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To any n × n Latin square L, we may associate a unique 
sequence of mutually orthogonal permutation matrices P =
P1, P2, ..., Pn such that L = L(P ) =

∑
kPk. Brualdi and 

Dahl (2018) described a generalisation of a Latin square, 
called an alternating sign hypermatrix Latin-like square 
(ASHL), by replacing P with an alternating sign hypermatrix 
(ASHM). An ASHM is an n × n × n (0,1,-1)-hypermatrix 
in which the non-zero elements in each row, column, and 
vertical line alternate in sign, beginning and ending with 1. 
Since every sequence of n mutually orthogonal permutation 
matrices forms the planes of a unique n × n × n ASHM, this 
generalisation of Latin squares follows very naturally, with an 
ASHM A having corresponding ASHL L = L(A) =

∑
kAk, 

where Ak is the kth plane of A. This paper addresses 
open problems posed in Brualdi and Dahl’s article, firstly 
by characterising how pairs of ASHMs with the same 
corresponding ASHL relate to one another and identifying the 
smallest dimension for which this can happen, and secondly by 
exploring the maximum number of times a particular integer 
may occur as an entry of an n × n ASHL. A construction 
is given for an n × n ASHL with the same entry occurring 
�n2+4n−19

2 � times, improving on the previous best of 2n.
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1. Introduction

An alternating sign matrix (ASM), is a (0, 1,−1)-matrix in which the non-zero ele-
ments in each row and column alternate in sign, beginning and ending with 1. The n ×n

diamond ASM is an ASM with the maximum number of non-zero entries for given n. For 
odd n, there is a unique diamond ASM Dn. For even n, there are two diamond ASMs 
Dn and D′

n.

Example 1.1. The following are the two 4 × 4 diamond ASMs D4 and D′
4, and the 5 × 5

diamond ASM D5.

It is easily observed that permutation matrices are examples of ASMs, which arise nat-
urally as the unique smallest lattice containing the permutation matrices of the Bruhat 
order [3].

A Latin square [4] of order n is an n × n array containing n symbols such that each 
symbol occurs exactly once in each row and column. Any n × n Latin square L with 
symbols 1, 2, . . . , n can be decomposed into a unique sequence P of n × n mutually 
orthogonal permutation matrices P = P1, P2, . . . , Pn by the following relation.

L = L(P ) =
∑
k

kPk

For example, consider the following Latin square.
(1 2 3

2 3 1
3 1 2

)
= 1

(1 0 0
0 0 1
0 1 0

)
+ 2

(0 1 0
1 0 0
0 0 1

)
+ 3

(0 0 1
0 1 0
1 0 0

)

This decomposition leads to a natural extension of the concept of a Latin square, first 
introduced by Brualdi and Dahl [1], by replacing the sequence of permutation matrices 
with planes of an alternating sign hypermatrix (ASHM). Before we define these objects, 
we must first define some features of a hypermatrix.

An n × n × n hypermatrix A = [aijk] has n2 lines of each of the 3 following types. 
Each line has n entries.

• Row lines A∗jk = [aijk : i = 1, . . . , n], for given 1 ≤ j, k ≤ n;
• Column lines Ai∗k = [aijk : j = 1, . . . , n], for given 1 ≤ i, k ≤ n;
• Vertical lines Aij∗ = [aijk : k = 1, . . . , n], for given 1 ≤ i, j ≤ n.
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In this paper, we refer to a plane Pk(A) of A to be the horizontal plane A∗∗k = [aijk :
i, j = 1, . . . , n], for given 1 ≤ k ≤ n.

An alternating sign hypermatrix (ASHM) is a (0, ±1)-hypermatrix for which the non-
zero entries in each row, column, and vertical line of the hypermatrix alternate in sign, 
starting and ending with +1.

For example, the following is a 3 × 3 ASHM.

A =
(0 0 1

0 1 0
1 0 0

)
↗
(0 1 0

1 −1 1
0 1 0

)
↗
(1 0 0

0 1 0
0 0 1

)

The north-east arrow Pk(A) ↗ Pk+1(A) is used to denote that Pk(A) is below Pk+1. 
For simplicity, for the remainder of this paper, we will omit the zero entries of all ASHMs, 
and represent all ±1 entries with + or −.

An ASHL is an n × n matrix L constructed from an n × n × n ASHM A by

L = L(A) =
∑
k

kPk(A).

From the previous example, we then have the following ASHL.

L(A) = 1
( +

+
+

)
+ 2

( +
+ − +

+

)
+ 3

(+
+

+

)
=

(3 2 1
2 2 2
1 2 3

)

Brualdi and Dahl [1] posed a number problems about ASHLs, the following of which 
are addressed in this paper.

• Given an n × n ASHL L, let An(L) be the set of all n × n × n ASHMs A such that 
L(A) = L. Investigate An(L).

• What is the maximum number of times an integer can occur as an entry of an n ×n

ASHL?

In this paper, the relationship between two ASHMs that generate the same ASHL is 
described, and a general construction is given for building an n × n ASHL containing 
�n2+4n−19

2 � copies of one symbol. This improves on Brualdi and Dahl’s lower bound of 
2n for the maximum number of times that one symbol can appear in an n × n ASHL.

2. ASHLs with multiple ASHM-decompositions

In Brualdi and Dahl’s paper [1], it was proven that for a Latin square L, if L = L(A)
for some ASHM A, then A must be a permutation hypermatrix. The following question 
was then posed.
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Problem 2.1. Given an n × n ASHL L, let An(L) be the set of all n × n × n ASHMs A
such that L(A) = L. Investigate An(L).

This is presented in [1] as a completely open problem, with no examples of distinct 
ASHMs with the same corresponding ASHL given. This problem is motivated by the 
observation that in the case of a Latin square L, An(L) contains exactly one ASHM 
whose planes form a set of mutually orthogonal permutation matrices. Before we discuss 
how two ASHMs in An(L) relate to one another, it is useful to introduce the following 
definition, and more generally examine how any pair of n × n × n ASHMs relate to one 
another.

An n × n × n T-block Ti1,j1,k1: i2,j2,k2 is a hypermatrix ±[tijk] such that

tijk =

⎧⎪⎪⎨
⎪⎪⎩

1 (i, j, k) = (i1, j1, k1), (i2, j2, k1), (i2, j1, k2), or(i1, j2, k2)
−1 (i, j, k) = (i2, j1, k1), (i1, j2, k1), (i1, j1, k2), or(i2, j2, k2)

0 otherwise

where i1 < i2, j1 < j2, and k1 < k2.
A T-block can be most usefully visualised as an n × n × n matrix containing the 

subhypermatrix

±
[(

+ −
− +

)
↗

(
− +
+ −

)]

such that these are the only non-zero entries. This is a 3-d extension of a concept defined 
by Brualdi, Kiernan, Meyer, and Schroeder [2].

The following lemma will be needed to investigate An(L).

Lemma 2.2. Let A and B be two n × n × n ASHMs. Then A −B can be expressed as a 
sum of T-blocks.

Proof. If A = B, this is trivially true.
Assume A �= B. In A and B, the sum of the entries in any row, column, or vertical 

line is 1. Therefore the sum of any row, column, or vertical line of D = A −B is 0. Now 
iterate the following step.

• Let k1 be the least integer for which the plane Pk1(D) contains non-zero entries. For 
some positive entry di1j1k1 of D, we can find entries di2j1k1 , di1j2k1 and di1j1k2 with 
negative sign, where k2 > k1.
Let D ← D − Ti1,j1,k1: i2,j2,k2 and repeat this step if D is not a 0-hypermatrix.

Note that the sum of the absolute values of the entries of Pk1(D) is at least 2 less than 
the previous step, and that all line sums of D are 0 after each step. We can therefore 
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run this iterative process repeatedly, resulting in Pk1(D) becoming a 0-matrix for the 
current value of k1, and eventually resulting in D becoming a 0-hypermatrix. Therefore 
A −B can be expressed as a sum of T-blocks. �

Let T be a T-block. The depth of T , d(T ), is defined as follows.

d(T ) =
{
k2 − k1, T = Ti1,j1,k1: i2,j2,k2

k1 − k2, T = −Ti1,j1,k1: i2,j2,k2

Two T-blocks, T1 and T2, have opposite depth if d(T1) = −d(T2)

Theorem 2.3. Two ASHMs A and B satisfy L(A) = L(B) if and only if any expression 
of A −B as a sum of T-blocks satisfies that, in any vertical line V of A −B,

∑
T∈TV

d(T ) = 0,

where TV is the subset of these T-blocks with non-zero entries in V .

Proof. From Lemma 2.2, we know that A − B can be expressed as a sum of T-blocks. 
The entries of any vertical line V in A −B can be decomposed into pairs (tk1 , tk2), where 
k1 < k2, such that pairs are non-zero entries in the same T-block. Note that tk1 = −tk2 . 
Therefore

∑
kVk =

∑
T∈TV

(k1tk1 + k2tk2) =
∑

T∈TV

±(k1 − k2) =
∑

T∈TV

d(T ).

• Suppose that, for any vertical line V in A −B,
∑

T∈TV

d(T ) = 0.

This means that 
∑

kVk = 0, which means that L(A − B) = 0. Therefore L(A) =
L(B).

• Now suppose that L(A) = L(B). Then L(A − B) = 0, so for any vertical line V in 
A −B, we have 

∑
kVk = 0. Therefore

∑
T∈TV

d(T ) = 0. �

This provides some progress on Problem 2.1, as an ASHM B is contained in An(L) if 
and only if A and B satisfy Theorem 2.3 for all A ∈ An(L). In particular, Theorem 2.3
provides a strategy for constructing an ASHM B for which L(B) = L(A) for some given 
ASHM A, by adding T-blocks to A in such a way that satisfies 

∑
T∈T d(T ) = 0. This 
V
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⎛
⎜⎜⎜⎝

⎛
⎜⎜⎜⎝

⎛
⎜⎜⎜⎝
is by far our most successful method for generating pairs of ASHMs with the same 
corresponding ASHL. The relationship between elements of An(L) can be characterised 
further, as shown in the following two examples.

Example 2.4. Here, A and B are two ASHMs for which D = A − B has a very natural 
decomposition as the sum of three T-blocks with depths 1, 1, −2, respectively, occupying 
the same vertical lines. 

A =

+
+

+
+

+
+

+
+

⎞
⎟⎟⎟⎠↗

⎛
⎜⎜⎜⎝

+
+

+
+

+
+

+
+

⎞
⎟⎟⎟⎠↗

⎛
⎜⎜⎜⎝

+
+

+
+ - +

+ - +
+

+
+

⎞
⎟⎟⎟⎠↗

⎛
⎜⎜⎜⎝

+
+

+
+

+
+

+
+

⎞
⎟⎟⎟⎠↗

⎛
⎜⎜⎜⎝

+
+

+
+

+
+

+
+

⎞
⎟⎟⎟⎠↗

⎛
⎜⎜⎜⎝

+
+

+
+ - +

+ - +
+

+
+

⎞
⎟⎟⎟⎠↗

⎛
⎜⎜⎜⎝

+
+

+
+

+
+

+
+

⎞
⎟⎟⎟⎠↗

⎛
⎜⎜⎜⎝

+
+

+
+

+
+

+
+

⎞
⎟⎟⎟⎠

B =

+
+

+
+

+
+

+
+

⎞
⎟⎟⎟⎠↗

⎛
⎜⎜⎜⎝

+
+

+
+

+
+

+
+

⎞
⎟⎟⎟⎠↗

⎛
⎜⎜⎜⎝

+
+

+
+- +

+ -+
+

+
+

⎞
⎟⎟⎟⎠↗

⎛
⎜⎜⎜⎝

+
+

+
+

+
+

+
+

⎞
⎟⎟⎟⎠↗

⎛
⎜⎜⎜⎝

+
+

+
+

+
+

+
+

⎞
⎟⎟⎟⎠↗

⎛
⎜⎜⎜⎝

+
+

+
+ -+

+- +
+

+
+

⎞
⎟⎟⎟⎠↗

⎛
⎜⎜⎜⎝

+
+

+
+

+
+

+
+

⎞
⎟⎟⎟⎠↗

⎛
⎜⎜⎜⎝

+
+

+
+

+
+

+
+

⎞
⎟⎟⎟⎠

D =

· · ·+- · · ·
· · · -+· · ·

⎞
⎟⎟⎟⎠↗

⎛
⎜⎜⎜⎝ · · · -+· · ·

· · ·+- · · ·

⎞
⎟⎟⎟⎠↗

⎛
⎜⎜⎜⎝ · · ·+- · · ·

· · · -+· · ·

⎞
⎟⎟⎟⎠↗

⎛
⎜⎜⎜⎝ · · · -+· · ·

· · ·+- · · ·

⎞
⎟⎟⎟⎠↗

⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠↗

⎛
⎜⎜⎜⎝ · · · -+· · ·

· · ·+- · · ·

⎞
⎟⎟⎟⎠↗

⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠↗

⎛
⎜⎜⎜⎝ · · ·+- · · ·

· · · -+· · ·

⎞
⎟⎟⎟⎠

D = T4,4,1: 5,5,2 + T4,4,3: 5,5,4 − T4,4,6: 5,5,8

L(A) = L(B) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

6 2 1 5 7 4 8 3
1 5 2 6 3 8 7 4
2 1 5 3 6 7 4 8
5 6 3 3 3 6 3 7
7 3 6 3 3 3 6 5
4 8 7 6 3 5 1 2
8 7 4 3 6 2 5 1
3 4 8 7 5 1 2 6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

D can also be expressed as the sum of pairs of T-blocks with opposite depth occupying 
the same vertical lines.

D = (T4,4,1: 5,5,2 − T4,4,7: 5,5,8) + (T4,4,3: 5,5,4 − T4,4,6: 5,5,7)
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⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝
Example 2.5. Here, A and B are two ASHMs for which D = A − B has a very natural 
decomposition as the sum of three T-blocks such that each pair occupy exactly two 
of the same vertical lines. (Note that the north-east arrow between each plane of the 
hypermatrices has been omitted in this example due to space restrictions.) 

A =

+
+

+
+

+
+

+
+

+

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

+
+

+
+

+
+

+
+

+

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

+
+

+
+

+
+

+
+

+

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

+
+

+
+ - +

+ - +
+ - +

+
+

+

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

+
+

+
+ - +

+ - +
+ - +

+
+

+

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

+
+

+
+- +

+ -+
+ - +

+
+

+

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

+
+

+
+

+
+

+
+

+

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

+
+

+
+

+
+

+
+

+

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

+
+

+
+

+
+

+
+

+

⎞
⎟⎟⎟⎟⎠

B =

+
+

+
+

+
+

+
+

+

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

+
+

+
+

+
+

+
+

+

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

+
+

+
+

+
+

+
+

+

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

+
+

+
+ - +

+ - +
+ - +

+
+

+

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

+
+

+
+ - +

+ - +
+ - +

+
+

+

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

+
+

+
+ - +

+ - +
+ - +

+
+

+

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

+
+

+
+

+
+

+
+

+

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

+
+

+
+

+
+

+
+

+

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

+
+

+
+

+
+

+
+

+

⎞
⎟⎟⎟⎟⎠

D =

· · · -+· · · ·
· · ·+- · · · ·

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

· · ·· -+· · ·
· · ··+- · · ·

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

· · ·+· - · · ·
· · · - ·+· · ·

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

· · ·+- · · · ·
· · · -+· · · ·

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

· · ··+- · · ·
· · ·· -+· · ·

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

· · · - ·+· · ·
· · ·+· - · · ·

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠

D = −T4,4,1: 5,5,4 − T4,5,2: 5,6,5 + T4,4,3: 5,6,6

L(A) = L(B) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7 8 9
3 1 2 6 4 5 9 7 8
2 3 1 5 6 4 8 9 7
4 5 6 6 5 4 4 5 6
6 4 5 4 6 5 6 4 5
5 6 4 5 4 6 5 6 4
7 8 9 4 5 6 1 2 3
9 7 8 6 4 5 3 1 2
8 9 7 5 6 4 2 3 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

D can also be expressed as the sum of pairs of T-blocks occupying the same vertical 
lines with opposite depth.

D = (T4,4,3: 5,6,6 − T4,4,1: 5,6,4) + (T4,5,1: 5,6,4 − T4,5,2: 5,6,5)

These examples demonstrate an alternative characterisation of two ASHMs with the 
same corresponding ASHL.
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Theorem 2.6. Two ASHMs A and B satisfy L(A) = L(B) if and only if A − B can be 
expressed as a sum of pairs of T-blocks with opposite depth occupying the same vertical 
lines.

Proof. First assume that two ASHMs A and B satisfy L(A) = L(B). From Theorem 2.3, 
we know that D = A − B can be decomposed into T-blocks such that in any vertical 
line V of D,

∑
T∈TV

d(T ) = 0.

Run the following iterative step.

• Let k1 be the least integer for which the plane Pk1(D) contains non-zero entries. 
For some positive entry di1j1k1 of D, we can find entries di2j1k1 , di1j2k1 and di1j1k2

with negative sign, where k2 > k1. Choose k2 to be the least integer satisfying this 
condition.
As 

∑
T∈TVi1j1

d(T ) = 0, there must also be another positive entry di1j1k3 in Vi1j1 . 
Choose k3 to be the largest integer satisfying this condition. Let k4 = k3 − (k2 −k1), 
and let

D′ = D − Ti1,j1,k1: i2,j2,k2 + Ti1,j1,k4: i2,j2,k3 .

Now repeat this step for D′.

Note that the sum of the absolute value of the entries of Pk1(D′) is at least 2 less than 
that of Pk1(D), and that all line sums of D′ are 0. Note also that k4 > k1, because the 
sum of the absolute value of the negative entries in V must equal the sum of the positive 
entries in V and the weighted sums of each must also equal. If k4 ≤ k1, this implies that 
all the negative entries of V are positioned above all positive entries in V , which means 
that their weighted sum is negative. Therefore k4 > k1, which means that k1 remains 
the lowest integer for which Pk1(D) contains non-zero entries. We can therefore run this 
iterative process repeatedly, resulting in Pk1(D′) becoming a 0-matrix and on the next 
iteration, k1 will increase to the new lowest integer for which plane Pk1(D′) contains 
non-zero entries until D′ is a 0-hypermatrix. Therefore A −B can be expressed as a sum 
of pairs of T-blocks with opposite depth occupying the same vertical lines.

Now, assume that A −B can be expressed as a sum of pairs of T-blocks with opposite 
depth occupying the same vertical lines. This means that, in any vertical line V of A −B,

∑
T∈TV

d(T ) =
∑
T

(d(T ) − d(T )) = 0.

Which, by Theorem 2.3, means that L(A) = L(B). �
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So, for any ASHM A with ASHL L = L(A), we have that An(L) is the set of all 
ASHMs B for which A −B can be expressed as a sum of pairs of T-blocks with opposite 
depth occupying the same vertical lines. The following theorem tells us the smallest 
dimension an ASHL L can have if An(L) contains more than one element.

Theorem 2.7. The minimum n for which two distinct n × n × n ASHMs A and B can 
satisfy L(A) = L(B) is 4.

Proof. Two ASHMs A and B can satisfy L(A) = L(B) only if both ASHMs contain at 
least one negative entry [1].

The following are the only two 3 × 3 ASHMs containing negative entries, and these 
do not satisfy L(A) = L(B).

A =
( +

+
+

)
↗
( +

+ − +
+

)
↗
(+

+
+

)

B =
(

+
+

+

)
↗
(

+
+ − +

+

)
↗
(

+
+

+

)

L(A) =
(3 2 1

2 2 2
1 2 3

)
L(B) =

(1 2 3
2 2 2
3 2 1

)

The following example is a pair of 4 × 4 × 4 ASHMs with the same corresponding 
ASHL.

A =
( +

+
+

+

)
↗

( +
+ − +

+ − +
+

)
↗

( +
+

+
+

)
↗

(+
+

+
+

)

B =
( +

+
+

+

)
↗

( +
+

+
+

)
↗

( +
+ − +

+ − +
+

)
↗

(+
+

+
+

)

L(A) = L(B) =

⎛
⎜⎝

4 3 2 1
3 2 3 2
2 3 2 3
1 2 3 4

⎞
⎟⎠

Therefore the minimum dimension for which two ASHMs A and B can satisfy L(A) =
L(B) is 4. �

Note that An(L) can contain ASHMs with different numbers of non-zero elements. In 
the following example, the number of non-zero entries in A is 68, while the number of 
non-zero entries in B is 76.
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Example 2.8. A =
⎛
⎜⎜⎜⎝

+
+

+
+

+
+

+
+

⎞
⎟⎟⎟⎠↗

⎛
⎜⎜⎜⎝

+
+

+
+

+
+

+
+

⎞
⎟⎟⎟⎠↗

⎛
⎜⎜⎜⎝

+
+

+
+

+
+

+
+

⎞
⎟⎟⎟⎠↗

⎛
⎜⎜⎜⎝

+
+

+
+

+
+

+
+

⎞
⎟⎟⎟⎠↗

⎛
⎜⎜⎜⎝

+
+

+
+ - +

+ - +
+

+
+

⎞
⎟⎟⎟⎠↗

⎛
⎜⎜⎜⎝

+
+

+
+

+
+

+
+

⎞
⎟⎟⎟⎠↗

⎛
⎜⎜⎜⎝

+
+

+
+

+
+

+
+

⎞
⎟⎟⎟⎠↗

⎛
⎜⎜⎜⎝

+
+

+
+

+
+

+
+

⎞
⎟⎟⎟⎠

B =⎛
⎜⎜⎜⎝

+
+

+
+

+
+

+
+

⎞
⎟⎟⎟⎠↗

⎛
⎜⎜⎜⎝

+
+

+
+

+
+

+
+

⎞
⎟⎟⎟⎠↗

⎛
⎜⎜⎜⎝

+
+

+
+-+

+
+

+
+

⎞
⎟⎟⎟⎠↗

⎛
⎜⎜⎜⎝

+
+

+
+-+

+
+

+
+

⎞
⎟⎟⎟⎠↗

⎛
⎜⎜⎜⎝

+
+

+
+ - +

+ - +
+

+
+

⎞
⎟⎟⎟⎠↗

⎛
⎜⎜⎜⎝

+
+

+
+

+-+
+

+
+

⎞
⎟⎟⎟⎠↗

⎛
⎜⎜⎜⎝

+
+

+
+

+-+
+

+
+

⎞
⎟⎟⎟⎠↗

⎛
⎜⎜⎜⎝

+
+

+
+

+
+

+
+

⎞
⎟⎟⎟⎠

L(A) = L(B) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

6 4 8 2 5 1 3 7
8 6 2 4 1 5 7 3
4 1 6 5 3 7 2 8
1 5 4 6 4 3 8 5
5 2 7 6 4 6 5 1
2 8 3 7 5 4 1 6
7 3 5 1 6 8 4 2
3 7 1 5 8 2 6 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

3. The maximum number of equal entries of an ASHL

The following question is also posed in Brualdi and Dahl’s paper [1].

Problem 3.1. What is the maximum number of times an integer can occur as an entry 
of an n × n ASHL?

It is shown in their paper that an integer can occur 2n times in an n × n ASHL, and 
it is asked if the maximum is equal to 2n. The following example exceeds this bound.

Example 3.2. Here, 4 occurs as an entry in this 7 × 7 ASHL 29 times.
A =⎛
⎜⎜⎜⎝

+
+

+
+

+
+

+

⎞
⎟⎟⎟⎠↗

⎛
⎜⎜⎜⎝

+
+

+
+-+

+
+

+

⎞
⎟⎟⎟⎠↗

⎛
⎜⎜⎜⎝

+
+- +

+ -+
+ -+ -+

+ -+
+ -+

+

⎞
⎟⎟⎟⎠↗

⎛
⎜⎜⎜⎝

+
+-+

+ -+ -+
+ -+ -+ -+

+ -+ -+
+ -+

+

⎞
⎟⎟⎟⎠↗

⎛
⎜⎜⎜⎝

+
+ -+

+ -+
+ -+ -+

+ -+
+ - +

+

⎞
⎟⎟⎟⎠↗

⎛
⎜⎜⎜⎝

+
+

+
+-+

+
+

+

⎞
⎟⎟⎟⎠↗

⎛
⎜⎜⎜⎝

+
+

+
+

+
+

+

⎞
⎟⎟⎟⎠

L(A) =

⎛
⎜⎜⎜⎜⎜⎜⎝

6 3 1 4 7 5 2
3 4 4 4 4 4 5
1 4 4 4 4 4 7
4 4 4 4 4 4 4
7 4 4 4 4 4 1
5 4 4 4 4 4 3

⎞
⎟⎟⎟⎟⎟⎟⎠
2 5 7 4 1 3 6
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This is the highest possible number of times an entry can be repeated in a 7 × 7
ASHL, as each number 1, 2, . . . , n must appear exactly once in the first and last rows 
and columns of an n ×n ASHL. This means that the upper bound for such a construction 
is (n − 2)2 + 4, which is (7 − 2)2 + 4 = 29, in the n = 7 case.

We define the diamond positions of an n × n ASM A to be the positions of A corre-
sponding to non-zero entries of the diamond ASM Dn. Example 3.2 can be generalised 
in the following way.

Theorem 3.3. For a given n, there exists an n × n ASHL such that

• n+1
2 occurs as an entry n

2+4n−19
2 times, if n is odd;

• n
2 occurs as an entry n

2+4n−20
2 times, if n is even.

Proof. Let p = �n+1
2 �, m = 	n+1

2 
, and note that p = m for odd n. We construct an 
ASHM A with the required properties as follows.

• Pp(A) = Dn, and for k = 1, 2, . . . , p − 1, plane Pp±k(A) contains the diamond ASM 
Dn−2k such that there is a + entry in every position where there is a − entry in the 
diamond ASM contained in the plane Pp±(k−1).

• The other non-zero entries of Pp−1(A) are a diagonal of + entries from A1,m+2,p−1 to 
Ap−2,n,p−1, a diagonal of − entries from A2,m+2,p−1 to Ap−2,n−1,p−1, a diagonal of +
entries from Am+2,1,p−1 to An,p−2,p−1, and a diagonal of − entries from Am+2,2,p−1
to An−1,p−2,p−1.

• The other non-zero entries of P1(A) are a diagonal of + entries from A1,m+1,1 to 
Ap−1,n,1 and a diagonal of + entries from Am+1,1,1 to An,p−1,1.

• The other non-zero entries of P2(A) are an anti-diagonal of + entries from A2,p−2,2
to Ap−2,2,2, an anti-diagonal of + entries from Am+2,n−1,2 to An−1,m+2,2, and +
entries in A1,1,2 and An,n,2.

• For k = 2, . . . , p − 3, the other non-zero entries of Pp−k(A) are an anti-diagonal 
of + entries from A1,k,p−k to Ak,1,p−k, and an anti-diagonal of + entries from 
An−k+1,n,p−k to An,n−k+1,p−k.

• For k = 1, 2, . . . , p − 1, the entries of Pp+k(A) not containing Dn−2k (as outlined in 
the first step) satisfy Ai,j,p+k = An−i,j,p−k.

• If n is even, the non-zero entries of Pn(A) are an anti-diagonal from Ap,1,n to A1,p,n
and an anti-diagonal from An,m,n to Am,n,n.

We see that p occurs in all diamond positions of L = L(A) because

(p− k + 1) − (p− k + 2) + · · · − (p + k − 2) + (p + k − 1) = p.

The other occurrences of p as entries of L occur along diagonals from L2,m+2 to 
Lp−2,n−1 and from Lm+2,2 to Ln−1,p−2 by
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1 − (p− 1) + (n + p−m− 1) = n−m + 1 = p,

and along antidiagonals from Lp−2,2 to L2,p−2 and from Ln−1,m+2 to Lm+2,n−1 by

2 − (p + 1) + (n + p−m) = n−m + 1 = p.

The odd case:

⎛
⎜⎜⎜⎜⎜⎜⎝

+
+
. . .

+
+

+
+

+
. . .

+
+

⎞
⎟⎟⎟⎟⎟⎟⎠
↗

⎛
⎜⎜⎜⎜⎜⎜⎝

+
+

.
.
.

+
+

+-+
+

+

.
.
.

+
+

⎞
⎟⎟⎟⎟⎟⎟⎠
↗

⎛
⎜⎜⎜⎜⎜⎜⎝

+

.
.
.

+
+

+-+
+-+ -+

+-+
+

+

.
.
.

+

⎞
⎟⎟⎟⎟⎟⎟⎠
↗ . . . ↗

⎛
⎜⎜⎜⎜⎜⎜⎝

+
+

+
+ - +

.
.
.

- + -
. . .

+ - +. . .+ - +
. . . - + - .

.
.

+ - +
+

+
+

⎞
⎟⎟⎟⎟⎟⎟⎠

↗

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+

+ -
. . .

+ - +
. . .

. . .
+- . . . -+ - +

.
.
.

-+ - + -
. . .

+ - + - . . . -+ - +
. . . -+ - + - .

.
.

+ - + - . . . -+
. . .

. . . + - +

. . . - +
+

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

↗

⎛
⎜⎜⎜⎜⎜⎜⎝

+
+ - +

+- . . . -+

.
.
.

-+ - + -
. . .

+ - + - . . . -+ - +
+ - + -+. . .+- + -+

+ - + - . . . -+ - +
. . . -+ - + - .

.
.

+- . . . -+
+ - +

+

⎞
⎟⎟⎟⎟⎟⎟⎠

↗

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+

.
.
.

- +

.
.
.

.
.
.

+ - +
+ - + - . . . -+

.
.
.

-+ - + -
. . .

+ - + - . . . -+ - +
. . . -+ - + - .

.
.

+- . . . -+ - +

+ - + .
.
.

.
.
.

+ - .
.
.

+

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

↗

⎛
⎜⎜⎜⎜⎜⎜⎝

+
+

+
+ - +

.
.
.

- + -
. . .

+ - +. . .+ - +
. . . - + - .

.
.

+ - +
+

+
+

⎞
⎟⎟⎟⎟⎟⎟⎠
↗ . . . ↗

⎛
⎜⎜⎜⎜⎜⎜⎝

+
. . .

+
+

+-+
+-+ -+

+-+
+

+
. . .

+

⎞
⎟⎟⎟⎟⎟⎟⎠
↗

⎛
⎜⎜⎜⎜⎜⎜⎝

+
+
. . .

+
+

+-+
+

+
. . .

+
+

⎞
⎟⎟⎟⎟⎟⎟⎠
↗

⎛
⎜⎜⎜⎜⎜⎜⎝

+
+

.
.
.

+
+

+
+

+

.
.
.

+
+

⎞
⎟⎟⎟⎟⎟⎟⎠

It can be easily seen that each plane of this hypermatrix is an ASM. All vertical lines 
of A corresponding to diamond positions of L clearly have the alternating property. All 
vertical lines corresponding to the diagonal from (2, p +2) to (p − 2, n − 1), the diagonal 
from (p + 2, 2) to (n − 1, p − 2), the anti-diagonal from (2, p − 2) to (p − 2, 2), and the 
anti-diagonal from (p +2, n −1) to (n −1, p +2) have exactly three non-zero entries, which 
alternate +, −, +. All other vertical lines contain exactly one non-zero entry, namely one 
+ entry. Therefore this is an ASHM.
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The p entries occur in the following positions of the corresponding ASHL.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p
p p p p p

. .
.
. .
.
p

... p
. . .

. . .

p . .
.
. .
. . . .

. . . p
p p p p

p p . . . . . . p p
p p p p

p
. . .

. . . . .
.
. .
.
p

. . .
. . . p

... p . .
.
. .
.

p p p p p
p

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

As outlined above, p occurs as an entry in the diamond positions of L, and also occurs 
as every entry in the diagonal from L2,p+2 to Lp−2,n−1, the diagonal from Lp+2,2 to 
Ln−1,p−2, the anti-diagonal from L2,p−2 to Lp−2,2, and the anti-diagonal from Lp+2,n−1

to Ln−1,p+2.
Therefore p occurs as an entry of L a total of n

2+4n−19
2 times:

(1 + 3 + · · · + n− 2 + n + n− 2 + · · · + 3 + 1) + 4
(n + 1

2 − 3
)

=
(n + 1

2

)2
+
(n− 1

2

)2
+ (2n− 10) = n2 + 4n− 19

2

The even case:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

+
+
. . .

+
+

+
+

+
+
. . .

+
+

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
↗

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

+
+

.
.
.

+
+

+-+
+-+

+
+

.
.
.

+
+

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
↗

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

+

.
.
.

+
+

+-+
+-+ -+

+-+ -+
+ -+

+
+

.
.
.

+

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
↗ . . . ↗

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

+
+

+
+ - +

.
.
. . . .

+ - . . . - +
+ - . . . - +
. . . .

.
.

+ - +
+

+
+

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

↗

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+

+ -
. . .

+ - +
. . .

. . .
+ - . . . - + - +

.
.
. . . .

+ - . . . - +
+ - . . . - +

. . . .
.
.

+ - + - . . . - +
. . .

. . . + - +

. . . - +

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

↗

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+
+ - +

+ - . . . - +

.
.
. . . .

.
.
. . . .

+ - . . . - +
+ - . . . - +
. . . .

.
.

. . . .
.
.

+ - . . . - +
+ - +

+

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

↗

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+

.
.
.

- +

.
.
.

.
.
.

+ - +
+ - + - . . . - +

.
.
. . . .

+ - . . . - +
+ - . . . - +

. . . .
.
.

+ - . . . - + - +

+ - + .
.
.

.
.
.

+ - .
.
.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

↗

+ +
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⎛
⎜⎜⎜⎜⎜⎜⎜⎝

+
+

+
+ - +

.
.
. . . .

+ - . . . - +
+ - . . . - +
. . . .

.
.

+ - +
+

+
+

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
↗. . .↗

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

+
. . .

+
+

+-+
+-+ -+

+-+ -+
+-+

+
+
. . .

+

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
↗

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

+
+
. . .

+
+

+-+
+-+

+
+
. . .

+
+

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
↗

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

+
+

.
.
.

+
+

+
+

+
+

.
.
.

+
+

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
↗

⎛
⎜⎜⎜⎜⎜⎜⎝

+
+

+
+

+
+

+
+

+
+

+
+

⎞
⎟⎟⎟⎟⎟⎟⎠

It can be easily seen that each plane of this hypermatrix is an ASM. All vertical lines 
of A corresponding to diamond positions of L clearly have the alternating property. All 
vertical lines corresponding to the diagonal from (2, m +2) to (p −2, n −1), the diagonal 
from (m +2, 2) to (n −1, p −2), the anti-diagonal from (2, p −2) to (p −2, 2), and the anti-
diagonal from (m + 2, n − 1) to (n − 1, m + 2) have exactly three non-zero entries, which 
alternate +, −, +. All other vertical lines contain exactly one non-zero entry, namely one 
+ entry. Therefore this is an ASHM.

The p entries occur in the following positions of the corresponding ASHL.
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p
p p p p p

. .
.

. .
.
p

... p
. . .

. . .

p . .
.
. .
. . . .

. . . p
p p p p

p p . . . . . . p p
p p . . . . . . p p

p p p p

p
. . .

. . . . .
.
. .
.

p
. . .

. . . p
... p . .

.
. .
.

p p p p p
p

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

As outlined above, p occurs as an entry in the diamond positions of L, and also occurs 
as every entry in the diagonal from L2,m+2 to Lp−2,n−1, the diagonal from Lm+2,2 to 
Ln−1,p−2, the anti-diagonal from L2,p−2 to Lp−2,2, and the anti-diagonal from Lm+2,n−1
to Ln−1,m+2.

Therefore p occurs as an entry of L a total of n
2+4n−20

2 times:

2(1 + 3 + · · · + n− 1) + 4
(n + 1

2 − 3
)

= 2
(n

2

)2
+ (2n− 10) = n2 + 4n− 20

2 �
Note that this bound is not tight. This is currently our best general construction, but 

we have constructed specific examples narrowly exceeding this bound. This was achieved 
by adding a small number of T-blocks to an ASHM generated by the above construction.

Example 3.4. In the n = 11 case, the construction outlined in the proof of Theorem 3.3
gives an n × n × n ASHM A with ASHL L(A) containing the same entry 73 times. The 
ASHM B, with L(B) containing the same entry 77 times, is obtained by the addition of 
T-blocks to A as follows.
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B = A + T2,1,3: 3,2,4 + T9,10,3: 10,11,4 − T2,2,4: 11,10,8 + T9,1,8: 10,2,9 + T2,10,8: 3,11,9

Explicitly, B is the following ASHM.
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⎜⎜⎜⎜⎜⎝
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⎜⎜⎜⎜⎜⎝
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Which has the following corresponding ASHL.

L(B) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 4 3 7 11 6 1 5 9 8 10
3 8 7 6 6 6 6 6 5 4 9
4 6 6 6 6 6 6 6 6 6 8
7 6 6 6 6 6 6 6 6 6 5
11 6 6 6 6 6 6 6 6 6 1
6 6 6 6 6 6 6 6 6 6 6
1 6 6 6 6 6 6 6 6 6 11
5 6 6 6 6 6 6 6 6 6 7
8 6 6 6 6 6 6 6 6 6 4
9 8 5 6 6 6 6 6 7 4 3
10 4 9 5 1 6 11 7 3 8 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Example 3.5. In the n = 13 case, the construction outlined in the proof of Theorem 3.3
gives an n ×n ×n ASHM A with ASHL L(A) containing the same entry 101 times. The 
following ASHM B exceeds this, with L(B) containing the same entry 103 times.
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L(B) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 11 5 10 6 1 7 13 12 2 3 9 8
11 7 7 7 7 7 7 7 3 4 10 5 9
5 7 7 7 7 7 7 7 7 13 4 10 3
10 7 7 7 7 7 7 7 7 6 13 4 2
6 7 7 7 7 7 7 7 7 7 7 3 12
1 7 7 7 7 7 7 7 7 7 7 7 13
7 7 7 7 7 7 7 7 7 7 7 7 7
13 7 7 7 7 7 7 7 7 7 7 7 1
12 3 7 7 7 7 7 7 7 7 7 7 6
2 4 13 6 7 7 7 7 7 7 7 7 10
3 10 4 13 7 7 7 7 7 7 7 7 5
9 5 10 4 3 7 7 7 7 7 7 7 11
8 9 3 2 12 13 7 1 6 10 5 11 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

We conclude by posing the following problem.

Problem 3.6. Is it possible to construct an n × n × n ASHM A for which (n − 2)2 + 4
entries of L(A) are equal, for n > 7?
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