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Abstract

Hough voting, as has been demonstrated in VoteNet, is
effective for 3D object detection, where voting is a key step.
In this paper, we propose a novel VoteNet-based 3D detector
with vote enhancement to improve the detection accuracy
in cluttered indoor scenes. It addresses the limitations of
current voting schemes, i.e., votes from neighboring objects
and background have significant negative impacts. Before
voting, we replace the classic MLP with the proposed At-
tentive MLP (AMLP) in the backbone network to get better
feature description of seed points. During voting, we design
a new vote attraction loss (VALoss) to enforce vote centers
to locate closely and compactly to the corresponding object
centers. After voting, we then devise a vote weighting mod-
ule to integrate the foreground/background prediction into
the vote aggregation process to enhance the capability of
the original VoteNet to handle noise from background vot-
ing. The three proposed strategies all contribute to more
effective voting and improved performance, resulting in a
novel 3D object detector, termed VENet. Experiments show
that our method outperforms state-of-the-art methods on
benchmark datasets. Ablation studies demonstrate the ef-
fectiveness of the proposed components.

1. Introduction
3D object detection is an active research topic in com-

puter vision with a wide range of applications, such as
autonomous driving [29], robotic manipulation [39] and
high-level semantic SLAM (Simultaneous Localization and
Mapping) [45]. However, locating and classifying objects
from scanned 3D point clouds in cluttered indoor scenes
is still a challenging problem, without color information in
particular. Although many efforts have been made to im-
prove its performance over past few years [44, 32, 2, 27, 42],
driven by the success of deep learning techniques, the per-
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Figure 1. Comparison with VoteNet. (a) VoteNet. (b) Our ap-
proach. Our approach enhances the voting procedure from three
aspects (i.e., seed enhancement, vote attraction and vote weight-
ing) to get better proposal features.

formance is still far from being satisfactory.
Recently, a deep Hough voting network, VoteNet [28],

was proposed to detect 3D objects directly from scanned
point clouds, and has achieved significant improvements
on several benchmark datasets. This method first samples
seed points from the whole point cloud, and then extracts
high-dimensional features of these seed points using Point-
Net++ [30]. Then, inspired by Hough voting in 2D object
detection, these seed points produce vote centers based on
the extracted features. The voting process is formulated as
center point regression and implemented via MLP (Multi-
Layer Perceptron). These votes are then clustered and ag-
gregated to generate object proposal features, which are
used to classify objects and regress their locations. Voting,
as the essence in VoteNet, plays a vital role in information
aggregation for object detection.

However, there are two disturbing factors in voting using
the current VoteNet architecture, i.e., object-noise: votes
from adjacent objects, and background-noise: votes from
background seed points. As shown in Figure 1, VoteNet
will choose a vote as the cluster center, and then aggregate
information with no difference from all the votes within the
bounding sphere to form the aggregated feature for the cen-
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Figure 2. Motivation of the proposed (a) vote attraction loss and (b) vote weighting. (a) The original vote loss could make votes locate
loosely around the object center, while our attraction loss increases the compactness of these votes. (b) Foreground prediction can make
the detector re-weight votes during vote aggregation to suppress the impact of background noisy votes.

ter. However, since the objects in indoor scenes are highly
cluttered and close to each other, this simple clustering strat-
egy may include votes from other adjacent objects. More-
over, as VoteNet does not apply any constraints or penalty to
votes from background seed points, these background votes
may also be included in the subsequent vote aggregation.
In addition to the two disturbing factors, the voting effec-
tiveness also highly depends on the seed point features. We
argue that the classic MLP features, which merely depend
on the last layer of MLP, lack information from the former
layers, leading to loss of useful information.

As a solution, in this work we propose VENet (Vot-
ing Enhancement Network), a 3D object detector based on
VoteNet. VENet improves the voting procedure in all the
three stages (i.e., before, during and after), by enhancing
feature description of seed points and handling noisy votes
from both adjacent objects and background patches. Specif-
ically, before voting, we first propose an Attentive MLP
(AMLP) to enhance seed point feature description by adap-
tively considering multi-layer information in classic MLP.
Then, during voting, to relieve the negative impact of votes
from adjacent objects, we expect the votes not only to be
close to their ground truth centers, but also to be close to
each other if they belong to the same object, as illustrated in
Figure 2(a). We thus design a novel loss function for seed
point voting, called vote attraction loss, to decrease the in-
ternal distances between votes associated with the same ob-
ject centers. The increased compactness reduces the possi-
bility of gathering information from adjacent objects, i.e.,
the object-noise. Lastly, after voting, to reduce the impact
of meaningless and misleading votes from background seed
points, we propose to predict foreground probability of seed
points, and weight their votes accordingly during aggrega-
tion. That is, we expect votes from seed points with higher
foreground probabilities to contribute more during vote ag-
gregation. As illustrated in Figure 2(b), this strategy can
suppress the negative impact of background votes, i.e., the
background-noise.

The contributions of the work can be summarized as:

• We propose a voting enhancement architecture to im-
prove the voting procedure for Hough voting-based 3D
object detection from point clouds, which obtains new
state-of-the-art performance on public datasets.

• Before voting, we introduce an AMLP (Attentive
MLP) to enhance the feature encoding of seed points.

• During voting, we design a vote attraction loss (VA-
Loss) to enforce votes to locate compactly and closely
to the corresponding object centers.

• After voting, we present a vote weighting module to
integrate foreground seed point prediction into the vote
aggregation to reduce background noise.

2. Related Work
Many efforts have been made to automatically detect 3D

objects in both indoor and outdoor scenes [38, 15, 12, 26,
47, 32, 46, 22], which can be divided into 3 categories based
on the input modalities: 2D, 2D-3D and 3D.

For outdoor scenes, merely taking 2D images as in-
put, GS3D [17] proposed a purely monocular approach
for obtaining coarse cuboid boxes for the objects resulted
from reliable 2D detection. M3D-RPN [1] and some other
works [40, 36] were also proposed for 3D object detection
from monocular 2D images. In multi-sensor processing,
i.e., 2D-3D, [4] and [14] extracted features from LiDAR
bird-view and camera images, and projected 3D proposals
to the corresponding 2D feature maps for the task of 3D
object detection. ContFuse [20] further introduced a con-
tinuous fusion layer to perform feature fusion for camera
image and LiDAR bird-view feature combination. Laser-
Net++ [23] fused image data with LiDAR data, and ex-
panded object detection to 3D semantic segmentation.

Fusing 2D-3D features heavily relies on 2D detectors.
Instead, some works [50, 5, 24, 6, 34] have been proposed
to process 3D point data independently. VoxelNet [50] uni-
fied feature extraction and bounding box prediction into a



single-stage, end-to-end trainable deep network, which re-
moved the need of manual feature engineering for LiDAR
point clouds. Likewise, PointPillars [16] used a grid-based
feature description with a feature pyramid network. The
whole input point cloud is divided into pillars, whose fea-
tures are combined with anchors to perform joint regression
and classification. Instead of projecting a point cloud to
voxels, PointRCNN [33] directly generated 3D proposals
from point clouds, and then introduced further refinement
for proposals. Fast PointRCNN [5] utilized both a voxel
representation and the raw point cloud data to exploit re-
spective advantages for 3D object detection. LaserNet [24]
used a fully convolutional network to predict a multi-modal
distribution for each point and then fused these distributions
to generate a prediction for each object.

For indoor scenes, works in [21], [29] and [31] inte-
grated both 2D and 3D, and both object and scene con-
text information for indoor 3D object detection from RGB-
D data. In addition, PointFusion [43] introduced a novel
framework, in which the image data and the raw point
cloud data are independently processed by a CNN (Con-
volutional Neural Network) and a PointNet architecture re-
spectively, followed by a fusion network combining their
output results. Instead of utilizing both 2D and 3D infor-
mation, [35] took 3D point data only, and utilized the ge-
ometric and hierarchical contextual information for 3D ob-
ject detection. Recently, with only 3D input, VoteNet [28]
introduced a deep learning-based Hough voting strategy for
3D object detection from point clouds. These methods lo-
cally select a set of seed points to generate votes and then
combine these votes to generate object proposals. Further,
ImVoteNet [27] was built on top of VoteNet and proposed a
3D detection architecture specialized for single-view RGB-
D scenes, which fused 2D votes in images and 3D votes
in point clouds. However, this method may be sensitive to
lighting conditions by using image information. Moreover,
both works [28, 27] ignored negative impact from other
adjacent objects and background seed points in the voting
stage. As a result, the subsequent vote aggregation could
include noisy votes, which affect the final object detection
results. In this work, we target a more effective voting strat-
egy to enhance vote aggregation and tackle these issues by
vote attraction and foreground weighting, using geometry
information alone.

3. Method
Our VENet inherits the deep Hough voting network

(VoteNet) [28] for indoor scene object detection, and im-
proved it with the proposed AMLP (Section 3.1), vote at-
traction loss (Section 3.2), and the vote weighting module
(Section 3.3).

The original VoteNet [28] can be summarized into three
modules, i.e., voting module, vote aggregation module and

object proposal module. The voting module is to regress
object centers from each of the seed points, and the vote ag-
gregation module is to combine features from different seed
points to vote for the object centers. The object proposal
module then classifies and regresses the accurate locations
and sizes of 3D objects from the aggregated features.

Let si = [xi; fi] be a seed point, where xi ∈ R3 and
fi ∈ RC are the coordinates and extracted features re-
spectively. According to the set abstraction mechanism in
PointNet++ [30], fi encodes the information of the seed
point si and its surrounding points. In the voting module,
VoteNet uses an MLP layer to simulate the voting proce-
dure via regressing the offset ∆xi ∈ R3, from which the
predicted object center yi is obtained by adding the offset,
i.e., yi = xi +∆xi. A vote regression loss Lvote−reg is de-
fined to supervise the predicted object centers to approach
the ground truth ones.

Lvote−reg =
1

|Spos|
∑
i

∥∆xi −∆x∗
i ∥ 1 [si on object ]

(1)
where ∆x∗

i is the ground truth offset, 1 [si on object ] indi-
cates whether a seed point si is on an object surface, and
Spos is the set of all the positive seeds, i.e., those on the
object surfaces.

In Equation 1, due to the use of the indicator function,
seeds on background were discarded during training. How-
ever, during testing, there are no constraints or guidance ap-
plied to background seeds (i.e., those not on object surfaces)
to restrain their voting. On the other hand, for votes from
the foreground (object) seed points, the regression loss in
Equation 1 enforces the closeness of the predicted centers to
their ground truth ones, but not the ‘compactness’ between
those belonging to the same objects, which may result in
some predicted centers adversely affecting the aggregation
for other objects. Therefore, the above vote regression loss
is unable to handle noisy votes. Moreover, the seed point
feature extraction using PointNet++ is through the classic
MLP layers which lack the information from the former lay-
ers. As a result, the extracted features are not informative
enough to support effective voting.

3.1. Attentive MLP

We first introduce an improved MLP, termed Attentive
MLP (AMLP), which is integrated into the backbone of
PointNet++ to get better feature description of seed points.

In VoteNet, the feature description of each seed point is
obtained by simply pooling the feature vectors of its neigh-
boring points at the last layer, which can be seen as the clas-
sic MLP, as shown in Figure 3(a). However, as indicated
in [13], this simple pooling operation does not take into con-
sideration of low- and mid-level features which contain rich
local information. PF-Net [13] addresses this by designing a
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Figure 3. Comparison of different MLP-based feature extraction architectures. (a) Classic MLP gets the pooled feature vector in the last
level; (b) CMLP combines pooled features from multiple levels; (c) the proposed AMLP first assigns different weights to pooled features
according to their importance, and then adaptively combines them. (d) Level Attention Block (LAB). In this illustration, we assume the
number of levels L = 3.

Combined-MLP (CMLP). As shown in Figure 3(b), CMLP
pools the feature vectors at multiple MLP layers, and then
concatenates the pooled features. It improves the perfor-
mance of shape classification with the combined features, as
demonstrated in their experiments. However, we argue that
the combination of multi-layer features could be more adap-
tive. Therefore, we propose an Attentive MLP (AMLP),
which adaptively combines multi-layer features by learning
the weights for the pooled features before concatenation, as
shown in Figure 3(c). That is, our AMLP introduces adap-
tive weights to better measure the importance of features at
different layers inside MLP.

Specifically, for each point p, we first pool features from
each of the layers, generating (c1, · · · , cL). L is the layer
number of perceptrons in MLP. Then instead of directly
concatenating the pooled features like PF-Net, we insert a
Level Attention Block (LAB) at each layer, as shown in Fig-
ure 3(d). In each LAB, a pooled feature vector cl is first fed
into two FC (fully connected) layers with output sizes of
C/4 and C. ReLU is used as the activation function for the
first FC layer. Sigmoid function is used to normalize the
output weights to be in the range of (0, 1). cl is then mul-
tiplied by the learned weights W l and added to itself, i.e.,

cl = cl +W l ∗ cl (2)

where cl is the enhanced feature vector. The enhanced fea-
ture vectors from all layers are then concatenated to form
the combined feature vector which then goes through a fur-
ther FC layer to output the feature description of the desired
size (the same size as the PointNet++ output).

C = FC(Concat(c1, · · · , cl)) (3)

In this way, AMLP enhances the feature descriptions of
seed points.

3.2. Attraction Loss

To reduce the number of false votes from adjacent ob-
jects in vote aggregation, we should not only require votes
to be close to their ground truth object centers, but also en-
force votes to locate compactly with each other when they
are from the same object. To this end, we propose a new
vote attraction loss (VALoss) for better voting supervision,
which tries to minimize the internal distances between votes
associated with the same object centers, as illustrated in Fig-
ure 4(a). In other words, the VALoss is designed to consider
the attractiveness between votes. Specifically, we use the ℓ1
loss to measure the distance between the vote yij and the
average center yi of object i, and design the VALoss as:

Lvote−attr =
1

|Bgt|
∑
i

(
1

|Y i
vote|

∑
j

∥yij − yi∥), (4)

where Bgt is the set of ground truth boxes (each box corre-
sponds to an object), and Y i

vote is the set of votes associated
with the i-th ground truth box. i ∈ {1, ..., |Bgt|} is the in-
dex of ground truth boxes, and j ∈ {1, ..., |Y i

vote|} is the
index of votes. Hence, yij represents the j-th vote of the i-
th ground truth box. yi is the average center of all the votes
associated with the i-th ground truth box, which is calcu-
lated as:

yi =
1

|Y i
vote|

∑
j

yij (5)

The intuition behind the above equations is that good votes
from the same object should all be close to their mean cen-
ter, i.e., locate compactly with each other. Finally, the new
vote loss is:

Lvote = Lvote−reg + αLvote−attr (6)

where Lvote−reg is defined in Equation 1, α is the hyper-
parameter to balance the two loss terms, which is set to 0.5



(a) Vote attraction

attraction

foreground votevotes center

S
h
ar

ed
 M

L
P

S
ig

m
o

id

B
C

E
 L

o
ss

3D GT 

Boxes

Foreground 

point check

T
ra

in
in

g
 p

ar
t

N×3 N×1

N×C N×1 N×C

shared

MLP

(b) Vote weighting module

Figure 4. (a) Illustration of the vote attraction mechanism. Our vote attraction loss tries to minimize the distance between votes and the
center of these votes, i.e., to make votes locate compactly with each other. Thus, it can reduce the possibility of including votes from
adjacent objects when performing vote aggregation. Note that the vote center is not the same as the real object center. (b) Architecture
of the vote weighting module. The feature maps are of size N × C where N is the number of seed points and C represents the feature
dimension. BCE: Binary Cross Entropy.

in our experiments. The new vote loss incorporates both the
regression term and the attraction term, which is a multi-
task loss pushing votes towards the corresponding ground
truth object centers, while minimizing the internal distances
between votes associated with the same object centers.

3.3. Vote Weighting for Background Suppression

After voting, these votes will be further clustered and
aggregated to generate proposal features. In the original
VoteNet, votes within clusters are treated without differ-
ence, regardless of whether they come from foreground or
background seed points. Intuitively, only votes from the
foreground seed points should contribute to the proposals,
while the ones from the background seed points should
be discarded during aggregation. However, as mentioned,
the current VoteNet architecture cannot suppress the voting
from background seed points during testing.

As a solution, we design a new vote weighting mod-
ule, which assigns different aggregation weights to votes
according to their seed points’ foreground probabilities.
Specifically, as illustrated in Figure 4(b), we first use a
shared MLP with three layers to predict a score for each
seed point, which reflects its possibility of belonging to
foreground. The prediction is trained with the ground truth
foreground/background labels as supervision, which are ob-
tained by checking seed points’ status of inside/outside
ground-truth 3D boxes. The vote features are then enhanced
by re-weighting the original vote features using the pre-
dicted scores. Formally, given the vote feature fi, the re-
weighted vote feature f̃i is formulated as:

f̃i = δ(fi)⊗ fi (7)

where δ(·) = sigmoid(MLP (·)) is the transform function
to predict a foreground confidence between 0 and 1, and
⊗ is element-wise multiplication. The proposed weighting
scheme allows the detector to focus on votes more likely
to be from foreground regions (large weights), and neglect
votes from background (small weights) before aggregation
for object proposal.

4. Experiments
4.1. Experimental Setup

The proposed 3D detector follows the architecture of
deep Hough voting network [28]. To generate fore-
ground/background labels for sample points, we regard all
the points within labeled 3D bounding boxes as foreground
points, and the points outside all boxes as background
points. We optimize the network using the Adam algorithm,
which is trained on an RTX 2080Ti GPU with batch size of
8. We set the initial learning rate to be 0.01, and decay
it by 0.1 at the steps of (120,140,180). We train the net-
work from scratch with 200 epochs in total. Due to several
sub-sampling and other random operations, there is a small
variance with the evaluated mAP results upon convergence
(after around 140 epochs). Thus, the mAP results reported
in the paper are the mean results over training the model for
3 times, in order to reduce the effect of randomness.

4.2. Comparison

Datasets. We evaluate the performance of the pro-
posed VENet on two datasets of indoor scenes: ScanNet
dataset [7] and SUN RGB-D dataset [37]. ScanNet dataset
is a richly annotated dataset of 3D meshes. 3D scenes in
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Feng [9] arXiv2019 48.5 31.08 83.1 85.86 77.5 56.27 30.55 25.1 34.84 4.09 38.5 59.11 35.32 33.7 46.29 88.6 40.27 82.0 20.9
Griffiths [10] ECCV2020 50.2 43.0 70.8 58.3 16.0 44.6 28.0 13.4 58.2 4.9 69.9 74.0 75.0 36.0 58.9 79.0 47.0 77.9 48.2
VoteNet [28] ICCV2019 58.65 36.27 87.92 88.71 89.62 58.77 47.32 38.1 44.62 7.83 56.13 71.69 47.23 45.37 57.13 94.94 54.7 92.11 37.2
GRNet [19] ISPRS2020 59.14 39.45 88.78 89.18 88.34 58.16 48.46 32.7 46.97 4.94 63.48 69.81 48.46 49.06 66.37 94.07 49.7 90.9 35.6
SPOT [8] ECCV2020 59.8 - - - - - - - - - - - - - - - - - -
HGNet [3] CVPR2020 61.3 - - - - - - - - - - - - - - - - - -
SESS [49] CVPR2020 62.1 - - - - - - - - - - - - - - - - - -
GSDN [11] ECCV2020 62.84 41.58 82.5 92.14 86.95 61.05 42.41 40.66 51.14 10.23 64.18 71.06 54.92 40.0 70.54 99.97 75.5 93.23 53.07
DOPS [25] CVPR2020 63.7 53.2 83.3 91.6 82.6 60.5 54.8 45.2 41.0 26.3 51.9 73.7 53.9 49.2 64.7 98.0 71.3 86.6 59.2

LGR-Net [18] arXiv2020 64.1 - - - - - - - - - - - - - - - - - -
MLCVNet [41] CVPR2020 64.5 42.45 88.48 88.98 87.4 63.5 56.93 46.98 56.94 11.94 63.94 76.05 63.94 60.86 65.91 98.33 59.18 87.22 47.89
H3DNet [48] ECCV2020 67.2 49.4 88.6 91.8 90.2 64.9 61.0 51.9 54.9 18.6 62.0 75.9 57.3 57.2 75.3 97.9 67.4 92.5 53.6
VENet(Ours) 67.7 50.4 87.7 92.7 88.1 68.6 60.7 46.0 55.2 18.2 70.2 77.5 59.9 58.4 75.9 95.1 67.2 92.3 54.4

Table 1. Performance comparison on ScanNetV2 Val set.

mAP@0.25 mAP@0.5
VoteNet [28] 57.7 32.9
H3DNet [48] 60.1 39.0
LGR-Net [18] 62.2 -

HGNet [3] 61.6 -
SPOT [8] 60.4 36.3
Feng [9] 59.2 -

MLCVNet [41] 59.2 -
VENet(Ours) 62.5 39.2

Table 2. Performance comparison on SUN RGB-D validation set.

Training time
(s)

Inference time
(s)

# Params
(million)

mAP
@0.25

H3DNet [48] 420 0.70 4.7 67.2
VENet(Ours) 85 0.32 2.8 67.7

Table 3. Performance comparison with the previous state-of-the-
art method, H3DNet [48] on ScanNet dataset.

this dataset are all captured in indoor scenes by portable
RGB-D sensors. Note that our method does not require
RGB information, and directly works on 3D point clouds.
The dataset contains 1,513 scanned indoor scenes with 3D
bounding boxes annotated. It is split into two sets, Train and
Val containing 1,201 and 312 scenes respectively. Results in
this paper are all evaluated on the Val set, as VoteNet does.
SUN RGB-D dataset contains 10,335 scenes captured by
RGB-D sensors from a single view, with 5,285 for training
and 5,050 for validation. Each scene is converted into a 3D
point cloud representation with annotated indoor objects.

Quantitative comparison. Table 1 shows the results on
ScanNet dataset using different 3D object detection meth-
ods. As shown, the proposed VENet outperforms its base-
line VoteNet by 9.0% and achieves the new state-of-the-
art performance in the mAP@0.25 evaluation. Moreover,
VENet achieves the best results in 6 out of the 18 classes,
which doubles that of the second ranked H3DNet [48]
which has best results only in 3 classes. This demonstrates
that the proposed vote enhancement strategies can effec-

tively improve the subsequent object localization and clas-
sification tasks. Table 2 shows results on SUN RGB-D
dataset. For a fair comparison, we only compare the re-
sults from methods using 3D geometric information only.
As shown, the proposed VENet again achieves the state-
of-the-art performance on SUN RGB-D dataset with 62.5%
mAP@0.25. The overall improvement is not as significant
as on ScanNet. We think it is because most scenes in SUN
RGB-D cover smaller areas and have fewer objects (as seen
in Figures 5 and 6), making noisy votes a less prominent
problem in SUN RGB-D.

Speed and model size. The most recent H3DNet [48]
has the second best performance in terms of mAP . Both of
H3DNet and our VENet are developed based on VoteNet.
However, we notice the difference in terms of train-
ing/inference times and model size. As shown in Table 3,
the number of trainable parameters of our network is 2.8
million, while H3DNet is 4.7 million. This indicates the
network architecture of our VENet is simpler and has much
fewer parameters. For training time, H3DNet takes around
420s for one epoch, while VENet takes much less time, 85s.
For inference time, we measure the time for one scene in
ScanNet dataset. As shown, H3DNet takes 0.70s, while
ours is 0.32s. Our model is more than 2× faster than
H3DNet. We reckon it is because voting in H3DNet hap-
pens three times for object, face and edge centers. These
quantitative results demonstrate that our VENet is not only
more effective but also more efficient than H3DNet. More-
over, H3DNet has the assumption that objects should have
obvious structures of faces and edges, while VENet has no
such assumption and is thus more suitable for general object
detection.

Qualitative comparison. Figure 5 and Figure 6 visu-
alize the detection results using VoteNet and the proposed
VENet. We observe that VENet can obtain better detection
results with less false positives and more accurate bounding
boxes than the original VoteNet on both ScanNet and SUN
RGB-D datasets. From Figure 5, we can see that two over-
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Figure 5. Qualitative comparison results of 3D object detection on ScanNetV2. As shown, our voting enhancement strategies enable more
accurate object classification and localization. Note that color is only used for better visualization, and not utilized in our method.
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Figure 6. Qualitative comparison results of 3D object detection on SUN RGB-D.

Method AMLP VALoss VW SUN ScanNetRGB-D
Baseline 57.8 59.6
VENet ✓ 59.1 62.3
VENet ✓ ✓ 61.6 64.8
VENet ✓ ✓ ✓ 62.5 67.7

Table 4. Ablation study on the test dataset (mAP@0.25). VW:
vote weighting. Baseline is trained and evaluated by ourselves.

lapping boxes of the table are detected using VoteNet, while
VENet accurately detects the single bounding box of the ta-
ble. Figure 6 shows that the proposed VENet gives better
detection results with less overlaps compared to VoteNet.
This suggests that the improved compactness of votes re-
duces the sparse distribution of object centers, which con-
tributes to the reduced detection of overlapping boxes.

4.3. Ablation Study

To analyze the importance of the three proposed strate-
gies, we conduct several experiments using different com-
binations of the proposed components on both ScanNet and
SUN RGB-D datasets. We use the original VoteNet as
our baseline model and we train VoteNet from scratch to
get the results using the evaluation strategy in Section 4.1.
The results are presented in Table 4. The second row
shows that the AMLP improves the performance signifi-
cantly from 59.6% to 62.3% on ScanNet. Adding VA-

Classic MLP CMLP AMLP
mAP@0.25 59.6 61.1 62.3

Table 5. Performance comparison with CMLP and classic MLP.

Loss further improves the result to 64.8%, demonstrating
its effectiveness to reduce object-noise in voting. The ad-
ditional improvement to 67.7% with the vote weighting
module further demonstrates the module’s effectiveness to
suppress background-noise in vote aggregation. The best
mAP results are achieved with all the proposed components
equipped, both for ScanNet and SUN RGB-D datasets.

To demonstrate the effectiveness of AMLP, we inde-
pendently compare the detection performances of AMLP,
CMLP [13], and classic MLP on ScanNet dataset. We re-
place classic MLP in VoteNet with AMLP and CMLP. Re-
sults are shown in Table 5. The proposed AMLP achieves
the best performance, which indicates that AMLP has a bet-
ter feature extraction ability.

To illustrate the positive guidance of our attraction loss,
we visualize the voting results in Figure 7. As seen in the
green boxes, VALoss can effectively enforce the votes asso-
ciated with the same object center to locate more compactly
with each other, which helps to reduce noisy information
from other objects and thus improves the performance.



也更加接近物体的中心

(a) Input scene (b) Without attraction (c) With attraction

Figure 7. Voting comparison with our VALoss. (c) Votes (blue points) are located more compactly with the proposed loss, compared with
red points in (b), obtained without attraction loss.
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(a) Input scene (b) Seed points with predicted weights (c) Votes with predicted weights

Figure 8. Vote weighting result. The predicted weights between 0-1 are mapped to blue-red according to the color bar. As can be seen, the
votes with high predicted weights (c) are almost coming from foreground seed points (b).

To verify the effectiveness of the proposed vote weight-
ing module, we further visualize the predicted weights in
Figure 8. We observe that the predicted weights are almost
consistent with their foreground/background labels, as ob-
served from seed points with weights in Figure 8(b). Also as
observed in Figure 8(c), votes with high weights are closer
to object centers than those with low weights. That is, votes
from object seed points have higher contributions to feature
aggregation, which is as expected.

5. Conclusion

In this paper, we propose a novel 3D object detector,
VENet, with enhanced feature description and vote aggre-
gation based on VoteNet framework. Specifically, before
voting, to enhance the feature description of seed points, we
present an Attentive MLP (AMLP) to adaptively integrate
multi-layer information in classic MLP. During voting, we
design a vote attraction loss (VALoss) to relieve the nega-
tive impact of votes from seed points in adjacent objects, by
enforcing the votes to be not only close to the corresponding
object centers, but also compactly located with each other.
Moreover, after voting, to reduce the meaningless votes
from background seed points, we propose a vote weighting

module to predict foreground probability for seed points,
and use this information to achieve more effective vote ag-
gregation. Our method achieves the state-of-the-art detec-
tion accuracy on the ScanNet and SUN RGB-D datasets
with only geometric information given, demonstrating the
effectiveness of the proposed approach. Although the focus
of this paper is voting based 3D object detection for indoor
scenes, our proposed techniques are generally applicable to
other applications and methods using Hough voting.

In the immediate future work, we plan to explore a more
effective sampling algorithm for vote aggregation. The far-
thest point sampling algorithm currently used equally sam-
ples votes from the whole set, which results in the majority
of votes in the background. One potential solution is to give
higher possibility to sample from foreground votes, which
may reduce the number of false positives.
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