
[8], 13 means the C of fifth group of VGG, 16 means that we
add on the same C architecture of fifth group. We decided not
to go over 17 layers, otherwise, the network is too complex.
Fig. 12(b) shows the number of C vs prediction performance
(i.e., SROCC). The number of convolution layers selected for
our final model is highlighted in red color. As can be seen
in Fig. 12(b), when the number of layers C increases from
7 (the third group of VGG) to 13 (the fifth group of VGG),
the prediction performance increases, which suggests that the
network is not prone to underflow. When C increases from 13
to 16, the prediction performance decreases, which indicates
that going over 13 layers would potentially lead to overflow.
Therefore, we selected 13 layers for our network.

C. The k-fold cross-validation

In training a DNN model, k-fold cross-validation is often
used to tune hyper parameters and prevent from overfitting
[53]. In k-fold cross-validation, data is partitioned into k
subsets, the model is trained on k-1 folds iteratively while
using the remaining fold as the test set. We conduct 5-fold
cross-validation for our proposed ST-DSV model, where the
total of 270 saliency maps (originated from 18 references) are
partitioned into 5 non-overlapped subsets, i.e., 3 subsets of
60 maps each (originated from 4 references) and 2 subsets
of 45 maps each (originated from 3 references). By doing so,
the fairness of the procedure is ensured as there is no data
leakage. The results are shown in Table XVIII. It can be seen
that the model’s performance of using k-fold cross-validation
and our training strategy is similar.

It is worth nothing that our training strategy as the way it is
specifically designed and detailed in Section IV.B is essentially
similar to a 5-fold cross-validation. In our design, the train-
validation-test split ratio is 7:1:2 and these subsets per run do
not overlap in content at all (so no data leakage). Also, the



data splitting is randomly repeated eight times to generate an
average model output so to eliminate the performance bias. In
this respect, we expect our training strategy and k-fold cross-
validation should give similar results.

 

(a)                                (b) 

Fig. 12. Model’s performance (i.e., SROCC) using different sizes
of training samples and different numbers of convolution layers.
(a) Model’s performance using different sizes of training samples.
(b)Model’s performance using different numbers of convolution lay-
ers.

TABLE XVIII
Performance (i.e., SROCC) of the proposed model using k-fold

cross-validation versus our training strategy

Method SROCC
K-fold (K=5) cross-validation for ST-DSV 0.816

Our training strategy for ST-DSV 0.820

VI. CONCLUSION

In this paper, based on the ground truth benchmark of
the distortion-induced saliency variation (DSV), we have
found that the use of existing mathematical algorithms for
measuring DSV is rather limited. These algorithms fail in
quantifying the degree of difference/similarity between the
saliency of a reference image and that of its distorted image.
To achieve a reliable metric for DSV, we have proposed a
new algorithm based on a deep neural network. Our algo-
rithm uses a coarse-grained to fine-grained saliency similarity
transformation approach. Experiments demonstrate that the
proposed algorithm can accurately predict ground truth DSV
(i.e., DMSS scores). Further, the research will investigate the
improvement of current metric (e.g., by exploiting state-of-the-
art deep learning techniques including generative adversarial
network (GAN) based methods) and the application of DSV
metric for advanced image quality assesment algorithms.
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