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Abstract

Benefiting from the excellent performance of Siamese-
based trackers, huge progress on 2D visual tracking has
been achieved. However, 3D visual tracking is still under-
explored. Inspired by the idea of Hough voting in 3D object
detection, in this paper, we propose a Multi-level Voting
Siamese Network (MLVSNet) for 3D visual tracking from
outdoor point cloud sequences. To deal with sparsity in out-
door 3D point clouds, we propose to perform Hough voting
on multi-level features to get more vote centers and retain
more useful information, instead of voting only on the fi-
nal level feature as in previous methods. We also design
an efficient and lightweight Target-Guided Attention (TGA)
module to transfer the target information and highlight the
target points in the search area. Moreover, we propose a
Vote-cluster Feature Enhancement (VFE) module to exploit
the relationships between different vote clusters. Extensive
experiments on the 3D tracking benchmark of KITTI dataset
demonstrate that our MLVSNet outperforms state-of-the-art
methods with significant margins. Code will be available
at https://github.com/CodeWZT/MLVSNet.

1. Introduction
Visual tracking aims to track a given target in every

frame of a sequence. As shown in Fig. 1, a tracking algo-
rithm takes as input a target and a search area, and outputs
the location of the detected target in the search area, which
also serves as the target for the next frame. Visual track-
ing is an indispensable part in robot vision and autopilot
systems [43, 46, 8], and has long been a popular research
topic in computer vision [23, 35]. Great progress has been
made in 2D visual tracking community, benefiting from the
excellent performance of Siamese based trackers [47, 11].
However, direct application of these trackers to 3D tracking
is infeasible due to the different data structure. Compared
to 2D visual tracking, 3D tracking uses point cloud data. It
has the advantages of being more robust to illumination and
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Figure 1. Illustration on how MLVSNet tracks a target on 3D point
clouds. MLVSNet tracks the target object in the search area at each
frame over a sequence of point clouds.

appearance changes, but is also more challenging. Different
from RGB images/videos, 3D point cloud data is irregular,
noisy, and more sparse especially in outdoor environment.
These impose challenges different from 2D visual tracking
and require specific considerations in the algorithm design.

In this paper, we propose a novel Multi-level Voting
Siamese Network (MLVSNet), an end-to-end 3D visual
tracking method from point clouds in outdoor scenes. As
illustrated in Fig. 1, at each frame, tracking is grounded on
target detection. The recently proposed VoteNet [29] has
demonstrated its effectiveness in detecting 3D objects from
point clouds [42, 5, 33]. VoteNet is based on Hough voting,
where the chosen points collect the geometric information
from their surrounding points and then vote for the object
centers. Inspired by the success of VoteNet, the proposed
MLVSNet also employs the idea of Hough voting to locate
targets in the search area. In addition to voting-based detec-
tion, the design of MLVSNet also takes into consideration



the following two challenges: 1) how to deal with the irreg-
ular, noisy and sparse 3D point cloud data; 2) how to effi-
ciently transfer the information of the target to the search
area for tracking.

To deal with the irregular data structure and noisy data
capture, PointNet++ [30] was proposed recently and has
shown great success in 3D object detection [40, 28, 41]. Its
hierarchical feature learning effectively distills information
and captures useful high-level features from the irregular
and noisy point cloud data. However, associated with the
high-level features is the reduced number of seed points,
which worsens the already sparse points for representing
targets in outdoor scene point clouds. We argue that both
the number of seed points and the feature descriptive ability
of points are important for target detection. To balance the
two, in MLVSNet, we propose to make use of seed points
and their representations at multiple levels, i.e., a multi-
level voting strategy (MLV), to aggregate votes from seed
points at multiple levels. We also argue that the multi-level
aggregation captures information at different scales and ac-
tually improves the detection performance, as we will later
show in experiments.

To transfer the target information for tracking, the state-
of-the-art method [31] makes use of a series of MLP (Multi-
Layer Perceptron) layers to embed target features into the
feature map of the search area. However, such operations
are both memory and time inefficient especially when com-
bined with the multi-level voting strategy. Attention mech-
anism [38, 26] has been demonstrated an effective and effi-
cient way to model relationship information [40]. We there-
fore propose a lightweight module, termed Target-Guided
Attention (TGA) module, to establish the relationship be-
tween the search area and the target with much fewer pa-
rameters. Attention mechanism is also used in the proposed
Vote-cluster Feature Enhancement (VFE) module to exploit
the relationship between different vote clusters, which fur-
ther improves the network performance.

All the above modules constitute the proposed Multi-
level Voting Siamese Network (MLVSNet) for 3D track-
ing from point cloud sequences. Extensive experiments
show that our model outperforms the state-of-the-art mod-
els [31, 14] by a large margin. In summary, this work makes
the following contributions:

• We propose a multi-level voting (MLV) strategy to
aggregate data and information at multiple levels for
more effective target detection in sparse point clouds.

• We design a lightweight feature fusion module, named
Target-Guided Attention (TGA), for efficient embed-
ding of target information for tracking.

• We present the novel Multi-level Voting Siamese Net-
work (MLVSNet) for 3D visual tracking on point

clouds, which achieves the new state-of-the-art perfor-
mance on benchmarks.

2. Related Work
In this section, we briefly introduce a recent wave of

work related to our MLVSNet: 2D Siamese tracking, 3D
visual tracking, and attention mechanism.

2.1. 2D Visual Tracking

Advances in 2D visual tracking approaches promote the
development of 3D visual tracking in which the greatest in-
fluence is the Siamese-based tracker. Bertinetto et al. [2],
for the first time, proposed SiamFC for image visual track-
ing. They employed a Siamese tracker to compute the simi-
larity between the search area and targets. Then the work in
[22] extended the SiamFC by introducing a region proposal
network (RPN) into Siamese networks, denoted as Siamese-
RPN. Benefiting from the RPN structure, Siamese-RPN can
obtain more accurate bounding boxes and achieve high-
speed processing. Li et al. [21] developed a SiamRPN++
that exploited a simple spatial aware sampling strategy to
make the tracking network go deep. Zhang et al. [47]
followed with interest in the shallow backbone problem,
and proposed a residual module to overcome the negative
impact of padding. Gao et al. [12] developed a Siamese
lightweight hourglass network to achieve high performance
and efficiency in real-world scenarios. At present, 2D track-
ing networks based on Siamese structure are still competi-
tive [48, 37, 15, 9, 47, 16].

2.2. 3D Visual Tracking

The existing 3D visual tracking methods can be divided
into two categories according to the form of input data:
The first category of methods [27, 1, 19, 3, 18, 24] relies
on RGB-D information. Pieropan et al. [27] developed a
tracking method that can learn the appearance of unknown
objects and track their positions and full 3D poses. The
work in [1] introduced a tracking algorithm that employs
RGB information, 3D point clouds, and localization data to
predict the location of the target. Kart et al. [19] proposed
a long-term RGB-D tracker to overcome the out-of-plane
rotation challenge when modeling appearance changes. Re-
lying on RGB-D data, this category of methods is thus not
robust to changes in illumination and appearance. The sec-
ond category of methods only takes point clouds as input.
To the best of our knowledge, there are only a few works.
Shape Completion 3D (SC3D) network [14] is the pioneer-
ing work in this category. It contains a Siamese tracker to
encode targets and search areas into a latent representation
for similarity computation. Despite the efforts, SC3D still
has several limitations. First, SC3D needs to pre-train the
shape completion network, which limits its convenience and
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Figure 2. Network architecture of the proposed MLVSNet. MLVSNet is mainly composed of three modules: TGA module is used to
embed target information into the search area to obtain embedded features. MLV module performs multi-level voting for effectively
utilizing information at different levels. VFE module is used to enhance features of vote clusters so that vote clusters can perceive each
other. We select the box bbk with the highest targetness confidence ck as the final target box.

generality. Second, some intermediate processes, e.g. 3D
search and proposal reasoning, limit its speed and accuracy.
Point-to-Box (P2B) network [31] was the first breakthrough
for end-to-end 3D visual tracking on point clouds. In order
to transfer the target information to the search area, P2B
proposed a Target-Specific Feature Augmentation (TSFA)
module, composed of a series of MLP layers. Although
it can effectively embed the target information, this archi-
tecture limits the efficiency and makes it difficult to further
expand the framework. In addition to the above methods,
Zarzar et al. [45] developed an efficient 3D Siamese track-
ing network focusing on 3D vehicle tracking. It takes birds-
eye view images and 3D point clouds as input and employs
an RPN network to achieve efficient search processing. P2B
is the most pertinent to our method. Our method also takes
point clouds as input and trains the tracking network end-to-
end. Different from P2B, our method fuses the target infor-
mation in a lightweight manner and aggregates information
from multiple levels, which further improves the efficiency
and performance of 3D tracking.

2.3. Attention Mechanism

Attention mechanism is often suggested as a means of
improving deep neural network performance. It can imitate
the processing mechanism of human visual system for mas-
sive data, i.e., focusing on the important part and discarding
the rest. The work in [36, 17] employed an attention mecha-
nism to improve the performance of large-scale image clas-
sification. Specifically, in [36], an encoder-decoder atten-
tion module was utilized to refine feature maps. In [17],
the Squeeze-and-Excitation module was proposed, which
adopted a compact module to enhance the channel rela-
tionship. Inspired by [17], Woo et al. [38] proposed a

lightweight attention module called Convolutional Block
Attention Module (CBAM) for convolutional neural net-
works (CNNs). CBAM utilized both spatial and channel-
wise attention to refine intermediate feature maps. Owing
to its lightweight and generality, it can be embedded in any
CNNs and supports end-to-end training.

Attention mechanism is also widely used in 2D visual
tracking [44, 10, 4, 7, 25, 6]. Yu et al. [44] proposed de-
formable self-attention and cross-attention to learn context
information and contextual interdependencies from the tar-
get template and search image. Du et al. [10] proposed
Correlation-Guided Attention (CGA) module for corner de-
tection of target bounding boxes. CGA module mainly im-
proves the performance of corner detection and achieves the
high-speed processing at 70 FPS. In this work, we exploit
the attention mechanism to embed target information into
the search area to achieve efficient 3D visual tracking.

3. Network Architecture

Fig. 2 shows the network architecture of MLVSNet.
MLVSNet is a Siamese network combined with Hough vot-
ing. It mainly consists of three modules: 1) Target-Guided
Attention (TGA) module, 2) Multi-level Voting (MLV)
module, and 3) Vote-cluster Feature Enhancement (VFE)
module. It first takes as input the point clouds of a target
and a search area and obtains their multi-level seeds through
the PointNet++ backbone. Then, the TGA module embeds
information of the target seeds into the seed features of the
search area. After that, the embedded features at multiple
levels vote for object centers through Hough voting. We se-
lect K voting points from all levels to form vote clusters,
and utilize the VFE module to enhance their features. Fi-
nally, the bounding box of the target is inferred from the
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Figure 3. Illustration of Target-Guided Attention (TGA) module in
MLVSNet. Our method employs an attention mechanism to em-
bed target information into the search area in a lightweight manner.

vote clusters. We will discuss the details in the following
subsections.

3.1. Target-Guided Attention

Target-Guided Attention (TGA) module provides a
lightweight way to embed target information into the search
area. We denote the target input as z and the search area in-
put as x. We use PointNet++ [30] as the backbone, which
consists of three Set Abstraction layers (as shown in Fig. 2).
The backbone network shares parameters so that the two
branches of input (x and z) are implicitly encoded by the
same transformation. The structure of the TGA module is
shown in Fig. 3. It is motivated by the Cross-frame Global
Attention (CGA) in [34], where the attention mask for the
current frame is generated from the information in the last
frame. In our work, since our aim is to locate the target
in the search area, features of the search area that match
the target features should be highlighted, which we achieve
through generating an attention mask.

Suppose at level i, we have M i seed points pi(x) ∈
RMi×3 in the search area and N i seed points pi(z) ∈
RNi×3 in the target. φi(z) ∈ RNi×ei and φi(x) ∈ RMi×di

are their corresponding features (di and ei are the feature
dimensions of φi(x) and φi(z), respectively). We first gen-
erate a vector wi ∈ RMi×1 from point features, i.e.,

wi = MLPTGA(Concat(φi(x), Repeat(Maxpool(φi(z)))).
(1)

As shown in Fig. 3, we adopt the maxpooling layer
Maxpool(·) to change the size of target feature from N i ×
ei to 1 × ei. Then, we combine the target feature with the
search area feature through Repeat(·) and Concat(·). Fi-
nally, we use a three-layer MLP (MLPTGA) to transform
the size of merged feature from M i× (di+ei) into M i×1.
The TGA module aims to highlight important (i.e., the tar-
get) points in the search area. We therefore generate the

point-wise attention map as:

Sig(wi) =
1

1 + e−wi . (2)

where Sig(·) denotes the Sigmod activation function to
make the output normalized in (0, 1). Then the features in
the search area are enhanced by

φi(x)′ = Sig(wi)⊗ φi(x). (3)

where ⊗ is the point-wise multiplication. TGA provides a
lightweight way to find points that match the target via as-
signing different importance weights to points in the search
area. That is, the TGA module aims to figure out which
points in φi(x) are important.

Permutation-invariance. For the target feature, we
adopt symmetric functions (i.e. Maxpool(·)) to ensure
permutation-invariance. The order of wi is consistent with
search area points, so the point-wise multiplication is not
affected by the order of search area points. Therefore, the
proposed TGA module is permutation-invariant.

Comparison to TSFA. The TSFA module in P2B [31]
also embeds target information into the search area. How-
ever, TSFA applys cosine distance to compute the point-
wise similarity and obtains a similarity map Mapsm of size
[M i×N i, 1]. Moreover, a series of MLP layers and a Max-
pooling operation are used to augment φi(z) and φi(x) in
order to get the target-specific features. Although TSFA
has achieved high performance, these operations have made
it inefficient. In experiments, we compared the time and
memory efficiency of TSFA with the proposed TGA (see
Table 2).

3.2. Multi-level Voting

In the TGA module, we use target features φi(z) to en-
hance the search features φi(x). Now, our goal is to track
the target based on the seed points pi(x) and their enhanced
features φi(x)′. We can regard the subsequent task as a 3D
object detection task. Here, we follow the idea of Hough
voting in VoteNet [29] to detect the target. However, the
multiple subsampling-based set abstraction operations in
PointNet++ significantly reduce the number of seed points
and make it difficult to get enough meaningful votes in the
relatively sparse outdoor point clouds. Thus, we propose
to perform the Hough voting at multiple levels, on the one
hand, to bring in more seed points; on the other hand, to
make use of multi-level features. The multi-level voting
(MLV) is formulated as:

[△pv,i,△fv,i] = HoughV oting([pi(x), φi(x)′])

[pv,i, fv,i] = [pv,i(x), φi(x)′] + [△pv,i,△fv,i].
(4)

where HoughV oting(·) is realized with an MLP network
with batch normalization and ReLU. It predicts the feature
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residual △fv,i for φi(x)′ and the coordinate offset △pv,i

for pi(x). Then the coordinates pv,i ∈ RMi×3 and the fea-
tures fv,i ∈ RMi×di

are obtained. di is the feature dimen-
sion. Mi is the point number at the i-th level.

Multi-level votes {vj = [pvj ; f
v
j ] ∈ R3+d}

∑I
i Mi

j=1 con-
tain rich context information from the features at different
levels. Gathering votes from all levels gives a relatively
large number of seed points. Then, we sample a subset

(K = 64) from {vj}
∑I

i Mi

j=1 using random sampling. Fol-
lowing VoteNet, we employ the ball query to obtain sample
points within radius r to the vote center to form vote clusters
Ck:

Ck = {v(k)j |∥vj − vjk∥ ≤ r}. (5)

where k = 1, ...,K, j = 1, ...,
∑I

i M
i. After that, we

employ an MLP layer to update the feature of vote cluster.
C ′ = {[pvk; fv

k
′] ∈ R3+d}Kk=1 contains the coordinates and

features for vote clusters. Instead of directly predicting the
bounding boxes from C ′, we follow a common strategy that
considers the relationships between the vote clusters for the
final prediction, which is described in the following subsec-
tion.

3.3. Vote-cluster Feature Enhancement

We propose a Vote-cluster Feature Enhancement mod-
ule, which is again based on an attention mechanism, to
capture the relationships between vote clusters and enhance
their features. By establishing the relationships, the final

tracking box is determined not only by its individual vote
cluster, but also the related vote clusters. In practice, the
relationships are established by assigning weights between
vote clusters. Specifically, we make use of the CBAM mod-
ule [38] to enhance the perception between vote clusters.
The original CBAM module is mainly used for images, so
we modify it to make it suitable for enhancing point cloud
features. Fig. 4 depicts the computation process in detail.
We first utilize the channel attention to enhance the features
of the vote clusters, and then employ the spatial attention
to establish the relationships between vote clusters. The en-
coding of vote clusters relationships can be expressed as:

fv ′′ = Ac(f
v ′)⊗ fv ′

fv ′′′ = As(f
v ′′)⊗ fv ′′.

(6)

where Ac, As respectively denote the channel attention map
and the spatial attention map. ⊗ is the element-wise multi-
plication. Finally we send C ′′ = [pvk; f

v
k
′′′]Kk=1 into an MLP

network to get the final prediction:

{bb, c} = MLPV FE([p
v
k; f

v
k
′′′]Kk=1). (7)

where bb represents the target proposal with proposal tar-
getness confidence c.

3.4. Loss

In the MLV module, an MLP network is used to obtain a
seed-wise targetness score si,s for each φi(x)′. Therefore,
the size of votes expands to M i× (1+3+d). We employ a
standard binary cross entropy loss Lcls for si,s at each level.
Then the loss for multi-level voting is:

Lreg =
∑
i

(
1

M i

∑
j

∥∥∥∆pv,ij −∆gtj

∥∥∥ · I[pv,ij on target]).

(8)
where I[pv,ij on target] is the indicator of whether pv,ij is
on the surface based on the ground truth. M i denotes the
seed point number at the i-th level, and ∆gtj denotes the
ground-truth offset from pv,ij to the target center. The other
loss terms Lpro, Lbox are similar to P2B [31]. Lpro is a
cross entropy loss for c in Eq. 7. Lbox is a Huber (smooth-
L1) loss for bb in Eq. 7. Finally, we combine all the above
losses as the final loss Lfinal:

Lfinal = λ1Lpro + λ2Lbox + λ3Lcls + Lreg. (9)

where λ1, λ2, λ3 are hyper-parameters to balance the differ-
ent losses (In our experiments, we empirically set λ1 = 1.5,
λ2 = 0.2, λ3 = 0.2).

4. Experiments and Results
MLVSNet is evaluated on the challenging 3D visual

tracking benchmanrk of KITTI dataset [13]. We first in-
troduce the KITTI tracking dataset in Sec. 4.1. In Sec. 4.2,
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Figure 5. Visual comparison between P2B and MLVSNet in a noisy scene. Compared with P2B, MLVSNet is closer to ground truth even
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Figure 6. Visual comparison between P2B and MLVSNet in a scene with sparse object point clouds. MLVSNet achieves better performance
than P2B.

we describe the implementation details of MLVSNet. In
Sec. 4.3, we compare the results of MLVSNet with state-
of-the-art 3D visual tracking frameworks. In Sec. 4.4, we
conduct extensive ablation studies to analyze MLVSNet.

4.1. Dataset

The original KITTI tracking dataset consists of 21 train-
ing scenes and 29 test scenes. We follow the standard set-
ting in [31] and [14] to split the training set as follows:



scenes 0-16 are used for training, 17-18 for validation, and
19-20 for testing. The sparse point clouds of some cat-
egories carry little semantic information, which makes it
a great challenge for 3D visual tracking. Hence, recent
works mainly focused on tracking cars, the category that has
the largest quantity and diversity of samples. By contrast,
we conduct experiments on all categories (Car, Pedestrian,
Van, Cyclist) using MLVSNet, and compare the results with
other state-of-the-art methods.

4.2. Implementation Details

Given the point clouds of a target, we first normalized
the number of points to NI = 512 by randomly repeating
or removing points. We did the same for the point clouds
of the search area and set the number of points to MI =
1024. For the backbone network, we follow the architecture
of [31], where three set-abstraction (SA) layers are used to
sub-sample the target points into groups with sizes [256,
128, 64], and to sub-sample the points of the search area
into groups with sizes [512, 256, 128]. The feature channel
sizes of the three SA layers for both the target and the search
area are [128, 256, 256]. We use features from the second
and third layers for multi-level voting, the detailed analysis
of this setting can be seen in Sec. 4.4.

Our MLVSNet is implemented in Python 3.6 and Py-
Torch 1.2. All experiments in this paper are carried out on a
PC with an Intel i7-7700K CPU and a GeForce GTX 1080ti
GPU. We train the entire network end-to-end with the Adam
optimizer [20]. With a batch size of 8, the learning rate is
10−3 initially and reduced by a factor of 5 after 10 epochs.
During training, we use the same parameters for all types
of targets. For other data processing settings, we follow the
settings in [31].

4.3. Comparison with the State-of-the-art

Evaluation Metric. To quantitatively compare the
tracking performance of different methods, we adopted the
One Pass Evaluation (OPE) [39] to compute Success and
Precision. Under this rule, “Success” measures the IOU (In-
tersection Over Union) between the ground-truth bounding
box and the predicted bounding box. “Precision” indicates
the percentage of frames whose predicted box centers are
within the given distance range (0 to 2m) from the ground
truth.

Quantitative Comparison. We evaluate our model
against the state-of-the-art methods, P2B [31] and SC3D
[14]. Table 1 shows the results on the KITTI tracking
dataset. It can be seen that the proposed MLVSNet achieves
the best mean Success and Precision. Especially for vans,
MLVSNet achieves 11.2% and 13% improvements over
P2B, the second best, on Success and Precision respec-
tively. For pedestrians, MLVSNet also achieves significant
improvements. For cyclists, SC3D achieves better perfor-

Method Car Pedestrian Van Cyclist Mean
TN 6424 6088 1248 308 14068

Success
SC3D [14] 41.3 18.2 40.4 41.5 31.2
P2B [31] 56.2 28.7 40.8 32.1 42.4
MLVSNet 56.0 34.1 52.0 34.3 45.7

Precision
SC3D [14] 57.9 37.8 47.0 70.4 48.5
P2B [31] 72.8 49.6 48.4 44.7 60.0
MLVSNet 74.0 61.1 61.4 44.5 66.6

Table 1. Extensive comparisons with state-of-the-art methods. The
right five columns exhibit the results in different target types and
their mean. TN represents the number of test samples. Our method
(MLVSNet) outperforms the state-of-the-art methods by a large
margin.

Module Model size ↓ Training ↓ Testing ↑

P2B+TSFA [31] 5.4MB 21 min 84 fps

P2B+our TGA 5.3MB 16 min 93 fps

MLVSNet 7.6MB 19 min 70 fps

Table 2. Model size, training time and test speed.

mance than the other two methods. We believe this is prob-
ably due to the small number of cyclist samples in the train-
ing set. P2B and MLVSNet cannot learn effective target fea-
tures through insufficient training samples. However, SC3D
requires less data to learn the similarity between two re-
gions [31, 14]. Hence, SC3D has achieved an advantage in
Cyclist evaluation. Finally, in the mean evaluation score,
our method achieves the best performance (compared with
P2B, 3.3% higher on Success and 6.6% higher on Preci-
sion).

Visual Comparison. We use Mayavi [32] to generate
our visual results. Fig. 5 and Fig. 6 show representa-
tive examples of MLVSNet tracking results on Pedestrian
and Car, respectively. As can be seen in Fig. 5, in street
scenes with pedestrians walking, there are a lot of noisy
points in the search area, which pose a great challenge for
tracking. As can be seen, the tracking results of P2B are
affected with large deviations from the ground-truth, while
MLVSNet achieves accurate tracking consistently through
the frames, demonstrating its robustness to noise. Fig. 6
shows the tracking results of P2B and MLVSNet in a scene
with sparse points. In frames from T = 1 to T = 50, where
the points are extremely few, both P2B and MLVSNet per-
form poorly with the results of MLVSNet slightly closer
to the ground-truth. When the number of object points in-
creases (from T = 100 to T = End), MLVSNet locates tar-
gets more accurately, much closer to the ground-truth than
P2B.

Speed Comparison. Here, we compare the computa-
tional efficiency of the TSFA module in P2B and the pro-
posed TGA module in MLVSNet. We have adopted the



same data processing strategy as P2B, so the speed compar-
ison focuses on network efficiency. As shown in Table 2,
we evaluate module efficiency in three metrics. The train-
ing time is measured as the average time to train the net-
work for one epoch (trained for the car category). The test
speed is calculated as the number of samples processed by
the model in one second during testing. To evaluate the
TSFA module, we used the default settings in P2B. To eval-
uate the TGA module, we directly replaced the TSFA mod-
ule in P2B with the TGA module to test the training/testing
time for a fair comparison. In all metrics, the efficiencies
of the TGA module are better than the TSFA module. It
is precisely due to the lightweight of the TGA module that
when we combine all the proposed modules (TGA, MLV
and VFE) into MLVSNet, the whole model can still achieve
70 FPS at testing. Moreover, our method requires less train-
ing time than P2B.

4.4. Ablation Study

In this section, we conduct experiments to analyze the ef-
fectiveness of different modules in MLVSNet. P2B is em-
ployed as the baseline, and we analyze the effects of us-
ing different module settings on network performance. We
first replace the TSFA module of P2B with the TGA mod-
ule while keeping other parts unchanged. As is shown in
Table 3, using the TGA module alone gains higher Preci-
sion and slightly lower Success, compared with the base-
line (2.3% higher on Precision, 0.1% lower on Sucess).
Based on the TGA module, we further verify the effective-
ness of the MLV module. Initially, the Hough voting is
taken from seed points at all layers. However, we find that
using seed points from all layers is actually detrimental to
the network performance. Table 4 shows the results of us-
ing seed points from different combinations of layers. The
best results are achieved when aggregating the points from
the last two layers (3 and 2) for Hough voting. This con-
firmed our point that both the number of seed points and the
feature descriptive ability of points are important for target
detection. Although there are many shallow seed points, the
descriptive ability of shallow features is insufficient. When
the framework introduces too many shallow seed points for
voting, the following sampling would have an imbalanced
preference for these shallow points due to their large quan-
tity. Therefore, in implementation of MLVSNet, we only
combine the last two layers for the following voting. Table
5 shows the performance of MLVSNet with and without the
VFE module for different target types. The performance of
using VFE module has obvious improvements on all target
types. The proposed VFE module enables different voting
clusters to perceive each other, which further improves the
tracking performance.

Framework TGA MLV VFE
Metric

Sucess Precision
Baseline 42.4 60.0

MLVSNet ✓ 42.3 62.3
MLVSNet ✓ ✓ 44.4 64.9
MLVSNet ✓ ✓ ✓ 45.7 66.6

Table 3. Effectiveness of different sub-module of MLVSNet.

Metric Voting layers Car Pedestrian Van Cyclist Mean

Success
3 54.1 29.8 47.1 25.3 42.3

3+2 55.2 32.4 50.9 29.6 44.4
3+2+1 49.8 25.3 33.4 24.2 37.2

Precision
3 70.5 56.3 56.7 33.7 62.3

3+2 72.7 58.9 60.3 39.9 64.9
3+2+1 69.2 44.8 43.6 33.9 55.6

Table 4. Effectiveness of different voting strategies. MLV has the
best performance using the last two features for Hough voting.

Metric Module Car Pedestrian Van Cyclist Mean

Success
w/o VFE 55.2 32.4 50.9 29.6 44.4
w/ VFE 56.0 34.1 52.0 34.3 45.7

Precision
w/o VFE 72.7 58.9 60.3 39.9 64.9
w/ VFE 74.0 61.1 61.4 44.5 66.6

Table 5. Effectiveness of VFE module for all target types and their
Mean.

5. Conclusion
In this paper, we present a new network, MLVSNet, for

3D visual tracking on point clouds. Specifically, we pro-
pose a lightweight Target-Guided Attention module to em-
bed the target information into the search area. Based on
TGA, we further propose a multi-level voting strategy to
fuse data and information from different layers for voting, in
order to improve the tracking performance on sparse point
clouds in outdoor scenes. A feature enhancement module is
also proposed to enhance features for tracking by consider-
ing relationships between vote clusters. MLVSNet achieves
the new state-of-the-art performance and runs at 70 FPS,
demonstrating both its effectiveness and efficiency for 3D
visual tracking. In the future, we plan to improve the track-
ing performance in sparse point cloud scenes. One possible
solution is to add RGB images as network input. RGB im-
ages can provide rich texture and color information, which
can increase the difference between the target and the noise
points.
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